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We calculate the single-particle Green'’s function for a contact interaction with nearest-neighbor hopping on
a square lattice as a function of chemical potentialThis allows us to investigate the dependence of the
leading Fermi-liquid dependencies on the band structure as the Fermi surface evolves from a gqircle at
~ —4t to a square at.=0. The form of the single-particle self-ene@)(ﬁ,E) is determined by the density-
density correlation functiop(((i,w) which develops two peaks far= —2.5 unlike the parabolic band case.
Near haIf-fiIIing,X((i,w) becomes independent af, one-dimensional behavior, at intermediate values of
which leads to the one-dimensional behavioEi(*ﬁ,E). However, withu=< — 0.1t there is no influence on the
Fermi-liquid dependencies from the spin-density wave instability. We find that throughout the doping region
E(f),E) remains qualitatively the same as for the isotropic Fermi surface with quantitative differences. The
strongﬁ and E dependence of the off-shell self-eneyp,E) found earlier for the parabolic band is recov-
ered for u<—t but deviates from this develop fqu=—0.1t. The resonance peak width of the spectral
function A(pE), has a linear dependencedp due to theE dependence of the imaginary partd(p,E). We
point out that an accurate detailed form ﬁ)(ﬁ,E) would be very difficult to recover from angle-resolved
photoemission spectroscopy data for the spectral density. Since the leading corrections are determined by the
long wavelength particle-hole excitations, the results found here for the Hubbard model carry over to Hamil-
tonians with finite range interactions.

[. INTRODUCTION Firstly the conventional FL dependencies are present but
they are limited to anomalously low energy and the tempera-
The Fermi-liquid(FL) theory has been used to describeture scales induced by interactions among the fermions or by
the metallic phase in which the quasiparticle concept develthe band structure of the noninteracting fermions. In this pic-
ops from a free-electron model to study the metallicture the spectral density of the single-particle Green's func-
behavior Since the discovery of high-temperature supercontion is still characterized by a single-particlelike sharp reso-
ductivity in the cuprate$,the normal state properties of the nance for momenta very close to the Fermi surface whose
quasi-two-dimensional cuprates have been investigated exvidth becomes progressively broader as the quasiparticle
perimentally and theoretically. The experimental observamomenta move further from the Fermi surface where the
tions such as optical conductivifyelectrical resistivity¥®  quasiparticle approximation breaks down. The second possi-
and angle-resolved photoemission spectrosd@gyPES’®  bility can be viewed as an extreme case of the first possibility
do not follow the conventional FL behaviors. The absence ofn which the interactions are so strong that the quasiparticle
those FL dependencies has lead to a proposal that the Fipproximation breaks down over at least some region of the
model for these quasi-low-dimensional conductors should b&ermi surface. In this case the ground state is still a FL in
discarded in favor of a Luttinger liquid-like modeh which  that it has developed analytically out of the noninteracting
there is a separation of charge and spin degrees of freedom @miound state. This picture is supported by ARPES measure-
the elementary excitation. ment$**5on the underdoped cuprates although the quasipar-
However Castellangt al. have shown that the FL regime ticle peaks remain anomalously broad at the chemical
is recovered for dimensions greater than one, having invegotential’® In these experiments the Fermi surface seems to
tigated the instability of Luttinger liquidLL) by analyzing develop around a particular direction, signaled by a quasipar-
correlated fermions with anisotropic hopping amplitudes in dicle peak in the measured spectral density at low doping.
one-dimensional systefhand dimensional crossover from The region in which there is a Fermi surface defined by the
FL to LL using analytic continuation for noninteger dimen- vanishing of a quasiparticle peak grows with doping until the
sionst! Independent calculations show that arbitrarily smallwhole surface is establishéd’he absence of a quasiparticle
transverse hopping kills off LE?*® They also found no peak is referred to as a pseudogap. Previously this type of
breakdown of the perturbation theory. data for underdoped cuprates had been described in terms of
Given that the expected FL dependencies are based dwwle pockets that were shown to arise from strong correlation
parabolic banda spherical Fermi surface mogleind a qua-  effects in calculations of th¢-J model*’~2° However a
siparticle approximation and assuming that the ground stateearch for these pockets in the recent ARPES résults
is analytically continuous to the noninteracting ground stateinsuccessful.
as a function of interaction strength, the discrepancy between The leading two-dimensionglD) FL behavior for the
the FL picture and the experiment has two possibilities.on-shell self-energy with an isotropic band structure at zero
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temperaturet; = p?/2m—p?/2m is density-of-states, the Landau FL theory, the quasiparticle ap-
proximation to FL theory, can breakdovif.
The Hubbard model has been employed extensively in
524 O( 53:), (1a  theoretical investigations of the normal state properties of the
P cuprates because the tight-binding band structure and the
short-range Coulomb correlations result in an effective mag-
55/50“0(53), (1b) netic Hamiltonian fqr low doping, which i§ c_:onsistept with
the data. We investigate the FL characteristics of this model
as a function of chemical potential from w=—3t, where
the Fermi surface is a circle, o= —0.1t, near half-filling,
where it is almost a square. A 2D nearest-neighbor tight-

