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The competition between long-range and short-range interactions among holes moving in an antiferromagnet
(AF) is studied within a model derived from the spin-density-wave picture of layered transition metal oxides.A
novel numerical approach is developed that allows one to solve the problem at finite hole densities in very
large systemgof the order of hundreds of lattice spacihgalbeit in a quasiclassical limit, and to correctly
incorporate the long-range part of the Coulomb interaction. The focus is on the problem of charge ordering and
the charge phase diagram: at low temperatures four different phases are found, depending on the strength of the
magnetic(dipolarn interaction generated by the spin-wave exchange and the density of holes. The four phases
are the Wigner crystal, diagonal stripes, a grid phdsgizontal-vertical stripe loopsand a glassy-clumped
phase. In the presence of both in-plane and out-of-plane charged impurities the stripe ordering is suppressed,
although finite stripe segments persist. At finite temperatures multisicegmittency dynamics is found,
reminiscent of that in glasses. The dynamics of stripe melting and its implications for experiments is discussed.

[. INTRODUCTION resonance (NQR), and muon spin resonaréell indicate
formation of domains in La ,Sr,CuQ,. Recent inelastic
Charge ordering in layered transition metal oxides haseutron scatteringINS) experiments in La_,Sr,CuQ, and
recently attracted significant research interest, due to its po¥Ba,Cu;0;_ 5, (YBCO) superconductors yield results con-
sible relation to the mechanism of high-temperature supersistent with stripe formatiof? 1" although the width of the

conductivity in doped cupratéand bismuthate$in particu-  INS lines in, e.g., YBCO materials is large, which may sug-
lar, stripelike ordering, which involves holes ordered intogest dynamic charge ordering.
linear arrays, separated by an antiferromagnetid@fy) or- On the theoretical side, stripes have been proposed by

dered electronic background, has discussed as a candidate &®veral research groups. In strongly correlated systems, such
the explanation of pseudogap effects in underdoped cuprates cuprate superconductors, electrons exhibit a strong on-site
compounds. In addition, the formation of domain walls has repulsion. Therefore numerous studes have been devoted to
been discussed in terms of the proximity to phasethe Hubbard and-J models. It has been shown that a mean-
separatiorf.Quite generally, phase separation on mesoscopifield treatment of the Hubbard model yields a stripe phase as
and even macroscopic scales is potentially relevant for ang locally stable solutioh® Many other studies view the
strongly correlated organic and inorganic electronic systemstripes as an outcome of the competition between kinetic
including systems with spin-density-wav8DW),* charge-  energy of holes and exchange energy of spins alone and fre-
density-wave(CDW),> and Jahn-Teller broken-symmeétry quently neglect the role of the long-range part of the Cou-
ground states. lomb interaction:®?° Only recently has an attempt to incor-

On the experimental side, mesoscofii@noscalpphase porate the long-range forces into the mean-field approach to
separation has been observed in many compounds. In thee Hubbard model been matfeAnother point of view em-
case of La ,SiNiO,,, stripes have been observed both phasizes the intrinsic instability of a strongly correlated elec-
using nuclear magnetic resonari®8IR) methods and more tronic system towards a phase separation as a necessary start-
directly, using high-resolution electron diffractiérin addi-  ing point?>? Then it is assumed that such an instability is
tion, stripes have also been identified in,LaCaMnO; for  prevented by the long-range Coulomb forces. Therefore, the
specific commensurate values of dopfhim cuprates static competition between this instability, whose existence in the
stripe order has been observed in; ka,Sr,Nd, ,CuQ, in physical range of parameters of the realistic models is yet to
both elastic and inelastic neutron scattering experimentspe proven, and Coulomb repulsion gives rise to a stripe
andx-ray diffraction experiment¥ There are also evidences phase. Thus, these two approaches agree on the importance
that stripes exist in some form in high- compounds. In the of the correlations but disagree on the role of long-range
oxygen-doped LgCuQ,, s (Ref. 1] stripes have been ob- forces. More recently, it has been shown that phase separa-
served using nuclear magnetic resonafit®lR) techniques. tion is indeed a very common phenomenon close to quantum
Magnetic susceptibility measuremehtsjuclear quadrupole critical points®*
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One would expect that the existence of stripes in thehe stripes one is lead to the concept of a quantum liquid
widely studied “minimal” t-J or Hubbard models can be crystal as proposed recently by Kivelson, Fradkin, and
either proven or disproven by some unbiased numerical teckEmery>! On the other hand, the ground state of the geomet-
nique. Unfortunately, numerically the stability of the stripe ric phase is not well defined in that there are many geometric
phase has been established less clearly. Numerical studies®fiases with very low energies, comparable to that of the
thet-J model present conflicting conclusions as to the exis-ground state, implying augged energy landscapgVe find
tence of stripe phases in the ground state of this “basic”_that. on Iowenng the temperature, the geometric hole order;
strongly correlated model, which might be the result of theld IS charactenzec{ by the occurence of secpndary defects in
strong finite-size effect®?® For example, even a Monte the structure. At hlgher temperatures we find @hat diye
Carlo simulation of the doped Ising model, without the long-Na@michole ordering is characterized bgmporally intermit-
range forces, yields holes ordered into loops, rather than imgantpattern_formatlor(l.e., s_p_atmtemporal |nt_erm|tten):yF|-
geometric array4’ In fact, with the exception of the recent nally, we f|nd_ .that a sufficient concentrf':ltlon of randomly
density matrix renormalization grolMRG) simulations ~ Placed impurities destroys the geometric hole pattern, al-
of White and Scalapin®® which have found stripe formation though, regardiess of the impurity type, strigegmentsre
in relatively larget-J clusters, no microscopic calculation to preserved.

date has shown that the stripes are a stable entity. Most im- 1€ Paper is organized as follows: in the next section we
portantly, no stripe formation in a system with Iong-rangepresem a review of the theoretical model and the computa-

interaction has been studied in a direct simulation. In additional methods we use. In Sec. Ill we present our numerical

tion, the sizes of the clusters available with modern day com_[esUItS and in particular we present the phase diagram show-

puters for solving quantum models of spins and holes ard9 h_OW the .obtamed phase§ emerge as a function of doplng
still too small to study role of the the long-range Coulomband interaction strengths. Finally, in Sec. IV we summarize

interaction and be free from significant finite-size effects. Ul conclusions and experimental implications.

In this situation we propose a different strategy: one can
study a quasiclassical limit of the quantum problem of holes Il. MODEL
in an AF spin environment analytically and incorporate all /o begin with the SDW picture of layered transition
es_sential correlations in an effective hole—hole interaction. 1Ny atal oxides. This picture has been very successful in de-
this case the AF background is effectively integrated out, and .jping the stoichiometric insulating AF phase of these sys-
the focus is on the charge subsystem. Then the motion Qg at low temperaturdé?® In this picture the electrons

“classical” holes at finite density, interacting via affective 0 o \with hopping energyin the self-consistent staggered

magnetic interaction and_in the presence of long-range Coysaid of its spin, as described by, e.g., the Hubbard model
lomb forces, can be studied numerically in much larger SYStthe calculation is presented in detail in Appendix A
tems. In other words, in this paper we combine analytical

and numerical approaches to study the charge ordering in

transition metal oxides. H=—t> (clgj+H.c)+UX nin . (1)
Our numerical approach is based on the SDW picture of d '

Schrieffer, Wen, and Zharf§,which is closely related to  Because the translational symmetry of the system is broken,

the semiclassical approach to thé model by Shraiman and the electronic band is split into upper and lower Hubbard

Siggia® in which the interaction between doped holes stem$ands®® On performing a Bogoliubov transformation, one

from the spiral distortion of the local évector near a hole. defines the valencen( ,) and conduction band, ,) opera-

As shown below, in the quasiclassical limit, the problem cartors, respectively:

be solved using classical Monte CarlMC) or molecular

dynamics(MD) methods. In a systematic numerical study we Pk,a = UkCk,a T @VKCk+Q,a » )

explore the interplay between long-range Coulomb interac-

tion and short(or intermediatgrange AF interactions of di- Ny = UkCk,a ~ @VKCk+Q,a ()

polar nature, which we take to have both isotropic and anwhereu, ,v, are the Bogolioubov weights andis the sub-
isotropic component&depending on the lattice structiire |attice index. The upper and lower Hubbard bands are sepa-

Our main results can be summarized as follows: in thgated by the Mott-Hubbard gag =US/2, whereS is the
absence of disorder we find four phases depending on the«pectation value of the staggered fi€lg

density of holes and the characteristic AF energy scéiea:

