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Evolution of Fermi-liquid behavior with doping in the Hubbard model:
Influence of the band structure
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We calculate the single-particle Green’s function for a contact interaction with nearest-neighbor hopping on
a square lattice as a function of chemical potentialm. This allows us to investigate the dependence of the
leading Fermi-liquid dependencies on the band structure as the Fermi surface evolves from a circle atm

;24t to a square atm50. The form of the single-particle self-energyS(pW ,E) is determined by the density-

density correlation functionx(qW ,v) which develops two peaks form*22.5t unlike the parabolic band case.

Near half-filling,x(qW ,v) becomes independent ofv, one-dimensional behavior, at intermediate values ofv,

which leads to the one-dimensional behavior inS(pW ,E). However, withm<20.1t there is no influence on the
Fermi-liquid dependencies from the spin-density wave instability. We find that throughout the doping region

S(pW ,E) remains qualitatively the same as for the isotropic Fermi surface with quantitative differences. The

strongpW andE dependence of the off-shell self-energyS(p,E) found earlier for the parabolic band is recov-
ered for m&2t but deviates from this develop form*20.1t. The resonance peak width of the spectral

functionA(pW E), has a linear dependence injpW due to theE dependence of the imaginary part ofS(pW ,E). We

point out that an accurate detailed form forS(pW ,E) would be very difficult to recover from angle-resolved
photoemission spectroscopy data for the spectral density. Since the leading corrections are determined by the
long wavelength particle-hole excitations, the results found here for the Hubbard model carry over to Hamil-
tonians with finite range interactions.
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I. INTRODUCTION

The Fermi-liquid~FL! theory has been used to descri
the metallic phase in which the quasiparticle concept de
ops from a free-electron model to study the meta
behavior.1 Since the discovery of high-temperature superc
ductivity in the cuprates,2 the normal state properties of th
quasi-two-dimensional cuprates have been investigated
perimentally and theoretically. The experimental obser
tions such as optical conductivity,3 electrical resistivity,4–6

and angle-resolved photoemission spectroscopy~ARPES!7,8

do not follow the conventional FL behaviors. The absence
those FL dependencies has lead to a proposal that the
model for these quasi-low-dimensional conductors should
discarded in favor of a Luttinger liquid-like model9 in which
there is a separation of charge and spin degrees of freedo
the elementary excitation.

However Castellaniet al. have shown that the FL regim
is recovered for dimensions greater than one, having inv
tigated the instability of Luttinger liquid~LL ! by analyzing
correlated fermions with anisotropic hopping amplitudes i
one-dimensional system10 and dimensional crossover from
FL to LL using analytic continuation for noninteger dime
sions.11 Independent calculations show that arbitrarily sm
transverse hopping kills off LL.12,13 They also found no
breakdown of the perturbation theory.

Given that the expected FL dependencies are base
parabolic band~a spherical Fermi surface model! and a qua-
siparticle approximation and assuming that the ground s
is analytically continuous to the noninteracting ground st
as a function of interaction strength, the discrepancy betw
the FL picture and the experiment has two possibiliti
PRB 620163-1829/2000/62~7!/4288~12!/$15.00
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Firstly the conventional FL dependencies are present
they are limited to anomalously low energy and the tempe
ture scales induced by interactions among the fermions o
the band structure of the noninteracting fermions. In this p
ture the spectral density of the single-particle Green’s fu
tion is still characterized by a single-particlelike sharp re
nance for momenta very close to the Fermi surface wh
width becomes progressively broader as the quasipar
momenta move further from the Fermi surface where
quasiparticle approximation breaks down. The second po
bility can be viewed as an extreme case of the first possib
in which the interactions are so strong that the quasipart
approximation breaks down over at least some region of
Fermi surface. In this case the ground state is still a FL
that it has developed analytically out of the noninteract
ground state. This picture is supported by ARPES meas
ments14,15on the underdoped cuprates although the quasi
ticle peaks remain anomalously broad at the chem
potential.16 In these experiments the Fermi surface seem
develop around a particular direction, signaled by a quasip
ticle peak in the measured spectral density at low dopi
The region in which there is a Fermi surface defined by
vanishing of a quasiparticle peak grows with doping until t
whole surface is established.8 The absence of a quasipartic
peak is referred to as a pseudogap. Previously this typ
data for underdoped cuprates had been described in term
hole pockets that were shown to arise from strong correla
effects in calculations of thet-J model.17–20 However a
search for these pockets in the recent ARPES results8 was
unsuccessful.

The leading two-dimensional~2D! FL behavior for the
on-shell self-energy with an isotropic band structure at z
4288 ©2000 The American Physical Society
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temperaturejpW5pW 2/2m2pf
2/2m is

S8~pW ,jpW !52ajpW2
p

2
bjpW ujpW u2gujpW u5/21O~jpW

3
!, ~1a!

