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Anomalous low-doping phase of the Hubbard model
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We present results of a systematic quantum Monte Carlo study for the single-band Hubbard model. Thereby
we evaluated single-particle spectRES and IPES two-particle spectréspin and density correlation func-
tions), and the dynamical correlation function of suitably defined diagnostic operators, all as a function of
temperature and hole doping. The results allow us to identify different physical regimes. Near half-filling we
find an anomalous “Hubbard-I phase,” where the band structure is, up to some minor modifications, consistent
with the Hubbard-1 predictions. At lower temperatures, where the spin response becomes sharp, additional
dispersionless “bands” emerge due to the dressing of electrons/holes with spin excitations. We present a
simple phenomenological fit that reproduces the band structure of the insulator quantitatively. The Fermi
surface volume in the low-doping phase, as derived from the single-particle spectral function, is not consistent
with the Luttinger theorem, but qualitatively in agreement with the predictions of the Hubbard-I approxima-
tion. The anomalous phase extends up to a hole concentratierilb%, i.e., the underdoped region in the
phase diagram of highi. superconductors. We also investigate the nature of the magnetic ordering transition
in the single-particle spectra. We show that the transition to a spin-density wave-like band structure is not
accomplished by the formation of any resolvable “precursor bands,” but rather(§yestroscopically invis-
ible) band of spin-3/2 quasiparticles. We discuss implications for the “remnant Fermi surface” in insulating
cuprate compounds and the shadow bands in the doped materials.

[. INTRODUCTION bation theory two particles with different spins on neighbor-
ing lattice sites can exchange via a virtual double occupation.

The one-band Hubbard model on a two-dimensionalThis process is the source for the strong antiferromagnetic
square lattice has the Hamiltonian (AF) correlations found near and at half-filling.

With the exception of some known symmetry properties
like invariance under global spin rotation, whose generators
form the SU(2) algebra, and invariance under
U(1)-transformation, i.e., charge conservation, as well as the

S (040 ) B particle-hole transformation, no rigorous results are known

Me (N + 1) for the one-band Hubbard model in two dimensi6riEhe
Mermin-Wagner theoretprevents a long-range ordered

Here,cIU (¢ ,) createdannihilate$ an electron with spim  state in a two-dimensional system for finite temperatures, but
in a Wannier orbital centered at lattice siteThe particle it is commonly believed that the ground state of the spin-1/2
density at each site is given lny,l,:ci*’gcivg. The first sum  Heisenberg antiferromagnet, i.e., the latgdimit of the re-
for the kinetic energy is restricted to include only the hop-pulsive half-filled Hubbard modélshows long-range M
ping matrix element between next-nearest neighbor sitesorder in two dimensions. N¢ order results, also in the
(i,j). Periodic boundary conditions are used throughout theveak-coupling limit’® where the gap\ is due to a spin-
following work. The second sum describes for-0 an on-  density-wave(SDW) instability related to perfect nesting.
site Coulomb repulsion between particles of opposite spin It might seem that due to the Mermin-Wagner theorem
that share the same lattice site. In the present paper we rée physics of the ordered phase is out of reach for our nu-
strict ourselves tdJ =8.0t. The chemical potentigk in the  merical technique, which is limited to finite temperatures.
third sum controls the occupation of the finite lattice in theHowever, one may assume that the system “effectively or-
finite-temperature grand canonical quantum Monte Carlglers” as soon as the spin-correlation length becomes com-
(QMC) simulation we performed. At half-filling, particle- parable to the system size. Due to the periodic boundary
hole symmetry of the kinetic and term impliesu=0. The  conditions the spin-correlation function
analytic continuation of the dynamic imaginary-times QMC
data to the real frequency axis is performed with state-of-the- —(1/.2 2 = 2
art maximum-entropyME) techniques. For exhausting dis- x(=( ) i (S-S
cussions concerning the QMC and ME methods we refer the
reader to Refs. 1-3. The one-band Hubbard model exhibitss a periodic function of and if the value of this function at
several energy scales: in the repulsive case the high-energlye maximum valugr|= V2L (with L=cluster sizg is still
scaleU is important in determining the insulating gap at appreciable, we may expect that the system is “effectively
half-filling (n)=1.0. An important low-energy scale is set by ordered.” A rough measure would be the spin-correlation
the exchange interactiod=4t2/U: in second order pertur- length{, obtained by fittingy(r) to the forma-|r|°-e~I"/¢,

H=—t<_2> (¢l ,CjotHC)HUY (N ;—1/2)(n;  —1/2)
i,j),o i
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Since the infinite system has the dléemperaturd =0, the 1

spin-correlation length diverges @s-0 and we may expect ERP (k)= 5 (et Vet u?). (6)
that in afinite system{ becomes comparable to the cluster

size L at afinite temperature, which depends on the latticeHere €, denotes the free tight-binding dispersiog,
size. Below this temperature we then expect that the syster — 2t[ cosk,)+cosk,)]. Using Eq.(2) we also obtain the
resembles the ordered phase, although the spin-rotation syreerrect spectral weights of the two Hubbard bands:
metry persists even in this case. In that sense, the finite size

of the system creates an artificial “Me temperature,” ZHub—1 | _E wp2==| 1+ €k 7
which, however, depends dnandU/t, etc., and has no real e )_2(uk_vk) T2\ T Je+u?) @)
counterpart in the infinite system. This has to be kept in mind k

when discussing the results. As noted above, the key assumption in the Hubbard-I ap-

We proceed by discussing some known approximations t@roximation is the neglect of spin correlations. Therefore, we
the Hubbard model. The “classical” approximation to the expect that this approximation will become inaccurate as
Hubbard model is the so-called Hubbard-I approximatfobn. soon as spin correlations become sufficiently strong so as to
Its essence is the splitting of the electron annihilation operaappreciably influence the propagation of holes and double
tor into the two “eigenoperators” of the interaction part: ~ occupancies. This effect will be strongest in theeNerdered

phase believed to be realized in the ground state. If we
1 choose the “spin background,” in which the holes and
Ci,a:Ci,ani,?+Ci,a(1—ni;)zT(di,aJrhiT,g), (20  double occupancies propagate, to be theelN&tate, the
2 double occupancxdfT with spin T can exist only on the
whence sublattice and vice versa. Similarly, a hdJi% can be created
only on the| sublattice and vice versa. We, thus, expect that

U we have to modify the Hubbard-1 Hamiltonidd) into
[di. Hul= 5 di.

H=-t > (df;hf +H.c)

U ieA,jeN()
[hIT,o"HU:lz_EhIT,O' (3)
, _— _ -t > (df hl +H.c)
The physical content of the Hubbard-I approximation, which ieBjeN() 77
neglects any spin correlations, becomes clear by realizing U
that the equations of motion in this approximation are com- +—= >l d ,~h' nh ), (8)
pletely equivalent to an “effective Hamiltonian” for double 2175 7oy

occupancylike particlesd! ,=(1/y/2)c] n; 7 and holelike

where A (B) denotes th sublattice and\(i) denotes
particlesh; ,=(1/12) ¢; ,(1—n; 5): (B) e (1) M

the set of nearest neighbors of siteNote that thed! .d; ,,
and hﬁghjvg propagation terms drop oubecause of thé\

t : . . L
H=-—— 2 (d;rodj,a_ hiTahj,tr) andB sublatticeg and the matrix element for pair creation is
2@ e ' t rather thant/2—this takes into account the fact that the
t spins on neighboring sites are antiparallel with probability
__ 2 (diTUh-T;+ H.c) one rather than one-half as was the case in the paramagnetic
2@ 0 state. Fourier and Bogoliubov transformation of H§)
yields the dispersion
U T T
+§ iE’;_ (di,a'di,o_hi,o-hi,tr)- (4) U2
| ESPMk) ==\ e+ )
This Hamiltonian contains terms that describe the pair cre-
ation of a hole and a double occupancy on nearest neighboghd using
(i,j), terms that describe the propagation of these effective
particles, and an additional energy of formationlbfor the C 1= hk,T+dtk,1 ,
double occupancy. The matrix elements for the propagation
are reduced by a factor of 1/2, because in an uncorrelated Ck+Q,T:hk,T_d1k,iv (10

spin background there is a probability of 1/2 for the spin on N . '
a nearest neighbor to have the proper direction to allow fof Wherek is within the AF B.r|IIoum zong, we find the spec-
the hopping of an electron. Solving E@f) by Fourier and  tral weight of these bands:

