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Charge ordering and long-range interactions in layered transition metal oxides:
A quasiclassical continuum study

Branko P. Stojkovic´,1 Z. G. Yu,2 A. L. Chernyshev,3,* A. R. Bishop,1 A. H. Castro Neto,3 and Niels Gro”nbech-Jensen4

1Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
2Department of Chemistry, Iowa State University, Ames, Iowa 50011

3Department of Physics, University of California, Riverside, California 92521
4Department of Applied Science, University of California, Davis, California 95616

and NERSC, Lawrence Berkeley Laboratory, Berkeley, California 94720
~Received 24 November 1999!

The competition between long-range and short-range interactions among holes moving in an antiferromagnet
~AF! is studied within a model derived from the spin-density-wave picture of layered transition metal oxides.A
novel numerical approach is developed that allows one to solve the problem at finite hole densities in very
large systems~of the order of hundreds of lattice spacings!, albeit in a quasiclassical limit, and to correctly
incorporate the long-range part of the Coulomb interaction. The focus is on the problem of charge ordering and
the charge phase diagram: at low temperatures four different phases are found, depending on the strength of the
magnetic~dipolar! interaction generated by the spin-wave exchange and the density of holes. The four phases
are the Wigner crystal, diagonal stripes, a grid phase~horizontal-vertical stripe loops!, and a glassy-clumped
phase. In the presence of both in-plane and out-of-plane charged impurities the stripe ordering is suppressed,
although finite stripe segments persist. At finite temperatures multiscale~intermittency! dynamics is found,
reminiscent of that in glasses. The dynamics of stripe melting and its implications for experiments is discussed.
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I. INTRODUCTION

Charge ordering in layered transition metal oxides h
recently attracted significant research interest, due to its
sible relation to the mechanism of high-temperature sup
conductivity in doped cuprates1 and bismuthates.2 In particu-
lar, stripelike ordering, which involves holes ordered in
linear arrays, separated by an antiferromagnetically~AF! or-
dered electronic background, has discussed as a candida
the explanation of pseudogap effects in underdoped cup
compounds.1 In addition, the formation of domain walls ha
been discussed in terms of the proximity to pha
separation.3 Quite generally, phase separation on mesosco
and even macroscopic scales is potentially relevant for
strongly correlated organic and inorganic electronic syst
including systems with spin-density-wave~SDW!,4 charge-
density-wave~CDW!,5 and Jahn-Teller broken-symmetry6

ground states.
On the experimental side, mesoscopic~nanoscale! phase

separation has been observed in many compounds. In
case of La22xSrxNiO41y stripes have been observed bo
using nuclear magnetic resonance~NMR! methods and more
directly, using high-resolution electron diffraction.7 In addi-
tion, stripes have also been identified in La12xCaxMnO3 for
specific commensurate values of doping.8 In cuprates static
stripe order has been observed in La1.62xSrxNd0.4CuO4 in
both elastic and inelastic neutron scattering experimen9

andx-ray diffraction experiments.10 There are also evidence
that stripes exist in some form in high-Tc compounds. In the
oxygen-doped La2CuO41d ~Ref. 11! stripes have been ob
served using nuclear magnetic resonance~NMR! techniques.
Magnetic susceptibility measurements,12 nuclear quadrupole
PRB 620163-1829/2000/62~7!/4353~17!/$15.00
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resonance13 ~NQR!, and muon spin resonance14 all indicate
formation of domains in La22xSrxCuO4. Recent inelastic
neutron scattering~INS! experiments in La22xSrxCuO4 and
YBa2Cu3O72d , ~YBCO! superconductors yield results con
sistent with stripe formation,15–17 although the width of the
INS lines in, e.g., YBCO materials is large, which may su
gest dynamic charge ordering.

On the theoretical side, stripes have been proposed
several research groups. In strongly correlated systems,
as cuprate superconductors, electrons exhibit a strong on
repulsion. Therefore numerous studes have been devote
the Hubbard andt-J models. It has been shown that a mea
field treatment of the Hubbard model yields a stripe phase
a locally stable solution.18 Many other studies view the
stripes as an outcome of the competition between kin
energy of holes and exchange energy of spins alone and
quently neglect the role of the long-range part of the Co
lomb interaction.19,20 Only recently has an attempt to inco
porate the long-range forces into the mean-field approac
the Hubbard model been made.21 Another point of view em-
phasizes the intrinsic instability of a strongly correlated el
tronic system towards a phase separation as a necessary
ing point.22,23 Then it is assumed that such an instability
prevented by the long-range Coulomb forces. Therefore,
competition between this instability, whose existence in
physical range of parameters of the realistic models is ye
be proven, and Coulomb repulsion gives rise to a str
phase. Thus, these two approaches agree on the impor
of the correlations but disagree on the role of long-ran
forces. More recently, it has been shown that phase sep
tion is indeed a very common phenomenon close to quan
critical points.24
4353 ©2000 The American Physical Society
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One would expect that the existence of stripes in
widely studied ‘‘minimal’’ t-J or Hubbard models can b
either proven or disproven by some unbiased numerical te
nique. Unfortunately, numerically the stability of the strip
phase has been established less clearly. Numerical studi
the t-J model present conflicting conclusions as to the ex
tence of stripe phases in the ground state of this ‘‘bas
strongly correlated model, which might be the result of t
strong finite-size effects.25,26 For example, even a Mont
Carlo simulation of the doped Ising model, without the lon
range forces, yields holes ordered into loops, rather than
geometric arrays.27 In fact, with the exception of the recen
density matrix renormalization group~DMRG! simulations
of White and Scalapino,25 which have found stripe formation
in relatively larget-J clusters, no microscopic calculation t
date has shown that the stripes are a stable entity. Most
portantly, no stripe formation in a system with long-ran
interaction has been studied in a direct simulation. In ad
tion, the sizes of the clusters available with modern day co
puters for solving quantum models of spins and holes
still too small to study role of the the long-range Coulom
interaction and be free from significant finite-size effects.

In this situation we propose a different strategy: one c
study a quasiclassical limit of the quantum problem of ho
in an AF spin environment analytically and incorporate
essential correlations in an effective hole-hole interaction
this case the AF background is effectively integrated out,
the focus is on the charge subsystem. Then the motio
‘‘classical’’ holes at finite density, interacting via aneffective
magnetic interaction and in the presence of long-range C
lomb forces, can be studied numerically in much larger s
tems. In other words, in this paper we combine analyti
and numerical approaches to study the charge orderin
transition metal oxides.

Our numerical approach is based on the SDW picture
Schrieffer, Wen, and Zhang,28 which is closely related29 to
the semiclassical approach to thet-J model by Shraiman and
Siggia30 in which the interaction between doped holes ste
from the spiral distortion of the local Ne´el vector near a hole
As shown below, in the quasiclassical limit, the problem c
be solved using classical Monte Carlo~MC! or molecular
dynamics~MD! methods. In a systematic numerical study w
explore the interplay between long-range Coulomb inter
tion and short~or intermediate!-range AF interactions of di-
polar nature, which we take to have both isotropic and
isotropic components~depending on the lattice structure!.

Our main results can be summarized as follows: in
absence of disorder we find four phases depending on
density of holes and the characteristic AF energy scales:~i! a
Wigner crystal,~ii ! diagonal~glassy! stripes,~iii ! a geometric
phase, characterized by horizontal-vertical stripes or a ch
erboard~grid!, and ~iv! a ‘‘clumped’’ phase~phase separa
tion!. In our study the stripelike phases emerge as a kind
melting of the Wigner crystal phase; hence the long-ra
Coulomb interaction is a necessary ingredient for their
currence. In the geometric phase the stripes, resulting f
the competition of the short-range and long-range inter
tions, are characterized by a particular AF dipolar alignme
The patterns are very stable, showing large ‘‘string tensio
while the motion of holes within a stripe is much softer.
one takes into account the kinetic energy of the holes al
e
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the stripes one is lead to the concept of a quantum liq
crystal as proposed recently by Kivelson, Fradkin, a
Emery.31 On the other hand, the ground state of the geom
ric phase is not well defined in that there are many geome
phases with very low energies, comparable to that of
ground state, implying arugged energy landscape. We find
that on lowering the temperature, the geometric hole ord
ing is characterized by the occurence of secondary defec
the structure. At higher temperatures we find that thedy-
namichole ordering is characterized bytemporally intermit-
tentpattern formation~i.e., spatiotemporal intermittency!. Fi-
nally, we find that a sufficient concentration of random
placed impurities destroys the geometric hole pattern,
though, regardless of the impurity type, stripesegmentsare
preserved.