Wigner crystal(ii) diagonal(glassy stripes,(iii) a geometric

phase, characterized by horizontal-vertical stripes or a check- (Sfa)=— ZKE Uit g-QUiNkig-0.aa) (4
erboard(grid), and (iv) a “clumped” phase(phase separa- “

tion). In our study the stripelike phases emerge as a kind otalculated at momentum transfge= Q. At half filling the
melting of the Wigner crystal phase; hence the long-rangéower band is filled and the upper band is empty. This picture
Coulomb interaction is a necessary ingredient for their ocis consistent with the angle-resolved photoemission data in
currence. In the geometric phase the stripes, resulting frorthe layered AF insulator SEuO,Cl,.3* On doping the sys-
the competition of the short-range and long-range interactem with holes with planar density,, at low temperatures,
tions, are characterized by a particular AF dipolar alignmentT<A/kg, the low-frequency physics reflects purely the
The patterns are very stable, showing large “string tension,lower Hubbard bandLHB). It has been showh that, re-
while the motion of holes within a stripe is much softer. If gardless of the band structure, the LHB has a maximum at
one takes into account the kinetic energy of the holes alonépur wave vectork;=(*1,=1)w/(2a), wherea is the lat-
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tice spacing, and therefore the long-wavelength theory of the It has been notéf that the dipolar twist of the magnetic
problem can be studied by assuming the momentum of thbackground would imply local time-reversal symmetry
holes to be close to these points. breaking, which puts some restrictions on the applicability of
Then the two-hole interaction Hamiltonian can be sepathe picture to the real systems where such symmetry break-
rated into the longitudinal and transverse paHs éndH,, , ing has not been experimentally observed. Indeed, the time-
respectively, whose Fourier transform, for quasiparticle mo- reversal symmetry is already broken in theelNstate, as well

menta neak; , is equal t8° as in any magnetically ordered state. However, in two-
dimensional spin systems at finite temperature all symme-
HO =T A.0202— Al ot oo + o o)V 18(r tries are restored and_ we expect this to be true also for the
(N=[A0102= Aglor oz + o1 07)19(r) hole-doped case studied here.
di-dy  (dy-r)(dyer) Besides the AF interactions the holes also experience the
|5~ 2 (al+ 02’+01’02+), long-range Coulomb interaction. This is clear if we consider

r r

thatrs=ry/ay (Wwhererg is the mean interparticle distance
(5) and a, is the Bohr radiusis very large in the underdoped

systems (;~8). In other words, in systems with a small
wherer=|r,—r,| is a relative hole-hole distance, is a  density of holes, the screening, which is due to the density
coordinate of a hole in units o, Uiz(i)zclgi(ﬁi)cﬁ is a fluctuations, is very weak and one must take the Coulomb
spin-density operator, witb?*) Pauli matrices, and; is a  interaction into account.
unit vector in the direction of the dipole moment of the hole. ~ Finally, each hole carries a spin degree of freedom as
In the SDW formalism the interaction strengths,A,,, and ~ Well. However inspection of E¢(5) reveals that the overall
B,y~A,/2 are all of order Hubbartl. The interactior(5) ~ SPin energy is minimized in the spin-antisymmetric channel.
is clearly rotationally invariant and valid for=a, while for ~ Hence we neglect the spin-symmetric channel and thus in
r—0 it yields an unphysical divergence of tfiattractive ~ Our approach, we only consider the charge channel with an
dipolar interaction. We observe that this form of the Hamil- ffective (magnetic in origip interaction between two holes,
tonian is not particular to the SDW theory of the Hubbard1 and 2, of the fornjsee Eq(5)]
model, but stresses the fact that a mobile carrier in an anti-
ferromagnet produces a dipolar distortion of the magnetic
background. We demonstrate this explicitly in Appendix B
where we show that thieJ model has exactly the same type
of interaction terms. In other words, at finite density thewhere we have asssumed thatan be relaxed from a crystal
holes interact via two different mechanisms: a uniform shortdattice position to an arbitraricontinuou$ value. We return
range attractive force due to AF bond breaking and a longto this point later.
range magnetic dipolar interactipcontained by Eq(5), see In Eq. (6) qis the hole charges is the dielectric constant
Ref. 28. The latter term is due to the long-range spiral dis-(which we assume to be of ordey, 19 is the angle made
tortion of the AF background, which is a consequence otbetweenr and a fixed axis, an@, , are the angles of the
quasiparticles interacting with safoldstong¢ modes of the magnetic dipoles relative to the same fixed a¥sis the
spin systent>° The magnetic dipole moment associatedstrength of the unifornishort-rangginteraction and is the
with each hole is due to the coherent hopping of holes bestrength of the magnetic dipolar interaction, which we will
tween different sublattices and scales with the AF magnetiassume to be independent adjustable parameters, which, in
energy. This implies that the quantum effects associated witheal materials, should be of orderl eV. Note that we have
hole kinetic energy can be neglected, which is correct in thentroducedB~BXy/|2, wherel is some appropriate average
limit t<J, believed to be valid in nickelates. This is also why length,a<| < ¢, in order to avoid the unphysical divergence
the hole-hole interaction obtained in the weak coupling SDWbf the dipolar part of the interaction in Ep), while keeping
picture is equivaleRt to that in the effective Hamiltonian the necessary symmetry of the interaction. Moreover, in the
found by Shraiman and Siggid,based on thé-J model, SDW picture, at low dopingé, and ¢, are restricted to the
where thedipolar interaction is obtained usingemiclassical angles (2+ 1)#/4, the four angles determined by the vec-
analysis of the spin part of the model, as well as symmetryors k; . In addition, the dipole moment vectors are also re-
considerations. It is also possible to prove, using Ward idenstricted tok;, which justifies our use of Eq6) where we
tities, that the remaining spin part of the problem is equiva-have assumed a fixesize of the dipole moment for each
lent to the two-dimensional2D) nonlinearoc model in the  hole. However, at larger doping levels these angles can be
long-wavelength limit® It has been arguéfithat at physical relaxed to arbitrary values, provided the interaction is short-
valuest/J>1 all coupling strengthsA,, A,,, andB,,), and  ranged. Of course, we have verified by an explicit calculation
therefore the hole-hole interaction, will be renormalized tothat restricting dipole angles to the discrete values does not
the value of superexchange constant qualitatively change our results, presented in the next sec-

In pure two dimensions at finit€ the system is magneti- tion. It is interesting to note that the hole-hole interaction in

cally disordered, characterized by a finite magnetic correlathe form almost identical to Eq6) has been obtained by
tion length ¢ (see Ref. 3Y, and the range of the dipolar Aharonyet al3° for the static holes residing on Cu-O bonds
interaction between the holes, mediated by the AF backwithin the framework of alassicalmodel of an AF diluted
ground, is also of ordeg. In fact, even aff=0 andfinite by ferromagnetic bonds. In this case the value of the cou-
hole concentration the correlation length is restricted and theling constanB is also restricted by a fed Indeed, starting
dipolar interaction is effectively short ranged. from the insulating phase of cuprates, the holes are injected

2
V(r)= (:—r—Ae‘”a— Bcog20—¢1—do)e s, (6)
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into the CuQ planes at high temperatures during the sample

preparation. The hole distribution in this case is annealed ®

(instead of quenched as proposed in Rej. §8ce the holes

have enough phase space for interactions. As the temperature ®

is lowered the holes can adjust themselve¥ o) and form

the structures we discuss below. PS

Quite generally, one can think of an AF as an active me-

dia generating long-range dipolar forces in response on some

local distortion. Therefore, the interactidf{r), Eq.(6), is of ®
®

O

more general significance than just a result of the SDW pic-
ture, and the study of the system of particles interacting via
V(r) is of wider interest.