Bogoliubov transform:
2= (o= 5 1=—2|.
_ T +=(UkZvy)"= = e I
yl,k,o_ukdk,a+vkh—k,;’ 2 2 Eﬁ"‘ U2/4
Yok o=—Ukdk o+ Ukhik—, (5)  Thisis precisely what is obtained from the SDW mean-field

treatment of the Hubbard model by setting the staggered
yields the standard dispersion relation, which consists of thenagnetizatiorm to a value of ondwhich is a good approxi-
upper and lower Hubbard bands: mation in the limit of largeU). In general, the SDW mean-
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field approximation models the AF Nestate by assuming use of the operatd, ,, instead o, , exchanges the weights

_1 iQRiY \ni ; _
(Ni o) =3(1+ome ) with AF nei%'trihg VeCtO'Q;gT"W_) of the two Hubbard/SDW bands. It follows that band por-
and staggered magnetization=e"~"i(n; ;—n; |)."" This  ions that have a small spectral weight in the spectra of the
results in the two-band dispersion ordinary electron operator will acquire a large spectral

ESPW )= + /2 + AZ 12 vv_eight in_ the spectrum (ffk,g and vice versa. Therefore, this
=0 €k (12 diagnostic operator is a useful tool to map out the *“shad-
and the spectral weight owy” parts of the spectra in the outer parts of the Brillouin

zone. An additional benefit is that since the ME technique
resolves peaks with large spectral weight more reliably than
those with small weight, we can get more precise informa-

o . tion about the dispersion of these bands with weak intensity.
The gap parameter is=Um/2 and the staggered magneti- 1o second diagnostic operator that we will be using is the
zationm is determined self-consistently from the following “spin-1/2 string” operator

z3PMk) = %[u e /ESPYK)]. (13)

equation:
occupied b .= ci+S+c S,
ng z Um . (14) T jeEN(i)( i1 il ])
N % e e(k+Q)P+m’U?
The solution of this self-consistency equation yields the biTT: > (CiJrTS'Z+CiT¢S'+), (17
value A=3.56t at U=8.0t, the value used in the present T jeN() . .

paper. Ifwe sem=1 on the other hand, as would be appro- where the sum on the rhs runs over the nearest neighlors
priate forU/t— oo, we obviously recover the results from our

Hubbard-I-like Hamiltoniar(8). In the two limiting cases of sitei. This operator is the Clebsch-Gordan contraction of the

no spin correlations and of perfect &leorder we can thus adjoint rank-1 spinoc; , and the spin-1 vector operat§
treat the Hubbard model in a quite analogous fashion and, 48t° et another adjoint rank-1 spinor. It describes the anni-
will be seen below, the Hubbard-I results are indeed a goodilation of a “dressed” electron, i.e., an electron with a spin
approximation to the actual spectral function in the limit of €xcitation on a nearest neighbor. Again, since the Fourier
high temperature. The main problem then is how to describ&@nsforms of the diagnostic operatbg , agrees with the
the effect of spin fluctuations and how to manage the crosselectron annihilation operatag,, in all conceivable quan-
over from the completely disordered to the éleordered ~tum numbers(momentum, total spinz component of the
phase. Below, we will address this crossover by QMC simuSPin, point-group operations in the case of high-symmetry
lations. momenta it obeys precisely the same selection rules,
Thereby we want to take advantage of the possibility ofvhence it is just as good as tieeoperator itself to map out
calculating the spectra of specifically designed “diagnosticthe band structure. o .
operators,” The first one of these is thehadow” operator. One further point, which is important from a technical
point of view, is the following: under the particle-hole trans-
- 1 formation ¢; ,—e'@Ric!  we havet; ;——€' ¢l and
Ci,e=Ci,oMio~ Ci,o(1—Ni5)= 2 b;.;— —€'@Ribl, . This implies that at half-filling the spec-
tra of the shadow and spin-1/2 string operator obey the same
We note first of all, that the Fourier transform of this opera-particle-hole symmetry as those of the ordinary electron op-
tor, ~ck,,, has precisely the same quantum numbers as therator, i.e.,
ordinary electron operatas ,: momentum—K, total spin
1/2, z-spin o, and identical point-group symmetry at high- Ak, 0)=A(k+Q,— w). (18
symmetry momenta. It follows that the poles in its dynamical
correlation functions

(di,—hl,). (15

In our MAXENT program, particle-hole symmetry is not
implemented as an additional constraint, in other words: the
- 3 3 MAXENT procedure does not “know” about this additional
AE(k"”)ZEV: |<q’v|ck,o|q’u>|ze PESE S w—(E,— E.] symmetry. The degree to which E(L8) is obeyed in the
(16) final spectra thus gives a good check for the accuracy of the
o . reconstructed spectra. This is of particular importance in the
originate from exactly the same final staf#s,) as those of  case of the spin-1/2 string operator because the Wick con-
the photoemission spectrum. It can happen only accidentallaction of this operator on any given time slice produces a
that a given state has an exactly vanishing weight in one of total of ~80 products of noninteracting Green’s functions.
the correlation funCtiOI’]S, but not the others. In this CaseThe Computation iS, therefore7 much more prone to inaccu-
however, any arbitrarily small perturbation will remove the racies so that an additional check is desirable.
accidental vanishing of the peak. The only thing that can and The present paper is organized as follows: first, we com-
will be different in the spectra~ of the diagnostic operator, argpare the temperature-dependent-dynamic single-particle
the weightsof the peaks|(¥ ,[c, ,|Wo)|%. In fact, compari- properties of the Hubbard model with the predictions of the
son of Eqs(11) and(7) shows immediately that both for the mean-field SDW and Hubbard-| approximations. In addition,
Hubbard-1 approximation and for the SDW approximation,we consider the temperature-dependent two-particle excita-
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tions. Then, we will use our first diagnostic operator, the Il. TEMPERATURE-DEPENDENT DYNAMICS
shadow operataz, ,, to show the existence of a total of four AT HALF-FILLING

bands in the photoemission spectrum and to shed light onto \we start in Fig. 1 with the discussion of the angle-
the temperature dependent crossover from the SDW to thg.coed single-particle spectral functioh(k,w) for U
Hubbard-1 regime. Then we will investigate the four-band:8 Ot and various temperatures in the range from4.0a
structure in more detail: after a phenomenological fit, which, — ™ ) ’
; ; . to T=0.1G. In the left column of the figure the spectral
is able to produce a total of four bands, we will consider theunctions are shown as “arav-scale” plots Versus momen-
string picture that naturally leads to our second diagnosti S gray-s P .
tum k and energyw/t with dark (light) areas corresponding

operator, the spin-1/2 string operatnyr, . This operator will )
be used to ultimately reveal the underlying mechanisms bel® large(smal) spectral weight. The same spectra are shown

hind the generation of the four-band structure, namely, th&/SO in the right column, but now as line plots at each mo-
dressing of the photoholes by clouds of AF spin excitationsMentumk. The QMC data in the figure are compared to the
To resolve the “AF mirror image” of the narrow quasipar- renormalized results of the Hubbard-I approximation at high
ticle spectral weight features between=(0,0) and k and medium temperatures and with the renormalized results
=(m,0) around momenturk= (7, ), we introduce also a ©f the mean-field SDW approximation at the lowest tempera-
spin-3/2 string operator. Finally, we will concentrate on theture, T=0.1Q. “Renormalized” means here that we have
doped regime, thereby showing the violation of the Luttingerreadjusted the parametdgsandt in Egs.(6) and(12) so as
theorem near half-filling, and discuss the hole concentratioto obtain an optimal fit to the “bands” of high-spectral
range in which these dressing effects dominant the lowweight in the spectra. These approximate dispersions are
energy physics. plotted as solid lines in the left column, while their spectra
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are shown in the right column as line plots at each momen- 4 R 147
tum k. Thereby we have assumed a Lorentzian line shape = 12
with a suitably chosen temperature-dependent widkie lB
Hubbard-I approximation does not provide any information < 2| = 2:
about linewidths

