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Anomalous low-doping phase of the Hubbard model

C. Gröber, R. Eder, and W. Hanke
Institut für Theoretische Physik, Universita¨t Würzburg, Am Hubland, 97074 Wu¨rzburg, Germany
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We present results of a systematic quantum Monte Carlo study for the single-band Hubbard model. Thereby
we evaluated single-particle spectra~PES and IPES!, two-particle spectra~spin and density correlation func-
tions!, and the dynamical correlation function of suitably defined diagnostic operators, all as a function of
temperature and hole doping. The results allow us to identify different physical regimes. Near half-filling we
find an anomalous ‘‘Hubbard-I phase,’’ where the band structure is, up to some minor modifications, consistent
with the Hubbard-I predictions. At lower temperatures, where the spin response becomes sharp, additional
dispersionless ‘‘bands’’ emerge due to the dressing of electrons/holes with spin excitations. We present a
simple phenomenological fit that reproduces the band structure of the insulator quantitatively. The Fermi
surface volume in the low-doping phase, as derived from the single-particle spectral function, is not consistent
with the Luttinger theorem, but qualitatively in agreement with the predictions of the Hubbard-I approxima-
tion. The anomalous phase extends up to a hole concentration of'15%, i.e., the underdoped region in the
phase diagram of high-Tc superconductors. We also investigate the nature of the magnetic ordering transition
in the single-particle spectra. We show that the transition to a spin-density wave-like band structure is not
accomplished by the formation of any resolvable ‘‘precursor bands,’’ but rather by a~spectroscopically invis-
ible! band of spin-3/2 quasiparticles. We discuss implications for the ‘‘remnant Fermi surface’’ in insulating
cuprate compounds and the shadow bands in the doped materials.
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I. INTRODUCTION

The one-band Hubbard model on a two-dimensio
square lattice has the Hamiltonian

H52t (
^ i , j &,s

~ci ,s
† cj ,s1H.c.!1U(

i
~ni ,↑21/2!~ni ,↓21/2!

2m(
i

~ni ,↑1ni ,↓!. ~1!

Here,ci ,s
† (ci ,s) creates~annihilates! an electron with spins

in a Wannier orbital centered at lattice sitei. The particle
density at each site is given byni ,s5ci ,s

† ci ,s . The first sum
for the kinetic energy is restricted to include only the ho
ping matrix elementt between next-nearest neighbor sit
^ i , j &. Periodic boundary conditions are used throughout
following work. The second sum describes forU.0 an on-
site Coulomb repulsion between particles of opposite s
that share the same lattice site. In the present paper w
strict ourselves toU58.0t. The chemical potentialm in the
third sum controls the occupation of the finite lattice in t
finite-temperature grand canonical quantum Monte Ca
~QMC! simulation we performed. At half-filling, particle
hole symmetry of the kinetic andU term impliesm50. The
analytic continuation of the dynamic imaginary-times QM
data to the real frequency axis is performed with state-of-t
art maximum-entropy~ME! techniques. For exhausting dis
cussions concerning the QMC and ME methods we refer
reader to Refs. 1–3. The one-band Hubbard model exh
several energy scales: in the repulsive case the high-en
scale U is important in determining the insulating gap
half-filling ^n&51.0. An important low-energy scale is set b
the exchange interactionJ54t2/U: in second order pertur
PRB 620163-1829/2000/62~7!/4336~17!/$15.00
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bation theory two particles with different spins on neighbo
ing lattice sites can exchange via a virtual double occupat
This process is the source for the strong antiferromagn
~AF! correlations found near and at half-filling.

With the exception of some known symmetry propert
like invariance under global spin rotation, whose generat
form the SU(2) algebra, and invariance unde
U(1)-transformation, i.e., charge conservation, as well as
particle-hole transformation, no rigorous results are kno
for the one-band Hubbard model in two dimensions.4 The
Mermin-Wagner theorem5 prevents a long-range ordere
state in a two-dimensional system for finite temperatures,
it is commonly believed that the ground state of the spin-
Heisenberg antiferromagnet, i.e., the large-U limit of the re-
pulsive half-filled Hubbard model,6 shows long-range Ne´el
order in two dimensions. Ne´el order results, also in the
weak-coupling limit,7,8 where the gapD is due to a spin-
density-wave~SDW! instability related to perfect nesting.

It might seem that due to the Mermin-Wagner theore
the physics of the ordered phase is out of reach for our
merical technique, which is limited to finite temperature
However, one may assume that the system ‘‘effectively
ders’’ as soon as the spin-correlation length becomes c
parable to the system size. Due to the periodic bound
conditions the spin-correlation function

x~r!5~1/L2!(
i

^SW i•SW i 1r&

is a periodic function ofr and if the value of this function a
the maximum valueuru5A2L ~with L[cluster size! is still
appreciable, we may expect that the system is ‘‘effectiv
ordered.’’ A rough measure would be the spin-correlati
lengthz, obtained by fittingx(r) to the forma•ur ub•e2ur u/z.
4336 ©2000 The American Physical Society
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Since the infinite system has the Ne´el temperatureT50, the
spin-correlation length diverges asT→0 and we may expec
that in afinite systemz becomes comparable to the clust
size L at a finite temperature, which depends on the latti
size. Below this temperature we then expect that the sys
resembles the ordered phase, although the spin-rotation
metry persists even in this case. In that sense, the finite
of the system creates an artificial ‘‘Ne´el temperature,’’
which, however, depends onL andU/t, etc., and has no rea
counterpart in the infinite system. This has to be kept in m
when discussing the results.

We proceed by discussing some known approximation
the Hubbard model. The ‘‘classical’’ approximation to th
Hubbard model is the so-called Hubbard-I approximation10

Its essence is the splitting of the electron annihilation ope
tor into the two ‘‘eigenoperators’’ of the interaction part:

ci ,s5ci ,sni ,s̄1ci ,s~12ni ,s̄!5
1

A2
~di ,s1hi ,s

† !, ~2!

whence

@di ,s ,HU#5
U

2
di ,s ,

@hi ,s
† ,HU#52

U

2
hi ,s

† . ~3!

The physical content of the Hubbard-I approximation, wh
neglects any spin correlations, becomes clear by realizi11

that the equations of motion in this approximation are co
pletely equivalent to an ‘‘effective Hamiltonian’’ for doubl
occupancylike particlesdi ,s

† 5(1/A2) ci ,s
† ni ,s̄ and holelike

particleshi ,s
† 5(1/A2) ci ,s(12ni ,s̄):

H52
t

2 (
^ i , j &,s

~di ,s
† dj ,s2hi ,s

† hj ,s!

2
t

2 (
^ i , j &,s

~di ,s
† hj ,s̄

† 1H.c.!

1
U

2 (
i ,s

~di ,s
† di ,s2hi ,s

† hi ,s!. ~4!

This Hamiltonian contains terms that describe the pair c
ation of a hole and a double occupancy on nearest neigh
^ i , j &, terms that describe the propagation of these effec
particles, and an additional energy of formation ofU for the
double occupancy. The matrix elements for the propaga
are reduced by a factor of 1/2, because in an uncorrel
spin background there is a probability of 1/2 for the spin
a nearest neighbor to have the proper direction to allow
the hopping of an electron. Solving Eq.~4! by Fourier and
Bogoliubov transform:

g1,k,s5ukdk,s1vkh2k,s̄
† ,

g2,k,s52vkdk,s1ukh2k,s̄
† , ~5!

yields the standard dispersion relation, which consists of
upper and lower Hubbard bands:
m
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E6
Hub2I~k!5

1

2
~ek6Aek

21U2!. ~6!

Here ek denotes the free tight-binding dispersionek
522t@cos(kx)1cos(ky)#. Using Eq. ~2! we also obtain the
correct spectral weights of the two Hubbard bands:

Z6
Hub2I~k!5

1

2
~uk6vk!

25
1

2 S 16
ek

Aek
21U2D . ~7!