In general, the many-body problem of holes in an AF Ly
background is extremely complicated, involving many- ®)
particle interaction terms. However, at low densities, where 9
the average distance between holes is comparable to the AF (5 X
correlation length, it is reasonable to assume that the inter-
action of any two holes is weakly perturbed by other holes, 35 T
and the total potential energy can be expressed in terms of 1 Coulomb; s i

. . . ; . 30 b .
two-particle energies, provided the AF correlation length is \ ;f
!
}

T
Lekner

replaced by areffectivecorrelation length, which, to avoid 25 |
clutter, we also denote &@s We therefore study the system of
“classical” particles in a computational box of size,
XLy, interacting via a potential

20 f

15 F

E (arb. units)

10 |

Hi= 2 V(). ) S

whereV(r) is given by Eq(6). However, we emphasize that 0
our approach is not a self-consistent one in the sense thatthe () oL

true interaction must include many-particle terfosnitted

herg, which stem from the fact that the SDW state is altered i 1. (a) Electrostatic interaction in a system with periodic

due to the charge ordering. The self-consistent approach t@,undary condition. An effective interaction between any two
charge ordering will be presented elsewhere. In addition, Sicharged particles in the computational kentral rectangle such
perconducting fluctuations have been neglected. Moreovegs the two marked by a thick vector line, involves the interaction
the kinetic energy of the holes may lead to a quantum meltwith all of the particle images, marked by thin wave vector lines.
ing of the phases discussed here. (b) the Lekner potentialwhich accounts for the periodic boundary
The long-range character of the Coulomb interaction re€onditions in comparison with the bare Coulomb potential, within
quires further consideration: in order to perform calculationsa computational box of size. As expected, at— 0 the two poten-
at finite density, as required by the dipolar interaction wetials coincide(up to an additive constanand hence their difference
consider, we usually perform calculations with periodiccan be readily approximated by a low order polynomial.

boundary cor.1d|t|o.ns. The ability to .haf‘d'e Iong—range Cou'landscape and the dynamics of the system using three differ-
lomb interactions in rectangular periodic media has been e

hanced recently in the area of molecular phyéfo&ssuming "Ent methods: Monte CarleMC), Langevin molecular dy-

) . ; namics (MD), and a hybrid MC-MD metho? All three
a computational cell of arbitrary geometry and cyclic bound-pethods yield essentially the same results. Both MC and MD

ary conditions it is possible to sum interactions of particlesyethods are well known in the literatdfand hence we only
with all of their images residing in cells obtained by transla-review details pertinent to our calculation. In the MC method
tion from the original computational céft;*yielding an ef-  \ye use the standard Metropolis algorithm for the acceptance
fective interaction that is periodic in the computational cellgf hole configurations. For the Langevin MD method the
used(see Fig. 1 On making integral transformations, Cou- dynamics of the system is determined by the forces, obtained
lomb interactions are computed by summing over fastfrom Eq. (7), with a noise term;, for each particle that
convergent Bessel functions with great accuresme Ref. 40  satisfies the usual fluctuation-dissipation conditiop 7;)
for a detailed study of the Lekner summation technjqlitee ~ =27yT4; ;, wherei,j correspond to all possible degrees of
computational efficiency is further enhanced by tabulatingreedom andy is a damping terni® Since the system exhib-
the effective interaction. This is possible since the differencéts several phase@ee Fig. 5 for some values of the input
between the obtained effective interaction and the Coulomiparameters, its ground state is not always well defined and a
interaction is a well-behaved function that can be easily calnumerically obtained low-temperature state may, in fact, de-
culated using polynomial interpolation. pend on the initial and boundary conditions. Hence, in order
At the beginning of each simulation we place the holes ato rapidly reach a hole configuration with the lowest global
random and assign to each hole a magnetic dipole moment afinimum energy, we perform simulated annealing from high
constant size, but random direction. We study the energyemperatures.
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The hybrid MC method includes elements of both the MC . 0 o P s
and MD methods: the hole configuration is again determined 100 | © A ° . °
using the standard Metropolis algorithm, but here a new con- ° o o o o R
figuration is obtained by letting the system evolve through a o . ° ° ° °
classical MD calculation over a certain time period. Note 80 o . T T
that, in principle, in classical MD calculations the energy is a ° ° ° ° ° o
conserved quantity; hence every step should in principle be 60 I o . T, . i
accepted. In reality the MD method introduces errors which 3 ® o ° o
typically slightly lower the system energy, just as required ° . . ST o
by the Metropolis algorithm. Hence this method yields ex- W0k o o o o .
tremely high MC acceptance ratit’. o ° o, °
20 | AR o T 0
ll. RESULTS ° o . e . °
In this section we discuss the results of our numerical 020 % & s 100
calculations. We first present the obtained ordered phases @)
and the phase diagram of the system and discuss its implica-
tions. We then show the hole ordering in the presence of gol oo ]
disorder. Finally we show the properties of the system as a H
function of T and in particular the dynamics of the observed 70+ o e 1
(stripe) pattern formation. 49
Before we begin with the presentation of our results we 60 £ of’ o P ]
address the input parameters of the model, nhamely the hole 501 o 7 o '/f A |
density, o (or the doping leveh), the strengths of the iso- o™ o"",v A o
tropic and dipolar parts of the AF interactiof,andB, re- 400" e » o g
spectively, the AF correlation length, the temperaturd, -~ f/o " 5°
and the concentration of impurities,, for the systems with 30t 2 f°,,' 57 ]
static point disorder. We define the doping lemels the hole 20l £ ,o@-’p |
density measured in units of the cuprate lattice spacing; thus e
n=1% corresponds to 1 hole per H¥) wherea~3.8 A. 10l 3 |
The input parameters are not necessarily independent of L . ' i - L
each other, e.g.A and B should be proportional to each 0 10 20 30 40 50 60 70
(b)

other, withA~U whent>U andA~4t>/U whenU>t (see
Ref. 29. However, since the range of the bond breaking and [\~ , | o oo ¢ e hole-vacancy systefa) For B
dipolar interactions is vastly different, it is reasonable to treat_ , thé héles(circles) form the Wigner crystal anb) for B
A,B, and¢ as independent parametgrs. Clearly bbtndB (an unphysical cagdahey form a “clump” pattern, a characteristic
should be of order of the Hubbatd in the SDW approach o the “mesoscopic phase separation.” The dipole orientation
and of the order ofl in the strong coupling limit, and the (shown by the segments, originating from the circle ceintiei-
correlation length is of the order of 1 to 10 lattice spacings incates finite magnetization at each star cluster. In both panels the
cuprates. _ doping level isn=15%.

We begin with the low-temperature propertigground
statg of the system as a fl_mc'qon &. Thg relevant order fact in an infinite system it is & function), it is initially
parameter for charge ordering is the Fourier transform of thereasonable to sék=0 and explore the behavior of the sys-
hole density: tem as a function oB. We return later to the role oA As
explained in Sec. Il lowF properties have been obtained by
annealing the system from some high temperatufe (
~5000 K) down to temperatures of order 1 K. In the extreme

1 N
pla)=15 2 €9, (8
caseB=0 we find a Wigner crystal with small distortions, to

i=1

wherer; is the position of thath hole andN is the total >
number of holes. A peak ip(q) at some wave vectoq be the state of lowest energy, as expetiésee Fig. 2a)].

=K indicates ordering. Returning to the SDW picture, pre- The small distortion of the Wigner crystal structure is due

sented in Sec. II, we recall that the hole density is given byl© the periodicity, which introduces a small spatial anisot-
ropy into the system due to the shape of the computational

box. Indeed, upon setting, e.d., /L= J3/2, we obtain a
perfect Wigner crystal to be the ground state. Another ex-
treme case is wheB—x. In this case the AF dipolar inter-
action dominates over the average Coulomb interaction; one
then finds star-shaped clumps of holes, similar in shape to
those found in Ref. 45, which can, at sufficiently high den-
sity, form a geometric structurée.g., a Wigner crystal of
clumps. We note that this case is rather unphysical, as mac-
roscopic phase separation is inconsistent with our initial as-

Pk:qz hIJrq,ahq,a' C)

From the definition of the staggered magnetization, @.
it is immediately clear thafS,(q))> dqk+q, I-€., @ peak in
py atK leads to a magnetic peak @+ K and by symmetry
atQ—K.

Since the interaction due to the second term in &.
(isotropic attractive interactionis extremely short-rangén



4358 BRANKO P. STOJKOVICet al. PRB 62

sumption of the two-body dipolar interaction being indepen- g TS

dent of the many-hole effects. On the other hand, ordering of 100} @ g 1

macroscopically hole-rich regions is in agreement with the vosoo oo°°c . 00000

conjecture that all ground states are geometrically ord&red. ] SRR
On increasingd>0, at fixed density, the Wigner crystal 8 2.)

becomes unstable and a new phase with diagonal stripes is 601 2 & i

formed, as shown in Fig. 2a of Ref. 47. The main character- s g

istic of this phase is a ferromagnetic ordering of the AF a0l 8 ;8 |

dipoles. The situation here is very similar to that observed in
La, SiNiO, ., (see Ref. J. Note that such a state with a

dipole ordering appears to violate time-reversal symmetry.
On the other hand, the true ground state in this case also
involves hole ordering, with holes aligned in stripes either 0 20 © 40 80
perpendicular or parallel to the dipole orientation. However,

Q o
o e 4 o [}
pecoooe ° ofececosvoc000 ° o PCoOO O

20}

o

copo00?
<]

0080006°
o

(=]
k-

100

[o]
o

60

the interstripe distance, in this case, is close to that between I (b)'
holes within a stripe and hence a simulation inevitably yields 501
a “glassy” state, with many defects. This is reflected in the
shape ofp,, which shows broad peaksee Fig. 2) in Ref. 40+ o 7,

0 0 0 w0 0" B )ty O

47), indicating an average interstripe distance.