The paper is organized as follows: in the next section
present a review of the theoretical model and the comp
tional methods we use. In Sec. III we present our numer
results and in particular we present the phase diagram sh
ing how the obtained phases emerge as a function of do
and interaction strengths. Finally, in Sec. IV we summar
our conclusions and experimental implications.

II. MODEL

We begin with the SDW picture of layered transitio
metal oxides. This picture has been very successful in
scribing the stoichiometric insulating AF phase of these s
tems at low temperatures.32,28 In this picture the electrons
move with hopping energyt in the self-consistent staggere
field of its spin, as described by, e.g., the Hubbard mo
~the calculation is presented in detail in Appendix A!:

H52t(
^ i , j &

~ci
†cj1H.c.!1U(

i
ni ,↑ni ,↓ . ~1!

Because the translational symmetry of the system is brok
the electronic band is split into upper and lower Hubba
bands.33 On performing a Bogoliubov transformation, on
defines the valence (hk,a) and conduction band (pk,a) opera-
tors, respectively:

pk,a5ukck,a1avkck1Q,a , ~2!

hk,a5ukck,a2avkck1Q,a , ~3!

whereuk ,vk are the Bogolioubov weights anda is the sub-
lattice index. The upper and lower Hubbard bands are se
rated by the Mott-Hubbard gap,D5US/2, whereS is the
expectation value of the staggered fieldSz ,

^Sz~q!&522(
k,a

uk1q2Qvk^hk1q2Q,ahk,a
† &, ~4!

calculated at momentum transferq5Q. At half filling the
lower band is filled and the upper band is empty. This pict
is consistent with the angle-resolved photoemission dat
the layered AF insulator Sr2CuO2Cl2.34 On doping the sys-
tem with holes with planar densityss , at low temperatures
T!D/kB , the low-frequency physics reflects purely th
lower Hubbard band~LHB!. It has been shown35 that, re-
gardless of the band structure, the LHB has a maximum
four wave vectorsk i5(61,61)p/(2a), wherea is the lat-
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tice spacing, and therefore the long-wavelength theory of
problem can be studied by assuming the momentum of
holes to be close to these points.

Then the two-hole interaction Hamiltonian can be se
rated into the longitudinal and transverse parts (Hz andHxy ,
respectively!, whose Fourier transform, for quasiparticle m
menta nearki , is equal to29

H~r !5@Azs1
zs2

z2Axy~s1
1s2

21s1
2s2

1!#d~r !

2BxyFd1•d2

r 2
22

~d1•r !~d2•r !

r 4 G ~s1
1s2

21s1
2s2

1!,

~5!

where r 5ur12r2u is a relative hole-hole distance,r i is a
coordinate of a hole in units ofa, s i

z(6)5ca
†sab

z(6)cb is a
spin-density operator, withsz(6) Pauli matrices, anddi is a
unit vector in the direction of the dipole moment of the ho
In the SDW formalism the interaction strengthsAz ,Axy , and
Bxy;Axy/2p are all of order HubbardU. The interaction~5!
is clearly rotationally invariant and valid forr>a, while for
r→0 it yields an unphysical divergence of the~attractive!
dipolar interaction. We observe that this form of the Ham
tonian is not particular to the SDW theory of the Hubba
model, but stresses the fact that a mobile carrier in an a
ferromagnet produces a dipolar distortion of the magn
background. We demonstrate this explicitly in Appendix
where we show that thet-J model has exactly the same typ
of interaction terms. In other words, at finite density t
holes interact via two different mechanisms: a uniform sho
range attractive force due to AF bond breaking and a lo
range magnetic dipolar interaction@contained by Eq.~5!, see
Ref. 28#. The latter term is due to the long-range spiral d
tortion of the AF background, which is a consequence
quasiparticles interacting with soft~Goldstone! modes of the
spin system.29,30 The magnetic dipole moment associat
with each hole is due to the coherent hopping of holes
tween different sublattices and scales with the AF magn
energy. This implies that the quantum effects associated
hole kinetic energy can be neglected, which is correct in
limit t!J, believed to be valid in nickelates. This is also w
the hole-hole interaction obtained in the weak coupling SD
picture is equivalent29 to that in the effective Hamiltonian
found by Shraiman and Siggia,30 based on thet-J model,
where thedipolar interaction is obtained usingsemiclassical
analysis of the spin part of the model, as well as symme
considerations. It is also possible to prove, using Ward id
tities, that the remaining spin part of the problem is equi
lent to the two-dimensional~2D! nonlinears model in the
long-wavelength limit.36 It has been argued30 that at physical
valuest/J@1 all coupling strengths (Az , Axy , andBxy!, and
therefore the hole-hole interaction, will be renormalized
the value of superexchange constantJ.

In pure two dimensions at finiteT the system is magneti
cally disordered, characterized by a finite magnetic corre
tion length j ~see Ref. 37!, and the range of the dipola
interaction between the holes, mediated by the AF ba
ground, is also of orderj. In fact, even atT50 andfinite
hole concentration the correlation length is restricted and
dipolar interaction is effectively short ranged.
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It has been noted38 that the dipolar twist of the magneti
background would imply local time-reversal symmet
breaking, which puts some restrictions on the applicability
the picture to the real systems where such symmetry bre
ing has not been experimentally observed. Indeed, the ti
reversal symmetry is already broken in the Ne´el state, as well
as in any magnetically ordered state. However, in tw
dimensional spin systems at finite temperature all symm
tries are restored and we expect this to be true also for
hole-doped case studied here.

Besides the AF interactions the holes also experience
long-range Coulomb interaction. This is clear if we consid
that r s5r 0 /a0 ~where r 0 is the mean interparticle distanc
and a0 is the Bohr radius! is very large in the underdope
systems (r s'8). In other words, in systems with a sma
density of holes, the screening, which is due to the den
fluctuations, is very weak and one must take the Coulo
interaction into account.

Finally, each hole carries a spin degree of freedom
well. However inspection of Eq.~5! reveals that the overal
spin energy is minimized in the spin-antisymmetric chann
Hence we neglect the spin-symmetric channel and thu
our approach, we only consider the charge channel with
effective~magnetic in origin! interaction between two holes
1 and 2, of the form@see Eq.~5!#

V~r !5
q2

er
2Ae2r /a2B cos~2u2f12f2!e2r /j, ~6!

where we have asssumed thatr can be relaxed from a crysta
lattice position to an arbitrary~continuous! value. We return
to this point later.

In Eq. ~6! q is the hole charge,e is the dielectric constan
~which we assume to be of order 1!, u is the angle made
betweenr and a fixed axis, andf1,2 are the angles of the
magnetic dipoles relative to the same fixed axis.A is the
strength of the uniform~short-range! interaction andB is the
strength of the magnetic dipolar interaction, which we w
assume to be independent adjustable parameters, whic
real materials, should be of order;1 eV. Note that we have
introducedB;Bxy / l 2, wherel is some appropriate averag
length,a, l ,j, in order to avoid the unphysical divergenc
of the dipolar part of the interaction in Eq.~5!, while keeping
the necessary symmetry of the interaction. Moreover, in
SDW picture, at low doping,f1 andf2 are restricted to the
angles (2n11)p/4, the four angles determined by the ve
tors k i . In addition, the dipole moment vectors are also
stricted tok i , which justifies our use of Eq.~6! where we
have assumed a fixedsize of the dipole moment for each
hole. However, at larger doping levels these angles can
relaxed to arbitrary values, provided the interaction is sho
ranged. Of course, we have verified by an explicit calculat
that restricting dipole angles to the discrete values does
qualitatively change our results, presented in the next s
tion. It is interesting to note that the hole-hole interaction
the form almost identical to Eq.~6! has been obtained b
Aharonyet al.39 for the static holes residing on Cu-O bond
within the framework of aclassicalmodel of an AF diluted
by ferromagnetic bonds. In this case the value of the c
pling constantB is also restricted by a fewJ. Indeed, starting
from the insulating phase of cuprates, the holes are injec



pl
le

at

e
om

ic
v

F
y
er
e
te
es
s
i

f

t
t

e
h
s
ve
el

re
n

w
ic
u
e

d
le
la

el
u-
s

in
c
m
a

a
nt
rg

ffer-

MD

od
nce
he
ned

of
-
t
d a

de-
der
al
gh

ic
o

ion
s.
y
in

4356 PRB 62BRANKO P. STOJKOVIĆet al.
into the CuO2 planes at high temperatures during the sam
preparation. The hole distribution in this case is annea
~instead of quenched as proposed in Ref. 39! since the holes
have enough phase space for interactions. As the temper
is lowered the holes can adjust themselves toV(r ) and form
the structures we discuss below.