As noted above, the key assumption in the Hubbard-I
proximation is the neglect of spin correlations. Therefore,
expect that this approximation will become inaccurate
soon as spin correlations become sufficiently strong so a
appreciably influence the propagation of holes and dou
occupancies. This effect will be strongest in the Ne´el ordered
phase believed to be realized in the ground state. If
choose the ‘‘spin background,’’ in which the holes an
double occupancies propagate, to be the Ne´el state, the
double occupancydi↑

† with spin ↑ can exist only on the↓
sublattice and vice versa. Similarly, a holehi↓

† can be created
only on the↓ sublattice and vice versa. We, thus, expect t
we have to modify the Hubbard-I Hamiltonian~4! into

H52t (
i PA, j PN( i )

~di ,↑
† hj ,↑

† 1H.c.!

2t (
i PB, j PN( i )

~di ,↓
† hj ,↓

† 1H.c.!

1
U

2 (
i ,s

~di ,s
† di ,s2hi ,s

† hi ,s!, ~8!

whereA (B) denotes the↓ (↑) sublattice andN( i ) denotes
the set of nearest neighbors of sitei. Note that thedi ,s

† dj ,s

and hi ,s
† hj ,s propagation terms drop out~because of theA

andB sublattices! and the matrix element for pair creation
t rather thant/2—this takes into account the fact that th
spins on neighboring sites are antiparallel with probabi
one rather than one-half as was the case in the paramag
state. Fourier and Bogoliubov transformation of Eq.~8!
yields the dispersion

E6
SDW~k!56Aek

21
U2

4
, ~9!

and using

ck,↑5hk,↑1d2k,↓
† ,

ck1Q,↑5hk,↑2d2k,↓
† , ~10!

~wherek is within the AF Brillouin zone!, we find the spec-
tral weight of these bands:

Z65
1

2
~uk6vk!

25
1

2 S 16
ek

Aek
21 U2/4

D . ~11!

This is precisely what is obtained from the SDW mean-fie
treatment of the Hubbard model by setting the stagge
magnetizationm to a value of one~which is a good approxi-
mation in the limit of largeU). In general, the SDW mean
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field approximation models the AF Ne´el state by assuming
^ni ,s&5 1

2 (11smeiQRi) with AF nesting vectorQ5(p,p)
and staggered magnetizationm5eiQRi^ni ,↑2ni ,↓&.

7,8 This
results in the two-band dispersion

E6
SDW~k!56Aek

21D2, ~12!

and the spectral weight

Z6
SDW~k!5

1

2
@16ek /E1

SDW~k!#. ~13!

The gap parameter isD5Um/2 and the staggered magne
zation m is determined self-consistently from the followin
equation:

m5
2

N (
k

occupied
Um

A@ek2e~k1Q!#21m2U2
. ~14!

The solution of this self-consistency equation yields
value D53.56t at U58.0t, the value used in the prese
paper. If we setm51 on the other hand, as would be appr
priate forU/t→`, we obviously recover the results from ou
Hubbard-I-like Hamiltonian~8!. In the two limiting cases of
no spin correlations and of perfect Ne´el order we can thus
treat the Hubbard model in a quite analogous fashion and
will be seen below, the Hubbard-I results are indeed a g
approximation to the actual spectral function in the limit
high temperature. The main problem then is how to desc
the effect of spin fluctuations and how to manage the cro
over from the completely disordered to the Ne´el ordered
phase. Below, we will address this crossover by QMC sim
lations.

Thereby we want to take advantage of the possibility
calculating the spectra of specifically designed ‘‘diagnos
operators,’’ The first one of these is the‘‘shadow’’ operator:

c̃i ,s5ci ,sni ,s̄2ci ,s~12ni ,s̄!5
1

A2
~di ,s2hi ,s

† !. ~15!

We note first of all, that the Fourier transform of this ope
tor, c̃k,s has precisely the same quantum numbers as
ordinary electron operatorck,s : momentum2k, total spin
1/2, z-spin s, and identical point-group symmetry at high
symmetry momenta. It follows that the poles in its dynami
correlation functions

Ac̃~k,v!5(
n

u^Cnuc̃k,suCm&u2e2b(Em2En)d@v2~En2Em!#

~16!

originate from exactly the same final statesuCn& as those of
the photoemission spectrum. It can happen only acciden
that a given staten has an exactly vanishing weight in one
the correlation functions, but not the others. In this ca
however, any arbitrarily small perturbation will remove th
accidental vanishing of the peak. The only thing that can
will be different in the spectra of the diagnostic operator,
the weightsof the peaks,u^Cnuc̃k,suC0&u2. In fact, compari-
son of Eqs.~11! and~7! shows immediately that both for th
Hubbard-I approximation and for the SDW approximatio
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use of the operatorc̃k,s instead ofck,s exchanges the weight
of the two Hubbard/SDW bands. It follows that band po
tions that have a small spectral weight in the spectra of
ordinary electron operator will acquire a large spect
weight in the spectrum ofc̃k,s and vice versa. Therefore, thi
diagnostic operator is a useful tool to map out the ‘‘sha
owy’’ parts of the spectra in the outer parts of the Brillou
zone. An additional benefit is that since the ME techniq
resolves peaks with large spectral weight more reliably th
those with small weight, we can get more precise inform
tion about the dispersion of these bands with weak intens
The second diagnostic operator that we will be using is
‘‘spin-1/2 string’’ operator

bi ,↑5 (
j PN( i )

~ci↑Sj
z1ci↓Sj

2!,

bi ,↑
† 5 (

j PN( i )
~ci↑

† Sj
z1ci↓

† Sj
1!, ~17!

where the sum on the rhs runs over the nearest neighborsj of
site i. This operator is the Clebsch-Gordan contraction of
adjoint rank-1 spinorci ,s and the spin-1 vector operatorSW j
into yet another adjoint rank-1 spinor. It describes the an
hilation of a ‘‘dressed’’ electron, i.e., an electron with a sp
excitation on a nearest neighbor. Again, since the Fou
transforms of the diagnostic operatorbk,s agrees with the
electron annihilation operatorck,s in all conceivable quan-
tum numbers~momentum, total spin,z component of the
spin, point-group operations in the case of high-symme
momenta! it obeys precisely the same selection rule
whence it is just as good as thec operator itself to map ou
the band structure.

One further point, which is important from a technic
point of view, is the following: under the particle-hole tran
formation ci ,s→eiQ•Rici ,s

† we have c̃i ,↑→2eiQ•Ri c̃i ,↑
† and

bi ,↑→2eiQ•Ribi ,↑
† . This implies that at half-filling the spec

tra of the shadow and spin-1/2 string operator obey the s
particle-hole symmetry as those of the ordinary electron
erator, i.e.,

A~k,v!5A~k1Q,2v!. ~18!

In our MAXENT program, particle-hole symmetry is no
implemented as an additional constraint, in other words:
MAXENT procedure does not ‘‘know’’ about this additiona
symmetry. The degree to which Eq.~18! is obeyed in the
final spectra thus gives a good check for the accuracy of
reconstructed spectra. This is of particular importance in
case of the spin-1/2 string operator because the Wick c
traction of this operator on any given time slice produce
total of '80 products of noninteracting Green’s function
The computation is, therefore, much more prone to inac
racies so that an additional check is desirable.