As shown in Fig. 8a), at larger values oB a linear stripe
is formed, which, with increasing density tends to close into
a loop. More importantly, the loop formation is accompanied
by magnetic dipole orientation along the straight portion of a
loop with gradual rotation byr/2 at each corne Due to
the rotation of dipoles at corners, the loops interact and even-
tually form the checkerboar@@rid) pattern®® The size of the
distance between holes within a line is determined by the
ratio of B (or the sum ofA andB, for A#B) and the Cou-
lomb energy; the grid sizes are determined by the hole den-
sity alone. These results appear to be consistent with the
DMRG numerical solution of thé-J modef® which also

finds loops of holes, except that in our case the periodic L 1.02
boundary conditions and the Coulomb interaction yield a
“tile grid” as opposed to “droplets.” Note the almost per- L 1-04

fect (infinite charge correlation lengtfg.) crystal structure L L L L
obtained[Fig. 3(c)]. It is noteworthy that a typical solution 04 -02 0 02 04
yields a finite dipole moment at each grid intersection, riG. 3. Low-T state for larger finite values d@,B=4 eV, at
which, in turn, can take one of the two orientatio@$ong  n=15% doping level. The holetcircles form a grid [Ref. 47
two diagonals of the computational Bpxhus creating a (panel(a)] with dipoles orientated along line segments and a dipole
highly degenerate system of momefdse Fig. 6 below rotation at grid intersectionpanel(b)]. Panel(c) shows a contour
We recall that the presented solution is obtained assuminglot of the average charge densjy in arbitrary units, indicating
an arbitrary dipole orientation with a constant hole dipole“perfect” geometric order.(Ref. 47 Even after averaging over
magnitude, i.e., a continuum of angles between the dipolemany solutions in this case the charge peaks are much sharper than
and a fixed axis. As explained in the previous section, at veryhose found in the ferrodipolar phaéeee Fig. 20) in Ref. 47.
low doping the dipoles would reside near the Brillouin zone
(BZ) diagonals, i.e., they would assume almost “discrete” motion perpendicular to a grid side compared with the mo-
orientations. In order to study the effect of this “discrete-tion along a side. As seen in the figure, the grid phasel,
ness” we have performed the same simulation this time, asas discussed below, the stripe phasextremely stable with
suming that hole dipoles can take only one of four directiongespect to the hole motion perpendicular to the holes line
(determined by the momenta of the maxima of the lowersegments, due to the Coulomb interacton. On the other hand,
Hubbard bangd We find that the physics of the pattern for- at larger doping values and fixed hole density the stripes are
mation is qualitatively unaltere¢thence we do not present almost compressible, i.e., the motion of holes along a stripe
them herg except for one important difference: the “bend- is rather soft. The anisotropy of the perpendicular and longi-
ing” of stripes at the grid intersections disappears, i.e., oneéudinal string tension decreases with decreaging
no longer has a finite dipole moment at these intersections. At fixed AF correlation length the four observed phases
Another way of quantifying this ordered phase is byyield a diagram that we show in Fig(&@. We remark that in
straightforwardly calculating the “string tension,” which at all phases a nonvanishing value Afleads to a decrease in
T—0 is equal tod?U/dx?, whereU is the total potential the effective value oB at which the transitions occur, as
energy and is a small holg(or stripg displacement; a large shown in Fig. Bb). The isotropic termA alone never pro-
string tension indicates a high stability of the obtained phasejuces any nontrivial geometric phase.g., stripes even
and vice versa. In Fig.(4) we show the string tension for with inclusion of lattice effects. We find that the transition
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0.4 A
# . . L
02 F L between the ferrodipolar and the grid phases is first order, as
I S S indicated by the coexistence of phases in Fig. 6. Note that
®) 115 2 25 3 35 4 this transition always occurs on increasing the doping level
Blev] to sufficiently(and artificially) high values, where our theory

FIG. 4. (a) Energy as a function of a hole position, reflecting the need not aPP'Y-_ No coeX|sten_ce of phases has been observed
string tension in the stripe, f@=4 eV andn=15%. Clearly, the &t Other transitions, suggesting that they are second order.
motion of holes perpendicular to the the grid directions is quite hard/Ve also recall that our calculations ageasiclassicaland
and while the motion along a line stripe is much softeee also  thus the obtained geometristripe phases are insulating.
text). (b) average string tension as a functionByfatn=15%. Note Moreover, in our formalism the hole denSity within a Stripe
the almost exponential dependen@elid line) up to the critical ~can assume an arbitrary value, depending on the dipolar in-
value ofB~4 eV where the system undergoes the first-order tranieraction strength.
sition between the ferrodipolar and grid phases. In the cases presented above we have assumed a uniform

magnetic dipolar interaction. It is well known that there are
orthorhombic and tetragonal distortions in practically all
transition metal oxides. In particular static stripe formation

10 has only been observed in the low-temperature tetragonal
gl Diagonal phase of L@G_XNdOASrXCuO‘l.g In order to study the i_nflul—
~ Strgipes Geometric ence of the anisotropy we assume that _the magnetic dipole
6l Phase | sizes along the andy directions have anisotropy (a=1
= corresponds to the isotropic casEigure 7 shows the pattern
‘8 4} . we obtain fora=0.8
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FIG. 7. With a smallx-y directional anisotropy in the dipolar

FIG. 5. (a) A=0, n-B phase diagranifrom Ref. 47. (b) Fixed interaction, Eq.(6), with the anisotropy parameter=0.8 (in the
B,n-A phase diagram. It is noteworthy that the experimentally rel-uniform casea=1), the holes(shown by circles form a stripe
evant values oA and B are of order~1 eV. The slightly higher rather than a grid pattern. Note the hole dipole orientatishswn
values ofB, at which we find geometritgrid and stripg phases, are by the line segmentsaltering direction in neighboring stripes, cor-
due to the fact that we consider unscreened Coulomb interactioresponding to ther phase shift of the local magnetization between
and in reality they would be considerably smalisee also Fig. P magnetic domains separated by strip@ef. 29.
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FIG. 8. (a) A typical low-energy state in a larger computational I B B 2 58 o7 8
box, obtained for the same value Bfandn as in Fig. 3. Note the §2p03,8 ¢ Pt h, 845 ¢
presence of point and line defects. It is important to realize that the 0 £0000900909%00 050% _sa0002000a0000¢ 000000550008
average size of the grid units depends only on the physical param- 0 100 200 300
eters and very weakly on the size of the computational BmxThe
charge densityp, averaged over a numbéof order 10 of hole T 05 - ; - 0.5
configurations. Note that the peak positions are the same as those © AN @ O
- . . - = 1025 1025
shown in Fig. 3, but due to the presence of defects the intensity of
the higher Bragg peaks vanishes. L © © {0 L ) 0
N R N7
The rotational symmetry is broken and a stripe superlat- 198 1 0 1025
. . . . N -
tice is formed, with a charge ordering vectidr= (27/1)x, 05

0308 0 05 05" 05053 0 0 050

wherel is the interstripe distance. More importantly, the total

dipole moment in this state vanishes. As explained in Sec. I, Fig. 9. (g A typical low-T metastable state of the hole system,

this yields a Fourier transform of the magnetizati8()  obtainedwithout periodic boundary conditions and with an appro-

=(S,(q)) peaked aQ=K in momentum space. Of course, it priate positive background included. While the ground state is still

is reasonable to assume that in twinned single crystals, usetgeometrically ordered state, it is practically unreachable due to the

in inelastic neutron scattering experiments, one has domainsesence of many metastable statgs.Adding very small direc-

that average out this anisotropy. Note that in both calculatedonal anisotropyf «=0.9, with =1 corresponding to the uniform

geometric phasesee Figs. 3 and)7the interstripe distance case shown in panéh); see also Fig. JFyields stripes with some

is much larger than the intrastripe distance, in agreemerttefects. Panelgc) and (d) show p, as a function of momentum

with experimental findings in underdoped cuprates. corresponding to the results shown in pan@sand (b), respec-
Our results are somewhat sensitive to the applied boundively.

ary conditions. First, for a small computational box. the exac%\lthough they still form stripes, as seen in Figa)9 How-

size of the.grld_ depends on its commensuration Wl'th the po ver, in a finite system even very small anisotropy (

length, wh|ch, in turn depen_ds on the den3|ty. O_n Increasing_ g5) again leads to stripe formation, as seen in Fil). 9

of the size of the computational box, the grid size dependg; js worth mentioning that the stripe formation occurs for

only on the physical parameters, as explained below Fig. 3nych smaller values d and the same density and AF cor-

In addition, for a large computaitonal box the grid pattern,re|ation length in a finite system.

shown in Fig. 8a), acquires point or line defects, shown in  \We have also performed simulations in the presence of a