Starting at the highest calculated temperatlire4.0Q, :: 1
we find that the Hubbard-I approximation with practically : | . oI T } } T :
unrenormalized parameters<€0.9% andU=8.32) fitsthe | 7=03%  &&Kel==| |} elag) —— |
QMC spectral functions almost perfectly regarding both the 10 A
general dispersion and the distribution of spectral weights | 1= 8F |4 I
(quadratic deviation per degree of freedgyf=0.05). This  ° s a
is not surprising since the Hubbard-I approximation is de- 4 B
rived for the paramagnetic state thereby neglecting all effects ’r 7
of spin correlations, i.e., the Hubbard-I approximation essen- 4 — A= " F == H 14H —
tially describes the interplay between itinerant electrons anc Spim-Wave 121 ]
strong on-site repulsion. This should be a reasonable as or %ﬂ% b
sumption at this high temperature since all relevant spin de-$ 2 1% r i" ' ||
grees of freedom are thermally excited. °r { ]

Lowering the temperature t§=1.00 and further toT NI ]
=0.33, the data show that the Hubbard-I approximation in- Z_, , , |

L
creasingly fails to reproduce the entire spectrum and is only "o oo L e 00 00 =0, @&®  (00)
able to fit the peaks with maximal spectral weight reasonably
well. Even then, in order to achieve these fits, one already FIG. 2. Dynamical spin-correlation functiog,(k, ) (left col-
has to renormalize the free parameters strongly. The valuasnn), and charge-correlation functiong(k, ) (right column, of

—10a andi=14a and U=3.98 with X2:0-85 atT =0.33, andT=0.1Q. The solid lines in the lower-left column give

=0.33. The peaks that are missed by the Hubbard-I ap—a spin-wave fit

proximation are the states that form the first ionization/
affinity states around momentutk=(0,0)/(w,7) on the
photoemission/inverse photoemission side and two rath
dispersionless bands at higher energieswef £6.0t. The
former states were previously resolved by Preuss an

co-workerst? Altogether one can distinguish a total of four structure in the photoemission somewhere in betw@en

“bands” in the single-particle spectral density. As will be —1.00 and T=0.33 is closely related to a change in the

seen below, the_ temperatu_re/(_jopmg_reg|me wh_ere this fours'pin response: to illustrate this we consider Fig. 2, which
band structure is seen coincides with the regime where

. ) . ows the spin-correlation functiog (K, left column),
collective low-energy mode with momentumr () in the P Rk, ) ( r)

. ; ; . d the charge-correlation functiomy,..(k,») (right col-
Spin response exists. In spite of this, ho_wever, we stress Fh%ﬂ-m), for different temperatures. Whereas the spin response
the four-band structure cannot be explained by a backfoldlng;S entirely incoherent aT=1.0a, with decreasing tempera-
of the band structure due to ordering effects since the Spin{ure it can be fitted increasingl’y well by the spin-wave dis-
correlation length is<1.5 lattice spacings at temperatures persion
T=0.33.

For the lowest temperaturé=0.1Q, the QMC data are ESW(k)=2J\1— (U/4[cogk,) +cogk,)]?. (19
compared with the results from the AF SDW approximation._ . ) ] .
As in the case of the Hubbard-I approximation at mediumhis result is known from previous calcu_latlo?%,w_hmh .
temperatures, the lowermost spectra of Fig. 1 show that thdemonstrated that the two-particle correlation functions like
SDW approximation is only able to fit the peaks with large the spin response can be described within the SDW approxi-
spectral weight. Again one has to renormalize the free pathation even for large values of the interactidnThe energy

rameters heavily to values G=134 and A =229 with scaleJ directly manifests itself in the spin-response since the

; ; . W >
x2=0.83. Moreover, as was the case for the Hubbard-I ap§pln—wave dispersion takes the value &f"(7,0)=2J at

proximation at higher temperatures, the SDW approximatiofnomentumk=(,0). The fit parameters are=0.33 with
neither explains the states that form the first ionization/x?=0.01 at T=0.3% and J=0.4% with x*=0.11 atT
affinity states around momentuka=(0,0)/(w,7) on the =0.1Q. The latter is already quite close to the strong cou-
photoemission/inverse photoemission side, nor the two displing estimate J=4t%/U=0.5%. Furthermore, the figure
persionless bands at higher excitation energies, which can tshows that with decreasing temperature the spin-response
seen rather clearly in the spectra. concentrates its weight more and more at the AF momentum

All in all, the overall distribution of spectral weight is Q=(,7) (as is the case in AF spin-wave thepand at a
roughly reproduced by the Hubbard-l1 and SDW approxima-<haracteristic energy*. The latter decreases with decreas-
tions as long as one forgets about the four-band structure. limg temperature, i.e., the spin response comes closer and
fact it is well known that thdntegrated photoemission or closer to the predictions of AF spin-wave the¢Bq. (19)].

inverse photoemission weigfithat means the electron mo-
mentum distributiohat eachk point is reproduced quite well
er5y the Hubbard-1 approximation and the related two-pole
Spproximationl.3

As already mentioned, the emerging of the four-band
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L~ FIG. 4. Single-particle spectral function of the normal photo-
FIG. § Angle-resolved.spec.tral functiéx(k, ) of the shadow emission(top) and the shadow operatéoottom at momenturk
operatorc; , with 8X8 lattice size a{n)=1.0 andU=8.0t for s =(m,7) with 8X 8 lattice size afn)=1.0 andU=8.0t for tem-

T=0.3% andT=0.10. peratures in betweefi=1.0a andT=0.1C.