Quite generally, one can think of an AF as an active m
dia generating long-range dipolar forces in response on s
local distortion. Therefore, the interactionV(r ), Eq.~6!, is of
more general significance than just a result of the SDW p
ture, and the study of the system of particles interacting
V(r ) is of wider interest.

In general, the many-body problem of holes in an A
background is extremely complicated, involving man
particle interaction terms. However, at low densities, wh
the average distance between holes is comparable to th
correlation length, it is reasonable to assume that the in
action of any two holes is weakly perturbed by other hol
and the total potential energy can be expressed in term
two-particle energies, provided the AF correlation length
replaced by aneffectivecorrelation length, which, to avoid
clutter, we also denote asj. We therefore study the system o
‘‘classical’’ particles in a computational box of sizeLx
3Ly , interacting via a potential

HI5(
^ i , j &

V~r i j !, ~7!

whereV(r ) is given by Eq.~6!. However, we emphasize tha
our approach is not a self-consistent one in the sense tha
true interaction must include many-particle terms~omitted
here!, which stem from the fact that the SDW state is alter
due to the charge ordering. The self-consistent approac
charge ordering will be presented elsewhere. In addition,
perconducting fluctuations have been neglected. Moreo
the kinetic energy of the holes may lead to a quantum m
ing of the phases discussed here.

The long-range character of the Coulomb interaction
quires further consideration: in order to perform calculatio
at finite density, as required by the dipolar interaction
consider, we usually perform calculations with period
boundary conditions. The ability to handle long-range Co
lomb interactions in rectangular periodic media has been
hanced recently in the area of molecular physics.40 Assuming
a computational cell of arbitrary geometry and cyclic boun
ary conditions it is possible to sum interactions of partic
with all of their images residing in cells obtained by trans
tion from the original computational cell,41,40 yielding an ef-
fective interaction that is periodic in the computational c
used~see Fig. 1!. On making integral transformations, Co
lomb interactions are computed by summing over fa
convergent Bessel functions with great accuracy~see Ref. 40
for a detailed study of the Lekner summation technique!. The
computational efficiency is further enhanced by tabulat
the effective interaction. This is possible since the differen
between the obtained effective interaction and the Coulo
interaction is a well-behaved function that can be easily c
culated using polynomial interpolation.

At the beginning of each simulation we place the holes
random and assign to each hole a magnetic dipole mome
constant size, but random direction. We study the ene
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landscape and the dynamics of the system using three di
ent methods: Monte Carlo~MC!, Langevin molecular dy-
namics ~MD!, and a hybrid MC-MD method.42 All three
methods yield essentially the same results. Both MC and
methods are well known in the literature43 and hence we only
review details pertinent to our calculation. In the MC meth
we use the standard Metropolis algorithm for the accepta
of hole configurations. For the Langevin MD method t
dynamics of the system is determined by the forces, obtai
from Eq. ~7!, with a noise term,h i , for each particle that
satisfies the usual fluctuation-dissipation condition^h ih j&
52pgTd i , j , wherei , j correspond to all possible degrees
freedom andg is a damping term.43 Since the system exhib
its several phases~see Fig. 5! for some values of the inpu
parameters, its ground state is not always well defined an
numerically obtained low-temperature state may, in fact,
pend on the initial and boundary conditions. Hence, in or
to rapidly reach a hole configuration with the lowest glob
minimum energy, we perform simulated annealing from hi
temperatures.

FIG. 1. ~a! Electrostatic interaction in a system with period
boundary condition. An effective interaction between any tw
charged particles in the computational box~central rectangle!, such
as the two marked by a thick vector line, involves the interact
with all of the particle images, marked by thin wave vector line
~b! the Lekner potential~which accounts for the periodic boundar
conditions! in comparison with the bare Coulomb potential, with
a computational box of sizeL. As expected, atr→0 the two poten-
tials coincide~up to an additive constant! and hence their difference
can be readily approximated by a low order polynomial.
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The hybrid MC method includes elements of both the M
and MD methods: the hole configuration is again determi
using the standard Metropolis algorithm, but here a new c
figuration is obtained by letting the system evolve throug
classical MD calculation over a certain time period. No
that, in principle, in classical MD calculations the energy i
conserved quantity; hence every step should in principle
accepted. In reality the MD method introduces errors wh
typically slightly lower the system energy, just as requir
by the Metropolis algorithm. Hence this method yields e
tremely high MC acceptance ratios.42

III. RESULTS

In this section we discuss the results of our numeri
calculations. We first present the obtained ordered pha
and the phase diagram of the system and discuss its imp
tions. We then show the hole ordering in the presence
disorder. Finally we show the properties of the system a
function of T and in particular the dynamics of the observ
~stripe! pattern formation.

Before we begin with the presentation of our results
address the input parameters of the model, namely the
density,ss ~or the doping leveln), the strengths of the iso
tropic and dipolar parts of the AF interaction,A and B, re-
spectively, the AF correlation lengthj, the temperatureT,
and the concentration of impurities,ci , for the systems with
static point disorder. We define the doping leveln as the hole
density measured in units of the cuprate lattice spacing;
n51% corresponds to 1 hole per 100a2, wherea'3.8 Å.

The input parameters are not necessarily independen
each other, e.g.,A and B should be proportional to eac
other, withA'U whent@U andA'4t2/U whenU@t ~see
Ref. 29!. However, since the range of the bond breaking a
dipolar interactions is vastly different, it is reasonable to tr
A,B, andj as independent parameters. Clearly bothA andB
should be of order of the HubbardU in the SDW approach
and of the order ofJ in the strong coupling limit, and the
correlation length is of the order of 1 to 10 lattice spacings
cuprates.

We begin with the low-temperature properties~ground
state! of the system as a function ofB. The relevant order
parameter for charge ordering is the Fourier transform of
hole density:

r~q!5
1

N (
i 51

N

eiq•r i, ~8!

where r i is the position of thei th hole andN is the total
number of holes. A peak inr(q) at some wave vectorq
5K indicates ordering. Returning to the SDW picture, p
sented in Sec. II, we recall that the hole density is given

rk5(
q,a

hk1q,a
† hq,a . ~9!

From the definition of the staggered magnetization, Eq.~4!,
it is immediately clear that̂Sz(q)&}dq,K1Q , i.e., a peak in
rk at K leads to a magnetic peak atQ1K and by symmetry
at Q2K.

Since the interaction due to the second term in Eq.~6!
~isotropic attractive interaction! is extremely short-range~in
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fact in an infinite system it is ad function!, it is initially
reasonable to setA50 and explore the behavior of the sy
tem as a function ofB. We return later to the role ofA. As
explained in Sec. II low-T properties have been obtained b
annealing the system from some high temperatureT
;5000 K! down to temperatures of order 1 K. In the extrem
caseB50 we find a Wigner crystal with small distortions, t
be the state of lowest energy, as expected44 @see Fig. 2~a!#.