The present paper is organized as follows: first, we co
pare the temperature-dependent-dynamic single-par
properties of the Hubbard model with the predictions of t
mean-field SDW and Hubbard-I approximations. In additio
we consider the temperature-dependent two-particle exc
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FIG. 1. Angle-resolved spec
tral function A(k,v) of a 838
Hubbard lattice at̂ n&51.0 and
U58.0t for various temperatures
The solid lines in the left column
represent the ~renormalized!
Hubbard-I and SDW dispersions
In the right column the spectra
functions from QMC~solid lines!
are compared to the Hubbard
and SDW approximations with a
Lorentzian line shape~dashed
lines!.
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tra
tions. Then, we will use our first diagnostic operator, t

shadow operatorc̃k,s , to show the existence of a total of fou
bands in the photoemission spectrum and to shed light o
the temperature dependent crossover from the SDW to
Hubbard-I regime. Then we will investigate the four-ba
structure in more detail: after a phenomenological fit, wh
is able to produce a total of four bands, we will consider
string picture that naturally leads to our second diagno
operator, the spin-1/2 string operatorbk,s . This operator will
be used to ultimately reveal the underlying mechanisms
hind the generation of the four-band structure, namely,
dressing of the photoholes by clouds of AF spin excitatio
To resolve the ‘‘AF mirror image’’ of the narrow quasipa
ticle spectral weight features betweenk5(0,0) and k
5(p,0) around momentumk5(p,p), we introduce also a
spin-3/2 string operator. Finally, we will concentrate on t
doped regime, thereby showing the violation of the Lutting
theorem near half-filling, and discuss the hole concentra
range in which these dressing effects dominant the lo
energy physics.
to
he

h
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II. TEMPERATURE-DEPENDENT DYNAMICS
AT HALF-FILLING

We start in Fig. 1 with the discussion of the angl
resolved single-particle spectral functionA(k,v) for U
58.0t and various temperatures in the range fromT54.00t
to T50.10t. In the left column of the figure the spectra
functions are shown as ‘‘gray-scale’’ plots versus mome
tum k and energyv/t with dark ~light! areas corresponding
to large~small! spectral weight. The same spectra are sho
also in the right column, but now as line plots at each m
mentumk. The QMC data in the figure are compared to t
renormalized results of the Hubbard-I approximation at h
and medium temperatures and with the renormalized res
of the mean-field SDW approximation at the lowest tempe
ture, T50.10t. ‘‘Renormalized’’ means here that we hav
readjusted the parametersU and t in Eqs.~6! and ~12! so as
to obtain an optimal fit to the ‘‘bands’’ of high-spectra
weight in the spectra. These approximate dispersions
plotted as solid lines in the left column, while their spec
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are shown in the right column as line plots at each mom
tum k. Thereby we have assumed a Lorentzian line sh
with a suitably chosen temperature-dependent width~the
Hubbard-I approximation does not provide any informati
about linewidths!.

Starting at the highest calculated temperatureT54.00t,
we find that the Hubbard-I approximation with practica

unrenormalized parameters (t̃ 50.95t andŨ58.32t) fits the
QMC spectral functions almost perfectly regarding both
general dispersion and the distribution of spectral wei
~quadratic deviation per degree of freedomx250.05). This
is not surprising since the Hubbard-I approximation is d
rived for the paramagnetic state thereby neglecting all effe
of spin correlations, i.e., the Hubbard-I approximation ess
tially describes the interplay between itinerant electrons
strong on-site repulsion. This should be a reasonable
sumption at this high temperature since all relevant spin
grees of freedom are thermally excited.

Lowering the temperature toT51.00t and further toT
50.33t, the data show that the Hubbard-I approximation
creasingly fails to reproduce the entire spectrum and is o
able to fit the peaks with maximal spectral weight reasona
well. Even then, in order to achieve these fits, one alre
has to renormalize the free parameters strongly. The va
we found aret̃ 51.38t and Ũ55.57t with x251.54 at T

51.00t and t̃ 51.40t and Ũ53.96t with x250.85 at T
50.33t. The peaks that are missed by the Hubbard-I
proximation are the states that form the first ionizatio
affinity states around momentumk5(0,0)/(p,p) on the
photoemission/inverse photoemission side and two ra
dispersionless bands at higher energies ofv'66.0t. The
former states were previously resolved by Preuss
co-workers.12 Altogether one can distinguish a total of fou
‘‘bands’’ in the single-particle spectral density. As will b
seen below, the temperature/doping regime where this f
band structure is seen coincides with the regime wher
collective low-energy mode with momentum (p,p) in the
spin response exists. In spite of this, however, we stress
the four-band structure cannot be explained by a backfold
of the band structure due to ordering effects since the s
correlation length is<1.5 lattice spacings at temperatur
T>0.33t.

For the lowest temperatureT50.10t, the QMC data are
compared with the results from the AF SDW approximatio
As in the case of the Hubbard-I approximation at medi
temperatures, the lowermost spectra of Fig. 1 show that
SDW approximation is only able to fit the peaks with lar
spectral weight. Again one has to renormalize the free
rameters heavily to values oft̃ 51.34t and D̃52.29t with
x250.83. Moreover, as was the case for the Hubbard-I
proximation at higher temperatures, the SDW approximat
neither explains the states that form the first ionizati
affinity states around momentumk5(0,0)/(p,p) on the
photoemission/inverse photoemission side, nor the two
persionless bands at higher excitation energies, which ca
seen rather clearly in the spectra.

All in all, the overall distribution of spectral weight i
roughly reproduced by the Hubbard-I and SDW approxim
tions as long as one forgets about the four-band structure
fact it is well known that theintegratedphotoemission or
-
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inverse photoemission weight~that means the electron mo
mentum distribution! at eachk point is reproduced quite wel
by the Hubbard-I approximation and the related two-p
approximation.13

As already mentioned, the emerging of the four-ba
structure in the photoemission somewhere in betweenT
51.00t and T50.33t is closely related to a change in th
spin response: to illustrate this we consider Fig. 2, wh
shows the spin-correlation function,xsz(k,v) ~left column!,
and the charge-correlation function,xcc(k,v) ~right col-
umn!, for different temperatures. Whereas the spin respo
is entirely incoherent atT51.00t, with decreasing tempera
ture it can be fitted increasingly well by the spin-wave d
persion

ESW~k!52JA12~1/4!@cos~kx!1cos~ky!#2. ~19!

This result is known from previous calculations,7,8 which
demonstrated that the two-particle correlation functions l
the spin response can be described within the SDW appr
mation even for large values of the interactionU. The energy
scaleJ directly manifests itself in the spin-response since
spin-wave dispersion takes the value ofESW(p,0)52J at
momentumk5(p,0). The fit parameters areJ̃50.33t with
x250.01 at T50.33t and J̃50.49t with x250.11 at T
50.10t. The latter is already quite close to the strong co
pling estimate J54t2/U50.5t. Furthermore, the figure
shows that with decreasing temperature the spin-respo
concentrates its weight more and more at the AF momen
Q5(p,p) ~as is the case in AF spin-wave theory! and at a
characteristic energyv!. The latter decreases with decrea
ing temperature, i.e., the spin response comes closer
closer to the predictions of AF spin-wave theory@Eq. ~19!#.

FIG. 2. Dynamical spin-correlation function,xsz(k,v) ~left col-
umn!, and charge-correlation functionsxcc(k,v) ~right column!, of
a 838 Hubbard lattice at̂ n&51.0 andU58.0t for T51.00t, T
50.33t, andT50.10t. The solid lines in the lower-left column give
a spin-wave fit.
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The spin-correlation lengthzsz(T) can be derived from a
real-space fit of the QMC equal-imaginary-times sp
correlation functionx(r) to the form a•ur ub

•e2ur u/zsz(T),
thereby incorporating the effects of the periodic bound
conditions. While this is the best one can do on a finite latt
with periodic boundary conditions, the fit will only lead t
roughly correct values due to the relative small system s
of 838. The values obtained for the spin-correlation leng
then are zsz50.320.5, zsz51.021.3, zsz51.621.9, zsz
52.122.8, andzsz.8 for T51.00t, T50.33t, T50.25t,
T50.20t, and T50.10t, respectively. We actually believ
that the spin-correlation length reaches the system size
ready at a temperature ofT'0.20t, because at this tempera
ture the fit results in values betweenzsz52.1 andzsz52.8
~with the exponentb set to zero or not! but always with error
bars of roughly the system size.

The charge responsexcc(k,v), on the other hand, is
rather broad in both momentumk and energyv for all tem-
peratures studied. Furthermore, the charge respons
gapped for temperatures belowT'1.00t and, therefore, can
certainly not be responsible for any low-energy features
the single-particle spectrum.

It is then quite obvious that at roughly the same tempe
ture where the two narrow dispersive quasiparticlelike ba
~that cannot be interpreted within the framework of t
Hubbard-I or SDW approximations! appear in the single
particle spectrum, the spin response develops a sharp co
tive low-energy mode. We conclude that the underlyi
mechanism behind the occurrence of the four-band struc
consists in dynamical magnetic correlation effects, which
beyond the scope of the Hubbard-I and SDW approxim
tions.