The spin-correlation lengtlfs(T) can be derived from a
real-space fit of the QMC equal-imaginary-times spin-SPectrum by means of omhagnostlc operatorsThe first of
correlation function x(r) to the form a-|r|°-e “I7ZsAT)  them is the shadow operator(, of Eq. (15) which will be
thereby incorporating the effects of the periodic boundarwsed to transfer spectral weight from the inner parts of the
conditions. While this is the best one can do on a finite latticeBrillouin zone to the outer ones in case of normal photoemis-
with periodic boundary conditions, the fit will only lead to sion w<u. As already discussed above, this also improves
roughly correct values due to the relative small system siz¢he resolution of the ME method in this region, since its
of 8 8. The values obtained for the spin-correlation lengthresolution strongly depends on the spectral weight at a cer-
then are{,,=0.3-0.5, {,,=1.0-1.3, {,,=1.6-1.9, {,, tain position. Nevertheless the spectrum of the shadow op-
=2.1-2.8, and{s,>8 for T=1.0a, T=0.33, T=0.25, erator has to exhibit exactly the same peak positions as the
T=0.2a, and T=0.1Q, respectively. We actually believe normal photoemission spectrum.
that the spin-correlation length reaches the system size al- Figure 3 shows the angle-resolved spectral function of the
ready at a temperature @t~0.2Q, because at this tempera- shadow operator for moderate and low temperatures. As ex-
ture the fit results in values betweén,=2.1 and/,,=2.8  pected, the shadow operator has its main spectral weight near
(with the exponenb set to zero or notbut always with error k= (ar,m) on the photoemission side and néas (0,0) on
bars of roughly the system size. the inverse photoemission side. Furthermore, it's spectrum
The charge responsg..(k,»), on the other hand, is supports the existence of a total of four bands, because it
rather broad in both momentuknand energyw for all tem-  resolves a group of peaks forming dispersionless bands at
peratures studied. Furthermore, the charge response éfiergies ofv~ =+ 6.Qt, a region where the normal photoemis-
gapped for temperatures beldw=1.0Q and, therefore, can Sion spectrum exhibits only some weak and smeared-out
certainly not be responsible for any low-energy features ofpectral weight. These two dispersionless bands at energies
the single-particle spectrum. of w~=*6.0t are inconsistent with the dispersions of the
It is then quite obvious that at roughly the same temperaHubbard-I and SDW approximations of Fig. 1. We will fur-
ture where the two narrow dispersive quasiparticlelike bandgher address this topic later in this paper.
(that cannot be interpreted within the framework of the Next, we turn in more detail to the temperature depen-
Hubbard-I or SDW approximationsappear in the single- dence of the photoemission spectrum. Figure 4 shows some
particle spectrum, the spin response develops a sharp collegloseups of the normal photoemission spectrum and of the
tive low-energy mode. We conclude that the underlyingspectrum of the shadow operator at momentkisa( 7, 7)
mechanism behind the occurrence of the four-band structurand different temperatures. For the normal photoemission
consists in dynamical magnetic correlation effects, which are@perator these closeups show a peakwat—1.5, which
beyond the scope of the Hubbard-I and SDW approximawould be consistent with Hubbardsee Fig. 2 In the spec-
tions. trum of the shadow operator this feature is visible as a
In the following, we want to explore the single-particle single-resolved peak only at the highest temperatiire
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=1.0Q, whereas for temperatures downTe-0.2Q there is 10 T T
only some diffuse weight at this position. In the ordinary 8 —I T ARERS LS I—
photoemission spectrum the peak loses spectral weight with :
decreasing temperature. It disappears completelyTat
<0.2a where the spin-correlation length(T) reaches the
system size(see above Thus, the temperaturé~0.20
where we lose the Hubbard-I-like peak @t —1.5% andk
=(,m) coincides quite accurately with the temperature
where “effective” long-range order sets in. Moreover, we
find that as the normal photoemission spectrum loses the
peak atw~-—1.5% and k=(,7), the spectrum of the
shadow operator gains weightats — 6.0t. Thus, we expect
that both features are closely related to the temperature de-
velopment of the spin-correlation lenghi(T). We note,
however, that the crossover in the shape of the dispersion
from Hubbard-I-like to SDW-like occurs in a quite unex-
pected way: the topmost band at,r) doesnotdeform into

the SDW form in any continuous way, but simply “fades
away” and eventually vanishes at the transition.

A further surprising result is the following: at=0.1
neither the ordinary electron operator nor the shadow opera-
tor pick up the “AF umklapp band” corresponding to the
narrow dispersive band seen for examplewat — 3t for k
=(0,0), i.e., there is no corresponding bandvat — 3t and

k=(m, ). Note that in the framework of the SDW approxi- g 5. Angle-resolved spectral functioh(k,w) of the 8x8
mation the shadow operatonustreproduce this umklapp Hybbard lattice witHJ = 8.0t for T=0.33 (top) and T=0.1Q (bot-
band at ¢r,7) with the same weights the original band at tom) compared to analytic dispersions: mixing the Hubbaftbp,
(0,0) in the ordinary photoemission spectrum—see the disdashed or SDW (bottom, dashedbands with two dispersionless
cussion in the first section. That this is not the case showBands atw= + 3t (dashedresults in a four-band structu¢solid) in
that even at this lowest temperature, a simple SDW-like degood agreement with the QMC peaks.

scription of the band structure is invalid, in that the band

structure cannot be understood by simple backfolding of thQMC. peak positions a'."d the f.OL.” bands genera}ted by diago-
spectrum obtained without broken symmetry. As we will see"@/iZingH .. of Eq. (20) is surprisingly good, particularly so,

in the following, the AF SDW state provides only the “back- " view of the fact that for both, Hubbard-1 and SDW ap-
ground” for the dressing of the photoholes with AF spin proximation, onlyunrenormalizecparameters were used. In

excitations, which dynamically generate a total of fourparticular, the self-consistentlydetermined value for the
bands ' SDW gapA of 3.5 was used aT =0.1Q. The only “ex-

ternal” parameter in this figure is the mixing matrix element
V, which was set to a value of 1.0
lll. THE FOUR-BAND STRUCTURE Thus, we find in contrast to previous worksthat the

We return to the discrepancy between the two-band disiniroduction of the dispersionless bands reproduces the
persions of the Hubbard-I and SDW approximations and th single-particle gap and the width of the quasiparticle band

four-band structure actually observed for example in th %orrectly without any renormalization of parameters. Rather,
spectrum of the shadow o )érator of Fig. 3 P Ghe narrowing of the quasiparticle band and the reduction of
P p 9 °. Y the Hubbard gap as compared to the unrenormalized param-
In order to generate a “four-band structure” out of the

L eters is brought about by introduction of the dispersionless
two bands of the Hubbard-1 and SDW approximations we Mhands. This naturally raises the question as to their physical

as a phenomenological ansatz to mix the dispersions of th

grigin In the present paper we restrict ourselves to a more
Hubbard-I/SDW approximation with two dispersionless . ; “ ; "
bands at energies &.. = + 3.(t. In other words, for both the phenomenological and “numerics based” approach. A

._complementary and more mathematical discussion is given
% Ref. 11, where an equation of motion approach similar to
Hubbard's original work is pursued.
We consider the commutator of the creation operator for
(20) holelike particles,hﬂ‘yo:ciyo(l—niyg, which annihilates a
' particle only on a singly occupied site, with the kinetic en-

ergy of the Hubbard model and firtd:
and plot in Fig. 5 the four bands obtained in this way on top

of the spectral density obtained from QMCTa+0.33 and [hi Hl=—t 3 (1_ W
T=0.1G. For comparison, the figure also shows the original “ 1" i EN(i) 2
(i.e., unhybridized Hubbard-l bands plus the two phenom-

enological dispersionless bands at energieswef = 3.0t.

The figure shows that the overall agreement between the

w-p/t

w-pft

onalize an “effective” 2x2 Hamilton matrix:

EI;ub—I/SDW V
H.=

v E.

¢ +(c 1 Si+c;S)

1
—Ecm(ni—(n))+cf’lci,lci,T. (21
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Keeping only the first term in the square brackets of 24) by )

reproduces the Hubbard-I approximati@riThe second term

in the square brackets describes the dressing of the created rhat @

hole by a spin excitation and is closely related to the spin-1/2 ) Fdap

string operator of Eq(17). The third term describes, in an

analogous fashion, the coupling of the hole to a density fluc- bbb @

tuation, whereas the fourth term describes the coupling to the

7 excitation®® The two latter types of excitation are not im- 1O 4 ¢ Oy

portant for a large positivel near half-filling,{n)=1.0, and

will be neglected. Therefore, the operator boty J ®©\
&y T bt { f o P o Y

is in this case the most important correction over the by by TadPaF» apPay

Hubbard-l approximation. As already stated, it describes a
hole dressed by a spin excitation: this operator not only cre- Néel RVB
ates a hole on sitebut dresses this hole with a spin excita-

tion on a neighboring site, which is exactly the idea behindRVEIGt' ? I_\/I(;'iion 0(; an add_eddh?letin ?:}?Stat?(fﬂé "i‘rnhd an
the spin-ba§® or spin-polarof pictures known in the litera- state(right) produces spin defects of different kind. These are
ture described by the spin-1/2 string operator.