o

S'(p.ép) =~ aky— 5 BEl &

Y&

3"(p, &)= BEGN

where the cut-off energy, is isotropic?! This form for

3.(p,E) is generic for 2D Fermi liquids and is independent
of the details of the interaction term in the Hamiltonian. In binding band structuré;= — 2t cos,—2t cosp,—u will be

particular 3 depends only on long wavelength properties of e to determine the momentum and energy dependence of
the interaction among the quasiparticles. These leading onpq single-particle properties in the FL behavior wheie

shell dependencies of the imaginary part of the self-energyhe negrest-neighbor hopping constant. Near the half-fillin

had been determined previously by a number of autffcfs. 4 oo tg PP tgd by flat F  surf hi ﬁ
For low-density systeng, goes to zero so that the region of curve d pmr:jslz;re tchonrt;ecde " y ta ermi éurcacg, whic
the generic Fermi-liquid behavior is limited. Thg| 5| en- is a good model for the band structure o58,CaCuQ; in

ergy dependence in the real part is a mirror of the imaginar hich there is a strongly nested vect8The Hamiltonian

Cof th i 21n - th h the K Kroni ncludes a repulsive contact interaction that we treat in the
part of the se —energﬁgﬁngp rough the Kramers-rronig weak-coupling approximation. By introducing a cutqfffor

relation, which gives &2 contribution to the specific heatin  the interaction in the calculation, the influence of the long

. -|512 ; -
i o o T e s  sovoaponEvelengh neracions o(5E) in e ph channel has
9 ' P een investigated in this model and shown to determine the

; . 3/2 R N~ g R
'Eg (_gp gth)d ; te_rmd l::n thz (ﬁ)’gpt)’ f;/r\]/here Etn dfunctional form ofX(p,E) at low energies as in the para-
= (vzs~ 1)y, determined by the velocity of the zero-sound p, i o case. The evolution of the leading behaviors in

mode. The 2D calculation for a parabolic band shows n : - : - :
evidence of a breakdown in FL theory and is similar to th(g)[he real and imaginary part is determined by the changes in

3D case. The cut-off energgy has a corresponding cut-off the bareph propagator as the Fermi surface beco[nes more
temperatureT, which restricts the leading correction to the 2nisotropic. First we calculate the contribution¢p, &),

FL behavior in3"(p, &, ,T) so thatT behavior will take over the on-sh_ell self-energy, to the second order in the interac-
the FL behavior at Iosv-density lim# These cutoffs are de- ton that gives the functional form of the corrections and then

termined by the quasiparticle interactions and the charactefOnsider the effect of the repeated scattering from ghe

istic energy of the noninteracting systep. channel, which would indicate the influence of any instabili-
As the system goes to quasi-1D band, which can be mod€S in these behaviors. )

eled by considering different ratios gfandt, , for example, We next calculate the off-shell self-energy(p,E),

quasi-1D organic materials such asTMTSP,X or  Which is probed directly in angle-resolved photoemission

BEDT-TTF,? the van Hove singularity moves to the bot- through the spectral densitiy(ﬁ,E). It is found that the en-

tom of the band so that particle-holplf) pair contribution  ergy dependence of the imaginary parSp,E) leads to a
is more important than particle-particlp§) contribution for width of the quasiparticle resonanceAmf),E) which is lin-

the low-density limit. In this case the nature of the q1D FL o >
behavior remains similar to that of the 2D BLFor the ~©2f iNép even when the on-shel”(p,E) has the expected

parabolic band structure, thep channel, which leads to the ggln & dependence. Some authors have pointed to this linear
Cooper instability, is more important than thé channel in ~ dependence ig; as evidence for non-Fermi liquid character
3D and vice versa in 1D due to the density-of-states. Ndn the normal state properties of the cuprates. We point to the
particular set of diagrams is significant in 2Dbut at least  difficulty of extracting the functional form of off-shell self-
the second-order calculation is shared by both channels snergy from ARPES data on the spectral function.
that the functional dependence in either one will represent
the FL behavior. Thgp channel is discussed later in this
paper. Il. CALCULATIONS

The cuprates have an anisotropic band structure that can The form of the Hamiltonian is
lead to strong band-structure features in the density-of-states.
This anisotropy of the band structure is used in a number of
different models to explain the lack of the FL dependencies + + +
in experiment®?® The anisotropy has been invoked to de- H=2 &Cp,0Cpo T ﬂz UC; Cp 0 Cpr g0 Cpta.o
scribe transport data in the hot sffnd cold spot models. 7 p.p’.g,00" )
In the hot spot model, it is proximity to the SDW instability
that is important whereas in the cold spot model it is prox- ] .
imity to the superconducting phase through pairing fluctuaWhere ;= — 2t cosp,—2tcosp,—u is the electronic band
tions that leads to the anisotropy. More recentlyStructure andU is the electron-electron interaction that is
renormalization-group calculations have shown that if thelréated as a perturbation term. The single-particle self-
Fermi surface is dominated by a set of saddle points in thenergy,(p,E)=%'(p,E)+iX"(p,E) is given by
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R centrate on two directions in momentum space throughout
S(p,iE,) = —TE G(P—,iEqn—iw)Uer(Qi wp), the calculations, (1, and (1,1p, which are the extreme
do directions in the tight-binding band structure.
The accurate calculation of the density-density correlation