S9~pW ,jpW !5bjpW
2lnujpW /j0u1O~jpW

4
!, ~1b!

where the cut-off energyj0 is isotropic.21 This form for
S(pW ,E) is generic for 2D Fermi liquids and is independe
of the details of the interaction term in the Hamiltonian.
particularb depends only on long wavelength properties
the interaction among the quasiparticles. These leading
shell dependencies of the imaginary part of the self-ene
had been determined previously by a number of authors.22,23

For low-density systemj0 goes to zero so that the region
the generic Fermi-liquid behavior is limited. ThejpW ujpW u en-
ergy dependence in the real part is a mirror of the imagin
part of the self-energybjpW

2ln jpW through the Kramers-Kronig
relation, which gives aT2 contribution to the specific heat i
addition to that from zero sound.24 The ujpW u5/2 term is the
leading zero-sound contribution. This term has a correspo
ing (jpW2j th)3/2 term in S9(pW ,jpW ), where j th
5(vzs2v f)pf , determined by the velocity of the zero-soun
mode. The 2D calculation for a parabolic band shows
evidence of a breakdown in FL theory and is similar to t
3D case. The cut-off energyj0 has a corresponding cut-o
temperatureT0, which restricts the leading correction to th
FL behavior inS9(p,jp ,T) so thatT behavior will take over
the FL behavior at low-density limit.21 These cutoffs are de
termined by the quasiparticle interactions and the charac
istic energy of the noninteracting systemEf .

As the system goes to quasi-1D band, which can be m
eled by considering different ratios oftx andty , for example,
quasi-1D organic materials such as (TMTSF)2X or
BEDT-TTF,25 the van Hove singularity moves to the bo
tom of the band so that particle-hole (ph) pair contribution
is more important than particle-particle (pp) contribution for
the low-density limit. In this case the nature of the q1D F
behavior remains similar to that of the 2D FL.26 For the
parabolic band structure, thepp channel, which leads to th
Cooper instability, is more important than theph channel in
3D and vice versa in 1D due to the density-of-states.
particular set of diagrams is significant in 2D,27 but at least
the second-order calculation is shared by both channel
that the functional dependence in either one will repres
the FL behavior. Thepp channel is discussed later in th
paper.

The cuprates have an anisotropic band structure that
lead to strong band-structure features in the density-of-sta
This anisotropy of the band structure is used in a numbe
different models to explain the lack of the FL dependenc
in experiment.28,29 The anisotropy has been invoked to d
scribe transport data in the hot spot30 and cold spot31 models.
In the hot spot model, it is proximity to the SDW instabilit
that is important whereas in the cold spot model it is pro
imity to the superconducting phase through pairing fluct
tions that leads to the anisotropy. More recen
renormalization-group calculations have shown that if
Fermi surface is dominated by a set of saddle points in
t
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density-of-states, the Landau FL theory, the quasiparticle
proximation to FL theory, can breakdown.32

The Hubbard model has been employed extensively
theoretical investigations of the normal state properties of
cuprates because the tight-binding band structure and
short-range Coulomb correlations result in an effective m
netic Hamiltonian for low doping, which is consistent wit
the data. We investigate the FL characteristics of this mo
as a function of chemical potentialm from m523t, where
the Fermi surface is a circle, tom520.1t, near half-filling,
where it is almost a square. A 2D nearest-neighbor tig
binding band structurejpW522t cospx22t cospy2m will be
used to determine the momentum and energy dependen
the single-particle properties in the FL behavior wheret is
the nearest-neighbor hopping constant. Near the half-filli
curvedM̄ points are connected by flat Fermi surface, whi
is a good model for the band structure of Bi2Sr2CaCu2O8 in
which there is a strongly nested vector.33 The Hamiltonian
includes a repulsive contact interaction that we treat in
weak-coupling approximation. By introducing a cutoffqc for
the interaction in the calculation, the influence of the lo
wavelength interactions onS(pW ,E) in the ph channel has
been investigated in this model and shown to determine
functional form ofS(pW ,E) at low energies as in the para
bolic band case. The evolution of the leading behaviors
the real and imaginary part is determined by the change
the bareph propagator as the Fermi surface becomes m
anisotropic. First we calculate the contribution toS(pW ,jpW ),
the on-shell self-energy, to the second order in the inter
tion that gives the functional form of the corrections and th
consider the effect of the repeated scattering from theph
channel, which would indicate the influence of any instab
ties in these behaviors.

We next calculate the off-shell self-energyS(pW ,E),
which is probed directly in angle-resolved photoemiss
through the spectral densityA(pW ,E). It is found that the en-
ergy dependence of the imaginary part ofS(pW ,E) leads to a
width of the quasiparticle resonance inA(pW ,E) which is lin-
ear injpW even when the on-shellS9(pW ,E) has the expected
jpW

2ln jpW dependence. Some authors have pointed to this lin
dependence injpW as evidence for non-Fermi liquid charact
in the normal state properties of the cuprates. We point to
difficulty of extracting the functional form of off-shell self
energy from ARPES data on the spectral function.