Splitting this operator into eigenoperatorstof; :

strings with up to three lattice sites range by means of exact

diagonalizations of thé-J model. As already mentioned in

the Introduction, in the QMC method, each observable has to

be expressed in terms of free single-particle Green’s func-

A Nz A tions on each time slice by the application of Wicks
D”:jGEN(i) (dj1S+d;,1S), (22 theorem!® This results already in a quite large expression for

the spin-1/2 string operator of E¢L7) containing approxi-
we find [IjiauHU]:(U/Z)bi,j,a and [éiavHU] mately 80 gontributions. The implementation of even Iopger—
:_(U/Z)éi,j,u- Assuming moreover that the mobility of ranged string operators therefore was not possible in the

these composite excitations is determined by the “heavy"Present work. . .
spin excitation, it seems quite reasonable to assume that R€UrNing to the spin-1/2 string operator of Eg7) we

. 7 - .
these “particles” are the source of tiimore or lessdisper- note that_ the first terntti,_TSj will always ar_1n|h|lat(_a a Nel
sionless bands at =+ U/2. state. This reflects the simple fact that spin-rotation symme-

Finally, the commutation relatioi2l) shows that the Iy is broken in the Nell state. This is not the case, however,
mixing matrix element between tHg, , and the new com- N the fully rptauonally invariant RVB state: again, creating a
posite particles should bet. Based on these rough consid- Nole on sitei and allowing it to hop to sit¢ will produce a
erations we might thus expect that the two string-1 “effec-SPin excitation. However, in the case of the RVB state, it
tive particles” [Eq. (22)] are excellent candidates for produces. the superposition of two states: in one case the
explaining the two dispersionless bands*a8t required to  dotted ellipse stands for tHg,= —1 component of the trip-
upgrade the Hubbard-l or SDW approximation so as td€t and this state would again be created by the ®rs; .
match the QMC data. However, so far the above considerIhere is, however, also a second state where the dotted el-
ations are pure speculation and in the following we will turnlipse corresponds to the superposition of a singlet and the
to QMC results to back up this hypothesis by numerical evi-S;=0 component of the triplet. This second state then would
dence. be created by the termi,TSZ, whereby the relative sign of

Before doing so, however, we want to illustrate the actionthe two terms in the string-1 operator makes sure that the two
of the “string operator” in two extreme cases: an idealeNe configurations are always produced with the proper phase. In
state and a resonating valence-b¢R¥B) state, i.e., a com- both extreme cases, Bl state and “singlet soup,” the
pact singlet covering of the plahésee Fig. 6. In the Neel string-1 operator thus creates a hole dressed with the proper
state, a hole created initially on sitecan travel from one Spin excitation: this can be a spin walie., a single inverted
place to a neighboring site thereby leaving behind a mis- spin in the case of a Nal state, or a singlet-triplet excitation
aligned spin on the original site Exactly this process is in the case of an RVB state.
described by the second tergy S : it creates a hole of As a technical remark we still note that the excessive
opposite spin on a neighboring sjtand flips the spin on the Numerical effor'Ethat woqu have been necessary to compute
original sitei. Therefore, this process corresponds to the crespectra for theC; , and D; , (which are products of five
ation of a string of length 1. In fact one might think about Fermion operatojshas made it impossible to compute the
more sophisticated diagnostic operators incorporating the ebpectra of these operators—instead we have been using the
fects of longer-ranged strind8. Indeed, Dagotto and (Fourier transform ofthe operatob; ; , defined in Eq(17).
Schrieffer® and Eder and Oht4 already measured the Concerning the difference between this diagnostic operator
angle-resolved spectrum of a diagnostic operator containingnd the operator

Cii= 2 (¢ S+¢,S),
| Ny
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FIG. 7. Angle-resolved spectral functidr(k,w) of the spin-1/2 FIG. 8. Angle-resolved spectral functidx(k,w) of the spin-3/2

string operatorb; ; in the Hubbard model withJ=8.0t for T string operatorb; ; in the Hubbard model withiU=8.0t for T
=0.3% (top) andT=0.1Q (bottom. The lattice size was reduced to =0.3% (top) and T=0.1Ct (bottom. The lattice size was reduced
6X6 in this case due to the larger error bars of the string operatofo 6x6 in this case due to the larger error bars of the quartet

as compared to the normal photoemission spectrum. operator as compared to the normal photoemission spectrum.
, _ solve this part, we now introduce the last diagnostic operator
S (¢j1S+¢;,1S) of this work, which we call the spin-3/2 string operator:

obtained by commutingf’T with the kinetic energysee the T @ o
second term on the rhs of E@®1)] we note that their Fourier b"T_,-EEN(i) (2€i1Si= ¢S ). @3

transforms differ only by phase factors of the form _ . . . ) ) )
e k(Ri-R))_ Both operators are indeed identical at momen-T his describes again a composite object of a hole and a spin

tum k=(0,0) and differ at momenturk= () only by a excitation, put this time the two consti_tuents are cqupled to
factor of 1 sinceR; andR; are next-nearest neighbor lat- the total spin of 3/2. We stress that this operator will detect
tice sites. At all other momenta both operators have exactijta€s that can never be seen in an actual angle-resolved pho-
the same peaks but will differ somewhat in their spectralC€mission spectrum on a singlet ground state, because this is
weights. forbidden by the angular-momfzntum selection rule. The
After these remarks we discuss the angle-resolved spe@ngle-resolved spectral functioA(k,») of the spin-3/2
tral function of the spin-1/2 string operatby ;, shown in  string operator is plotted in Fig. 8 again fdr=0.32 (top)
Fig. 7. The spectrum of the spin-1/2 string operator indeed@ndT=0.1Q (bottom. It is then immediately obvious that it
picks up those band portions which, according to the roughs this operator which resolves the “missing piece” of the
hybridization scenario in Fig. 5, should have strong “flat- AF dispersion, i.e., the “AF mirror image” of the narrow
band character,” i.e., the part of the narrow low-energy bandjuasiparticle band. It should also be noted that the spectrum
between (0,0) and+/2,7/2) and between (0,0) andr(0) at  of Bm is remarkably independent of temperature, i.e., the
energiesw~ — 3t. We note that these are precisely the posi-states belonging to this “spin-3/2 band” persist irrespec-
tions where the two quasiparticlelike dispersive narrowtively of whether there is long-range order or not.
bands occurred in the normal photoemission spectrui at  Combining the information obtained so far, suggests the
=0.33. In addition, the band portion ai~ — 6t for momen-  following scenario for the crossover between the paramag-
tum (7, 7) is also enhanced in the string-1 spectrum. netic band structure at high temperature and the AF band
This, however, still leaves an important part of the bandstructure at low temperature: in the paramagnetic state at
structure unexplained. Namely, the “AF umklapp band” of high temperaturegsuch asT=0.33), the spin is a good
the narrow quasiparticle band dispersing upward betweeguantum number and the spin-3/2 “band” does exist but
(0,0) and @r/2,7/2) at w~ —3t, still is not seen in any of cannot mix with any spin-1/2 band due to spin conservation.
the spectra, not even at the lowest temperature studied. Orhe band of spin-3/2 quasiparticles thus plays no role what-
the other hand, in a state with true antiferromagnetically brosoever in the actual photoemission spectrum, which is pre-
ken symmetry, we know that this mirror image must existsumably the reason why the outer part of the spectrum is so
due to the backfolding of the Brillouin zone. To finally re- remarkably “invisible” in actual angle-resolved photoemis-
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sion spectroscopyARPES experiments, leading to the idea not in any “simple” relationship to the number of

of a “remnant Fermi surface” in the insulatdf.Reaching electrons—the Luttinger theorem must be violated. This is
this state by photoemission would only be possible if thethe major reason why the Hubbard-I approximation has been
photohole is created in a thermally admixed state of at leasiismissed by many authors as being unphysical.