where G(p iE,) is the unperturbed temperature Green’ Sfunctlon is essential in this study. The correlation function
function andw, are the Bose Matsubara frequencies. Thex(d,»)=x’(q,w)+ix"(d,®) for the ph channel is given
U,¢s includes all theph diagrams in principle. As a function by

of filling the electronic band structure develops an aniso-

tropic Fermi surface that will end up with the quasi-one- f(&p+q) —F(&p)
dimensional square Fermi surface @t=0. As the system X(6,0) = E w— (£ i— &)
goes to half-filling, the density-of-states at the Fermi surface P praT Sp
approaches the van Hove singularity, which makespghe The imaginary part of the density-density correlation func-
channel more significant in the low-filling system. We con-tion for the tight-binding band structure is given by

4

- 1 O(&)0(—£5-g)8(py—py)
X (q,w>o)=—fdpr dpy - . . (53
4m | — 4t\/sirPq/2— [ w/4t — sin(p,— q,/2)sing,/2]?|
v _q| @ Atsin(p,—0,/2)sing,/2 dy
Py =sin At sing, /2 2 (5b)

in which subscriptsc andy can be switched wheg,<q, . The Kramers-Kronig relationship is used to calculate the real part
of the correlation function. The (1,8)or (0,1)g direction can be handled by the expression,

' oyt pf<p1> (PF max— P~ P1(P2) O (PF max— P3) ( ® ﬂ ©
w)— I P ,
Xi0q (4tsing/2)”— o Atsing/2
T
where ps(p)=cos —u/2t—cosfp)], pf’max=co§l[—1 A. Second-order calculation of2(5,§5)

—ul2t], p;=sin {w/4t sin@2)]—q/2 and  p,

=sin” Jw/4t sin(@/2)]+ q/2. Unlike the parabolic band struc- ca
ture the anisotropy of the system in the tight-binding band
structure restricts the solution of the delta function to differ-

The self-energy at zero temperature for the second-order
Iculation is given by

ent areas of the Fermi surface as the chemical potential aps,(p E>0)= E O(E—&;- (5,3—&)U2X(ﬁ E—¢ o
proaches to half-filing and forq in the (1,1) direction. For q 7
a givenw, the solutions of the delta function come from two @)

different regions of Fermi surface. Only one of these contribyyhere y(q, ») is the density-density correlation function or
ute for theq=(1,0)q direction, whereas both of them sur- the response function. Th{éln & behavior in the imaginary
vive in q=(1,1)q direction in the long wavelength limit. part of the self-energy comes from the linear energy depen-
First we discuss the results of the second-order calculatiogence inx”(&,w). In the self-energy calculation the energy
in the next section, which shows the FL energy dependenciegependence is mainly determined by the frequency depen-
as a function of band structure and we investigate the redence of the density-density correlation function rather than
peated scattering case and the Stoner instability. At halfthe step functions in the expression for the self-energy. The
filling with g=2ps, the correlation function diverges in both second-order contribution is common to both gteand the
the real and imaginary part that reflects the SDWpp channels and reveals the functional dependence of the FL
instability®**%° for arbitrary U. We chooseU =t throughout behavior as a function of chemical potential that we break
the calculation and consider valuesgof —0.1t. With these  into two regimes, 2D and quasi-1D.

parameters there are no instabilitiesd(ﬁ,w), which is dis-
cussed later in the section “Instabilities” in detail with phase
diagram. Except iru— 0 limit, there is no nesting phenom- As the chemical potentighk goes to zero, flatness of the
ena from short wavelengths that solely contribute to the cutFermi surface along the (1)direction develops as can be
off energy&, without affecting the logarithmic behavior. The seen in Fig. 1. Although the Fermi surface develops flat,
only sign of the nesting character of the Fermi surface igluasi-one dimensional, regions far~—t, no signature of
from long wavelengths. We consider two different regions ofquasi-one dimensional behavior is seerﬁl(rp E). Figure 2

u separately as in anisotropic 2D FL and quasi-1D FL. shows the evolution of the response function as a function of

1. Anisotropic 2D Fermi liquid: —4tsu<—t
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1.0 w in the directions of (1,@, (1,2)q, and (1,1 with g
=10 2s. The cutoff energiesp} and w} , come from the
two different Fermi surface regions through the delta func-
tion for a given momenturﬁ. Those contributions give two
different locations of the divergent peaké andw} . Asq
points in the (1,1) directionp; approaches zero frequency
so that the FL linear behavior is limited to small energies.
However even in the (1,8) direction, the linear piece sur-
vives and,(p,E) has FL behavior fop=—t. As ] goes
to zero energy, the linear behavior;{ﬁ(ﬁ,w) is limited to a
small w region above which”(q, ) is independent ok as
pu—0 as in the one-dimensional system. This will be dis-
: cussed later. Figure 2 shows the anisotropic band-structure
0 ToE o6 o4 02 00 02 o2 o6 os 1o  effects,w? andw} feature, in the particle-hole correlation
px/n function that first appear aroungd=2.5t. Except for theu