Fig. 8a). realistic underlying periodic lattice and have found that this
This leads to the reduction in the higher order peaks obereates slight distortions in the phases, pinning loops more

served in Fig. &) with no change in their wave numbers, strongly. In particular, the peaks jp(q) sharpen in some of

indicating the finite value o., as seen in Fig. ®). The these phases.

sensitivity to boundary conditions is further seen in finite

size calculations, i.e, not assuming periodic boundary condi-

tions, but with an appropriate neutralizing charge back- We now turn to the effects of point disorder. There are

ground. In this case the holes do not form geometric phasesgveral kinds of impurities that are of experimental interest

A. Role of disorder
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FIG. 10. The effects of impurities of different types. The four

panels show holdcircles and impurity (starg positions, for the
case of charged impurities, placed=6 A out-of-plane(top left),

in-plane repulsive uncharged impuritiésp righy, in-plane repul-
sive charged impuritiegottom lefy, and in-plane impurities with a

local magnetic moment that destroys local AR orderibgttom dipolar interaction. Since the magnetic interaction is strong|
right). Clearly, all impurities destroy the stripe order, although the P ’ Y gly

out-of-plane impurities and the uncharged in-plane impurities aresuppressed in the vicinity qf Sl:]Ch an 'maumy .SlteF’. evgg the
nearly as effective as the in-plane charged impurities. The Iatte?trlpe segments cannot exist there, as shown in Figl)

lead to the a glassy phase of stripe segments at relatively low con- Impurities are especially effective in destroying Fhe or-
centrations, of order a few percent. dered phases found at sma&l For example, the Wigner

crystal state becomes glassy at relatively low impurity con-
in transition metal oxides. We divide them into four distinct centrations. This happens because, e.g., in the case of impu-
groups: (l) out-of-plane impurities, such as Sr in rity type I, the attractive Coulomb energy between impurities
La,_,Sr,CuQ, compounds(ll) in-plane charged impurities, and holes scales like?/d, whered is the distance between
such as(presumably Li,*° (Il in-plane uncharged impuri- the planes in which the impurities and holes reside, while the
ties, such as Ni, anlV) in-plane uncharged impurities that average interhole Coulomb energy behaves?do. Thus
induce a magnetic moment, such as Zn. Hence, we model thghen o< 1/d? the holes are pinned by impurities.
impurity effects by adding a randofm position potential to In general the role of impurities depends strongly on the
the Hamiltonian(7), which is either short-ranged and located impurity concentrationc;. However, the magnetic dipole
in-plane or, as in the case of charged impurities, long-rangethteraction is sufficient to retain the main orientation, as seen
(Coulomb and either in-plane or out-of-plar@ distanced  in Fig. 11, where we have plotted the correlation length as a
from the plane where the holes are locatdd the case of function ofc;. This leads us to conjecture that with the ad-
type IV we have also altered the dipolar interaction in thedition of the kinetic energy the holes can move in string
vicinity of an impurity, i.e., the magnetic interaction is mul- segments in an orientation given basically by the phase dia-
tiplied by a factor tanh(R), wherer is the distance of a hole gram of the clean system. The stripe motion would then be
to a nearby impurity andR; is the effective radius of the caused by mesoscopic thermal or quantum tunneling of the
impurity, which, for the case of Zn, has been estimated to béinite strings between the minima of the overall potential.
of order 2 lattice sites around each impurity atrEx-  This would lead to nonlinear field dependence in the low-
amples of the effects of the four types of impurities are pretemperature conductivity?
sented in Fig. 10.

Clearly, all four types of impurities lead to the destruction
of the geometric(stripe or grid hole order at sufficiently
large impurity concentratiorg; . On the other hand, in all ~ We now proceed to the finité-results. The numerical
four cases stripe ordering persists through the formation ofrocedure is identical, except that the temperature is lowered
line segments of holes, resulting in a neglassyphase’ adiabatically to a finite valué.e., a numerical annealingin
Moreover, the four impurity types exhibit different mecha- @ classical simulation this is equivalent to introducing kinetic
nisms for destroying the stripe order. The charge ordere@nergy into the system.
phases are practically unaffected by a small concentration of In the case of a Wigner crysta=0, we find that the
uncharged impuritieksee Fig. 1(b)], i.e., the stripes simply introduction of finiteT melts the crystalline structure and the
avoid impurity sites. Consequently, the stripes persist to relatesulting phase is the 2D Coulomb gas. The diagonal
tively high concentrations of this type of disorder. (glassy phase is also unstable at relatively low temperatures.

The charged impurities first lead to stripe deformation,On the other hand, the geometrically ordered statesafor
i.e., the stripes pass either very close to the impuriies ~ <§, wherea is the distance between holes within a stripe
attractive, pinning impuritiesor very far from the impurities  segment, are all stable up Toof order ~B/o¢a3. At even
(for repulsive impuritiel in order to maximize the potential higher temperatures, the stripe array melts with a temporal

energy[see Figs. 1@ and 1Qc)]. With increasingc; the
stripes rupture and only stripe segments persist. Finally, the
impurities with a local magnetic moment affect the forma-
tion of the spiral spin phase, responsible for ta#ractive

B. Finite-temerature results
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(b) O 20 40 60 80 100 perature of order of the activation energy for a transition between
the two energy basins, depicted by the states shown in Fig. 12. The
100 Lo ¥ 'oc,é?‘” ’g"_ left maximum corresponds to the ground state, Figajizand the
o %e‘?e o oo ¢ & right to a family of low-lying excited states, Fig. @®. Neither
80 | %ev 6% 40 %y 7| peak can be fitted by a simple Gaussian, indicating a glassy nature
o % ° ogfa of the ordered state¢b) The average “power spectrum” corre-
60 ad"er e d dé’g o® o sponding to the result shown {g): the vertical axis shows the sum
0 Ud"%e %dg @ fd ) of the squares of the Fourier components of the potential energy,
% 4% & ° o® within the nth octave (components 2 * through 2—1, for n
20 k- % @ o s 9 ¢ Z"Z" >0), averaged over manfof order 300 spectra. The flat low-
oo G: ' gql dd@.ec'& K 1 frequency behaviofup to about the 9th componeiis very close to

a generic(Ref. 59 1/f noise and corresponds to slow fluctuations
involving many particles, such as those yielding the transitions be-

FIG. 12. Spatiotemporal intermittent behavior of hole orderingtween the states depicted in Figs(d2and 12b).

near the melting transitionthree snapshots are show@) corre- ture (with the energy shifted by an arbitrary additive con-
sponds to a state that is clearly withing the basin of attraction Ofthpstan) thus indicating an intensity of the energy states

ground statelthe same pattern, albeit deformedvhile panel(b) (bands. Obviously, there is a band of energy states, not far
shows a state that is within the basin of attraction of another low- fractioh of an eV ! er partickérom the ground state \,/vhich
lying geometric state with more dense stripes along one of the axié. Perp g ’

Panel(c) shows the meltedematic crystatlike phase with the hole are clqse in energy and metastable. 'I_'hese states are separated
dipole moments aligned. by a high barrie(the maximum of which would fall beyond

the right edge on the plptyet are close in energy, suggest-
intermittency of the observed pattern: i.e., spatiotemporal ining a ruggedenergy landscap®. Indeed, as shown earlier,
termittency. Figure 12 shows three stages of this meltindormation of a string of holes creates a barrier for adding
process. We observed that the stripe melts through a ruptureore holes to the stringhey can be only added to the string
which results in the creation of finite stripe segments thatends. Thus, any geometrically ordered stésay, those with
eventually(at constant and high) disperse into individual denser intrastripe hole concentration and larger interstripe
holes. distancesmust be separated by an energy barrier from other
Note that the temporal geometric pattépanel(b)] is not  geometrically ordered states and in particular from the
the same as that in the ground state. As mentioned beforground state.
there are many low-lying geometric states, close in energy to The potential energy states obtained suggest that the dy-
the ground state, which can temporarily occur at finite namics of stripe motion should be strongly governed by
Hence the dynamics of the stripe ordering is similar to thathese low-lying states and thus show a nontrivial fluctuation
observed in glasses, characterized by non-Gaussian fluctuspectrum. Indeed, in Fig. 3 we show the power spectrum
tions. To show this we follow the dynamics of the hole sys-of the energy fluctuations for the solution described by the
tem at temperatures slightlyelowthe melting temperature: histogram in Fig. 1), and see that the noise spectrum con-
we start from a low-lying metastable state, such as that detains a strong I/component for approximately two and half
picted in Fig. 12b), increase the temperature adiabatically todecades of frequencies. This indicates slow fluctuations,
the point at which the structure begins to meithich is a  which we ascribe to collective motions of melted hole string
measure of the activation enejggnd let the system equilli- segments.
brate. Another way of characterizing the melting of stripes is by
In Fig. 13@ we plot an energy histogram at this tempera-counting “free holes.” In Fig. 14 we show the percentage of

0
(¢ 0 20 40 60 80 100
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0.35 T dered ground states. We have also studied the dynamics of
& 03¢ : the geometric phase formation and its melting. We find that
Q H H H o 1 H H
< 025} the dynamics is characterized by a “glassy” behavior in that
§ 02} the energy landscape is rugged, as characterized by the spa-
S 015t tiotemporal intermittency of the observed behavior. More
£ o1t importantly, we find that, for a fixearge size of the mag-
<
i

netic (dipolan interaction, there are fewer number of sharper
minima, while the string tension of the stripes is larger. As a
consequence, in this case the melting of the stripe phase
T (10°K) occurs at higher temperature with increased doping concen-
tration.