II. CALCULATIONS

The form of the Hamiltonian is

H5(
pW ,s

jpWcpW ,s
†

cpW ,s1 (
pW ,p8W ,qW ,s,s8

UcpW ,s
†

cpW 8,s8cpW 82qW ,s8
†

cpW 1qW ,s ,

~2!

where jpW522t cospx22t cospy2m is the electronic band
structure andU is the electron-electron interaction that
treated as a perturbation term. The single-particle s
energy,S(pW ,E)5S8(pW ,E)1 iS9(pW ,E) is given by
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S~pW ,iEn!52T(
qW ,v l

G~pW 2qW ,iEn2 iv l !Ue f f~qW ,ivn!,

~3!

where G(pW ,iEn) is the unperturbed temperature Green
function andv l are the Bose Matsubara frequencies. T
Ue f f includes all theph diagrams in principle. As a function
of filling the electronic band structure develops an ani
tropic Fermi surface that will end up with the quasi-on
dimensional square Fermi surface atm50. As the system
goes to half-filling, the density-of-states at the Fermi surfa
approaches the van Hove singularity, which makes theph
channel more significant in the low-filling system. We co
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centrate on two directions in momentum space through
the calculations, (1,0)p and (1,1)p, which are the extreme
directions in the tight-binding band structure.

The accurate calculation of the density-density correlat
function is essential in this study. The correlation functi
x(qW ,v)5x8(qW ,v)1 ix9(qW ,v) for the ph channel is given
by

x~qW ,v!5(
pW

f ~jpW 1qW !2 f ~jpW !

v2~jpW 1qW2jpW !
. ~4!

The imaginary part of the density-density correlation fun
tion for the tight-binding band structure is given by
part
x9~qW ,v.0!5
1

4p
E dpxE dpy

Q~jpW !Q~2jpW 2qW !d~py2py* !

u24tAsin2qy/22@v/4t2sin~px2qx/2!sinqx/2#2u
~5a!

py* 5sin21Fv24t sin~px2qx/2!sinqx/2

4t sinqx/2
G1

qy

2
~5b!

in which subscriptsx andy can be switched whenqy,qx . The Kramers-Kronig relationship is used to calculate the real
of the correlation function. The (1,0)q or (0,1)q direction can be handled by the expression,

x10q9 ~v!5
1

2p

pf~p1!Q~pf ,max
2 2p1

2!2pf~p2!Q~pf ,max
2 2p2

2!

A~4t sinq/2!22v2
QF12S v

4t sinq/2D
2G , ~6!
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where pf(p)5cos21@2m/2t2cos(p)#, pf ,max5cos21@21
2m/2t#, p15sin21@v/4t sin(q/2)#2q/2 and p2

5sin21@v/4t sin(q/2)#1q/2. Unlike the parabolic band struc
ture the anisotropy of the system in the tight-binding ba
structure restricts the solution of the delta function to diff
ent areas of the Fermi surface as the chemical potentia

proaches to half-filling and forqW in the (1,1)q direction. For
a givenv, the solutions of the delta function come from tw
different regions of Fermi surface. Only one of these contr

ute for theqW 5(1,0)q direction, whereas both of them su

vive in qW 5(1,1)q direction in the long wavelength limit.
First we discuss the results of the second-order calcula

in the next section, which shows the FL energy dependen
as a function of band structure and we investigate the
peated scattering case and the Stoner instability. At h
filling with q52pf , the correlation function diverges in bot
the real and imaginary part that reflects the SD
instability34,35 for arbitrary U. We chooseU5t throughout
the calculation and consider values ofm<20.1t. With these

parameters there are no instabilities inx(qW ,v), which is dis-
cussed later in the section ‘‘Instabilities’’ in detail with pha
diagram. Except inm→0 limit, there is no nesting phenom
ena from short wavelengths that solely contribute to the c
off energyj0 without affecting the logarithmic behavior. Th
only sign of the nesting character of the Fermi surface
from long wavelengths. We consider two different regions
m separately as in anisotropic 2D FL and quasi-1D FL.
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A. Second-order calculation ofS„p¢ ,jp¢…

The self-energy at zero temperature for the second-o
calculation is given by

S~pW ,E.0!5(
qW

Q~E2jpW 2qW !Q~jpW 2qW !U2x~qW ,E2jpW 2qW !,

~7!

wherex(qW ,v) is the density-density correlation function o
the response function. ThejpW

2ln jpW behavior in the imaginary
part of the self-energy comes from the linear energy dep
dence inx9(qW ,v). In the self-energy calculation the energ
dependence is mainly determined by the frequency dep
dence of the density-density correlation function rather th
the step functions in the expression for the self-energy. T
second-order contribution is common to both theph and the
pp channels and reveals the functional dependence of the
behavior as a function of chemical potential that we bre
into two regimes, 2D and quasi-1D.