FIG. 1. The band structures for the tight-binding dispersign ~0 case, the(q, ») follows w/|q] at smallw that leads to

2 4 g -
= — 2t cosp,—2t cosp,—u with different values ofu. As band is  £;In & form for X" (p, &;).
filled up, the parabolic Fermi surface is changed to a square surface. The log behavior of the imaginary part of the on-shell

py/n
o
o

For u=—0.1t, there is a large region of flat Fermi surface. self-energy, shown in Fig. 3, comes from long wavelengths.
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FIG. 2. The correlation functions as a functiongofand directions fotﬁ| =0.017. (@) x” as a function ofu. Two peaks appeared ji’

for the anisotropic band structur@) " as a function of directions ig. Asﬁ points (1,0), w1 gets close taw,. (c) The locations of peaks
in the correlation functionw; and w,. As u—0 the location of the first peak approaches to zero.
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For small values of &5/, the contributions from longer in the next section. The cutoff, and 8 for the two direc-
wavelengths provide the§ ‘In&; dependencies whereas tions ofp reflect the growing anisotropy of the Fermi surface
shorter wavelengths lead to contributions to #fedepen- asu changes from-3t to —t.

dence. The log behavior is restricted by small energy and the
long wavelength|q|’'s. The anisotropic 2D systems with
—4t=pu=<—t shows the generic FL behavior with increas-

ing anisotropy inp. The correction term is enhanced by tun-  The purely one-dimensional response function with a
ing the chemical potential close to zero and will be discussedight-binding band structuré,= —2t cosp—u is

2. Quasi-1D behavior—t=p=<0

@( pf— ‘ g—sinfl(wmt sinq/2)’ —®< Pr— ’ g+sin*1(w/4t sinq/Z)‘)

X,:]I_D(qyw):

w 2)
( ~ |4tsing/2| | ®

N| =

|4t sin(q/2) V1 — (w/4t sing/2)?|

where p;=cos }(— u/2t) is the Fermi level for the one- shows that the quasi-particle Iifetime has the generic FL de-
dimensional system. In the small frequency limit there is nOpendence withu#0 with a g 2 term as a correction to
energy dependence u@lD, which has the corresponding g In & when u<0.

logarithmic divergence iry;p,

, 1 tar( pr—al2) B. RPA calculation of 3 (p, &)
X10(4:0=0)= ——aro Manp a2 © i
4 PiTq 1. Long-wavelength contribution
In the static limit this divergence aj=2p;, the so-called With 20 the long-wavelength limit contribution, which
perfect nesting vector, drives the Peierls instability via theis responsible fogf 2In & or g?3/2 for w~0, is renormalized in
Kohn anomaly, which leads to the metal-insulator P

RPA giving qualltat|vely the same dependencies. The effec-
tive interaction in Eq(2) for the repeated scattering involves
gvo independent channels, the symmetric and the antisym-
metric channels, and is given by

transition®®
Coming back to the 2D problem, at=0 the system is
one dimensional in that there is perfect nesting between par

on the Fermi surface along the (1}51()iirection. Nesting vec-
tor, (i=(1,l)7-r, gives a form

1 Ulx(dw) 3 Uix(ge)
T Uer(d, )= 210 ) U (oo
X'(m,m0u=0)= Zsgnw)N(w/2), (10 sx(.0) M@l

whereN(w) is the density-of-state that has logarithmic di- 018
vergence atv=0. Foru =0 the constant energy dependence ' ' ' ' '
at long wavelengths iny”(g,»), which is an one- 016 | N 1
dimensional effect, lasts up to zero enetfig. 4). Using the S~o — H="26(L0p
Kramers-Kronig relationship this energy dependence for o141 Y :ﬁiﬁt;fggp i
small|q| in x"(q,w) leads to a Inw divergences in the real od2 | \\\\ ——= p=—t,(L.Dp 1

part x (q w), signaling the breakdown of random-phase- -
approximation(RPA). The large|q| behavior is shown in
Fig. 5 where it is clear that the tn divergence iny”(q, ) is
rapidly destroyed ag goes away from half-filling.

For the|q| <10~ L& structure ofy”, two divergent peaks
identified byw} andw} , follows the discussion in the pre-
vious section. Due to rapid development of frequency inde-
pendence iny” for low energies ag.— 0, the quasi-1D cor-
rections to the§ =In gp behavior ofE”(p &p) at intermediate
values ofw have ag dependence in the quasi-particle life-
time. This is shown in Fig. 6 fopr=—0.1t in which the
Fermi surface is flat over an extended area. Fhecorrec-

ior to a small region.

ImE(P,ép)/F,

0.04

0.02

0.00
-10.0

FIG. 3. The imaginary part of self-energies in second-order cal-
culations for (1,0p and (1,1p directions withu = — 2t (thin lineg
tion sets in at;~0.02, which limits the generic FL behav- andu=—t (thick lines. Anisotropy increases in the magnitude of
The second-order calculationthe self-energy ag increases.