The small distortion of the Wigner crystal structure is d
to the periodicity, which introduces a small spatial anis
ropy into the system due to the shape of the computatio
box. Indeed, upon setting, e.g.,Ly /Lx5A3/2, we obtain a
perfect Wigner crystal to be the ground state. Another
treme case is whenB→`. In this case the AF dipolar inter
action dominates over the average Coulomb interaction;
then finds star-shaped clumps of holes, similar in shape
those found in Ref. 45, which can, at sufficiently high de
sity, form a geometric structure~e.g., a Wigner crystal of
clumps!. We note that this case is rather unphysical, as m
roscopic phase separation is inconsistent with our initial

FIG. 2. Low-T states of the hole-vacancy system.~a! For B
50 the holes~circles! form the Wigner crystal and~b! for B→`
~an unphysical case! they form a ‘‘clump’’ pattern, a characteristic
of the ‘‘mesoscopic phase separation.’’ The dipole orientat
~shown by the segments, originating from the circle centers! indi-
cates finite magnetization at each star cluster. In both panels
doping level isn515%.
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sumption of the two-body dipolar interaction being indepe
dent of the many-hole effects. On the other hand, orderin
macroscopically hole-rich regions is in agreement with
conjecture that all ground states are geometrically ordere46

On increasingB.0, at fixed density, the Wigner crysta
becomes unstable and a new phase with diagonal strip
formed, as shown in Fig. 2a of Ref. 47. The main charac
istic of this phase is a ferromagnetic ordering of the A
dipoles. The situation here is very similar to that observed
La22xSrxNiO41y ~see Ref. 7!. Note that such a state with
dipole ordering appears to violate time-reversal symme
On the other hand, the true ground state in this case
involves hole ordering, with holes aligned in stripes eith
perpendicular or parallel to the dipole orientation. Howev
the interstripe distance, in this case, is close to that betw
holes within a stripe and hence a simulation inevitably yie
a ‘‘glassy’’ state, with many defects. This is reflected in t
shape ofrk , which shows broad peaks~see Fig. 2~b! in Ref.
47!, indicating an average interstripe distance.

As shown in Fig. 3~a!, at larger values ofB a linear stripe
is formed, which, with increasing density tends to close i
a loop. More importantly, the loop formation is accompan
by magnetic dipole orientation along the straight portion o
loop with gradual rotation byp/2 at each corner.48 Due to
the rotation of dipoles at corners, the loops interact and ev
tually form the checkerboard~grid! pattern.49 The size of the
distance between holes within a line is determined by
ratio of B ~or the sum ofA andB, for AÞB) and the Cou-
lomb energy; the grid sizes are determined by the hole d
sity alone. These results appear to be consistent with
DMRG numerical solution of thet-J model25 which also
finds loops of holes, except that in our case the perio
boundary conditions and the Coulomb interaction yield
‘‘tile grid’’ as opposed to ‘‘droplets.’’ Note the almost per
fect ~infinite charge correlation length,jc) crystal structure
obtained@Fig. 3~c!#. It is noteworthy that a typical solution
yields a finite dipole moment at each grid intersectio
which, in turn, can take one of the two orientations~along
two diagonals of the computational box!, thus creating a
highly degenerate system of moments~see Fig. 6 below!.

We recall that the presented solution is obtained assum
an arbitrary dipole orientation with a constant hole dipo
magnitude, i.e., a continuum of angles between the dip
and a fixed axis. As explained in the previous section, at v
low doping the dipoles would reside near the Brillouin zo
~BZ! diagonals, i.e., they would assume almost ‘‘discret
orientations. In order to study the effect of this ‘‘discret
ness’’ we have performed the same simulation this time,
suming that hole dipoles can take only one of four directio
~determined by the momenta of the maxima of the low
Hubbard band!. We find that the physics of the pattern fo
mation is qualitatively unaltered~hence we do not presen
them here!, except for one important difference: the ‘‘ben
ing’’ of stripes at the grid intersections disappears, i.e., o
no longer has a finite dipole moment at these intersectio

Another way of quantifying this ordered phase is
straightforwardly calculating the ‘‘string tension,’’ which a
T→0 is equal to]2U/]x2, where U is the total potential
energy andx is a small hole~or stripe! displacement; a large
string tension indicates a high stability of the obtained pha
and vice versa. In Fig. 4~a! we show the string tension fo
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motion perpendicular to a grid side compared with the m
tion along a side. As seen in the figure, the grid phase~and,
as discussed below, the stripe phase! is extremely stable with
respect to the hole motion perpendicular to the holes
segments, due to the Coulomb interacton. On the other h
at larger doping values and fixed hole density the stripes
almost compressible, i.e., the motion of holes along a st
is rather soft. The anisotropy of the perpendicular and lon
tudinal string tension decreases with decreasingB.

At fixed AF correlation length the four observed phas
yield a diagram that we show in Fig. 5~a!. We remark that in
all phases a nonvanishing value ofA leads to a decrease i
the effective value ofB at which the transitions occur, a
shown in Fig. 5~b!. The isotropic termA aloneneverpro-
duces any nontrivial geometric phase~e.g., stripes!, even
with inclusion of lattice effects. We find that the transitio

FIG. 3. Low-T state for larger finite values ofB,B54 eV, at
n515% doping level. The holes~circles! form a grid @Ref. 47
~panel~a!# with dipoles orientated along line segments and a dip
rotation at grid intersections@panel~b!#. Panel~c! shows a contour
plot of the average charge densityrk in arbitrary units, indicating
‘‘perfect’’ geometric order.~Ref. 47! Even after averaging ove
many solutions in this case the charge peaks are much sharper
those found in the ferrodipolar phase~see Fig. 2~b! in Ref. 47!.
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FIG. 4. ~a! Energy as a function of a hole position, reflecting t
string tension in the stripe, forB54 eV andn515%. Clearly, the
motion of holes perpendicular to the the grid directions is quite h
and while the motion along a line stripe is much softer~see also
text!. ~b! average string tension as a function ofB, atn515%. Note
the almost exponential dependence~solid line! up to the critical
value ofB;4 eV where the system undergoes the first-order tr
sition between the ferrodipolar and grid phases.

FIG. 5. ~a! A50, n-B phase diagram~from Ref. 47!. ~b! Fixed
B,n-A phase diagram. It is noteworthy that the experimentally r
evant values ofA and B are of order;1 eV. The slightly higher
values ofB, at which we find geometric~grid and stripe! phases, are
due to the fact that we consider unscreened Coulomb interac
and in reality they would be considerably smaller~see also Fig. 9!.
between the ferrodipolar and the grid phases is first order
indicated by the coexistence of phases in Fig. 6. Note
this transition always occurs on increasing the doping le
to sufficiently~and artificially! high values, where our theor
need not apply. No coexistence of phases has been obse
at other transitions, suggesting that they are second or
We also recall that our calculations arequasiclassicaland
thus the obtained geometric~stripe! phases are insulating
Moreover, in our formalism the hole density within a strip
can assume an arbitrary value, depending on the dipola
teraction strength.

In the cases presented above we have assumed a un
magnetic dipolar interaction. It is well known that there a
orthorhombic and tetragonal distortions in practically
transition metal oxides. In particular static stripe formati
has only been observed in the low-temperature tetrago
phase of La1.62xNd0.4SrxCuO4.9 In order to study the influ-
ence of the anisotropy we assume that the magnetic di
sizes along thex andy directions have anisotropya (a51
corresponds to the isotropic case!. Figure 7 shows the patter
we obtain fora50.8

d

-

-

on

FIG. 6. Coexistence of dipolar and grid phases, indicating
first-order nature of the transition between them.

FIG. 7. With a smallx-y directional anisotropy in the dipola
interaction, Eq.~6!, with the anisotropy parametera50.8 ~in the
uniform casea51), the holes~shown by circles! form a stripe
rather than a grid pattern. Note the hole dipole orientations~shown
by the line segments!, altering direction in neighboring stripes, co
responding to thep phase shift of the local magnetization betwe
magnetic domains separated by stripes.~Ref. 22!.
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The rotational symmetry is broken and a stripe super
tice is formed, with a charge ordering vectorK5(2p/ l )x,
wherel is the interstripe distance. More importantly, the to
dipole moment in this state vanishes. As explained in Sec
this yields a Fourier transform of the magnetizationS(q)
5^Sz(q)& peaked atQ6K in momentum space. Of course,
is reasonable to assume that in twinned single crystals, u
in inelastic neutron scattering experiments, one has dom
that average out this anisotropy. Note that in both calcula
geometric phases~see Figs. 3 and 7!, the interstripe distance
is much larger than the intrastripe distance, in agreem
with experimental findings in underdoped cuprates.

Our results are somewhat sensitive to the applied bou
ary conditions. First, for a small computational box the ex
size of the grid depends on its commensuration with the
length, which, in turn depends on the density. On increas
of the size of the computational box, the grid size depe
only on the physical parameters, as explained below Fig
In addition, for a large computaitonal box the grid patte
shown in Fig. 3~a!, acquires point or line defects, shown
Fig. 8~a!.