In the following, we want to explore the single-partic

FIG. 3. Angle-resolved spectral functionÃ(k,v) of the shadow

operatorc̃i ,s with 838 lattice size at̂ n&51.0 andU58.0t for s
T50.33t andT50.10t.
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spectrum by means of ourdiagnostic operators. The first of
them is the shadow operatorc̃i ,s of Eq. ~15! which will be
used to transfer spectral weight from the inner parts of
Brillouin zone to the outer ones in case of normal photoem
sion v,m. As already discussed above, this also improv
the resolution of the ME method in this region, since
resolution strongly depends on the spectral weight at a
tain position. Nevertheless the spectrum of the shadow
erator has to exhibit exactly the same peak positions as
normal photoemission spectrum.

Figure 3 shows the angle-resolved spectral function of
shadow operator for moderate and low temperatures. As
pected, the shadow operator has its main spectral weight
k5(p,p) on the photoemission side and neark5(0,0) on
the inverse photoemission side. Furthermore, it’s spect
supports the existence of a total of four bands, becaus
resolves a group of peaks forming dispersionless band
energies ofv'66.0t, a region where the normal photoemi
sion spectrum exhibits only some weak and smeared
spectral weight. These two dispersionless bands at ene
of v'66.0t are inconsistent with the dispersions of th
Hubbard-I and SDW approximations of Fig. 1. We will fu
ther address this topic later in this paper.

Next, we turn in more detail to the temperature depe
dence of the photoemission spectrum. Figure 4 shows s
closeups of the normal photoemission spectrum and of
spectrum of the shadow operator at momentumk5(p,p)
and different temperatures. For the normal photoemiss
operator these closeups show a peak atv'21.5t, which
would be consistent with Hubbard I~see Fig. 2!. In the spec-
trum of the shadow operator this feature is visible as
single-resolved peak only at the highest temperatureT

FIG. 4. Single-particle spectral function of the normal pho
emission~top! and the shadow operator~bottom! at momentumk
5(p,p) with 838 lattice size at̂ n&51.0 andU58.0t for tem-
peratures in betweenT51.00t andT50.10t.
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51.00t, whereas for temperatures down toT50.20t there is
only some diffuse weight at this position. In the ordina
photoemission spectrum the peak loses spectral weight
decreasing temperature. It disappears completely aT
,0.20t where the spin-correlation lengthzsz(T) reaches the
system size~see above!. Thus, the temperatureT'0.20t
where we lose the Hubbard-I-like peak atv'21.5t and k
5(p,p) coincides quite accurately with the temperatu
where ‘‘effective’’ long-range order sets in. Moreover, w
find that as the normal photoemission spectrum loses
peak at v'21.5t and k5(p,p), the spectrum of the
shadow operator gains weight atv'26.0t. Thus, we expect
that both features are closely related to the temperature
velopment of the spin-correlation lengthzsz(T). We note,
however, that the crossover in the shape of the disper
from Hubbard-I-like to SDW-like occurs in a quite une
pected way: the topmost band at (p,p) doesnot deform into
the SDW form in any continuous way, but simply ‘‘fade
away’’ and eventually vanishes at the transition.

A further surprising result is the following: atT50.10t
neither the ordinary electron operator nor the shadow op
tor pick up the ‘‘AF umklapp band’’ corresponding to th
narrow dispersive band seen for example atv'23t for k
5(0,0), i.e., there is no corresponding band atv'23t and
k5(p,p). Note that in the framework of the SDW approx
mation the shadow operatormust reproduce this umklapp
band at (p,p) with the same weightas the original band a
(0,0) in the ordinary photoemission spectrum—see the
cussion in the first section. That this is not the case sh
that even at this lowest temperature, a simple SDW-like
scription of the band structure is invalid, in that the ba
structure cannot be understood by simple backfolding of
spectrum obtained without broken symmetry. As we will s
in the following, the AF SDW state provides only the ‘‘bac
ground’’ for the dressing of the photoholes with AF sp
excitations, which dynamically generate a total of fo
bands.

III. THE FOUR-BAND STRUCTURE

We return to the discrepancy between the two-band
persions of the Hubbard-I and SDW approximations and
four-band structure actually observed for example in
spectrum of the shadow operator of Fig. 3.

In order to generate a ‘‘four-band structure’’ out of th
two bands of the Hubbard-I and SDW approximations we
as a phenomenological ansatz to mix the dispersions of
Hubbard-I/SDW approximation with two dispersionle
bands at energies ofE6563.0t. In other words, for both the
photoemission and inverse photoemission spectrum we d
onalize an ‘‘effective’’ 232 Hamilton matrix:

H65S E6
Hub2I /SDW V

V E6D , ~20!

and plot in Fig. 5 the four bands obtained in this way on t
of the spectral density obtained from QMC atT50.33t and
T50.10t. For comparison, the figure also shows the origi
~i.e., unhybridized! Hubbard-I bands plus the two phenom
enological dispersionless bands at energies ofv563.0t.
The figure shows that the overall agreement between
ith
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QMC peak positions and the four bands generated by dia
nalizingH6 of Eq. ~20! is surprisingly good, particularly so
in view of the fact that for both, Hubbard-I and SDW a
proximation, onlyunrenormalizedparameters were used. I
particular, the self-consistentlydetermined value for the
SDW gapD of 3.56t was used atT50.10t. The only ‘‘ex-
ternal’’ parameter in this figure is the mixing matrix eleme
V, which was set to a value of 1.0t.

Thus, we find in contrast to previous works,14 that the
introduction of the dispersionless bands reproduces
single-particle gap and the width of the quasiparticle ba
correctly without any renormalization of parameters. Rath
the narrowing of the quasiparticle band and the reduction
the Hubbard gap as compared to the unrenormalized pa
eters is brought about by introduction of the dispersionl
bands. This naturally raises the question as to their phys
origin. In the present paper we restrict ourselves to a m
phenomenological and ‘‘numerics based’’ approach.
complementary and more mathematical discussion is gi
in Ref. 11, where an equation of motion approach similar
Hubbard’s original work is pursued.

We consider the commutator of the creation operator
holelike particles,hi ,s

† 5ci ,s(12ni ,s̄), which annihilates a
particle only on a singly occupied site, with the kinetic e
ergy of the Hubbard model and find:11

@hi ,↑
† ,Ht#52t (

j PN( i )
F S 12

^n&
2 D cj ,↑1~cj ,↑Si

z1cj ,↓Si
2!G

2
1

2
cj ,↑~ni2^n&!1cj ,↓

† ci ,↓ci ,↑ . ~21!

FIG. 5. Angle-resolved spectral functionA(k,v) of the 838
Hubbard lattice withU58.0t for T50.33t ~top! andT50.10t ~bot-
tom! compared to analytic dispersions: mixing the Hubbard-I~top,
dashed! or SDW ~bottom, dashed! bands with two dispersionles
bands atv563t ~dashed! results in a four-band structure~solid! in
good agreement with the QMC peaks.
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Keeping only the first term in the square brackets of Eq.~21!
reproduces the Hubbard-I approximation.10 The second term
in the square brackets describes the dressing of the cre
hole by a spin excitation and is closely related to the spin-
string operator of Eq.~17!. The third term describes, in a
analogous fashion, the coupling of the hole to a density fl
tuation, whereas the fourth term describes the coupling to
h excitation.15 The two latter types of excitation are not im
portant for a large positiveU near half-filling,^n&51.0, and
will be neglected. Therefore, the operator

(
j PN( i )

~cj ,↑Si
z1cj ,↓Si

2!

is in this case the most important correction over
Hubbard-I approximation. As already stated, it describe
hole dressed by a spin excitation: this operator not only c
ates a hole on sitej but dresses this hole with a spin excit
tion on a neighboring site, which is exactly the idea beh
the spin-bag7,8 or spin-polaron9 pictures known in the litera-
ture.

Splitting this operator into eigenoperators ofHU :

Ĉi↑5 (
j PN( i )

~ ĉ j ,↑Si
z1 ĉ j ,↓Si

2!,

D̂ i↑5 (
j PN( i )

~ d̂ j ,↑Si
z1d̂ j ,↓Si

2!, ~22!

we find @D̂ is ,HU#5(U/2)D̂ i , j ,s and @Ĉis ,HU#

52(U/2)Ĉi , j ,s . Assuming moreover that the mobility o
these composite excitations is determined by the ‘‘heav
spin excitation, it seems quite reasonable to assume
these ‘‘particles’’ are the source of the~more or less! disper-
sionless bands at'6U/2.