spin 1. In an infinite system this situation changes discon- Wwe now wish to address the question as to what really
tinuously at the transition to the true broken-symmetry statepappens if a paramagnetice., not magnetically ordergd
there the total spin ceases to be a good quantum number, apgylator is doped away from half-filling, by QMC simula-
the spin-1/2 band in the interior of the AF zone and thetion. We therefore choosE=0.33 andU=8.(x.

spin-3/2 band in the exterior now suddenly can mix with  Figure 9 then shows the development Afk,») with
each other, thus leading to the familiar SDW dispersion. Wejoping. It is quite obvious from this figure that initially the
note that another way to generate a coupling between theggo bands seen at half-filling in the photoemission spectrum
two bands would be the application of a magnetic field—this(j e  ,<0) persist with an essentially unchanged dispersion.
also would break spin-rotation invariance and hence enablghe chemical potential gradually cuts deeper and deeper into
the hybridization of a spin-1/2 and a spin-3/2 band. Based Oghe topmost band, forming a holelike Fermi surface centered
our results we thus believe that a magnetic field could engn (7 7) the top of the lower-Hubbard band. The only de-
hance the spectral weight of the “shadow part” of the bandyiation from a rather simple rigid-band behavior is an addi-

structure as seen in ARPES. tional transfer of spectral weight: the part of the topmost
band near {r,7) gains in spectral weight, whereas the band

IV. DOPING THE HUBBARD MODEL AT HIGH with higher binding energy loses weight. In addition, there is
TEMPERATURES—RIGID BANDS a transfer of weight from the upper-Hubbard band to the

inverse photoemission part below the Hubbard gap. This ef-

Summarizing our results so far, we may say that theect is actually quite well understodd.The band structure
Hubbard-I approximation, slightly improved by the introduc- ahove the Hubbard gap becomes more diffuse upon hole
tion of new quasiparticles corresponding to dressed holegoping in that the rather clear two-band structure visible near
provides a very good description of the spectral function for( 7) at half-filling rapidly gives way to one broad
the case of half-filling(n)=1. In this section we want to “hump” of weight. Apart from the spectral weight transfer,
proceed to the doped caée) <1, which is of prime interest however, the band structure on the photoemission side is
for cuprate superconductors. Here, an essential drawback @fmost unaffected by the hole doping—ttiispersionof the
the QMC procedure is that reliable QMC simulations for quasiparticle band becomes somewhat wider but does not
lower temperatures are much more difficult or even imposchange appreciably. In that sense we see at least qualitatively
sible, since the absence of particle-hole symmetry away fronthe behavior predicted by the Hubbard-I approximation.
half—fllllng introduces the notorious minus—sign problem into Next, we focus on the Fermi surface volume. Some care is
the algorithm. Truly low temperatures IiKE=0.1Q, which  necessary here: first, we cannot actually be sure that at the
in principle correspond to the physical temperature range, argigh temperature we are using there is still a well-defined
therefore out of reach. On the other hand, in the study of thgermj surface. Second, the criterion we will be using is the
half-filled case we have seen that a major change takes plaggossing of the quasiparticle band through the chemical po-
as the spin correlation length reaches the system sizgential. It has to be kept in mind that this may be quite mis-
whence “effective long-range order” sets in. In the doped|eading because band portions with tiny spectral weight are
case the spin-correlation length is expected to be short at anynored in this approactsee for example Ref. 21 for a dis-
temperature, whence we may expect that the change @ussion. When thinking of a Fermi surface as the constant
A(k, ») from high to small temperature is more smooth thanenergy contour of the chemical potential, we have to keep in
at half-filling. In that sense, evefi(k,w) data for the rela- mind that portions with low-spectral weight may be over-
tively high temperatureT =0.33 are interesting to study. |ooked. On the other hand, the fact that a peak with appre-
Moreover, we can at least try to elucidate trends with deciable weight crosses from photoemission to inverse photo-
creasing temperature and thus construct a reasonably plagmission at a certain momentum is independent of whether
sible scenario. we call this a “Fermi surface” in the usual sense, and should

At half-filling, we have seen that the “approximation of be reproduced by any theory that claims to describe the sys-
choice” for the paramagnetic case was the Hubbard-I aptem. It therefore has to be kept in mind that in the following
proximation. This naturally poses the question as to howye are basically studying a “spectral weight Fermi surface,”
relevant the half-filled case is for the description of the doped.e., the locus ink space where an apparent quasiparticle
case, i.e., how much of the Hubbard-I physics remains valihand with high-spectral weight crosses the chemical poten-
for finite doping. At half-filling the two “effective particles” tial. With thesecaveatsin mind, Figs. 10 and 11 show the
dl, andc/,, form the two separate Hubbard bands. Thelow-energy peak structure oA(k,w) for all allowed mo-
effect of doping would now consist in the chemical potentialmenta of the &8 cluster in the irreducible wedge of the
cutting progressively into the top of the lower-Hubbard band Brillouin zone and for different hole concentrations. In all of
in much the same fashion as in a doped band insulator. Otihese spectra there is a pronounced peak, whose position
the other hand, for finit&)/t the spectral weight along this shows a smooth dispersion with momentum. Aroumdt)
band deviates from the free-patrticle value of one per momerthe peak is above,, whereas in the center of the Brillouin
tum and spin, so that the Fermi surface volufobtained zone it is below. The locus ik space where the peak crosses
from the requirement that the integrated spectral weight up tg forms a closed curve aroundr(7) and it is obvious from
the Fermi energy be equal to the total number of elecjrisns the figure that the “hole pocket” aroundm( ) increases
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FIG. 9. Overview on the doping dependence of the angle-resolved spectral fuAtkian) of the 8X 8 Hubbard lattice alT=0.33 and
U =8.1 for densities(n)=1.00 (half-filled), (n)=0.95 (underdopey (n)=0.86 (roughly optimal doped and({n)=0.80 (overdopegl