1. Anisotropic 2D Fermi liquid:À4tÏmÏÀt

As the chemical potentialm goes to zero, flatness of th
Fermi surface along the (1,1)p direction develops as can b
seen in Fig. 1. Although the Fermi surface develops fl
quasi-one dimensional, regions form ;2t, no signature of
quasi-one dimensional behavior is seen inS(pW ,E). Figure 2
shows the evolution of the response function as a function
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FIG. 1. The band structures for the tight-binding dispersionjpW

522t cospx22t cospy2m with different values ofm. As band is
filled up, the parabolic Fermi surface is changed to a square sur
For m520.1t, there is a large region of flat Fermi surface.
m in the directions of (1,0)q, (1,2)q, and (1,1)q with q
51022p. The cutoff energies,v1* andv2* , come from the
two different Fermi surface regions through the delta fun

tion for a given momentumqW . Those contributions give two

different locations of the divergent peaksv1* andv2* . As qW

points in the (1,1) direction,v1* approaches zero frequenc
so that the FL linear behavior is limited to small energie
However even in the (1,1)q direction, the linear piece sur

vives andS(pW ,E) has FL behavior form52t. As v1* goes

to zero energy, the linear behavior inx9(qW ,v) is limited to a

smallv region above whichx9(qW ,v) is independent ofv as
m→0 as in the one-dimensional system. This will be d
cussed later. Figure 2 shows the anisotropic band-struc
effects,v1* and v2* feature, in the particle-hole correlatio
function that first appear aroundm52.5t. Except for them

;0 case, thex9(qW ,v) follows v/uqW u at smallv that leads to

jpW
2ln jpW form for S9(pW ,jpW ).

The log behavior of the imaginary part of the on-sh
self-energy, shown in Fig. 3, comes from long wavelengt

ce.
FIG. 2. The correlation functions as a function ofm and directions foruqW u50.01p. ~a! x9 as a function ofm. Two peaks appeared inx9

for the anisotropic band structure.~b! x9 as a function of directions inqW . As qW points (1,0)qW , v1 gets close tov2. ~c! The locations of peaks
in the correlation function,v1 andv2. As m→0 the location of the first peak approaches to zero.
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For small values ofujpW /tu, the contributions from longe
wavelengths provide thejpW

2ln jpW dependencies wherea

shorter wavelengths lead to contributions to thejpW
2 depen-

dence. The log behavior is restricted by small energy and
long wavelengthuqW u ’s. The anisotropic 2D systems with
24t<m<2t shows the generic FL behavior with increa
ing anisotropy inpW . The correction term is enhanced by tu
ing the chemical potential close to zero and will be discus
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in the next section. The cutoffj0 and b for the two direc-

tions ofpW reflect the growing anisotropy of the Fermi surfa
asm changes from23t to 2t.

2. Quasi-1D behavior:ÀtÏµÏ0

The purely one-dimensional response function with
tight-binding band structurejp522t cosp2m is
x1D9 ~q,v!5
1

2

QS pf2U q

2
2sin21~v/4t sinq/2!U2QS pf2U q

2
1sin21~v/4t sinq/2!U D

u4t sin~q/2!A12~v/4t sinq/2!2u
QS 12U v

4t sinq/2U
2D , ~8!
de-

ec-
s
ym-

al-

of
where pf5cos21(2m/2t) is the Fermi level for the one
dimensional system. In the small frequency limit there is
energy dependence inx1D9 , which has the correspondin
logarithmic divergence inx1D8 ,

x1D8 ~q,v50!5
1

24t p sin~q/2!
lnUtan~pf2q/2!

tan~pf1q/2!
U. ~9!

In the static limit this divergence atq52pf , the so-called
perfect nesting vector, drives the Peierls instability via
Kohn anomaly, which leads to the metal-insulat
transition.36

Coming back to the 2D problem, atm50 the system is
one dimensional in that there is perfect nesting between p
on the Fermi surface along the (1,1)pW direction. Nesting vec-
tor, qW 5(1,1)p, gives a form

x9~p,p,v;m50!5
p

2
sgn~v!N~v/2!, ~10!

whereN(v) is the density-of-state that has logarithmic d
vergence atv50. Form50 the constant energy dependen
at long wavelengths inx9(qW ,v), which is an one-
dimensional effect, lasts up to zero energy~Fig. 4!. Using the
Kramers-Kronig relationship this energy dependence
small uqW u in x9(qW ,v) leads to a lnv divergences in the rea
part x8(qW ,v), signaling the breakdown of random-phas
approximation~RPA!. The largeuqW u behavior is shown in
Fig. 5 where it is clear that the lnv divergence inx9(qW ,v) is
rapidly destroyed asm goes away from half-filling.

For theuqW u,1021p structure ofx9, two divergent peaks
identified byv1* andv2* , follows the discussion in the pre
vious section. Due to rapid development of frequency in
pendence inx9 for low energies asm→0, the quasi-1D cor-
rections to thejpW

2ln jpW behavior ofS9(pW ,jpW ) at intermediate

values ofv have ajpW
3/2 dependence in the quasi-particle lif

time. This is shown in Fig. 6 form520.1t in which the
Fermi surface is flat over an extended area. ThejpW

3/2 correc-
tion sets in atjpW;0.02t, which limits the generic FL behav
ior to a small region. The second-order calculati
o

e
r

rts

r

-

-

shows that the quasi-particle lifetime has the generic FL
pendence withmÞ0 with a jpW

3/2 term as a correction to

jpW
2ln jpW whenm&0.