Finally, the commutation relation~21! shows that the
mixing matrix element between thehk,s and the new com-
posite particles should be't. Based on these rough consi
erations we might thus expect that the two string-1 ‘‘effe
tive particles’’ @Eq. ~22!# are excellent candidates fo
explaining the two dispersionless bands at63t required to
upgrade the Hubbard-I or SDW approximation so as
match the QMC data. However, so far the above consid
ations are pure speculation and in the following we will tu
to QMC results to back up this hypothesis by numerical e
dence.

Before doing so, however, we want to illustrate the act
of the ‘‘string operator’’ in two extreme cases: an ideal Ne´el
state and a resonating valence-bond~RVB! state, i.e., a com-
pact singlet covering of the plane4 ~see Fig. 6!. In the Néel
state, a hole created initially on sitei can travel from one
place to a neighboring sitej, thereby leaving behind a mis
aligned spin on the original sitei. Exactly this process is
described by the second termcj ,↓Si

2 : it creates a hole of
opposite spin on a neighboring sitej and flips the spin on the
original sitei. Therefore, this process corresponds to the c
ation of a string of length 1. In fact one might think abo
more sophisticated diagnostic operators incorporating the
fects of longer-ranged strings.16 Indeed, Dagotto and
Schrieffer16 and Eder and Ohta17 already measured th
angle-resolved spectrum of a diagnostic operator contain
ted
2
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strings with up to three lattice sites range by means of ex
diagonalizations of thet-J model. As already mentioned in
the Introduction, in the QMC method, each observable ha
be expressed in terms of free single-particle Green’s fu
tions on each time slice by the application of Wic
theorem.18 This results already in a quite large expression
the spin-1/2 string operator of Eq.~17! containing approxi-
mately 80 contributions. The implementation of even long
ranged string operators therefore was not possible in
present work.

Returning to the spin-1/2 string operator of Eq.~17! we
note that the first termci ,↑Sj

z will always annihilate a Ne´el
state. This reflects the simple fact that spin-rotation symm
try is broken in the Ne´el state. This is not the case, howeve
in the fully rotationally invariant RVB state: again, creating
hole on sitei and allowing it to hop to sitej will produce a
spin excitation. However, in the case of the RVB state
produces the superposition of two states: in one case
dotted ellipse stands for theSz521 component of the trip-
let, and this state would again be created by the termcj ,↓Si

2 .
There is, however, also a second state where the dotte
lipse corresponds to the superposition of a singlet and
Sz50 component of the triplet. This second state then wo
be created by the termci ,↑Sj

z , whereby the relative sign o
the two terms in the string-1 operator makes sure that the
configurations are always produced with the proper phase
both extreme cases, Ne´el state and ‘‘singlet soup,’’ the
string-1 operator thus creates a hole dressed with the pr
spin excitation: this can be a spin wave~i.e., a single inverted
spin! in the case of a Ne´el state, or a singlet-triplet excitatio
in the case of an RVB state.

As a technical remark we still note that the excess
numerical effort that would have been necessary to comp
spectra for theĈi ,s and D̂ i ,s ~which are products of five
Fermion operators! has made it impossible to compute th
spectra of these operators—instead we have been using
~Fourier transform of! the operatorbi ,↑ , defined in Eq.~17!.
Concerning the difference between this diagnostic oper
and the operator

FIG. 6. Motion of an added hole in a Ne´el state~left! and an
RVB state~right! produces spin defects of different kind. These a
described by the spin-1/2 string operator.
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(
j PN( i )

~cj ,↑Si
z1cj ,↓Si

2!

obtained by commutinghi ,↑
† with the kinetic energy@see the

second term on the rhs of Eq.~21!# we note that their Fourie
transforms differ only by phase factors of the for
e2 ik(Ri2Rj ). Both operators are indeed identical at mome
tum k5(0,0) and differ at momentumk5(p,p) only by a
factor of 21 sinceRi andRj are next-nearest neighbor la
tice sites. At all other momenta both operators have exa
the same peaks but will differ somewhat in their spec
weights.

After these remarks we discuss the angle-resolved s
tral function of the spin-1/2 string operatorbk,↑ , shown in
Fig. 7. The spectrum of the spin-1/2 string operator inde
picks up those band portions which, according to the rou
hybridization scenario in Fig. 5, should have strong ‘‘fla
band character,’’ i.e., the part of the narrow low-energy ba
between (0,0) and (p/2,p/2) and between (0,0) and (p,0) at
energiesv'23t. We note that these are precisely the po
tions where the two quasiparticlelike dispersive narr
bands occurred in the normal photoemission spectrum aT
50.33t. In addition, the band portion atv'26t for momen-
tum (p,p) is also enhanced in the string-1 spectrum.

This, however, still leaves an important part of the ba
structure unexplained. Namely, the ‘‘AF umklapp band’’
the narrow quasiparticle band dispersing upward betw
(0,0) and (p/2,p/2) at v'23t, still is not seen in any of
the spectra, not even at the lowest temperature studied
the other hand, in a state with true antiferromagnetically b
ken symmetry, we know that this mirror image must ex
due to the backfolding of the Brillouin zone. To finally re

FIG. 7. Angle-resolved spectral functionÃ(k,v) of the spin-1/2
string operatorbi ,↑ in the Hubbard model withU58.0t for T
50.33t ~top! andT50.10t ~bottom!. The lattice size was reduced t
636 in this case due to the larger error bars of the string oper
as compared to the normal photoemission spectrum.
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solve this part, we now introduce the last diagnostic opera
of this work, which we call the spin-3/2 string operator:

b̃i ,↑5 (
j PN( i )

~2ci ,↑Sj
z2ci ,↓Sj

2!. ~23!

This describes again a composite object of a hole and a
excitation, but this time the two constituents are coupled
the total spin of 3/2. We stress that this operator will det
states that can never be seen in an actual angle-resolved
toemission spectrum on a singlet ground state, because th
forbidden by the angular-momentum selection rule. T
angle-resolved spectral functionÃ(k,v) of the spin-3/2
string operator is plotted in Fig. 8 again forT50.33t ~top!
andT50.10t ~bottom!. It is then immediately obvious that i
is this operator which resolves the ‘‘missing piece’’ of th
AF dispersion, i.e., the ‘‘AF mirror image’’ of the narrow
quasiparticle band. It should also be noted that the spect
of b̃i ,↑ is remarkably independent of temperature, i.e.,
states belonging to this ‘‘spin-3/2 band’’ persist irrespe
tively of whether there is long-range order or not.

Combining the information obtained so far, suggests
following scenario for the crossover between the param
netic band structure at high temperature and the AF b
structure at low temperature: in the paramagnetic state
high temperatures~such asT50.33t), the spin is a good
quantum number and the spin-3/2 ‘‘band’’ does exist b
cannot mix with any spin-1/2 band due to spin conservati
The band of spin-3/2 quasiparticles thus plays no role wh
soever in the actual photoemission spectrum, which is p
sumably the reason why the outer part of the spectrum is
remarkably ‘‘invisible’’ in actual angle-resolved photoemi

or

FIG. 8. Angle-resolved spectral functionÃ(k,v) of the spin-3/2

string operatorb̃i ,↑ in the Hubbard model withU58.0t for T
50.33t ~top! andT50.10t ~bottom!. The lattice size was reduce
to 636 in this case due to the larger error bars of the qua
operator as compared to the normal photoemission spectrum.
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sion spectroscopy~ARPES! experiments, leading to the ide
of a ‘‘remnant Fermi surface’’ in the insulator.19 Reaching
this state by photoemission would only be possible if
photohole is created in a thermally admixed state of at le
spin 1. In an infinite system this situation changes disc
tinuously at the transition to the true broken-symmetry sta
there the total spin ceases to be a good quantum number
the spin-1/2 band in the interior of the AF zone and t
spin-3/2 band in the exterior now suddenly can mix w
each other, thus leading to the familiar SDW dispersion.
note that another way to generate a coupling between t
two bands would be the application of a magnetic field—t
also would break spin-rotation invariance and hence en
the hybridization of a spin-1/2 and a spin-3/2 band. Based
our results we thus believe that a magnetic field could
hance the spectral weight of the ‘‘shadow part’’ of the ba
structure as seen in ARPES.