The energy landscape is also characterized by formation
of domains, separated by defects. This picture is in agree-
holes that ar@otin a part of an ordered pattern, as a function ment with recent NMR experlmeﬁfsn which .small activa-
of T As one can see. at the transition poin"[ only a sma"tlon_energles are easily attributed to domaln_ g_rovvth and/or

; ' . motion. Thus, further study of our model will include the

agreement with our observation that the stripes melt by rur?_jynamms of the domain growth and their melting.

turing into smaller segments. Further study of the glassy dy-

0.05

FIG. 14. Percentage of holes that aret a part of a stripe
segment, as a function of temperature, Bor 4 eV.
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which includes a Wigner solid, diagonal stripes, a grid
(loops, and a macroscopic phase separation. For intermediy oo\ 1y 2. \MAGNETIC DIPOLES OF THE HUBBARD
ate values of magnetic interaction this phase diagram is con-

. - . . MODEL
sistent with several different experimental measurements,
such as inelastic neutron scattering. In addition, on adding a In this appendix we study the Hubbard model, Eq, in
small, but finite amount of anisotropy to the dipolar interac-the SDW state. Our approach is similar to that presented in
tion we find that the ground state of the system of holes is th@®efs. 28 and 35. Hence we only briefly review the calcula-
striped phase, found in La,_,Nd,Sr,CuQ,. In the geomet- tion leading to Eq(5), the central equation of the paper.

ric phases with strong magnetic interaction strength we have The relevant order parameter in our case is the spin den-
found a large string tension for the motion of holes perpensity in the z direction:
dicular to the stripe direction. This is due to the Coulomb

ggirsaecstfon and indicates strong stability of the obtained Sz(q):kz,a aClJrq,aCk,a! (A1)

We have also found the system of holes to be quite sen- . )

sitive to the presence of charged impurities. In particularWhich in the SDW state has a finite expectation valug at
adding out-of-plane attractive impurities pins the holes and= Q= (7/& m/a) because of the nesting of the half-filled
for small pinning energies, increases the melting temperaturEerm' surface. In this case the mean-field Hamiltonian reads
of the stripe phase, although it does yield a finite charge USN

correlgtlop length. In generall, charged impurities are very Hyp= 2, kal,aCk,a— — > aCLanCk’a, (A2)
effective in destroying the stripe order, especially those re- ko Ko

siding in the same plane as the holes, regardless of wheth
they are attractive or repulsive, although the stripe phases

survive as finitestripe segmentap to relatively high impu- 1
rity concentrations. This suggests that nonlinear conductivity S= N<SZ(Q)>,
should be prevalent.
The resulting hole patterns are the result of frustration €= —2t[ cogka) + cogk,a)]. (A3)

(competition between short-range and long-range fgrces
this frustration leads to collective motions, involving large The Hamiltonian(A2) can be diagonalized immediately us-
number of particles that ultimately lead to geometrically or-ing the Bogoliubov transformation:
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Yo o= UCh ot QVKCK1 0.0 s Close to the half-filled Fermi surface one sees that the hole
' ' ’ mass is
‘ylli,a:vkck,a_ aukck+Q,av (A4)
A
where My~ —— (A11)
8t
1 €k
U=V73 1+ E For any statd¥) of the system we can define the hole op-
K erators as
1 €
0= 5(1—E—k), Yo V)=l ol ¥) (A12)
k
in which case the Hamiltonian reads
Ek: \ E§+ Az,
us Ho= >, Ekhl,ahk,a (A13)
A: - 7 (A5) Ko

plus unimportant constants.
The interacting parts of the Hamiltonian can also be writ-
ten in terms of this new operators. For instance,

In this case the mean-field Hamiltonian reads

H MF— kE Ek( ’YE,TO(’YE‘&_ 'yllé,-ra’yllé,a)a (AG)
where the sum ovek is restricted to the magnetic Brillouin E {[IVAQ) =V 2k = Q)/AIMi = Vo 2K) 141}
zone and, at half filling, the ground std®@® is defined such

that
Xhl,ahk,a 2 [V,(k—k' )Ikk,hka o i o

k k'
Yk.al0)=0,

|0> 0. (A?) Xhikvﬁgzﬁ,ﬁ’h—k',ﬁ’+Vz(k—k'—|—Q)

’}’k «

XM g e i g1, (A14)
Thus, at half filling the conduction band is empty and the cilesh

valence band is separated from it by enefgywhich is the ~ Where the sum over spin indices is implicit and

Mott-Hubbard gap. It is known that this theory recovers the

results of the Heisenberg model very well. Consider, for in- X5(Q)
stance, the average spin density in E41) in terms of the V,(q)= - (A15)
new operatorgrecall that the conduction band is empty and 1 UXo(q)
therefore does not contribyte .
with
<Sz(q)>:_2k2 uk+q7QUk<'le21q7Q,a'ylli,a> z( )= 1 z ( 6k6k+q+A
’ X0 q,w 2N 7 EkEk+q
= _45q,Q2k: Uvk " 1 1
w—EHq—Ek w+Ek+q+Ek '
A
_ — Al6
45q,Q; oE, (A8) (A16)

A similar expression is valid for the transverse components

which, together with Eq(A5), yields the gap equation: of the interaction

1 1 1
e —— A9
N> 2Tt U I E (1= @)V, (2K)nF,—V, (Q+2K)P,]
Since we are going to consider hole doping we can ne- : 1 )
glect the terms involving the conduction band operators for XPyaPa™ 7N 2 [Vi_(k=k")n
temperature§ <A. As shown in Ref. 28 new interactions kik
are generated by the antiferromagnet in the presence of the —V, (k=K' +Q)pk k']hk N T
holes, given byH, andH,, . The noninteraction hole Hamil-
tonian is, from Eq(A6), Xh,kﬁo;ﬁ,h_k/,ﬁ/ , (A17)
_2 EkYﬁT v (A10) whereV, _ is given by an expression similar to EGA15)

with xg replaced by
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L 1 6k€k+q—A2 1 where o are spin operators. Notice that the singlet state
Xo (0,0)=— 2N < " TEE w—FE.. _E [T,1)—|1,1), clearly minimizes the energy of interaction be-
kg ktq =k tween the two holes. In this case we end up with the charge
1 interactions only.
_——_— . Al B - .
@+ Epy gt Ex (A18) From our simulations we see that the charge orders with

some characteristic vectét such that
Moreover, the coefficients that appear in these expressions
are defined by

p(@)=2 hi\q e (A23)
mk‘k/:UkUk/‘f‘UkUkr s Ko

acquires a finite expectation value @t K. Thus, we can
always write down a mean-field version of E&22) plus
the long-range Coulomb interaction as

Ik,k’ = UyUy- + [
pk,k’ = ULk —vgUyr ,

B N
Ny ik = Ul =0V - (Alg) H|= - P? E thl+K ahk ar (A24)
k,a ' '

Observe that the interactions renormalize the dispersion
of the holes as well, that i&,— EE. While H, is essentially whereV, has to be calculated from Eq§\14) and (A17)
a short-range attractive interaction in the spin-symmetricand
channel,H,, has two components: one of them is also an
attractive interaction in the spin-symmetric channel but the 1
other is a long-range dipolar interaction, which depends on p=1(P(K)). (A25)
the momentum of the hole.