B. RPA calculation of S„p¢ ,jp¢…

1. Long-wavelength contribution

With mÞ0 the long-wavelength limit contribution, which
is responsible forjpW

2ln jpW or jpW
3/2 for m;0, is renormalized in

RPA giving qualitatively the same dependencies. The eff
tive interaction in Eq.~2! for the repeated scattering involve
two independent channels, the symmetric and the antis
metric channels, and is given by

Ue f f~qW ,v!5
1

2

Us
2x~qW ,v!

12Usx~qW ,v!
1

3

2

Ua
2x~qW ,v!

12Uax~qW ,v!
,

~11!

FIG. 3. The imaginary part of self-energies in second-order c
culations for (1,0)p and (1,1)p directions withm522t ~thin lines!
andm52t ~thick lines!. Anisotropy increases in the magnitude
the self-energy asm increases.
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whereUs5U andUa52U. In RPA, the imaginary part o
the self-energyS9(pW ,jpW ) is just enhanced from the secon
order calculations as in Fig. 7. Them520.1t case includes
jpW

3/2 corrections in the (1,0)p direction. The real part

S8(pW ,jpW ) has thejpW ujpW u correction to thejpW term, which
comes from the long wavelength and is shown in Fig. 8. T
jpW ujpW u term is a mirror ofjpW

2ln jpW term in S9(pW ,jpW ) through
the Kramers-Kronig relationship and the deviations from
fits are consistent with both theS9(pW ,jpW ) and S8(pW ,jpW )
graphs. The on-shell calculation of thejpW ujpW u term in the
~1,0! direction withm520.1t stops atjpW;0.05t because the
phase space runs out for that direction and the correctio
the jpW ujpW u term sets in earlier than the (1,1) direction. T
coefficients of thejpW ujpW u terms for the two directions ar
different due to the anisotropy of the system.

FIG. 5. The correlation functions forq52pF with differentms.
As m→0 logarithmic divergence is rapidly developed nearm;0.

FIG. 4. The correlation functions forq50.01p with different
ms. As m→0, v independent behavior in low frequency is deve
oped, which is characteristic of 1D feature at long wavelengths
the system shows a 1D effect.
e

e

to

Figure 9 shows the functional dependence of the cut
energy in the imaginary part of the self-energyj0,pW and the
coefficientsbpW for the tight-binding band structure. The an
isotropy frombpW grows as the band is filled, but near ha
filling the trend changes rapidly due to the flatness of
band structure. The cutoff energy shows anisotropy eve
m523t, which is different from Fig. 2 in which the aniso
tropic effects of splitting the two different peaks inx9(qW ,v)
are shown.

2. Instabilities

As discussed above the correlation function itself does
indicate any instability unlessm50 as in Fig. 4. For the

d

FIG. 6. The imaginary part of self-energy in second-order c
culations withU5t showsj3/2 behavior, which is coming from
frequency independentx9. This crossover fromjpW

2ln jpW to jpW
3/2 ap-

pears in the (1,0)p direction. The dotted lines are fitted lines.

FIG. 7. The imaginary part of self-energies in RPA withU5t
for (1,0)p and the (1,1)p directions withm522t ~thin lines! and
m520.1t ~thick lines!. For them520.1t case,jpW

3/2 behavior for
the (1,0)p direction appears as in the second-order calculati
Both of the directions show the logarithmic behavior.
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4294 PRB 62JUNGSOO KIM AND D. COFFEY
repulsive interaction the effective interaction in the antisy
metric channel could have an instability indicated by a p
at v50. The solution for it is given by 1/Uc5x8(qW ,v50)
in RPA so that there are solutions for allU ’s. Within the
RPA the question is how fast the system goes to 1D a
band approaches to half-filling.

In a parabolic band structure, the real part of the corre
tion function in the static limit is given by

x1D~q!5N1D~0!
1

2~q/2pf !
lnU11~q/2pf !

12~q/2pf !
U, ~12a!

x2D~q!5N2D~0!F12A~q/2pf !
221

~q/2pf !
Q$~q/2pf !21%G ,

~12b!

x3D~q!5N3D~0!F1

2
1

12~q/2pf !
2

4~q/2pf !
lnU11~q/2pf !

12~q/2pf !
UG ,

~12c!

where theN(0)’s are thedensities-of-state on the Ferm
level for each dimension andQ is a step function. In 2D the
correlation function has a cusp and a discontinuous der
tive atq52pf due to the step function, whereas the 3D ca
varies smoothly. Since the Fermi surface consists of
points in 1D, the nesting conditionjpW2j2pW f2pW50 is satisfied
over the entire Fermi surface resulting in a log divergenc
q52pf . This is responsible for the breakdown of the F
ground state leading to a metal-insulator transition.