This leads to the reduction in the higher order peaks
served in Fig. 3~b! with no change in their wave number
indicating the finite value ofjc , as seen in Fig. 8~b!. The
sensitivity to boundary conditions is further seen in fin
size calculations, i.e, not assuming periodic boundary co
tions, but with an appropriate neutralizing charge ba
ground. In this case the holes do not form geometric pha

FIG. 8. ~a! A typical low-energy state in a larger computation
box, obtained for the same value ofB andn as in Fig. 3. Note the
presence of point and line defects. It is important to realize that
average size of the grid units depends only on the physical pa
eters and very weakly on the size of the computational box.~b! The
charge densityrk averaged over a number~of order 10! of hole
configurations. Note that the peak positions are the same as t
shown in Fig. 3, but due to the presence of defects the intensit
the higher Bragg peaks vanishes.
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although they still form stripes, as seen in Fig. 9~a!. How-
ever, in a finite system even very small anisotropya
;0.95) again leads to stripe formation, as seen in Fig. 9~b!.
It is worth mentioning that the stripe formation occurs f
much smaller values ofB and the same density and AF co
relation length in a finite system.

We have also performed simulations in the presence
realistic underlying periodic lattice and have found that t
creates slight distortions in the phases, pinning loops m
strongly. In particular, the peaks inr(q) sharpen in some o
these phases.

A. Role of disorder

We now turn to the effects of point disorder. There a
several kinds of impurities that are of experimental inter

e
m-

se
of

FIG. 9. ~a! A typical low-T metastable state of the hole system
obtainedwithout periodic boundary conditions and with an appr
priate positive background included. While the ground state is
a geometrically ordered state, it is practically unreachable due to
presence of many metastable states.~b! Adding very small direc-
tional anisotropy@a50.9, witha51 corresponding to the uniform
case shown in panel~a!; see also Fig. 7# yields stripes with some
defects. Panels~c! and ~d! show rk as a function of momentum
corresponding to the results shown in panels~a! and ~b!, respec-
tively.
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PRB 62 4361CHARGE ORDERING AND LONG-RANGE INTERACTIONS . . .
in transition metal oxides. We divide them into four distin
groups: ~I! out-of-plane impurities, such as Sr i
La22xSrxCuO4 compounds,~II ! in-plane charged impurities
such as~presumably! Li,50 ~III ! in-plane uncharged impuri
ties, such as Ni, and~IV ! in-plane uncharged impurities tha
induce a magnetic moment, such as Zn. Hence, we mode
impurity effects by adding a random~in position! potential to
the Hamiltonian~7!, which is either short-ranged and locate
in-plane or, as in the case of charged impurities, long-ran
~Coulomb! and either in-plane or out-of-plane~a distanced
from the plane where the holes are located!. In the case of
type IV we have also altered the dipolar interaction in t
vicinity of an impurity, i.e., the magnetic interaction is mu
tiplied by a factor tanh(r/Ri), wherer is the distance of a hole
to a nearby impurity andRi is the effective radius of the
impurity, which, for the case of Zn, has been estimated to
of order 2 lattice sites around each impurity atom.51 Ex-
amples of the effects of the four types of impurities are p
sented in Fig. 10.

Clearly, all four types of impurities lead to the destructi
of the geometric~stripe or grid! hole order at sufficiently
large impurity concentration,ci . On the other hand, in al
four cases stripe ordering persists through the formation
line segments of holes, resulting in a new,glassyphase.52

Moreover, the four impurity types exhibit different mech
nisms for destroying the stripe order. The charge orde
phases are practically unaffected by a small concentratio
uncharged impurities@see Fig. 10~b!#, i.e., the stripes simply
avoid impurity sites. Consequently, the stripes persist to r
tively high concentrations of this type of disorder.

The charged impurities first lead to stripe deformatio
i.e., the stripes pass either very close to the impurities~for
attractive, pinning impurities! or very far from the impurities
~for repulsive impurities!, in order to maximize the potentia

FIG. 10. The effects of impurities of different types. The fo
panels show hole~circles! and impurity ~stars! positions, for the
case of charged impurities, placedd56 Å out-of-plane~top left!,
in-plane repulsive uncharged impurities~top right!, in-plane repul-
sive charged impurities~bottom left!, and in-plane impurities with a
local magnetic moment that destroys local AF ordering~bottom
right!. Clearly, all impurities destroy the stripe order, although t
out-of-plane impurities and the uncharged in-plane impurities
nearly as effective as the in-plane charged impurities. The la
lead to the a glassy phase of stripe segments at relatively low
centrations, of order a few percent.
he

d

e

-

of

d
of

a-

,

energy @see Figs. 10~a! and 10~c!#. With increasingci the
stripes rupture and only stripe segments persist. Finally,
impurities with a local magnetic moment affect the form
tion of the spiral spin phase, responsible for the~attractive!
dipolar interaction. Since the magnetic interaction is stron
suppressed in the vicinity of such an impurity site, even
stripe segments cannot exist there, as shown in Fig. 10~d!.

Impurities are especially effective in destroying the o
dered phases found at smallB. For example, the Wigne
crystal state becomes glassy at relatively low impurity co
centrations. This happens because, e.g., in the case of im
rity type I, the attractive Coulomb energy between impurit
and holes scales likee2/d, whered is the distance betwee
the planes in which the impurities and holes reside, while
average interhole Coulomb energy behaves ae2Ass. Thus
whenss,1/d2 the holes are pinned by impurities.

In general the role of impurities depends strongly on
impurity concentration,ci . However, the magnetic dipole
interaction is sufficient to retain the main orientation, as se
in Fig. 11, where we have plotted the correlation length a
function of ci . This leads us to conjecture that with the a
dition of the kinetic energy the holes can move in stri
segments in an orientation given basically by the phase
gram of the clean system. The stripe motion would then
caused by mesoscopic thermal or quantum tunneling of
finite strings between the minima of the overall potenti
This would lead to nonlinear field dependence in the lo
temperature conductivity.53

B. Finite-temerature results

We now proceed to the finite-T results. The numerica
procedure is identical, except that the temperature is lowe
adiabatically to a finite value~i.e., a numerical annealing!. In
a classical simulation this is equivalent to introducing kine
energy into the system.

In the case of a Wigner crystal,B50, we find that the
introduction of finiteT melts the crystalline structure and th
resulting phase is the 2D Coulomb gas. The diago
~glassy! phase is also unstable at relatively low temperatur
On the other hand, the geometrically ordered states, foas
!j, whereas is the distance between holes within a stri
segment, are all stable up toT of order;B/ssas

2 . At even
higher temperatures, the stripe array melts with a temp

e
er
n-

FIG. 11. Zero temperaturechargecorrelation length as a func
tion of impurity concentration for the in-plane charged impur
case: the result is obtained by measuring the static correla
length, and then averaging over many~of order 20! different impu-
rity configurations.
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4362 PRB 62BRANKO P. STOJKOVIĆet al.
intermittency of the observed pattern: i.e., spatiotemporal
termittency. Figure 12 shows three stages of this melt
process. We observed that the stripe melts through a rup
which results in the creation of finite stripe segments t
eventually~at constant and highT) disperse into individual
holes.

Note that the temporal geometric pattern@panel~b!# is not
the same as that in the ground state. As mentioned be
there are many low-lying geometric states, close in energ
the ground state, which can temporarily occur at finiteT.
Hence the dynamics of the stripe ordering is similar to t
observed in glasses, characterized by non-Gaussian flu
tions. To show this we follow the dynamics of the hole sy
tem at temperatures slightlybelow the melting temperature
we start from a low-lying metastable state, such as that
picted in Fig. 12~b!, increase the temperature adiabatically
the point at which the structure begins to melt~which is a
measure of the activation energy! and let the system equilli
brate.