The Hamiltonian, which consists of terms given by EQs.opserve that in this case the Brillouin zone is further reduced
(Al4) and(Al7), is very difficult to deal with. One notices, and we can define new operators
however, that the mean-field energy is degenerate along
the magnetic Brillouin zone. This is an artifact of the theory
and the degeneracy is broken by any small perturbation such
as the corrections discussed before or a next nearest hopping,
t', for instance. In this case, the dispersion has a minimum at A o=t a=Wihi i o (A26)
(= m/2,% 7/2). Thus, in order to study the long-wavelength ' ’
limit of the theory it is sufficient to focus on these points of with
the Brillouin zone. In the paper by Schrieffer, Wen, and
Zhand® the authors focused entirely on ti&, part of the R
Hamiltonian since the form factorg, ,, andpy - vanish at W=\ /l 1+ E
the Brillouin zone. As shown by Frenkel and HariRé one 2 Ex
keeps the leading order in momentum we can write

+ _ T
dy o= Wihy o H iy g

R
t|(|< k))+ (k,—k!)| t 1(1 Ei (A27)
Pk~ 1 [ (kx—= k) + (ky—ky)I, (S VA e
A X X Yy Yy 2 Ek
11 2
~_ \Y,
Vi@t Q=5 5 (A20) ET— [ (ER?+ <P4k> ,
and therefore the interaction term becomes and the Hamiltonian is diagonal,
(et 0y)? 00y
V, _(q+Q)p? s q~2U ——"—=2U| 1+2—7],
+-(d+Q)Pik+q q° 9 H:kE El(d;,ld;a_d[,ldl;a): (A28)
(A21) “
which has dipolar form. where the sum is done in the new Brillouin zone. Self-
Thus, in the first quantized language the interactions haveonsistency requires that
the form
_ _ 1
Hi={Acd (ry)a%(ry) =Blo " (r)a (r)+o (r)o (o)1} p:Nkz Wit (A hdy = (dtdi ), (A29)
Yo + - - + . -
><5(f1—f2)—Cr—4[0 (rp)o (rp)+o (r)o’(ry)l, which can be evaluated for any hole-filling.

Now let us go back to the issue of magnetization which is
(A22) important for neutron scattering. From E#&8) one has
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<SZ(Q)>:_2§1 uk+q7ka<7ﬁ1q7Q,a7ﬁ,a> ky in

/
:—ZKE uk+q7ka<hk+qu,ahI,a> ‘
V3

:_Zaq,Q+Kk§; uk+KUk<hk+K,ahl,a> /’ k \\

_z‘sq,QH(kE U kU itcWic \‘ '/
X (U 40 4 — (A o 1)), (A30) i 3
and one sees that the magnetization is now peaked around A 4

Q+K instead ofQ. For stripes aligned along thedirection
this is possible of course when

K=="x, (A31)

wherel is the interstripe distance.

APPENDIX B: DIPOLES OF THE T-J MODEL

Let us consider the SDW theory of the) model as pro-
posed by Shraiman and Sigdfadescribed by

H:—t<2> ¢l ,Cj ot H.C.+J<2> S-S, (B1)
i i

and use the slave fermion representation

Ciro= Wl i Zai o (B2 FIG. 15. Choice of the BZ.

Wherezp;i creates a holéfermion) on a sitei in the sublat-
tice a=A,B (which labels the “spin” of the holgandz, ; ,,

is a Schwinger boson on the same sublat(gm@n wave. In
order to obtain the dynamics of the holes alone we trace o
the spin-wave degrees of freedom. The static part of the in-
teraction iS°

Observe that EqB3) does not have a kinetic term for the
holes. The kinetic energy has to be obtained from the hole
LRelf—energy at zero frequency and can be written as

Ho= 2 eha(K)a(k), (B6)
k,a=A,B
Hos— 1 3 V(KK @)k s(k+a)
SUON T, DAY wheree, has a minimum at£ 7/2,+ 7/2) 2° For a low den-
o , sity of holes these are the only points of interest and there-
X (K" + ) a(k"), (B3)  fore we can look at the interactiofB4) strength close to
where the momentum sum is restricted to the magnetic Brilth€Se points. Observe that at these points we hgve0 and
louin zone and therefore the interactions are dominated by the first term in
Eq. (B4) which describes the fluctuations of the staggered
(M= N g) M= Ngrsg) magnetizatiorfwith characteristic wave vectd@= (7, m)].
V(k,k",q)=—g 1 The second term describes the fluctuations of the homoge-
q neous magnetizationg& 0), which is not of direct interest
AT Ner ) N+ N ig) here. In this case, fok andk’ close (* #/2,+ 7/2) to the
10 . (B4 interaction can be approximated by
with
Nt ahkr
V(KK ,q)~ —g =2 (87)
1 1-)q
Ng=5[cosq,) +Cosqy)]. (BS)

The problem can be further simplified if one works with the
The coupling constarg is a function oft andJ. In the strong  upper half-part of the original BZ instead of the magnetic
coupling limit (t<J)g~8t?/J, while in the weak coupling BZ, as shown in Fig. 15. This can be accomplished by a shift
limit (t>J) we haveg~J.%® of the lower part of the BZ byp.
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Moreover, working in the long-wavelength limit, that is,

with g—0, one sees that there are four value&/¢k,k’,q)
of relevance(1) whenk=k'=Q/2,

(9t ay)?
Vi@~ —g——"—; (B8)
q
(2) whenk=k'=Q*/2 [whereQ* =(—,7)] and
(9 qy)?
V22(CI)*_9—X > . (B9)
q
(3) whenk=Q/2 andk'=Q*/2,
2 2
ax—q
Vi) ~g——5; (B10)
q
(4) and finallyk=Q*/2 andk’=Q/2,
Vo1(Q) =V1x(q). (B11

We can now split the sums in E(B3) to the regions around
these two points and introduce a cutoff in the momentum
sumA such thag< A <. In this case the Hilbert space of

the problem is divided into two different sub-Hilbert spaces

and the hole operator can be rewritten as

+ Izba,i,ZCO'\:{Q? . r) ’
(B12)

l/fa,i = 2 eik.riwa(k)g lr/la,i,lcc’E(% -r
k
where

Q,
2 aj

dla,i,l%% eiq.ril/fa

(B13)

. Q*
l//a,i,zwz elq.riwa 7+q>
q

It is convenient to define the operator

pa(q>=§ I K+ Q) a(k),

Pa(@) =2 YAa(K) e a(kt@)=2 Y a(k=a)dga(k),
(B14)

with a=1,2. Using these new operators and res(i8)—
(B11), we can rewrite the Hamiltonia(B3) as

1
Hos™ = 2 O TPH@PL@)+PHOIPA0)

—(AZ— D[ PpL(@)P2(q) + pI(A)P1(a)]

+20,9,[ p1(a)pa(@) —pXapa(a)]}.  (BLH)
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1
D(q)= E(pl(q)— P2(d),p1(a) +p2(d)),
D(q)= i(|0T(—q)— pH(—q),pH(—a)+pX(—q))
\/E 1 2 1M1 2
(B16)

and rewrite Eq(B15) as

9°D'(q)-D(q)+D'(—q)-D(q)

g 1
Hssv—ﬁzq: ?

-2

i —q). .
[D'(—q)-q][D(q) q]l' 617

q2
Observe that the first term in E(B17) is g-independent and
will lead to a local interaction that has the usual scalar form.

We are interested in the second part of the Hamiltonian.
Defining the Fourier transform

D(r)=2, €'9"D(q), (B19)
q

the second term in EqB17) acquires the required form

1
Hdd=gf drf dr’(r_r,)z[D*(r).D(r’)

_Z[D*(r>~r][D<r'>-r']}

(r=r"?

(B19)

which is the second quantized form of the magnetic dipole-
dipole interaction.

In order to put this Hamiltonian in a form involving the
magnetic dipole defined by Shraimann and Siggia consider
their definition®

PLa(d)= Eb sin(K,) i(k+a) 7 (k) (B20)

k,a,
where u=x,y,z refers to indices of the Pauli matriceg
and therefore act in the sub-space of the sublatidcaad B
and a=x,y refers to the space indices. In particular, the

lowering and raising operators associated with this magnetic
dipole operators have the interesting form

Pf,a<q>=2§ sin(Ko) Y (k+q) ga(k),

P+,a<q>=2§ sin(ky) YAk+ Q) ya(k).  (B21)

In the approximation we are employing we can split the sum-
mation in Eqs(B21) aroundQ andQ* in order to get(this

can be done because the sine function is smooth around these
two point9

This does not have a very transparent form. In order to see
that this Hamiltonian has the form of a dipole-dipole inter-

P_(q)~2 L (k+ k) — s o(k+ k
action we define the vector operator Aa) ; [fp.a(kt Q) daalk) = g Ak + Q) Ya oK)
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P y(@)=23 [ skt D a (k) + ) oK+ p A )] D(q) = Z—T/E(P’X(q),Pyy(q)), (B24)

P+,X(Q)%22 ['r//;,l(k—i_q)'//B,l(k)_‘/’I\,z(k—i_q)wB,Z(k)] which makes clear the_connecnon. On taking the Fourier
K transform of the magnetic dipole operators back to real space

one finds, for instance,
P+,y<q>~2§ [ A 2(k+ @) g 1(K) + W oK+ h A(K) T,

1
(B22) Dy,i :E(‘/’TB,l,i bati— 'ﬂé,z,i In2i)s

where the signs come from value of the sines around the two
points at the Fermi surface. These dipole operators can be
also written trivially in terms of the operators in EqB.14):