In Fig. 10 the static correlation function in the (1,1)qW

direction has a developing divergence atuqW u52pf
(1,1) as the

system changes from 2D to 1D. The function is repeate
uqW u5p due to periodic lattice whereuqW u5p is at the middle

FIG. 8. The real part of self-energy calculated in RPA withU
5t showsjujpW u behavior correction to theajpW term. The slope 2
indicates the power of the fit. The deviation from thejpW ujpW u behav-
ior comes from the long-wavelength quasi-1D frequency dep

dence ofx(qW ,v).
-
e

a

-

a-
e
o

at

at

FIG. 9. The slopesbpW ~b! and the cutoff energiesj0,pW ~a! in RPA

as a function ofm from the formS9(pW ,jpW )52bpWjpW
2ln@jpW/j0,pW #.

FIG. 10. The real part of the correlation function in static lim
The system changes 2D to 1D asm→0. A divergence grows atq
52pf asm→0 in the (1,1)q direction.
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of the dip, right next to the peak. Them523t, which has
the Fermi surface close to circle, shows constantq depen-
dence with densities-of-state

N~m!5 lim
qW→0

lim
v→0

x8~qW ,v! ~13!

as in the parabolic band case. The phase diagramU vs m is
calculated by 1/U5x8(2pf ,2pf ,v50). With an interaction
strength ofU5t, the Stoner instability does not occur un
m;20.03t. In the calculations discussed in this paperU
5t ~dotted line in Fig. 11! so that the instability of the sys
tem is absent except whenm;0 for U<t.

This conclusion is supported by a recent renormalizati
group analysis of the Hubbard model by Halboth a
Metzner37 who found that the tendency towards the antif
romagnetic nesting instability is limited tom*20.1t for U
5t as evidenced by a growing spin susceptibility. Th
found in fact thatdx22y2 superconductivity fluctuations pro
vide the dominant susceptibility further from half-filling bu
even these were suppressed beyondm;20.01t. The influ-
ence of superconducting fluctuations are missing in
present calculation.38

Going beyond this weak-coupling region is difficult b
cause of the uncontrolled nature of the RPA. One such
tempt is the so-called self-consistent fluctuation excha
approximation ~FLEX! which however is equally uncon
trolled. It has been pointed out by Vilk and Tremblay39 that
the absence of vertex corrections in the FLEX leads to e
more severe breakdowns of sum rules than does the R
discussed here. Vilk and Tremblay have proposed an
provement in RPA to ensure that the sum rules are satis
In their approach the influence of the cross channels in
ph expansion on the vertices is mimicked by letting the
reducible vertices in the charge and spin channels be in
pendent of each and chosen to satisfy sum rules. In this
proach SDW fluctuations aboveT50 lead to the breakdown
of the quasiparticle approximation forU54t. These ap-
proaches have been limited to finite size systems and so

FIG. 11. The phase diagram of the system from
2Ucx8(2pf ,2pf ,0)50. For any strength of interaction atm50 the
FL ground state breaks down due to the divergence. WithU5t,
there is no SDW instability form,20.1t.
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the long-wavelength interactions responsible for the lead
corrections of interest in the present paper.

C. Off-shell calculations,S„p¢ ,E…: Spectral function

The spectral function can be measured by ARPES an
given by

A~pW ,E!5
uS9~pW ,E!u

@E2jpW2S8~pW ,E!#21@S9~pW ,E!#2
, ~14!

where the off-shell self-energies are involved. For large c
off momentumqc , and the parabolic band structure, th
leading contributions to the imaginary part of off-shell se
energy that determines the width of the spectral function
a form24

S9~pW ,E!5C@$jpW
2
12jpW~E2jpW !% ln~max@jpW ,uEu# !

1~E2jpW !2ln~ uE2jpW u!#, ~15!

whereC is a constant. In Fig. 12@S9(pW ,E)2S9(jpW ,pW )#/(E
2jpW) vs lnuE2jpWu is plotted for E2jpW,0. In the limit (E
2jpW )→0 we find 2CjpW lnujpWu consistent with Eq.~15! for a
given pW . For m522t the Fermi surface is close to parabol
band structure and the off-shell self-energy has a (E2jpW )
independent behavior for small values of (E2jpW ) as in the
Eq. ~15!. For m520.1t theS9(pf ,E) is consistent with Eq.
~15!. However forp50.95pf , althoughS9(pW ,jpW ) still has
the jpW

2ln jpW dependence,S9(pW ,E) is seen to deviate from the
form given in Eq. ~15!. The dependence onE in Fig. 13
shows aE2lnuEu behavior form522t only for p5pf and the
more complicated dependence shown in Eq.~15! is found for
upW uÞpf . This is the case for other values ofm also. This
indicates that the formE2ln E for S(pW ,E) frequently used in
the literature is a poor approximation40,41 to the more com-
plicated function ofpW andE.