In Fig. 13~a! we plot an energy histogram at this tempe

FIG. 12. Spatiotemporal intermittent behavior of hole order
near the melting transition: three snapshots are shown.~a! corre-
sponds to a state that is clearly withing the basin of attraction of
ground state~the same pattern, albeit deformed!, while panel~b!
shows a state that is within the basin of attraction of another l
lying geometric state with more dense stripes along one of the a
Panel~c! shows the meltednematic crystal–like phase with the hole
dipole moments aligned.
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ture ~with the energy shifted by an arbitrary additive co
stant!, thus indicating an intensity of the energy stat
~bands!. Obviously, there is a band of energy states, not
~fraction of an eV per particle! from the ground state, which
are close in energy and metastable. These states are sep
by a high barrier~the maximum of which would fall beyond
the right edge on the plot!, yet are close in energy, sugges
ing a ruggedenergy landscape.55 Indeed, as shown earlier
formation of a string of holes creates a barrier for add
more holes to the string~they can be only added to the strin
ends!. Thus, any geometrically ordered state~say, those with
denser intrastripe hole concentration and larger interst
distances! must be separated by an energy barrier from ot
geometrically ordered states and in particular from
ground state.

The potential energy states obtained suggest that the
namics of stripe motion should be strongly governed
these low-lying states and thus show a nontrivial fluctuat
spectrum. Indeed, in Fig. 13~b! we show the power spectrum
of the energy fluctuations for the solution described by
histogram in Fig. 13~a!, and see that the noise spectrum co
tains a strong 1/f component for approximately two and ha
decades of frequencies. This indicates slow fluctuatio
which we ascribe to collective motions of melted hole stri
segments.

Another way of characterizing the melting of stripes is
counting ‘‘free holes.’’ In Fig. 14 we show the percentage

e

-
is.

FIG. 13. ~a! a histogram of the energies at constant~high! tem-
perature of order of the activation energy for a transition betw
the two energy basins, depicted by the states shown in Fig. 12.
left maximum corresponds to the ground state, Fig. 12~a!, and the
right to a family of low-lying excited states, Fig. 12~b!. Neither
peak can be fitted by a simple Gaussian, indicating a glassy na
of the ordered states.~b! The average ‘‘power spectrum’’ corre
sponding to the result shown in~a!: the vertical axis shows the sum
of the squares of the Fourier components of the potential ene
within the nth octave ~components 2n21 through 2n21, for n
.0), averaged over many~of order 300! spectra. The flat low-
frequency behavior~up to about the 9th component! is very close to
a generic~Ref. 54! 1/f noise and corresponds to slow fluctuatio
involving many particles, such as those yielding the transitions
tween the states depicted in Figs. 12~a! and 12~b!.
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PRB 62 4363CHARGE ORDERING AND LONG-RANGE INTERACTIONS . . .
holes that arenot in a part of an ordered pattern, as a functi
of T. As one can see, at the transition point only a sm
fraction of holes does not belong to a string segment
agreement with our observation that the stripes melt by r
turing into smaller segments. Further study of the glassy
namics of charge ordered phases in terms of the~free! energy
landscape will be presented elsewhere.

IV. CONCLUSIONS

In summary, on employing the SDW picture of transitio
metal oxides, we have studied the short-range and dip
attractive forces generated by the AF fluctuations, toge
with long-range Coulomb forces. We have developed a
merical technique, that enables us to treat doped hole va
cies at finite concentration. We have studied the competi
between long-range and short-range interactions and its
fluence on hole ordering in layered transition metal oxid
We have found a rich phase diagram for the clean syst
which includes a Wigner solid, diagonal stripes, a g
~loops!, and a macroscopic phase separation. For interm
ate values of magnetic interaction this phase diagram is c
sistent with several different experimental measureme
such as inelastic neutron scattering. In addition, on addin
small, but finite amount of anisotropy to the dipolar intera
tion we find that the ground state of the system of holes is
striped phase, found in La22y2xNdySrxCuO4. In the geomet-
ric phases with strong magnetic interaction strength we h
found a large string tension for the motion of holes perp
dicular to the stripe direction. This is due to the Coulom
interaction and indicates strong stability of the obtain
phases.

We have also found the system of holes to be quite s
sitive to the presence of charged impurities. In particu
adding out-of-plane attractive impurities pins the holes a
for small pinning energies, increases the melting tempera
of the stripe phase, although it does yield a finite cha
correlation length. In general, charged impurities are v
effective in destroying the stripe order, especially those
siding in the same plane as the holes, regardless of whe
they are attractive or repulsive, although the stripe pha
survive as finitestripe segmentsup to relatively high impu-
rity concentrations. This suggests that nonlinear conducti
should be prevalent.

The resulting hole patterns are the result of frustrat
~competition between short-range and long-range forc!:
this frustration leads to collective motions, involving larg
number of particles that ultimately lead to geometrically

FIG. 14. Percentage of holes that arenot a part of a stripe
segment, as a function of temperature, forB54 eV.
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dered ground states. We have also studied the dynamic
the geometric phase formation and its melting. We find t
the dynamics is characterized by a ‘‘glassy’’ behavior in th
the energy landscape is rugged, as characterized by the
tiotemporal intermittency of the observed behavior. Mo
importantly, we find that, for a fixed~large! size of the mag-
netic ~dipolar! interaction, there are fewer number of sharp
minima, while the string tension of the stripes is larger. As
consequence, in this case the melting of the stripe ph
occurs at higher temperature with increased doping conc
tration.

The energy landscape is also characterized by forma
of domains, separated by defects. This picture is in ag
ment with recent NMR experiments11 in which small activa-
tion energies are easily attributed to domain growth and
motion. Thus, further study of our model will include th
dynamics of the domain growth and their melting.
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APPENDIX A: MAGNETIC DIPOLES OF THE HUBBARD
MODEL

In this appendix we study the Hubbard model, Eq.~1!, in
the SDW state. Our approach is similar to that presente
Refs. 28 and 35. Hence we only briefly review the calcu
tion leading to Eq.~5!, the central equation of the paper.

The relevant order parameter in our case is the spin d
sity in thez direction:

Sz~q!5(
k,a

ack1q,a
† ck,a , ~A1!

which in the SDW state has a finite expectation value aq
5Q5(p/a,p/a) because of the nesting of the half-fille
Fermi surface. In this case the mean-field Hamiltonian re

HMF5(
k,a

ekck,a
† ck,a2

USN

2 (
k,a

ack1Q,a
† ck,a , ~A2!

where

S5
1

N
^Sz~Q!&,

ek522t@cos~kxa!1cos~kya!#. ~A3!

The Hamiltonian~A2! can be diagonalized immediately u
ing the Bogoliubov transformation:
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gk,a
c 5ukck,a1avkck1Q,a ,

gk,a
v 5vkck,a2aukck1Q,a , ~A4!

where

uk5A1

2 S 11
ek

Ek
D ,

vk5A1

2 S 12
ek

Ek
D ,

Ek5Aek
21D2,

D52
US

2
. ~A5!

In this case the mean-field Hamiltonian reads

HMF5(
k,a

Ek~gk,a
c† gk,a

c 2gk,a
v† gk,a

v !, ~A6!

where the sum overk is restricted to the magnetic Brillouin
zone and, at half filling, the ground stateu0& is defined such
that

gk,a
c u0&50,

gk,a
v† u0&50. ~A7!

Thus, at half filling the conduction band is empty and t
valence band is separated from it by energyD, which is the
Mott-Hubbard gap. It is known that this theory recovers t
results of the Heisenberg model very well. Consider, for
stance, the average spin density in Eq.~A1! in terms of the
new operators~recall that the conduction band is empty a
therefore does not contribute!

^Sz~q!&522(
k,a

uk1q2Qvk^gk1q2Q,a
v† gk,a

v &

524dq,Q(
k

ukvk

524dq,Q(
k

D

2Ek
, ~A8!

which, together with Eq.~A5!, yields the gap equation:

1

N (
k

1

Aek
21D2

5
1

U
. ~A9!

Since we are going to consider hole doping we can
glect the terms involving the conduction band operators
temperaturesT!D. As shown in Ref. 28 new interaction
are generated by the antiferromagnet in the presence o
holes, given byHz andHxy . The noninteraction hole Hamil
tonian is, from Eq.~A6!,

H052(
k,a

Ekgk,a
v† gk,a

v . ~A10!
e
-

-
r

he

Close to the half-filled Fermi surface one sees that the h
mass is

mh'
D

8t2a
. ~A11!