-8.0

-6.0 -4.0
I /o)

-2.0

0.0
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FIG. 4. The correlation functions faq=0.017 with different Fl_G' 6. The imaginary pgrzt of Se'f_'e“efg}’ in _secont_j-order cal-
us. As u—0, o independent behavior in low frequency is devel- culations withU=t shows £ behavior, which is comlr;% from

. 7 H 2 -
oped, which is characteristic of 1D feature at long wavelengths angequehcy 'ndependem R This crossover frong I §p to §§ ap-
the system shows a 1D effect. pears in the (1,@ direction. The dotted lines are fitted lines.

whereU,=U andU,=—U. In RPA, the imaginary part of Figure 9 shows the functional dependence of the cut-off
the self-energys”(p,&;) is just enhanced from the second- €nNergy in the imaginary part of the self-energy; and the
order calculations as in Fig. 7. The=—0.1t case includes coefficients;; for the tight-binding band structure. The an-
32 . . S isotropy from B grows as the band is filled, but near half-
gpl ﬁcorrectlons n the (1. _d|rect|on. The real Part filling the trend changes rapidly due to the flatness of the
3'(p,&p) has thegy[£5| correction to the; term, which  pand structure. The cutoff energy shows anisotropy even at
comes from the long wave:zlength and is shown in Fig. 8. The, = — 3¢, which is different from Fig. 2 in which the aniso-

&gl & term is a mirror of¢(In & term inX"(p, &;) through  tropic effects of splitting the two different peaks j(d, w)

the Kramers-Kronig relationship and the deviations from theare shown.

fits are consistent with both th&"(p,¢;) and X'(p,&p)

graphs. The on-shell calculation of thg|&;| term in the 2. Instabilities

E)lﬁg)sg'rsepcatlgg :ﬁ”rt]rs]’g jt_fc?r. ]tlhzftoéjifeiﬁg; (;r?da tﬁgcgéﬁggggn o As discussed above the correlation function itself does not
the £;|£;| term sets in earlier than the (1,1) direction. TheIndlcate any instability unlesg.=0 as in Fig. 4. For the
coefficients of theé;| ;| terms for the two directions are
different due to the anisotropy of the system.
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FIG. 7. The imaginary part of self-energies in RPA with=t
for (1,0)p and the (1,1p directions withu= —2t (thin lines and
pu=—0.1t (thick lines. For theu=—0.1t case,gel/2 behavior for
FIG. 5. The correlation functions far=2pg with different us. the (1,0p direction appears as in the second-order calculation.
As u—0 logarithmic divergence is rapidly developed ngar0. Both of the directions show the logarithmic behavior.
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FIG. 8. The real part of self-energy calculated in RPA with 6.0 . 4
=t shows§|§,;| behavior correction to theé; term. The slope 2 b)
indicates the power of the fit. The deviation from ¢, behav- 5.0 .
ior comes from the long-wavelength quasi-1D frequency depen- 40 |
dence ofy(q, ). '
= 30 b
\‘;
R
repulsive interaction the effective interaction in the antisym- = 20 j
metric channel could have an instability indicated by a pole 14| o O‘Eiﬂ’; 1
at w=0. The solution for it is given by U.=y'(q,0=0) ’
in RPA so that there are solutions for &ll's. Within the 00 O]
RPA the question is how fast the system goes to 1D as ¢ _;, | i
band approaches to half-filling.

In a parabolic band structure, the real part of the correla- -2.0

. SO T ~3.0 -25 -2.0 -1.5 -1.0 -0.5 0.0
tion function in the static limit is given by Wi

FIG. 9. The slopeg; (b) and the cutoff energie&,; (a) in RPA

1+(a/2py) , ; >
, (129 as a function ofu from the formX"(p,&;)= fﬁ,;gr;ln[g,;/goy,;].

n
2(9/2ps) " |1—(a/2ps)

~Jtai2p)*-1 - }

X10(9)=N;p(0)

X20(d)=N5p(0)

(12b
2.5
1 1-(q/2py)? ‘1+(q/2pf)\}
=N3p(0)| 5+ In ,
Yoo @=Naol0) 5% Zqrap) "1 (20
(129 g 20
g
where theN(0)’'s are thedensities-of-state on the Fermi §1.5
level for each dimension an@ is a step function. In 2D the =

correlation function has a cusp and a discontinuous deriva-%
tive atq=2p; due to the step function, whereas the 3D case™ 1.0
varies smoothly. Since the Fermi surface consists of two
points in 1D, the nesting conditiafy— §25f,5=0 is satisfied 05
over the entire Fermi surface resulting in a log divergence ai
g=2p;. This is responsible for the breakdown of the FL

ground state leading to a metal-insulator transition. 0'00_0 0.5 1.0 15 2.0 25 3.0
In Fig. 10 the static correlation function in the (16{1) (a/pe 9/pp)
direction has a developing divergence|é|t:2p$1'l) as the

system changes from 2D to 1D. Tkle function is repeated afpe system changes 2D to 1D as-0. A divergence grows a
|g|= 7 due to periodic lattice wherg|= 7 is at the middle  =2p; asu—0 in the (1,1} direction.