FIG. 12. The imaginary part of the off-shell self-energy forE

,0 andp,pf in second-order calculations.E→jpW limit S9(pW ,E)
has constant energy termjpW

2ln jpW for m522t in the lnuE2jpW u scale

in the case ofpÞpf . There is a significant deviation inS9(pW ,E)
for m520.1t in the case ofpÞpf .
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ARPES data is analyzed in terms of the single-parti
spectral density. The extent to which a quasiparticle re
nance is well defined is characterized by the width of
resonance at half-maximum. This is frequently thought of
a measure of the quasiparticle lifetime where the momen
dependence is taken as a test of the Fermi-liquid charact
the material under investigation. When the quasiparticle
proximation is applied, the spectral function is

A~pW ,E!5
GpW

~E2EpW !21GpW
2 , ~16!

where EpW is the location of the resonance andGpW is half-
maximum width of the peak. Here we apply this analysis
the Hubbard model.

The spectral functions are calculated for them522t and
m520.1t cases and the widths of the resonance at the
of the peakGpW are plotted as a function ofjpW,0. The spec-
tral functions are picked alongG to Y point and toM̄ point.
The quasiparticle peaks are well defined and asp→pf , the
resonance gets sharper for the (1,0)p and (1,1)p directions
in Fig. 14 for m522t. The m520.1t case in Fig. 15 has
the same feature except for a growing anisotropic feature
the (1,1)p direction deep inside the Fermi surface. There
no sign of the pseudogap with the parameters used in
calculations form522t andm520.1t. As p→pf the reso-
nance peak does not show symmetry aboutE5EpW since the
imaginary part of the self-energy is always zero forE50.
A(pW ,E) is only symmetric aboutE50 for upW u5upf u. The
smallest deviation frompf leads to strongly nonsymmetri
A(pW ,E). This indicates that one can be misled by assum
symmetry for the ARPES data cutoff by Fermi Dirac dist
bution function42 to get the single-particle properties ne
Fermi surface.

If we expandA(pW ,E) near EpW5jpW1S8(pW ,E), which is
approximately the location of the resonance peak si
S(pW ,E) is continuous, the width of half maximum is give
by the on-shell self-energy

FIG. 13. The graph shows that the off-shell self-energy follo
E2ln E only whenp5pf even form522t, which is close to para-
bolic band structure.
e
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GpW;
zpWS9~pW ,EpW !

A11@zpW]S9~pW ,E!/]EuE5EpW
#2

, ~17!

wherezpW5@12]S8(pW ,E)/]EuE5EpW
#21 unlessS9(pW ,E) has

strong energy dependencies. In this calculation we find
2zpW&3% showing that there is very little frequency depe
dence in the real partS8(pW ,E);S8(pW ,jpW ). Figure 16 shows
the agreement between the half maximum width and the
shell self-energy at low energiesGpW;S9(pW ,jpW ) for m5
22t andm520.1t. As in the figure the generic FL logarith
mic behavior is restricted to low energies. For them522t
caseGpW shows linear behavior injpW at higher energies which
are not extrapolated to zero energy. Clearly the assump
that a deviation fromGpW;jpW

2ln jpW or jpW
2 is an indication of

non-Fermi liquid is not correct. We note that no sign of t
complicatedjpW andE dependencies ofS(pW ,E), shown in Eq.
~15!, comes out of this analysis of ARPES data. It seems
us unlikely that it will be possible to recover these depe
dencies without prior knowledge of the functional form wi
which to fit the data.

III. CONTRIBUTIONS FROM THE PARTICLE-PARTICLE
CHANNEL

Fukuyamaet al.43 have investigated the contribution t
S9(pW ,E) for the pp channel using the parabolic dispersio
The contribution toS(pW ,E) in second order in the interac
tion can be thought of as being in either theph or pp chan-
nel. In the second-order calculation the difference betw
the two channels is that thejpW

2ln jpW contribution comes from
propagating particle or hole pairs with momentaq;2pf in
the pp channel whereas it comes from long-waveleng
particle-hole pairs in theph channel. Taking the second
order diagram to be in thepp channel contribution, its con

s
FIG. 14. The spectral functions in repeated scattering calc

tions for m522t in (1,1)pW ~solid lines! and (1,0)pW ~dotted lines!
directions. The quasiparticle peaks are well defined asp→pf .
Asymmetry in the resonance peak appears whenp;pf .
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tribution is screened by repeated scattering in that chan
In contrast to the case of an attractive interaction there is
Cooper instability but instead the contribution is reduced
the repeated scattering. Unlike the situation in theph chan-
nel the result is not simply an enhancement or reduction
the contribution from the second-order diagram givi
jp

2ln jp contribution to S9(p,jp) again. Rather there is
strong momentum dependence in the real part of thepp
propagator atq;2pf , which eliminates thejp

2ln jp depen-
dence. As a result the effect of including thepp channel in a
calculation ofS(p,E) is to remove the contribution of th
second-order term in the interaction from leading depend
cies. Thepp contribution toS(p,E) in a tight-binding band
structure remains to be worked out in detail. However
result is unlikely to be quantitatively different from the resu
for the parabolic band. Indeed for particle pairs/hole pa
with net momentumQW 5(p,p) it is easy to show that the

FIG. 15. The spectral functions in repeated scattering calc

tions form520.1t in the (1,1)pW ~a! and (1,0)pW ~b! directions. The
quasiparticle peaks are well defined asp→pf . Asymmetry in the

resonance peak appears for (1,1)pW deep inside of the Fermi surface
el.
o

y

f

n-

e

s

propagator K(QW ,v);(1/v12m) f (m), where f (m) is a
polynomial inm and gives a vanishingly small contributio
to S(p,E), where the consequences of the almost nes
Fermi surface would be expected to be greatest.