very rapidly with §. To estimate the Fermi surface volume  We return to Fig. 9 and discuss the entire width of the
Ve we assign a weightv, of one to moment& where the spectra, in particular the fate of the four-band structure in the
peak is belowu, 0.5 if the peak is right aj, and 0 if the  doped system. Fomn)=0.95, the different features that are
peak is abovex. Our assignments of these weights are givenseen atn)=1.0 are still rather clearly visible, but fdn)
in Figs. 10 and 11. The fractional Fermi surface volume then=0.86 the low-energy quasiparticle bandkat (0,0) starts
is to disappear, and &n)=0.80 the dominant “band” in the
spectrum betweem= —4t and w=2t can be fitted by a
1 slightly renormalized free-electron band. As we have seen
VF:N zk: Wi above, the Luttinger theorem also is valid in this case. This
suggests to classify the doping as ‘“underdoped” for O
whereN=64 is the number of momenta in the<® cluster.  <(N)<0.85, where the Luttinger theorem is invalid and the
Of course, the assignment of thg involves a certain degree four-band structure known from half—filling_ pers@sts, and
of arbitrariness. It can be seen from Figs. 10 and 11, how-overdoped” where the Luttinger theorem is valid and a
ever, that ouw, would in any way tend to underestimate the renor_mallzed fre.e—electron band.can be seen in the spectral
Fermi surface volume, so that the obtainégd data points function. Following the.conventlon for cuprate supercon-
rather have the character of a lower bound to the Wye ductors{ we call the doping V\_/here the crossover between the
Even if we take into account some small variation¥/pfdue WO régimes occurs the “optimal” doping.
to different assignments of the weight factors, however, the N&Xt, the four plots of Fig. 13 show the spectra at selected
resulting Ve versusé curve never can be made consistentK POINts. The system size is only® in this case because
with the Luttinger volumesee Fig. 12 The deviation from thls allows for smaller error bars. Closer inspection, espe-
the Luttinger volume is quite pronounced at low dopikg. ~ cially, of the peaks at momentukr=(0,0) on the photoemis-
approaches the Luttinger volume for doping80%, but due ~ Sion Side[plot (@] and at momentunk = () on the in-
to our somewhat crude way of determinivg we cannot Verse photoemission sidgplot (d)] confirms, that with
really decide when precisely the Luttinger theorem isi"cr€asing hole concentration we are losing parts of the four-
obeyed. The Hubbard-I approximation approaches the Lut?@nd structure seen at half-filling. , _
tinger volume for hole concentrations e$50%, i.e., the To ChECk the phy3|cs_ of the.band structure_ln more detail,
steepness of the drop bk is not reproduced quantitatively. W& @gain employ our diagnostic operators. Figure 14 shows
The latter is somewhat improved in the so-called two-polethe angle-resolved spectral functiofgk, ) of the spin-1/2
approximation>#*~?*For example the Fermi surface given and spin-3/2 string operators, ; andb; ;. As was the case
by Beenen and Edwartfsfor (n)=0.94 obviously is very at half-filling, the spectrum of the spin-1/2 string operator
consistent with the spectrum in Fig. 11 far)=0.95. highlights exactly those peaks that we associate with the dis-
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persionless “dressed hole” bands in Fig. 5. The spectrum oératorg stays pretty much unchanged as long as we are in the
the spin-3/2 string operator on the other hand has its peaksnderdoped regime. At half-filling the four-band structure is
with maximal spectral weight around momentlrs (7, 7),  closely related to the sharp low-energy mode in the dynami-
indicating that also in the doped case there is an “antiferrocal spin correlation function, which naturally suggests to
magnetic mirror image” of the quasiparticle bafhich, study the spin response also as a function of doping. Figure
however, consists of spin-3/2 state#fgain, coupling of 15 shows the spin-correlation functiogsAK,w) (left col-
photoholes to thermally excited spin excitations may makeumn), and the charge-correlation functioge.(k,®) (right
these states visible in ARPES spectra, thus explaining theolumn), for T=0.33 and densitiegn)=0.95(underdopey
“shadow bands” seen in photoemission experiments byn)=0.90 (nearly optimally doped and (n)=0.80 (over-
Aebi et al?® Similarly, as for half-filling, one might specu- doped. The spin response is sharply confined in both mo-
late that a magnetic field, which would break spin symmetrymentumk= (7, 7) and energyw=w™ only in the under-
and thus allow for a coupling of “bands” with different total doped region, i.e., the regime where we also observe the
spin, would enhance the spectral weight of these shadov¥eatures associated with spin excitations in the single-particle
bands. spectra. As was the case at half-filling for temperatures be-
All in all we have seen that the “band structuréfour-  low T~0.33, the spin response can be fitted by the AF
band structure, dispersion of regions of large spectral weighspin-wave dispersiofiL9) in the underdoped regime. On the
“character” of the bands as measured by the diagnostic opether hand, as soon as the system enters the overdoped re-
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FIG. 11. Same as Fig. 10 for lower electron
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gime, the spin response is no longer sharply peaked at mo-
mentumk= (7r,77) and energyw= w™: it broadens in mo- ! ' ' '
mentum and spreads in energy by an order of magnitude 08 F 4
with the scale changing frod= 4t?/U to E,;,~ 8.0t accom-
panied by a similar change in the bandwidth of the single- L 06 .
particle excitations. This result is already well known from > X
previous QMC calculatiof§ and consistent with similar be- 04 r T ]
havior in thet-J model?’ The charge response..(k, ) is 02 | N
always broad in both momentuik and energywo for all
densities studied. It merely decreases its width freit2.& 0 L . L
at(n)=0.95 to~8.0t at(n)=0.80. o 01 02 03

Although the minus-sign problem of the QMC algorithm
prevents reliable simulations of large systems at low tem- F|G. 12. Fermi-surface volume as estimated from the single-
peratures in the doped regime, we nevertheless studied th@rticle spectral function, plotted versus the concentration of holes
temperature evolution of the angle-resolved spectral functiotn the half-filled band. The dashed line gives the value predicted by
A(k,w) at density(n)=0.93. This was possible due to the the Luttinger theoremy=n/2.
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FIG. 13. Angle-resolved spectral functidx(k,) of a 6xX6 Hubbard lattice al =0.33 andU = 8.0t for momentak = (0,0) [plot (a)]
and k= (m,0) [plot (b)] and k=(m,7) [plots (c) and (d)]. The spectra for the various densitiés)=1.00, (n)=0.96, (n)=0.90, (n)
=0.83, and(n)=0.66 are shifted by their individual chemical potentialgesulting in overlapping peaks in the underdoped regime. The
labels at thew axis refer to the half-filled simulatio¢solid line). The system size isX$6, because the smaller errors in this case lead to more
reliable spectra.

relative small system size of X6, which alleviates the A(k,w) at density(n)=0.93 for T=0.5a, T=0.33, and
minus-sign problem as compared tx8 atT=0.2%. Fig- T=0.2%. We stress that the simulation &it=0.25% suffers
ure 16 shows the results from this analysis: the uppermogtom minus-sign problems with a drastically reduced resolu-
plot (a) compares the angle-resolved spectral functiongion. In the center plotb), the quasiparticle peak weights
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FIG. 14. Angle-resolved spectral functid(k, ») of the spin-1/2 string operatdm; ; (top) and the spin-3/2 string operatB[T (bottom)
in the Hubbard model witty = 8.0t for T=0.33 and densitiegn)=0.95(left) and(n)=0.90(right). The lattice size was 86 in this case
due to the larger error bars of the string operators as compared to the normal photoemission spectrum.
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FIG. 15. Dynamical spin-ysAk,w) (left column, and charge-

correlation functionsy..(k,w) (right column, of a 8x8 Hubbard
lattice at U=8.0t and T=0.33 for densities (n)=0.95, (n)
=0.90, and(n)=0.80. The solid lines in the upper plots of the left
column give a spin-wave fit.

(©)

—0))

around momentunk= (7, ) of the (n)=0.93 simulation
are compared with the quasiparticle peak weight at momen-
tum k= (7, ) of a half-filled, (n)=1.0, simulation for dif- |
ferent temperatures. At half-filling, the Hubbard-I-like qua-
siparticle peakk=(m,7) and w~-—1.5% decreases in
spectral weight with decreasifigand disappears as the spin-
correlation lengtiwhich increases with decreasing tempera-
ture) reaches the lattice siZat T~0.2Q). In the underdoped
case for densityn)=0.93, the weights of the corresponding
peaks around momentuk= (7, ) located also decrease  FIG. 16. (a) Angle-resolved spectral functioA(k,w) of the
with decreasingT. Closer inspection of this pedlsee the 66 Hubbard lattice withJ = 8.0t and densityn)=0.93 versus,
inset of the center plab)] reveals, that this peak even raises (b) quasiparticle peak weight around momentlkw (7, ) for
slightly in binding energy with decreasing temperature, veryt™)=1.0 (8x8) and(n)=0.93 (6x6) versusT, and(c) magnetic
similar to the peak in the half-filled case. In a real photo-Susceptibility ys{k=(m,m),0=0] for densities(n)=1.0 (8x8)
emission experiment this peak would have dropped belo@nd{n)=0.93 (6x6) versusT. Please note the slight raisir
the typical resolution of roughly 10% spectral Wei%j’l”m a binding energy and vanishindin spectral welght\_/v_lth c_iecrea_smg
temperature off ~0.25. The spin-correlation lengthagain temperature of the peak locatedkat (7, 7) magnified in the inset

. - . . - . . of plot (b). The system size is only»6 in the doped case to avoid
derived by a fit of the equal-imaginary-times spin-correlation : ) -
. elb . altliZeAT) L _ the serious sign problems of the<® system aff =0.23. But also
function to a forma- |r|®-e~!""¢s41)] also shows similar be

S : the 6X6 data atT=0.25 suffer from sign problems at some mo-
havior in the underdoped and half-filled cases: the values f%entak=(0 0) andk=(/3,0). anp

the spin-correlation length arg;,=0.5-0.8, {;,=0.8—1.0,

and{s,=1.0—-1.3 in the underdoped case afig=0.6—-0.9,  creasingT in the underdoped case as the peaks at energies of
{s7~1.0-1.3, and/s,=1.6—1.9 at half-filling forT=0.50Q, w~—1.5 around momentunk=(7,7) do in the case of
T=0.33, andT=0.25, respectively. The spin susceptibility half-filling.