FIG. 10. The real part of the correlation function in static limit.
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FIG. 12. The imaginary part of the off-shell self-energy or

1<0and p<p; in second-order calculationE— £ limit 2”(5,E)
has constant energy terféln & for u=—2tin theln|E—¢;| scale

in the case op# p;. There is a significant deviation B”(p,E)
for u=—0.1 in the case op+#p;.

FIG. 11. The phase diagram of the system from
—Uc.x'(2p+,2ps,0)=0. For any strength of interaction at=0 the
FL ground state breaks down due to the divergence. Witht,
there is no SDW instability fopx<<—0.1t.

of the dip, right next to the peak. The= — 3t, which has
the Fermi surface close to circle, shows constamtepen-
dence with densities-of-state

the long-wavelength interactions responsible for the leading
corrections of interest in the present paper.

N(x)=lim lim X'(a,w) (13 C. Off-shell calculations, > (p,E): Spectral function

q-00—0 The spectral function can be measured by ARPES and is

as in the parabolic band case. The phase diadavs . is ~ diven by

calculated by 1= x'(2ps,2ps,0=0). With an interaction R

strength ofU =t, the Stoner instability does not occur until A(ﬁ E)= |2"(p,E)|

pu~—0.03. _In t.he (_:alculatlons d|scqssed in this papér ’ [E_gﬁ_zl(p’E)]2+[EI!(p,E)]2'

=t (dotted line in Fig. 11 so that the instability of the sys-

tem is absent except when~0 for U<t. where the off-shell self-energies are involved. For large cut-
This conclusion is supported by a recent renormalizationoff momentumq., and the parabolic band structure, the

group analysis of the Hubbard model by Halboth andleading contributions to the imaginary part of off-shell self-

Metznef’ who found that the tendency towards the antifer-energy that determines the width of the spectral function has

romagnetic nesting instability is limited t@= — 0.1t for U a for

=t as evidenced by a growing spin susceptibility. They

(14

found in fact thatd,2_ 2 superconductivity fluctuations pro- 2”(5,E)=C[{§,23+ 2£5(E—¢&p)Hn(max &5, |E[])
vide the dominant susceptibility further from half-filling but )
even these were suppressed beypnd—0.01. The influ- +(E= &) In([E= &1, (19

ence of superconducting fluctuations are missing in the -
present calc%latioﬁ‘? g g whereC is a constant. In Fig. 122”(p,E)—2”(§,;:,;)']/(E
Going beyond this weak-coupling region is difficult be- —ép) VS INE—£;| is plotted for E—£;<0. In the limit (E
cause of the uncontrolled nature of the RPA. One such at- &p) —0 We find Z2&gin|&;| consistent with Eq(15) for a
tempt is the so-called self-consistent fluctuation exchang@ivenp. For u=—2t the Fermi surface is close to parabolic
approximation (FLEX) which however is equally uncon- band structure and the off-shell self-energy hasta- ;)
trolled. It has been pointed out by Vilk and Trembfashat  independent behavior for small values & £;) as in the
the absence of vertex corrections in the FLEX leads to evefd. (15). For u=—0.1t theX"(ps,E) is consistent with Eq.
more severe breakdowns of sum rules than does the RPAS). However forp=0.95, aIthoughE”(ﬁ,g,;) still has

discussed here. Vilk and Tremblay have proposed an i,mfhe gz-ln & dependenceE”(ﬁ,E) is seen to deviate from the
provement in RPA to ensure that the sum rules are Sat'Sf'e(ijormpgiven in Eq.(15). The dependence of in Fig. 13
In their approach the influence of the cross channels in thghows &2n[E| bellwavic;r foru= — 2t only for p=p; and the

ph expansion on the vertices is mimicked by letting the ir- - : ;
reducible vertices in the charge and spin channels be ind (ore complicated dependence shown in €4) is found for

pendent of each and chosen to satisfy sum rules. In this a pl#ps. This is the case for other values pf also. This
proach SDW fluctuations abovie=0 lead to the breakdown indicates that the forr&®In E for 2 (p,E) frequently used in
of the quasiparticle approximation fdd=4t. These ap- the literature is a poor approximatitri! to the more com-
proaches have been limited to finite size systems and so migdicated function ofﬁ andE.
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FIG. 13. The graph shows that the off-shell self-energy follows ) ) )
E2In E only whenp=p; even foru = — 2t, which is close to para- FIG. 14. The spectral functions in repeated scattering calcula-
bolic band structure. tions for u=—2t in (1,1)p (solid line9 and (1,0p (dotted line$

directions. The quasiparticle peaks are well definedpasp; .
ARPES data is analyzed in terms of the single-particleAsSymmetry in the resonance peak appears wherp; .
spectral density. The extent to which a quasiparticle reso-

nance is well defined is characterized by the width of the Zay(ﬁ’Ea)
resonance at half-maximum. This is frequently thought of as L5~ i P , (17)
a measure of the quasiparticle lifetime where the momentum \/1+[25(92"(5,5/(95|E:E-]2