IV. DOPING THE HUBBARD MODEL AT HIGH
TEMPERATURES—RIGID BANDS

Summarizing our results so far, we may say that
Hubbard-I approximation, slightly improved by the introdu
tion of new quasiparticles corresponding to dressed h
provides a very good description of the spectral function
the case of half-filling,̂ n&51. In this section we want to
proceed to the doped case^n&,1, which is of prime interest
for cuprate superconductors. Here, an essential drawbac
the QMC procedure is that reliable QMC simulations f
lower temperatures are much more difficult or even imp
sible, since the absence of particle-hole symmetry away f
half-filling introduces the notorious minus-sign problem in
the algorithm. Truly low temperatures likeT50.10t, which
in principle correspond to the physical temperature range,
therefore out of reach. On the other hand, in the study of
half-filled case we have seen that a major change takes p
as the spin correlation length reaches the system s
whence ‘‘effective long-range order’’ sets in. In the dop
case the spin-correlation length is expected to be short at
temperature, whence we may expect that the change
A(k,v) from high to small temperature is more smooth th
at half-filling. In that sense, evenA(k,v) data for the rela-
tively high temperatureT50.33t are interesting to study
Moreover, we can at least try to elucidate trends with
creasing temperature and thus construct a reasonably
sible scenario.

At half-filling, we have seen that the ‘‘approximation o
choice’’ for the paramagnetic case was the Hubbard-I
proximation. This naturally poses the question as to h
relevant the half-filled case is for the description of the dop
case, i.e., how much of the Hubbard-I physics remains v
for finite doping. At half-filling the two ‘‘effective particles’’
d̂i ,s

† and ĉi ,s
† , form the two separate Hubbard bands. T

effect of doping would now consist in the chemical potent
cutting progressively into the top of the lower-Hubbard ba
in much the same fashion as in a doped band insulator.
the other hand, for finiteU/t the spectral weight along thi
band deviates from the free-particle value of one per mom
tum and spin, so that the Fermi surface volume~obtained
from the requirement that the integrated spectral weight u
the Fermi energy be equal to the total number of electrons! is
e
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not in any ‘‘simple’’ relationship to the number o
electrons—the Luttinger theorem must be violated. This
the major reason why the Hubbard-I approximation has b
dismissed by many authors as being unphysical.

We now wish to address the question as to what re
happens if a paramagnetic~i.e., not magnetically ordered!
insulator is doped away from half-filling, by QMC simula
tion. We therefore chooseT50.33t andU58.0t.

Figure 9 then shows the development ofA(k,v) with
doping. It is quite obvious from this figure that initially th
two bands seen at half-filling in the photoemission spectr
~i.e.,v,0) persist with an essentially unchanged dispersi
The chemical potential gradually cuts deeper and deeper
the topmost band, forming a holelike Fermi surface cente
on (p,p) the top of the lower-Hubbard band. The only d
viation from a rather simple rigid-band behavior is an ad
tional transfer of spectral weight: the part of the topmo
band near (p,p) gains in spectral weight, whereas the ba
with higher binding energy loses weight. In addition, there
a transfer of weight from the upper-Hubbard band to
inverse photoemission part below the Hubbard gap. This
fect is actually quite well understood.20 The band structure
above the Hubbard gap becomes more diffuse upon h
doping in that the rather clear two-band structure visible n
(p,p) at half-filling rapidly gives way to one broad
‘‘hump’’ of weight. Apart from the spectral weight transfe
however, the band structure on the photoemission sid
almost unaffected by the hole doping—thedispersionof the
quasiparticle band becomes somewhat wider but does
change appreciably. In that sense we see at least qualitat
the behavior predicted by the Hubbard-I approximation.

Next, we focus on the Fermi surface volume. Some car
necessary here: first, we cannot actually be sure that at
high temperature we are using there is still a well-defin
Fermi surface. Second, the criterion we will be using is
crossing of the quasiparticle band through the chemical
tential. It has to be kept in mind that this may be quite m
leading because band portions with tiny spectral weight
ignored in this approach~see for example Ref. 21 for a dis
cussion!. When thinking of a Fermi surface as the consta
energy contour of the chemical potential, we have to keep
mind that portions with low-spectral weight may be ove
looked. On the other hand, the fact that a peak with app
ciable weight crosses from photoemission to inverse pho
emission at a certain momentum is independent of whe
we call this a ‘‘Fermi surface’’ in the usual sense, and sho
be reproduced by any theory that claims to describe the
tem. It therefore has to be kept in mind that in the followin
we are basically studying a ‘‘spectral weight Fermi surface
i.e., the locus ink space where an apparent quasiparti
band with high-spectral weight crosses the chemical po
tial. With thesecaveatsin mind, Figs. 10 and 11 show th
low-energy peak structure ofA(k,v) for all allowed mo-
menta of the 838 cluster in the irreducible wedge of th
Brillouin zone and for different hole concentrations. In all
these spectra there is a pronounced peak, whose pos
shows a smooth dispersion with momentum. Around (p,p)
the peak is abovem, whereas in the center of the Brilloui
zone it is below. The locus ink space where the peak cross
m forms a closed curve around (p,p) and it is obvious from
the figure that the ‘‘hole pocket’’ around (p,p) increases



4346 PRB 62C. GRÖBER, R. EDER, AND W. HANKE
FIG. 9. Overview on the doping dependence of the angle-resolved spectral functionA(k,v) of the 838 Hubbard lattice atT50.33t and
U58.0t for densitieŝ n&51.00 ~half-filled!, ^n&50.95 ~underdoped!, ^n&50.86 ~roughly optimal doped!, and^n&50.80 ~overdoped!.
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very rapidly with d. To estimate the Fermi surface volum
VF we assign a weightwk of one to momentak where the
peak is belowm, 0.5 if the peak is right atm, and 0 if the
peak is abovem. Our assignments of these weights are giv
in Figs. 10 and 11. The fractional Fermi surface volume th
is

VF5
1

N (
k

wk ,

whereN564 is the number of momenta in the 838 cluster.
Of course, the assignment of thewk involves a certain degre
of arbitrariness. It can be seen from Figs. 10 and 11, h
ever, that ourwk would in any way tend to underestimate th
Fermi surface volume, so that the obtainedVF data points
rather have the character of a lower bound to the trueVF .
Even if we take into account some small variations ofVF due
to different assignments of the weight factors, however,
resulting VF versusd curve never can be made consiste
with the Luttinger volume~see Fig. 12!. The deviation from
the Luttinger volume is quite pronounced at low doping.VF
approaches the Luttinger volume for dopings'20%, but due
to our somewhat crude way of determiningVF we cannot
really decide when precisely the Luttinger theorem
obeyed. The Hubbard-I approximation approaches the L
tinger volume for hole concentrations of'50%, i.e., the
steepness of the drop ofVF is not reproduced quantitatively
The latter is somewhat improved in the so-called two-p
approximation.13,22–24For example the Fermi surface give
by Beenen and Edwards22 for ^n&50.94 obviously is very
consistent with the spectrum in Fig. 11 for^n&50.95.
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We return to Fig. 9 and discuss the entire width of t
spectra, in particular the fate of the four-band structure in
doped system. For̂n&50.95, the different features that ar
seen at̂ n&51.0 are still rather clearly visible, but for̂n&
50.86 the low-energy quasiparticle band atk5(0,0) starts
to disappear, and at^n&50.80 the dominant ‘‘band’’ in the
spectrum betweenv524t and v52t can be fitted by a
slightly renormalized free-electron band. As we have se
above, the Luttinger theorem also is valid in this case. T
suggests to classify the doping as ‘‘underdoped’’ for
,^n&,0.85, where the Luttinger theorem is invalid and t
four-band structure known from half-filling persists, an
‘‘overdoped’’ where the Luttinger theorem is valid and
renormalized free-electron band can be seen in the spe
function. Following the convention for cuprate superco
ductors, we call the doping where the crossover between
two regimes occurs the ‘‘optimal’’ doping.