For any stateuC& of the system we can define the hole o
erators as

gk,a
v uC&5h2k,2a

† uC& ~A12!

in which case the Hamiltonian reads

H05(
k,a

Ekhk,a
† hk,a ~A13!

plus unimportant constants.
The interacting parts of the Hamiltonian can also be w

ten in terms of this new operators. For instance,

Hz5
1

N (
k,a

$@@Vz~Q!2Vz~2k2Q!/4#mk,k
2 2Vz~2k!l k,k

2 /4#%

3hk,a
† hk,a2

1

4N (
k,k8

@Vz~k2k8!l k,k8
2 hk,a

† sa,a8
z hk8,a8

3h2k,b
† sb,b8

z h2k8,b81Vz~k2k81Q!

3mk,k8
2 hk,a

† hk8,ah2k,b
† h2k8,b#, ~A14!

where the sum over spin indices is implicit and

Vz~q!5
U2x0

z~q!

12Ux0
z~q!

, ~A15!

with

x0
z~q,v!52

1

2N (
k

S 12
ekek1q1D2

EkEk1q
D

3S 1

v2Ek1q2Ek
2

1

v1Ek1q1Ek
D .

~A16!

A similar expression is valid for the transverse compone
of the interaction

Hxy52
4

N (
k,a

~12a!@V12~2k!nk,k
2 2V12~Q12k!pk,k

2 #

3hk,a
† hk,a2

1

4N (
k,k8

@V12~k2k8!nk,k8
2

2V12~k2k81Q!pk,k8
2

#hk,a
† sa,a8

1 hk8,a8

3h2k,b
† sb,b8

2 h2k8,b8 , ~A17!

whereV12 is given by an expression similar to Eq.~A15!
with x0

z replaced by
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x0
12~q,v!52

1

2N (
k

S 12
ekek1q2D2

EkEk1q
D S 1

v2Ek1q2Ek

2
1

v1Ek1q1Ek
D . ~A18!

Moreover, the coefficients that appear in these express
are defined by

mk,k85ukvk81vkuk8 ,

l k,k85ukuk81vkvk8 ,

pk,k85ukvk82vkuk8 ,

nk,k85ukuk82vkvk8 . ~A19!

Observe that the interactions renormalize the dispers
of the holes as well, that is,Ek→Ek

R . While Hz is essentially
a short-range attractive interaction in the spin-symme
channel,Hxy has two components: one of them is also
attractive interaction in the spin-symmetric channel but
other is a long-range dipolar interaction, which depends
the momentum of the hole.

The Hamiltonian, which consists of terms given by Eq
~A14! and ~A17!, is very difficult to deal with. One notices
however, that the mean-field energyEk is degenerate along
the magnetic Brillouin zone. This is an artifact of the theo
and the degeneracy is broken by any small perturbation s
as the corrections discussed before or a next nearest hop
t8, for instance. In this case, the dispersion has a minimum
(6p/2,6p/2). Thus, in order to study the long-waveleng
limit of the theory it is sufficient to focus on these points
the Brillouin zone. In the paper by Schrieffer, Wen, a
Zhang28 the authors focused entirely on theHz part of the
Hamiltonian since the form factorsnk,k8 andpk,k8 vanish at
the Brillouin zone. As shown by Frenkel and Hanke,29 if one
keeps the leading order in momentum we can write

pk,k8'
t

D
u~kx2kx8!1~ky2ky8!u,

V12~q1Q!'
1

t2

1

q2
, ~A20!

and therefore the interaction term becomes

V12~q1Q!pk,k1q
2 '2U

~qx1qy!2

q2
52US 112

qxqy

q2 D ,

~A21!

which has dipolar form.
Thus, in the first quantized language the interactions h

the form

HI'$Asz~r1!sz~r2!2B@s1~r1!s2~r2!1s2~r1!s1~r2!#%

3d~r12r2!2C
xy

r 4
@s1~r1!s2~r2!1s2~r1!s1~r2!#,

~A22!
ns

n

c

e
n

.

ch
ng,
at

e

where s are spin operators. Notice that the singlet st
u↑,↓&2u↓,↑&, clearly minimizes the energy of interaction b
tween the two holes. In this case we end up with the cha
interactions only.

From our simulations we see that the charge orders w
some characteristic vectorK such that

r~q!5(
k,a

hk1q,a
† hk,a ~A23!

acquires a finite expectation value atq5K . Thus, we can
always write down a mean-field version of Eq.~A22! plus
the long-range Coulomb interaction as

HI52
rN

2 (
k,a

Vkhk1K ,a
† hk,a , ~A24!

whereVk has to be calculated from Eqs.~A14! and ~A17!
and

r5
1

N
^r~K !&. ~A25!

Observe that in this case the Brillouin zone is further redu
and we can define new operators

dk,a
1 5wkhk,a1tkhk1K ,a

† ,

dk,a
2 5tkhk,a2wkhk1K ,a

† , ~A26!

with

wk5A1

2 S 11
Ek

R

Ek
TD ,

tk5A1

2 S 12
Ek

R

Ek
TD , ~A27!

Ek
T5A~Ek

R!21
~rVk!

2

4
,

and the Hamiltonian is diagonal,

H5(
k,a

Ek
T~dk,a

1†dk,a
1 2dk,a

2†dk,a
2 !, ~A28!

where the sum is done in the new Brillouin zone. Se
consistency requires that

r5
1

N (
k,a

wktk~^dk,a
1†dk,a

1 &2^dk,a
2†dk,a

2 &!, ~A29!

which can be evaluated for any hole-filling.
Now let us go back to the issue of magnetization which

important for neutron scattering. From Eq.~A8! one has



ou

o
i

ri

e
ole

re-

in
red

ge-
t

e
tic
hift

4366 PRB 62BRANKO P. STOJKOVIĆet al.
^Sz~q!&522(
k,a

uk1q2Qvk^gk1q2Q,a
v† gk,a

v &

522(
k,a

uk1q2Qvk^hk1q2Q,ahk,a
† &

522dq,Q1K(
k,a

uk1Kvk^hk1K ,ahk,a
† &

22dq,Q1K(
k,a

uk1Kvktkwk

3~^dk,a
1 dk,a

1†&2^dk,a
2 dk,a

2†&!, ~A30!

and one sees that the magnetization is now peaked ar
Q1K instead ofQ. For stripes aligned along they direction
this is possible of course when

K56
2p

l
x, ~A31!

wherel is the interstripe distance.

APPENDIX B: DIPOLES OF THE T-J MODEL

Let us consider the SDW theory of thet-J model as pro-
posed by Shraiman and Siggia,30 described by

H52t(
^ i , j &

ci ,s
† cj ,s1H.c.1J(

^ i , j &
Si•Sj , ~B1!

and use the slave fermion representation

ci ,s5ca,i
† za,i ,s , ~B2!

whereca,i
† creates a hole~fermion! on a sitei in the sublat-

tice a5A,B ~which labels the ‘‘spin’’ of the hole! andza,i ,s
is a Schwinger boson on the same sublattice~spin wave!. In
order to obtain the dynamics of the holes alone we trace
the spin-wave degrees of freedom. The static part of the
teraction is30

HSS52
1

N (
k,k8,q

V~k,k8,q!cA
†~k!cB~k1q!

3cB
†~k81q!cA~k8!, ~B3!

where the momentum sum is restricted to the magnetic B
louin zone and

V~k,k8,q!52gF ~lk2lk1q!~lk82lk81q!

12lq

1
~lk1lk1q!~lk81lk81q!

11lq
G , ~B4!

with

lq5
1

2
@cos~qx!1cos~qy!#. ~B5!

The coupling constantg is a function oft andJ. In the strong
coupling limit (t!J)g'8t2/J, while in the weak coupling
limit ( t@J) we haveg'J.29
nd

ut
n-

l-

Observe that Eq.~B3! does not have a kinetic term for th
holes. The kinetic energy has to be obtained from the h
self-energy at zero frequency and can be written as

H05 (
k,a5A,B

ekca
†~k!ca~k!, ~B6!

whereek has a minimum at (6p/2,6p/2).30 For a low den-
sity of holes these are the only points of interest and the
fore we can look at the interaction~B4! strength close to
these points. Observe that at these points we havelq→0 and
therefore the interactions are dominated by the first term
Eq. ~B4! which describes the fluctuations of the stagge
magnetization@with characteristic wave vectorQ5(p,p)#.
The second term describes the fluctuations of the homo
neous magnetization (q50), which is not of direct interes
here. In this case, fork and k8 close (6p/2,6p/2) to the
interaction can be approximated by

V~k,k8,q!'2g
lk1qlk81q

12lq
. ~B7!