p

dependence is taken as a test of the Fermi-liquid character of
the material under investigation. When the quasiparticle ap- a2 1 wy
proximation is applied, the spectral function is where z;=[1- X (p’E)/‘ﬂ,ElE:Eﬁ] _ unless (p,E) hag
strong energy dependencies. In this calculation we find 1
R - —2;=3% showing that there is very little frequency depen-
A(p,E)= 4 (16)  dence in the real pat’(p,E)~3'(p, ;). Figure 16 shows
the agreement between the half maximum width and the on-

where E; is the location of the resonance afig is half-  shell self-energy at low energieb;~X"(p,é;) for u=
maximum width of the peak. Here we apply this analysis to— 2t andu = —0.1t. As in the figure the generic FL logarith-
the Hubbard model. mic behavior is restricted to low energies. For jhe —2t

The spectral functions are calculated for flhe — 2t and caseF5 shows linear behavior IﬁF; at higher energies which
w=—0.1t cases and the widths of the resonance at the haftre not extrapolated to zero energy. Clearly the assumption
of the peakl; are plotted as a function @j;<<0. The spec- that a deviation froml";~ gsln & or 5'23 is an indication of
tral functions are picked along to Y point and toM point. ~ non-Fermi liquid is not correct. We note that no sign of the
The quasiparticle peaks are well defined angasp;, the  complicatedt; andE dependencies & (p,E), shown in Eq.
resonance gets sharper for the (p,@&nd (1,1p directions  (15), comes out of this analysis of ARPES data. It seems to
in Fig. 14 for u=—2t. The u=—0.1t case in Fig. 15 has us unlikely that it will be possible to recover these depen-
the same feature except for a growing anisotropic feature fodencies without prior knowledge of the functional form with
the (1,1)p direction deep inside the Fermi surface. There iswhich to fit the data.
no sign of the pseudogap with the parameters used in this
calculations forw=—2t andu=—0.1t. As p—ps the reso-
nance peak does not show symmetry atioatE; since the
imaginary part of the self-energy is always zero 0.
A(p,E) is only symmetric abouE=0 for |p|=|p;|. The Fukuyamaet al*® have investigated the contribution to
smallest deviation fronp; leads to strongly nonsymmetric 3”(p,E) for the pp channel using the parabolic dispersion.
A(p,E). This indicates that one can be misled by assumingrhe contribution toS(p,E) in second order in the interac-
symmetry for the ARPES data cutoff by Fermi Dirac distri- tion can be thought of as being in either bk or pp chan-
bution functio? to get the single-particle properties near nel. In the second-order calculation the difference between
Fermi surface. R ) the two channels is that tr{éln & contribution comes from

If we expandA(p,E) nearE;=§;+2'(p,E), which is  propagating particle or hole pairs with momerta 2p; in
approximately the location of the resonance peak sincéhe pp channel whereas it comes from long-wavelength
> (p.E) is continuous, the width of half maximum is given particle-hole pairs in theph channel. Taking the second-
by the on-shell self-energy order diagram to be in thpp channel contribution, its con-

R 2>
(E-Ep?+T;

[lI. CONTRIBUTIONS FROM THE PARTICLE-PARTICLE
CHANNEL
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FIG. 16. The comparison betweéty and on-shell self-energy
n=-0.1t, (1,0)p for w=— 2t (thin lines and = — 0.1t (thick lines. The FL behav-

80 ' ' ' ' ' ior gslng,; is restricted to low energies.
p=0.94pf
70 | ] )
b) propagator K(Q,w) ~(L/w+2u)f(n), where f(u) is a
60 ] polynomial inu and gives a vanishingly small contribution
to X(p,E), where the consequences of the almost nested
50 ] Fermi surface would be expected to be greatest.
o p=0.9pf There have been a number of investigations of collective
s40p ] modes in thgp channel. Engelbrecht and Randétitound
a collective mode below the two-particle continuum in a
30 ¢ ] bound state of hole pairs that arises because of the finite
density-of-states at bottom of the band in 2D. The contribu-
20¢ ] tion of this mode to the self-energy is given BY(p;,E)
b ] ~ w|E/E4|%? whereu is the chemical potential arf, is an
energy scale describing the interaction. So this mode does
0 ’ not contribute to the leading dependencies ifi(p,E).

14 -2 -0 -08 -06 -04 -02 00 Yand™ and more recently Demler and Zhdfdave found
E/t evidence for a different singlet and triplet collective mode in
FIG. 15. The spectral functions in repeated scattering calcula;Ehe pp channel that exists in a narrow region of mome”t‘?‘
near (@r, ). The narrow range of momenta suggests that this

tions for.==0.1t in the (1,1p (a) and (1,0p (b) directions. The 40" o1 have little effect on the low-energy properties of
quasiparticle peaks are well defined @s> p;. Asymmetry in the S (p.E)

resonance peak appears for (pHeep inside of the Fermi surface. In summary neither the continuum nor collective-mode
o o contributions from thgp channel contribute to the leading

tribution is screened by repeated scattering in that channegependencies i (p,E).