Next, the four plots of Fig. 13 show the spectra at selec
k points. The system size is only 636 in this case becaus
this allows for smaller error bars. Closer inspection, es
cially, of the peaks at momentumk5(0,0) on the photoemis-
sion side@plot ~a!# and at momentumk5(p,p) on the in-
verse photoemission side@plot ~d!# confirms, that with
increasing hole concentration we are losing parts of the fo
band structure seen at half-filling.

To check the physics of the band structure in more det
we again employ our diagnostic operators. Figure 14 sho
the angle-resolved spectral functionsÃ(k,v) of the spin-1/2
and spin-3/2 string operators,bi ,↑ and b̃i ,↑ . As was the case
at half-filling, the spectrum of the spin-1/2 string operat
highlights exactly those peaks that we associate with the
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FIG. 10. Single-particle spectral function fo
all k points of the 838 cluster in the irreducible
wedge of the Brillouin zone. For eachk the
weight wk is given.
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persionless ‘‘dressed hole’’ bands in Fig. 5. The spectrum
the spin-3/2 string operator on the other hand has its pe
with maximal spectral weight around momentumk5(p,p),
indicating that also in the doped case there is an ‘‘antifer
magnetic mirror image’’ of the quasiparticle band~which,
however, consists of spin-3/2 states!. Again, coupling of
photoholes to thermally excited spin excitations may ma
these states visible in ARPES spectra, thus explaining
‘‘shadow bands’’ seen in photoemission experiments
Aebi et al.25 Similarly, as for half-filling, one might specu
late that a magnetic field, which would break spin symme
and thus allow for a coupling of ‘‘bands’’ with different tota
spin, would enhance the spectral weight of these sha
bands.

All in all we have seen that the ‘‘band structure’’~four-
band structure, dispersion of regions of large spectral wei
‘‘character’’ of the bands as measured by the diagnostic
f
ks
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e
e

y

y

w

t,
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erators! stays pretty much unchanged as long as we are in
underdoped regime. At half-filling the four-band structure
closely related to the sharp low-energy mode in the dyna
cal spin correlation function, which naturally suggests
study the spin response also as a function of doping. Fig
15 shows the spin-correlation function,xsz(k,v) ~left col-
umn!, and the charge-correlation function,xcc(k,v) ~right
column!, for T50.33t and densitieŝn&50.95~underdoped!,
^n&50.90 ~nearly optimally doped!, and ^n&50.80 ~over-
doped!. The spin response is sharply confined in both m
mentum k5(p,p) and energyv5v! only in the under-
doped region, i.e., the regime where we also observe
features associated with spin excitations in the single-part
spectra. As was the case at half-filling for temperatures
low T'0.33t, the spin response can be fitted by the A
spin-wave dispersion~19! in the underdoped regime. On th
other hand, as soon as the system enters the overdope
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FIG. 11. Same as Fig. 10 for lower electro
densities.
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gime, the spin response is no longer sharply peaked at
mentumk5(p,p) and energyv5v!: it broadens in mo-
mentum and spreads in energy by an order of magnit
with the scale changing fromJ54t2/U to Ekin;8.0t accom-
panied by a similar change in the bandwidth of the sing
particle excitations. This result is already well known fro
previous QMC calculations26 and consistent with similar be
havior in thet-J model.27 The charge responsexcc(k,v) is
always broad in both momentumk and energyv for all
densities studied. It merely decreases its width from'12.0t
at ^n&50.95 to'8.0t at ^n&50.80.

Although the minus-sign problem of the QMC algorith
prevents reliable simulations of large systems at low te
peratures in the doped regime, we nevertheless studied
temperature evolution of the angle-resolved spectral func
A(k,v) at density^n&50.93. This was possible due to th
o-

e

-

-
the
n

FIG. 12. Fermi-surface volume as estimated from the sing
particle spectral function, plotted versus the concentration of ho
in the half-filled band. The dashed line gives the value predicted
the Luttinger theorem,VF5n/2.
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FIG. 13. Angle-resolved spectral functionA(k,v) of a 636 Hubbard lattice atT50.33t andU58.0t for momentak5(0,0) @plot ~a!#
and k5(p,0) @plot ~b!# and k5(p,p) @plots ~c! and ~d!#. The spectra for the various densities^n&51.00, ^n&50.96, ^n&50.90, ^n&
50.83, and̂ n&50.66 are shifted by their individual chemical potentialsm resulting in overlapping peaks in the underdoped regime. T
labels at thev axis refer to the half-filled simulation~solid line!. The system size is 636, because the smaller errors in this case lead to m
reliable spectra.
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relative small system size of 636, which alleviates the
minus-sign problem as compared to 838 at T50.25t. Fig-
ure 16 shows the results from this analysis: the upperm
plot ~a! compares the angle-resolved spectral functio
st
s

A(k,v) at density^n&50.93 for T50.50t, T50.33t, and
T50.25t. We stress that the simulation atT50.25t suffers
from minus-sign problems with a drastically reduced reso
tion. In the center plot~b!, the quasiparticle peak weight
FIG. 14. Angle-resolved spectral functionÃ(k,v) of the spin-1/2 string operatorbi ,↑ ~top! and the spin-3/2 string operatorb̃i ,↑ ~bottom!
in the Hubbard model withU58.0t for T50.33t and densitieŝn&50.95~left! and^n&50.90~right!. The lattice size was 636 in this case
due to the larger error bars of the string operators as compared to the normal photoemission spectrum.
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around momentumk5(p,p) of the ^n&50.93 simulation
are compared with the quasiparticle peak weight at mom
tum k5(p,p) of a half-filled, ^n&51.0, simulation for dif-
ferent temperatures. At half-filling, the Hubbard-I-like qu
siparticle peak k5(p,p) and v'21.5t decreases in
spectral weight with decreasingT and disappears as the spi
correlation length~which increases with decreasing tempe
ture! reaches the lattice size~at T'0.20t). In the underdoped
case for densitŷn&50.93, the weights of the correspondin
peaks around momentumk5(p,p) located also decreas
with decreasingT. Closer inspection of this peak@see the
inset of the center plot~b!# reveals, that this peak even rais
slightly in binding energy with decreasing temperature, v
similar to the peak in the half-filled case. In a real pho
emission experiment this peak would have dropped be
the typical resolution of roughly 10% spectral weight28 at a
temperature ofT'0.25t. The spin-correlation length@again
derived by a fit of the equal-imaginary-times spin-correlat
function to a forma•ur ub•e2ur u/zsz(T)# also shows similar be
havior in the underdoped and half-filled cases: the values
the spin-correlation length arezsz50.5– 0.8, zsz50.8– 1.0,
andzsz51.0– 1.3 in the underdoped case andzsz50.6– 0.9,
zsz51.0– 1.3, andzsz51.6– 1.9 at half-filling forT50.50t,
T50.33t, andT50.25t, respectively. The spin susceptibilit
@shown in plot~c! of Fig. 16# also behaves very similar, bu
with changed magnitudes in the underdoped and in the h
filled cases. These data suggest a similar temperature e
tion of the band structure of the Hubbard model in the u
derdoped and half-filled cases driven by the temperat
dependent spin-correlation lengthzsz(T). Especially, we
expect the Hubbard-I-like quasiparticle peaks at energie
v'1.0t around momentumk5(p,p) to vanish with de-

FIG. 15. Dynamical spin-,xsz(k,v) ~left column!, and charge-
correlation functions,xcc(k,v) ~right column!, of a 838 Hubbard
lattice at U58.0t and T50.33t for densities ^n&50.95, ^n&
50.90, and̂ n&50.80. The solid lines in the upper plots of the le
column give a spin-wave fit.
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creasingT in the underdoped case as the peaks at energie
v'21.5t around momentumk5(p,p) do in the case of
half-filling.