[shown in plot(c) of Fig. 16] also behaves very similar, but ~ The latter observation suggests a profound change of the
with changed magnitudes in the underdoped and in the half~ermi surface with temperature: as seen above, it is precisely
filled cases. These data suggest a similar temperature evolthe Hubbard-I-like band near(7) that crosses the chemi-
tion of the band structure of the Hubbard model in the un-cal potential and thus forms the Fermi surface in the doped
derdoped and half-filled cases driven by the temperaturezase. It is then quite clear that the “disappearance” of this
dependent spin-correlation lengify(T). Especially, we band with decreasing temperature must affect the Fermi sur-
expect the Hubbard-I-like quasiparticle peaks at energies dace in some dramatic way. Studies at zero temperature are
w~1.0t around momentunk=(7,7) to vanish with de- possible only by means of exact diagonalization. Analysis of

(ﬂ7”)7w
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0 1 ] ] ] ] 1 ]
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the single-particle spectrum shows the same *“rigid-band”’shown in Ref. 11 that the four-band structure which appears
behavior as at high temperatutéand analysis of the mo- in A(k,w) at lower temperatures can be explained in this
mentum distributiom(k) suggest’ that the doped holes ac- way, and our present numerical check by directly calculating
cumulate at the surface of the magnetic zone., the line  the spectra of “dressed electrons,” supports this interpreta-

(712,7w/2)— (7,0)] rather than arounds, ). tion.
This physical picture at half-filling can be extended into
V. SUMMARY the underdoped regime. This is most obvious in the single

particle spectral function, which stays almost unchanged in
In the present paper we have systematically studied thghe doped casé.e., the four-band structure and the “char-
temperature- and doping-dependent dynamics of the twogcter” of the bands as measured by the diagnostic opeyators
dimensional Hubbard model by finite-temperature QMCThe main change in fact consists in the chemical potential
simulations. Comparing the QMC single-particle spectralcutting gradually into thétop of the lower-Hubbard band,
function, the dynamical spin response and the spectral fungyrecisely as predicted by the Hubbard-I approximation. Con-
tions of suitably chosen diagnostic operators, different physitrary to widespread belief the “Fermi surface,” if deter-
cal regimes could be identified. In simplest terms there argnined by the Fermi-surface crossings of the dominant band
two quantities, which basically determine the single-particlethrough the chemical potential, does not satisfy the Luttinger
spectrum: the hole concentration and the spin-response funfheorem. Rather, for small hole concentrations the Fermi-
tion, whereby there is a certain relationship between the twosyrface volume is considerable larger than that for a slightly
At half-filling and high temperaturesT&t), the com-  |ess than half-filled free-electron band. Very similar conclu-
bined photoemission and inverse photoemission spectrujons have in fact been reached by a calculation of the elec-
A(k,w) displays two dispersive features, the upper- andron momentum distribution in the two-dimensioaD) t-J
lower-Hubbard band, roughly separated BY(=8t, in our  model by Puttikaet al3! Their calculation actually was a
papel. At these very high temperatures the system is in aigh temperature series expansion plus a'Radeapolation
spin-disordered state. We have demonstrated here that the |ower temperature, and it is encouraging that this method
well-known Hubbard-I approximation gives an excellent de-gives similar results to our QMC results, which are per-
scription of the single-particle spectrum in this state, reproformed at relatively high temperatures. In its range of appli-
ducing quantitatively both the single-particle dispersion ancability, i.e., in the absence of strong magnetic correlations
the distribution of spectral weight. This is by no meansand close to half-filling, the Hubbard-I approximation thus
trivial, since the Hubbard-1 approximation is dynamically works remarkably well, both at half-filling and in the doped
equivalent to a simplified effective Hamiltonian, which just case. We stress that this has profound implications for the
contains holelike I ;) and double occupancylike particles theoretical treatment of the model: perturbation expansions
in a simple biquadratic form. in U or partial and self-consistent resummations thereof, may
At lower temperatures T<0.33), the Hubbard-l ap- not be expected to give any meaningful results in this strong-
proximation needs to be improved; this is to be expectedcoupling/low-doping regime.
because it neglects all effects of spin correlations. In fact, the An interesting question is the possibility to verify our re-
temperature where deviations from Hubbard-l becomesults experimentally. As already mentioned above, a scan of
strong, coincides fairly well with the transition from a spin the temperature development Atk,») shows that the part
responseys{k,w) which is diffuse both in momentum and of the quasiparticle band neatr(m) (where the Fermi sur-
energy(with a spread of ordet) to a more “spin-wavelike”  face is locateflis losing weight with decreasing temperature.
response. In this regimesk,w) displays the characteristic In fact in ARPES experiments on underdoped cuprate super-
energy scalel=4t?/U, with its spectral weight being con- conductors, the “hole pocket” aroundm() seen in our
centrated at the AF wave vect@=(m, ). It should be simulations(and the expansion of Puttiket al.) is not ob-
noted that this “spin-wavelike” regime develops despite theserved, but rather a small “Fermi arc” neatrf2,7/2), ter-
fact that atT=0.33 the spin-correlations lengtlis(T) is  minated by the “pseudogap” around=(0) Although our
still short ranged €2 lattice spacings Only at the lower simulations do not allow us to make statements about the
temperatureT=0.1Q, Neel order spreads over the entire truly low temperatures in the experiments, we believe that
QMC block, creating an effectivéinite size Neel state. this suggests a strong temperature dependence of the single-
It is well-established by previous, in particular also QMC particle spectrum, with the temperature scale being set by the
work, that in this temperature regim&<0.33) new spec- exchange constaidt (which controls the degree of spin dis-
tral features appear. They have often been interpreted as foarden. The latter is rather large in copper oxides, so that the
“bands,” two “coherent” bands forming the topmost va- temperature regime studied in our simulations probably can-
lence and the lowest conduction band in the insulator plusiot be accessed experimentally in these materials. We note,
two “incoherent” bands, i.e., the remaining upper- andhowever, that an ARPES study for the 1D material
lower-Hubbard band featuresee, for example, Ref. 12 NaygV,05 which has a smaller exchange constant, has in-
Our present paper not only definitively identifies these fourdeed provided evidence for a stronf dependence of
bands but also clarifies their physical origin and their con-A(k,w).2? Clearly, it would be interesting to study the Fermi-
nection to the spin excitations. In simplest terms the emergsurface evolution in a 2D material with lower exchange con-
ing spin waves at lower temperatures provide the excitationstant.
that can “dress” the Hubbard quasiparticles, whence new As was the case at half-filling, the dynamical spin re-
bands corresponding to dressed holes/double occupancieponse plays an important role: throughout the Hubbard-I
appear in the single-particle spectrukfk,w). It has been phase at low doping, the spin response shows the sharp low-
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energy mode at+, 7). The simultaneous disappearance ofclude that in the overdoped regime we enter a new phase that
the four-band structure iA(k,w) and the low-energy spin most probably extends to the low-concentration limit where
response with scalé in the overdoped regime, then show the Nagaoka-matrix approximation becomes exact. Finally
again the close relationship between the two. The dressing @fe note that exact diagonalization studies at finite
holes by spin excitations apparently remains the most imporemperature¥ also show some evidence for a “crossover”
tant correction over Hubbard-I. In the overdoped regime theyetween different physical regimes at a hole concentration of
spin response is spread out over an energy range8tfand 1504

thus becomes more similar to the charge response. The

single-particle spectral function is most consistent with a
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