In contrast to the case of an attractive interaction there is no

Cooper instability but instead the contribution is reduced by

the repeated scattering. Unlike the situation in prechan- IV. CONCLUSION AND SUMMARY

nel the result is not simply an enhancement or reduction of

the contribution from the second-order diagram givingth

&In &, contribution toX"(p,&y) again. Rather there is a change the FL dependencies. We have done that by calculat-
strong momentum dependence in the rea2I part of ile  hg the single-particle properties in the Hubbard model in
propagator ag~2p¢, which eliminates thegyIn §, depen-  \yhich the shape of the Fermi surface is changed from a
dence. As a result the effect of including thp channelina  ¢jrcle to a square as the value of the chemical potential is
calculation of2(p,E) is to remove the contribution of the y4ried fromu=—3t to w=—0.1t. In these calculations we
second-order term in the interaction from leading dependemaye used a weak-coupling approximation in which the mag-
cies. Thepp contribution toZ (p,E) in a tight-binding band  pitude of the interactiorU is far from the values for the
structure remains to be worked out in detail. However thegpyy instability except foru>—0.5. Numerical coeffi-
result is unlikely to be quantitatively different from the result ¢jents in the functional forms of the imaginary part of the
for the parabolic band. Indeed for particle pairs/hole pairsseif-energy reflect the anisotropy of the band structure but it
with net momentunmQ= (7, ) it is easy to show that the is not until the Fermi surface is almost a square that the first

We have demonstrated that, within weak-coupling RPA,
e anisotropy in band structure does not qualitatively
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sign of the quasi-1D behaviofglz appears. Asu—0 the model in the RPA and that any treatment that arrives at
non-FL behavior using the weak-coupling RPA should be
viewed with caution.

Detailed ARPES data is available on the cuprates also
which shows the quasiparticle resonance is absent in the un-
3"(p, ¢p) in (1,0)p direction. Theé;|¢;| term is also found  derdoped region over an extended range of doping. This is
inX’ (p,g 5) as in the parabolic band case. The instability ofunderstood in terms of a pseudogap in which weight in the
the system is slowly developed as the system goes to 1Bpectral density is shifted to the incoherent background at
exceptu~0. higher energies. In the RPA treatment considered here the

The off-shell self-energy is shown to have a simjfaand  quasiparticle resonances are found to be well defined even at
E dependence as in the parabolic band with deviations as the=—0.1t, where the Fermi surface is almost perfectly
Fermi surface develops flat regions. In this region we connested and the Stoner factor is-U x(Q,0)=1/3. Even for
firmed the half maximum width of the resonance peak forthis extreme value of. no evidence is found for pseudogap
spectral function is approximated by the on-shell self-energybehavior. This suggests that the Hubbard model does not
Asymmetry in the resonance peak grows fiof— p; due to ~ describe the low-energy behavior of the cuprates in the RPA.
E”(p E=0)=0. This is also the case deep inside the Fermi As one goes further away from the weak-coupling param-

eter region it becomes difficult to justify the simple RPA
surface foru=—0.1t and the (1,1)p| direction. In the tight-

weak-coupling approximation used here. SDW and super-
binding band structure, the quasiparticle picture is well de- Tonducting fluctuations are likely to play a role as other au-
fined for u<—0.1t and|U|=t.

thors have pointed out. Their effects on the leading depen-
The results found here for the Hubbard model for the . - .
dencies from long wavelengths iB(p,E) remain to be

leading dependence éf(f) E) are applicable to more gen- investigated.
eral Hamiltonians in which the interaction among the quasi- | the single band Hubbard model is to describe the cu-
particles depends on momentum transfer since these Iead"bgates one needs to go beyond RPA. Tremblay and co-
dependencies in%(p,E) are determined by the long- workers have introduced a variation of the vertices in the
wavelength limit of the quasiparticle interaction rather thansinglet and triplet channels with doping on the basis of sum
its detailed form. The results demonstrate that there is qualrules. This leads to very strong interaction with damped
tative change in the andE dependence o (p,E) only for ~ magnons of magnetically orderdd=0 phase wherJ =4t
very close proximity to nesting features in the band structureasT— 0. These calculations are carried out a finite size sys-
The single band Hubbard model has been used exteriems and cannot address the issues discussed here. Even
sively as a model for the normal state properties of cuprateshough increasing the magnitude dfin the RPA will give
Many of these investigations have emphasized proximity tajualitatively the same behavior &—0, there are likely to
van Hove singularit$??®4"%%o explain derivations from FL  be large quantitative corrections especially as the Stoner cri-
temperature dependencies and even so-called the margirterion for an instability is approached. An alternative to this
FL behavior of3(p,E). The approximation used in these Weak-coupling approach is to investigate the FL behavior of
papers lead to non-FL behavior. The present results shothe t-J model and mvesugatE(p E) due to higher powers
that no such effects are present in the single band Hubbarmf 1/U for this model. This remains to be investigated.

magnitude 012”(5,55) increases with increasing anisotropy.
Also, in the u—0 limit, an « independent region in

x"(d,) grows, which is responsible fof?f/2 behavior in
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