The latter observation suggests a profound change of
Fermi surface with temperature: as seen above, it is preci
the Hubbard-I-like band near (p,p) that crosses the chem
cal potential and thus forms the Fermi surface in the do
case. It is then quite clear that the ‘‘disappearance’’ of t
band with decreasing temperature must affect the Fermi
face in some dramatic way. Studies at zero temperature
possible only by means of exact diagonalization. Analysis

FIG. 16. ~a! Angle-resolved spectral functionA(k,v) of the
636 Hubbard lattice withU58.0t and densitŷ n&50.93 versusT,
~b! quasiparticle peak weight around momentumk5(p,p) for
^n&51.0 (838) and^n&50.93 (636) versusT, and~c! magnetic
susceptibilityxsz@k5(p,p),v50# for densities^n&51.0 (838)
and ^n&50.93 (636) versusT. Please note the slight raising~in
binding energy! and vanishing~in spectral weight! with decreasing
temperature of the peak located atk5(p,p) magnified in the inset
of plot ~b!. The system size is only 636 in the doped case to avoi
the serious sign problems of the 838 system atT50.25t. But also
the 636 data atT50.25t suffer from sign problems at some mo
menta,k5(0,0) andk5(p/3,0).
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the single-particle spectrum shows the same ‘‘rigid-ban
behavior as at high temperatures29 and analysis of the mo
mentum distributionn(k) suggest30 that the doped holes ac
cumulate at the surface of the magnetic zone@i.e., the line
(p/2,p/2)→(p,0)# rather than around (p,p).

V. SUMMARY

In the present paper we have systematically studied
temperature- and doping-dependent dynamics of the t
dimensional Hubbard model by finite-temperature QM
simulations. Comparing the QMC single-particle spect
function, the dynamical spin response and the spectral fu
tions of suitably chosen diagnostic operators, different ph
cal regimes could be identified. In simplest terms there
two quantities, which basically determine the single-parti
spectrum: the hole concentration and the spin-response f
tion, whereby there is a certain relationship between the t

At half-filling and high temperatures (T>t), the com-
bined photoemission and inverse photoemission spect
A(k,v) displays two dispersive features, the upper- a
lower-Hubbard band, roughly separated byU (58t, in our
paper!. At these very high temperatures the system is i
spin-disordered state. We have demonstrated here tha
well-known Hubbard-I approximation gives an excellent d
scription of the single-particle spectrum in this state, rep
ducing quantitatively both the single-particle dispersion a
the distribution of spectral weight. This is by no mea
trivial, since the Hubbard-I approximation is dynamica
equivalent to a simplified effective Hamiltonian, which ju
contains holelike (hi ,s

† ) and double occupancylike particle
in a simple biquadratic form.

At lower temperatures (T<0.33t), the Hubbard-I ap-
proximation needs to be improved; this is to be expect
because it neglects all effects of spin correlations. In fact,
temperature where deviations from Hubbard-I beco
strong, coincides fairly well with the transition from a sp
responsexsz(k,v) which is diffuse both in momentum an
energy~with a spread of ordert) to a more ‘‘spin-wavelike’’
response. In this regimexsz(k,v) displays the characteristi
energy scaleJ54t2/U, with its spectral weight being con
centrated at the AF wave vectorQ5(p,p). It should be
noted that this ‘‘spin-wavelike’’ regime develops despite t
fact that atT50.33t the spin-correlations lengthzsz(T) is
still short ranged (<2 lattice spacings!. Only at the lower
temperatureT50.10t, Néel order spreads over the enti
QMC block, creating an effective~finite size! Néel state.

It is well-established by previous, in particular also QM
work, that in this temperature regime (T<0.33t) new spec-
tral features appear. They have often been interpreted as
‘‘bands,’’ two ‘‘coherent’’ bands forming the topmost va
lence and the lowest conduction band in the insulator p
two ‘‘incoherent’’ bands, i.e., the remaining upper- a
lower-Hubbard band features~see, for example, Ref. 12!.
Our present paper not only definitively identifies these fo
bands but also clarifies their physical origin and their co
nection to the spin excitations. In simplest terms the eme
ing spin waves at lower temperatures provide the excitati
that can ‘‘dress’’ the Hubbard quasiparticles, whence n
bands corresponding to dressed holes/double occupa
appear in the single-particle spectrumA(k,v). It has been
’’
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shown in Ref. 11 that the four-band structure which appe
in A(k,v) at lower temperatures can be explained in t
way, and our present numerical check by directly calculat
the spectra of ‘‘dressed electrons,’’ supports this interpre
tion.

This physical picture at half-filling can be extended in
the underdoped regime. This is most obvious in the sin
particle spectral function, which stays almost unchanged
the doped case~i.e., the four-band structure and the ‘‘cha
acter’’ of the bands as measured by the diagnostic operat!.
The main change in fact consists in the chemical poten
cutting gradually into the~top of the! lower-Hubbard band,
precisely as predicted by the Hubbard-I approximation. C
trary to widespread belief the ‘‘Fermi surface,’’ if dete
mined by the Fermi-surface crossings of the dominant b
through the chemical potential, does not satisfy the Luttin
theorem. Rather, for small hole concentrations the Fer
surface volume is considerable larger than that for a sligh
less than half-filled free-electron band. Very similar conc
sions have in fact been reached by a calculation of the e
tron momentum distribution in the two-dimensional~2D! t-J
model by Puttikaet al.31 Their calculation actually was a
high temperature series expansion plus a Pade´ extrapolation
to lower temperature, and it is encouraging that this meth
gives similar results to our QMC results, which are pe
formed at relatively high temperatures. In its range of app
cability, i.e., in the absence of strong magnetic correlatio
and close to half-filling, the Hubbard-I approximation th
works remarkably well, both at half-filling and in the dope
case. We stress that this has profound implications for
theoretical treatment of the model: perturbation expansi
in U or partial and self-consistent resummations thereof, m
not be expected to give any meaningful results in this stro
coupling/low-doping regime.

An interesting question is the possibility to verify our r
sults experimentally. As already mentioned above, a sca
the temperature development ofA(k,v) shows that the par
of the quasiparticle band near (p,p) ~where the Fermi sur-
face is located! is losing weight with decreasing temperatur
In fact in ARPES experiments on underdoped cuprate su
conductors, the ‘‘hole pocket’’ around (p,p) seen in our
simulations~and the expansion of Puttikaet al.! is not ob-
served, but rather a small ‘‘Fermi arc’’ near (p/2,p/2), ter-
minated by the ‘‘pseudogap’’ around (p,0) Although our
simulations do not allow us to make statements about
truly low temperatures in the experiments, we believe t
this suggests a strong temperature dependence of the si
particle spectrum, with the temperature scale being set by
exchange constantJ ~which controls the degree of spin dis
order!. The latter is rather large in copper oxides, so that
temperature regime studied in our simulations probably c
not be accessed experimentally in these materials. We n
however, that an ARPES study for the 1D mater
Na0.96V2O5 which has a smaller exchange constant, has
deed provided evidence for a strongT dependence of
A(k,v).32 Clearly, it would be interesting to study the Ferm
surface evolution in a 2D material with lower exchange co
stant.

As was the case at half-filling, the dynamical spin r
sponse plays an important role: throughout the Hubba
phase at low doping, the spin response shows the sharp
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energy mode at (p,p). The simultaneous disappearance
the four-band structure inA(k,v) and the low-energy spin
response with scaleJ in the overdoped regime, then sho
again the close relationship between the two. The dressin
holes by spin excitations apparently remains the most imp
tant correction over Hubbard-I. In the overdoped regime
spin response is spread out over an energy range of'8t and
thus becomes more similar to the charge response.
single-particle spectral function is most consistent with
slightly renormalized free-electron dispersion, and the L
tinger theorem appears to be satisfied even at the relati
high temperatureT50.33t. This is quite consistent with ear
lier results on thet-J model, which show that for hole con
centrations>25% the spin and charge response can be
proximated well by the self-convolution of the single-partic
spectral function.33 This is essentially what is to be expecte
for a system of weakly interacting fermions, so that we co
s.

.
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clude that in the overdoped regime we enter a new phase
most probably extends to the low-concentration limit whe
the NagaokaT-matrix approximation becomes exact. Final
we note that exact diagonalization studies at fin
temperatures34 also show some evidence for a ‘‘crossove
between different physical regimes at a hole concentratio
15%.
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