The problem can be further simplified if one works with th
upper half-part of the original BZ instead of the magne
BZ, as shown in Fig. 15. This can be accomplished by a s
of the lower part of the BZ byQ.

FIG. 15. Choice of the BZ.
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Moreover, working in the long-wavelength limit, that i
with q→0, one sees that there are four values ofV(k,k8,q)
of relevance:~1! whenk5k85Q/2,

V11~q!'2g
~qx1qy!2

q2
; ~B8!

~2! whenk5k85Q* /2 @whereQ* 5(2p,p)# and

V22~q!'2g
~qx2qy!2

q2
; ~B9!

~3! whenk5Q/2 andk85Q* /2,

V12~q!'g
qx

22qy
2

q2
; ~B10!

~4! and finallyk5Q* /2 andk85Q/2,

V21~q!5V12~q!. ~B11!

We can now split the sums in Eq.~B3! to the regions around
these two points and introduce a cutoff in the moment
sumL such thatq!L!p. In this case the Hilbert space o
the problem is divided into two different sub-Hilbert spac
and the hole operator can be rewritten as

ca,i5(
k

eik•r ica~k!'ca,i ,1cosS Q

2
•r D1ca,i ,2cosS Q*

2
•r D ,

~B12!

where

ca,i ,1'(
q

eiq•r icaS Q

2
1qD ,

ca,i ,2'(
q

eiq•r icaS Q*

2
1qD . ~B13!

It is convenient to define the operator

pa~q!5(
k

cB,a
† ~k1q!cA,a~k!,

pa
†~q!5(

k
cA,a

† ~k!cB,a~k1q!5(
k

cA,a
† ~k2q!cB,a~k!,

~B14!

with a51,2. Using these new operators and results~B8!–
~B11!, we can rewrite the Hamiltonian~B3! as

HSS'2
g

N (
q

1

q2
$q2@p1

†~q!p1~q!1p2
†~q!p2~q!#

2~qx
22qy

2!@p1
†~q!p2~q!1p2

†~q!p1~q!#

12qxqy@p1
†~q!p1~q!2p2

†~q!p2~q!#%. ~B15!

This does not have a very transparent form. In order to
that this Hamiltonian has the form of a dipole-dipole inte
action we define the vector operator
e

D~q!5
1

A2
„p1~q!2p2~q!,p1~q!1p2~q!…,

D†~q!5
1

A2
„p1

†~2q!2p2
†~2q!,p1

†~2q!1p2
†~2q!…

~B16!

and rewrite Eq.~B15! as

HSS'2
g

N (
q

1

q2 Fq2D†~q!•D~q!1D†~2q!•D~q!

22
@D†~2q!•q#@D~q!•q#

q2 G . ~B17!

Observe that the first term in Eq.~B17! is q-independent and
will lead to a local interaction that has the usual scalar for
We are interested in the second part of the Hamiltoni
Defining the Fourier transform

D~r !5(
q

eiq•rD~q!, ~B18!

the second term in Eq.~B17! acquires the required form

Hdd5gE drE dr 8
1

~r2r 8!2 H D†~r !•D~r 8!

22
@D†~r !•r #@D~r 8!•r 8#

~r2r 8!2 J , ~B19!

which is the second quantized form of the magnetic dipo
dipole interaction.

In order to put this Hamiltonian in a form involving th
magnetic dipole defined by Shraimann and Siggia cons
their definition:30

Pm,a~q!5 (
k,a,b

sin~ka!ca
†~k1q!ta,b

m cb~k!, ~B20!

wherem5x,y,z refers to indices of the Pauli matricesta,b
m

and therefore act in the sub-space of the sublatticesA andB
and a5x,y refers to the space indices. In particular, t
lowering and raising operators associated with this magn
dipole operators have the interesting form

P2,a~q!52(
k

sin~ka!cB
†~k1q!cA~k!,

P1,a~q!52(
k

sin~ka!cA
†~k1q!cB~k!. ~B21!

In the approximation we are employing we can split the su
mation in Eqs.~B21! aroundQ andQ* in order to get~this
can be done because the sine function is smooth around t
two points!

P2,x~q!'2(
k

@cB,1
† ~k1q!cA,1~k!2cB,2

† ~k1q!cA,2~k!#
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P2,y~q!'2(
k

@cB,1
† ~k1q!cA,1~k!1cB,2

† ~k1q!cA,2~k!#

P1,x~q!'2(
k

@cA,1
† ~k1q!cB,1~k!2cA,2

† ~k1q!cB,2~k!#

P1,y~q!'2(
k

@cA,1
† ~k1q!cB,1~k!1cA,2

† ~k1q!cB,2~k!#,

~B22!

where the signs come from value of the sines around the
points at the Fermi surface. These dipole operators can
also written trivially in terms of the operators in Eqs.~B14!:

P2,x~q!52@p1~q!2p2~q!#,

P2,y~q!52@p1~q!1p2~q!#, ~B23!

and so on. By direct comparison with Eqs.~B16! one finds
wo
be

D~q!5
1

2A2
„P2,x~q!,P2,y~q!…, ~B24!

which makes clear the connection. On taking the Fou
transform of the magnetic dipole operators back to real sp
one finds, for instance,

Dx,i5
1

A2
~cB,1,i

† cA,1,i2cB,2,i
† cA,2,i !,

Dy,i5
1

A2
~cB,1,i

† cA,1,i1cB,2,i
† cA,2,i !. ~B25!

This explicitly justifies our earlier claim that the dipolar in
teraction is due to the coherent hoping of holes between
different sublattices~at the same position in space!.
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A. Revcolevschi, Phys. Rev. Lett.~to be published!.

12J.H. Cho, F.C. Chou, and D.C. Johnson, Phys. Rev. Lett.70, 222
~1993!.

13F.C. Chou, F. Borsa, J.H. Cho, D.C. Johnston, A. Lascialfar
D.R. Torgeson, and J. Ziolo, Phys. Rev. Lett.71, 2323~1993!.

14F. Borsa, P. Carretta, J.H. Cho, F.C. Chou, Q. Hu, D.C. Johnsto
A. Lascialfari, D.R. Torgeson, R.J. Gooding, N.M. Salem, an
K.J.E. Vos, Phys. Rev. B52, 7334~1995!.

15S. Wakimoto, G. Shirane, Y. Endoh, K. Hirota, S. Ueki, K. Ya-
-

.

.

-

d

,

n,

mada, R.J. Birgeneau, M.A. Kastner, Y.S. Lee, P.M. Gehring
and S.H. Lee, Phys. Rev. B60, R769~1999!.

16J.M. Tranquada, Physica C282, 166 ~1997!.
17G. Aeppli, T. Mason, S.M. Hayden, H.A. Mook, and J. Kulda,

Science278, 1432~1997!.
18H.J. Schulz, J. Phys.~France! 50, 2833~1989!; J. Zaanen, and J.

Gunnarsson, Phys. Rev. B40, 7391 ~1989!; A.R. Bishop, F.
Guinea, P.S. Lomdahl, E. Louis, and J.A. Verges, Europhy
Lett. 14, 157 ~1991!.

19P. Prelovsek and X. Zotos, Phys. Rev. B47, 5984 ~1993!; P.
Prelovsek and I. Sega,ibid. 49, 15 241~1994!; E.W. Carlson,
S.A. Kivelson, Z. Nussinov, and V.J. Emery,ibid. 57, 14 704
~1998!; C. Nayak and F. Wilczek, Phys. Rev. Lett.78, 2465
~1997!; A.H. Castro Neto, Z. Phys. B: Condens. Matter103, 185
~1997!; J. Zaanen, O.Y. Osman, and W. van Saarloos, Phy
Rev. B 58, R11 868~1998!; M. Vojta and S. Sachdev, Phys.
Rev. Lett.83, 3916~1999!.

20A.L. Chernyshev, A.H. Castro Neto, and A.R. Bishop, Phys. Rev
Lett. 84, 4922~2000!.

21G. Seibold, C. Castellani, C. DiCastro, and M. Grilli, Phys. Rev
B 58, 13506~1998!.

22V.J. Emery and S.A. Kivelson, Physica C209, 597 ~1993!.
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