P_ x(@=2[pi(q)—p2(q)],
_ This explicitly justifies our earlier claim that the dipolar in-
P y(@)=2[pa(a) +p2(q)]. (B23) teraction is due to the coherent hoping of holes between two
and so on. By direct comparison with EqB16) one finds  different sublatticegat the same position in space

1
Dy, :E(‘/’g,lj Upajt ‘//TB,z,i Un2i)- (B25)

*Also at the Institute of Semiconductor Physics, Novosibirsk, Rus- mada, R.J. Birgeneau, M.A. Kastner, Y.S. Lee, P.M. Gehring,

sia. and S.H. Lee, Phys. Rev. 80, R769(1999.
1v.J. Emery, S.A. Kivelson, and O.V. Zachar, Phys. Revs®  '°J.M. Tranquada, Physica 282, 166 (1997.
6120(1997. 17G. Aeppli, T. Mason, S.M. Hayden, H.A. Mook, and J. Kulda,
2Y. Yacoby, S.M. Held, and E.A. Stern, Solid State Commi0i, " Science278 1432(1997.
801 (1997: A. Aharony and A. Auerbach, Phys. Rev. Let0, H.J. Schulz, J. PhygFrance 50, 2833(1989; J. Zaanen, and J.
1874(1993, and references therein. Gunnarsson, Phys. Rev. 80, 7391 (1989; A.R. Bishop, F.

Guinea, P.S. Lomdahl, E. Louis, and J.A. Verges, Europhys.
Lett. 14, 157 (199).

19p. prelovsek and X. Zotos, Phys. Rev.48, 5984 (1993; P.
Prelovsek and |. Segébid. 49, 15 241(1994; E.W. Carlson,
S.A. Kivelson, Z. Nussinov, and V.J. Emernpjd. 57, 14 704
(1998; C. Nayak and F. Wilczek, Phys. Rev. Le#8, 2465

6 i (1997; A.H. Castro Neto, Z. Phys. B: Condens. Matt&3 185
See, e.g., S. Yunoki, A. Moreo,and E. Dagotto, Phys. Rev. Lett. (1997; J. Zaanen, O.Y. Osman, and W. van Saarloos, Phys.

3pPhase Separation in Cuprate Superconductemited by K. A.
Mdller and G. BenedekWorld Scientific, Singapore, 1993
4See, e.g., R.H. McKenzie, Phys. Rev. L&, 5140(1995, and

references therein.
SSee, e.g., J.P. Lorenzo and S. Aubry, Physical3 76 (1998,
and references therein.

81, 5612(1998, and references therein. Rev. B58, R11 868(1999; M. Vojta and S. Sachdev, Phys.
7J.M. Tranquada, D.J. Buttrey, and D.E. Rice, Phys. Rev. [8ft. Rev. Lett.83, 3916(1999.

445 (1993. 20A L. Chernyshev, A.H. Castro Neto, and A.R. Bishop, Phys. Rev.
8S. Mori, C.H. Chen, and S.W. Cheong, Natdtendon 392, 473 Lett. 84, 4922(2000.

(1998. 21G. Seibold, C. Castellani, C. DiCastro, and M. Grilli, Phys. Rev.
9J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, and S. B 58, 13506(1999.

Uchida, NaturelLondon 375, 561 (1995. 22y J. Emery and S.A. Kivelson, PhysicaZD9, 597 (1993.

104 Bianconi, Phys. Rev. B4, 12018(1996; M.V. Zimmermann,  23U. Low, V.J. Emery, K. Fabricius, and S.A. Kivelson, Phys. Rev.
A. Vigliante, T. Niemoller, N. Ichikawa, T. Frello, J. Madsen, P. Lett. 72, 1918(1994).
Wochner, S. Uchida, N.H. Andersen, and J.M. Tranquada, Eu?*F. Guinea, G. Gomez-Santos, and D. Arovas, cond-mat/9907184
rophys. Lett.41, 629 (1998. (unpublisheg

p c. canfield and J. D. Thompson, Rhase Separation in Cu- 2°S.R. White and D.J. Scalapino, Phys. Rev. L8®.1272(1998;
prate Superconductorsedited by E. Sigmund and K. Alex 81, 3227(1998.
Mdiller (Springer-Verlag, Berlin, 1994B. W. Statt, P. C. Ham- 26C.S. Hellberg and E. Manousakis, Phys. Rev. L&8, 132
mel, Z. Fisk, S-W. Cheong, F. C. Chou, and D. C. Johnston, and (1999; Phys. Rev. Lett84, 3022(2000; S.R. White and D.J.

J. E. Schirber, Phys. Rev.®, 15 575(1995; N. J. Curro, P. C. Scalapino, Phys. Rev. Le®4, 3201(2000.

Hammel, B. J. Suh, M. Fker, B. Bichner, U. Ammerahl, and 27J. Zaaner(private communication

A. Revcolevschi, Phys. Rev. Letto be publishef 283 R. Schrieffer, X.G. Wen, and S.C. Zhang, Phys. Re@9B11
123.H. Cho, F.C. Chou, and D.C. Johnson, Phys. Rev. 61222 663 (1989.

(1993. 29D .M. Frenkel and W. Hanke, Phys. Rev.42, 6711(1990.

13F.C. Chou, F. Borsa, J.H. Cho, D.C. Johnston, A. Lascialfari,*°B.I. Shraiman and E.D. Siggia, Phys. Rev4B, 9162(1989.

D.R. Torgeson, and J. Ziolo, Phys. Rev. L&, 2323(1993. 315 A. Kivelson, E. Fradkin, and V.J. Emery, Natt®ndon 393
14F. Borsa, P. Carretta, J.H. Cho, F.C. Chou, Q. Hu, D.C. Johnston, 550 (1998.

A. Lascialfari, D.R. Torgeson, R.J. Gooding, N.M. Salem, and®2].C. Slater, Phys. Re®2, 538 (1951).

K.J.E. Vos, Phys. Rev. B2, 7334(1995. 33N. F. Mott, Metal-Insulator TransitiongTaylor and Francis, Lon-
15s. wakimoto, G. Shirane, Y. Endoh, K. Hirota, S. Ueki, K. Ya-  don, 1974, p. 141.



PRB 62 CHARGE ORDERING AND LONG-RANGE INTERACTION . . . 4369

34B.0. Wells, Z.X. Shen, A. Matsuura, D.M. King, M.A. Kastner, ~ Wesley, Reading, 1997
M. Greven, and R.J. Birgenau, Phys. Rev. L&t, 964 (1995. 47B.P. Stojkovic, Z.G. Yu, A.R. Bishop, A.H. Castro Neto, and

35A. Chubukov and K. Muselian, Phys. Rev. 5, 12 605(1995. Niels Grmbech-Jensen, Phys. Rev. L&, 4679(1999.
36E. Fradkin, Field Theories of Condensed Matter Systems*This is a highly degenerate configuration which can be mapped
(Addison-Wesley, Redwood City, 1991p. 48. into a classical six-vertex model. See, for instance, R. J. Baxter,
37s. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. Lett. Exactly Solved Models in Statistical Mechani¢academic
60, 1057(1988. Press, London, 1982p. 127.
38We are thankful to S. Kivelson for attracting our attention to this “*The simulations show the presence of topological defects in the
problem. phase of the magnetic dipole moments, i.e., the total phase in a
39A. Aharony, R.J. Birgenau, A. Coniglio, M.A. Kastner, and H.E. loop may be shifted by 2.
Stanley, Phys. Rev. Let60, 1330(1988. 50some impurities, on donating a hole or an electron to CuO planes,
“ON. Grfnbech-Jensen, G. Hummer, and K.M. Beardmore, Mol. become charged ions.
Phys.92, 941 (1997. 515, zagoulaev, P. Monod, and J. Jegoudez, Phys. R&2, B0474
413. Lekner, Physica A76A, 485 (1991). (1995.
423, Bon@ and J.E. Gubernatis, Phys. Rev5E 6504 (1996. 52R.J. Gooding, N.M. Salem, R.J. Birgeneau, and F.C. Chou, Phys.

“3W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Rev. B55, 6360(1997).
Numerical Recipes: The Art of Scientific Computi@gmbridge 533. Bardeen, Phys. Rev. Let#t5, 1978(1980; D.S. Fisher, Phys.
University Press, Cambridge, 1992 Rev. B31, 1396(1985.
44E P. Wigner, Phys. Revi6, 1002(1934. 4See, e.g., M.B. Weissman, PhysicalD7, 421 (1997.
4SN.M. Salem and R.J. Gooding, Europhys. L&5, 603(1996. %5See, e.g., C. Dasgupta, and O.T. Valls, Phys. Re%9E3123
46p \W. AndersonBasic Notions in Condensed Mattéaddison- (1999.