There have been a number of investigations of collect
modes in thepp channel. Engelbrecht and Randeria44 found
a collective mode below the two-particle continuum in
bound state of hole pairs that arises because of the fi
density-of-states at bottom of the band in 2D. The contrib
tion of this mode to the self-energy is given byS9(pf ,E)
;muE/Eau5/2 wherem is the chemical potential andEa is an
energy scale describing the interaction. So this mode d
not contribute to the leading dependencies inS9(p,E).
Yang45 and more recently Demler and Zhang46 have found
evidence for a different singlet and triplet collective mode
the pp channel that exists in a narrow region of momen
near (p,p). The narrow range of momenta suggests that t
mode can have little effect on the low-energy properties
S(p,E).

In summary neither the continuum nor collective-mo
contributions from thepp channel contribute to the leadin
dependencies inS(p,E).

IV. CONCLUSION AND SUMMARY

We have demonstrated that, within weak-coupling RP
the anisotropy in band structure does not qualitativ
change the FL dependencies. We have done that by calc
ing the single-particle properties in the Hubbard model
which the shape of the Fermi surface is changed from
circle to a square as the value of the chemical potentia
varied fromm523t to m520.1t. In these calculations we
have used a weak-coupling approximation in which the m
nitude of the interactionU is far from the values for the
SDW instability except form.20.5t. Numerical coeffi-
cients in the functional forms of the imaginary part of th
self-energy reflect the anisotropy of the band structure bu
is not until the Fermi surface is almost a square that the

a-

FIG. 16. The comparison betweenGpW and on-shell self-energy
for m522t ~thin lines! andm520.1t ~thick lines!. The FL behav-
ior jpW

2lnjpW is restricted to low energies.
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sign of the quasi-1D behaviorjpW
3/2 appears. Asm→0 the

magnitude ofS9(pW ,jpW ) increases with increasing anisotrop
Also, in the m→0 limit, an v independent region in
x9(qW ,v) grows, which is responsible forjpW

3/2 behavior in

S9(pW ,jpW ) in (1,0)p direction. ThejpW ujpW u term is also found
in S8(pW ,jpW ) as in the parabolic band case. The instability
the system is slowly developed as the system goes to
exceptm;0.

The off-shell self-energy is shown to have a similarpW and
E dependence as in the parabolic band with deviations as
Fermi surface develops flat regions. In this region we c
firmed the half maximum width of the resonance peak
spectral function is approximated by the on-shell self-ener
Asymmetry in the resonance peak grows forupW u→pf due to
S9(pW ,E50)50. This is also the case deep inside the Fe
surface form520.1t and the (1,1)upW u direction. In the tight-
binding band structure, the quasiparticle picture is well
fined for m,20.1t and uUu&t.

The results found here for the Hubbard model for t
leading dependence ofS(pW ,E) are applicable to more gen
eral Hamiltonians in which the interaction among the qua
particles depends on momentum transfer since these lea
dependencies inS(pW ,E) are determined by the long
wavelength limit of the quasiparticle interaction rather th
its detailed form. The results demonstrate that there is qu
tative change in thepW andE dependence ofS(pW ,E) only for
very close proximity to nesting features in the band structu

The single band Hubbard model has been used ex
sively as a model for the normal state properties of cupra
Many of these investigations have emphasized proximity
van Hove singularity28,29,47,48to explain derivations from FL
temperature dependencies and even so-called the mar
FL behavior ofS(pW ,E). The approximation used in thes
papers lead to non-FL behavior. The present results s
that no such effects are present in the single band Hub
w

io

n

X

T
i,
f
D
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model in the RPA and that any treatment that arrives
non-FL behavior using the weak-coupling RPA should
viewed with caution.

Detailed ARPES data is available on the cuprates a
which shows the quasiparticle resonance is absent in the
derdoped region over an extended range of doping. Thi
understood in terms of a pseudogap in which weight in
spectral density is shifted to the incoherent background
higher energies. In the RPA treatment considered here
quasiparticle resonances are found to be well defined eve
m520.1t, where the Fermi surface is almost perfec
nested and the Stoner factor is 12Ucx(Q,0).1/3. Even for
this extreme value ofm no evidence is found for pseudoga
behavior. This suggests that the Hubbard model does
describe the low-energy behavior of the cuprates in the R

As one goes further away from the weak-coupling para
eter region it becomes difficult to justify the simple RP
weak-coupling approximation used here. SDW and sup
conducting fluctuations are likely to play a role as other a
thors have pointed out. Their effects on the leading dep
dencies from long wavelengths inS(pW ,E) remain to be
investigated.

If the single band Hubbard model is to describe the
prates, one needs to go beyond RPA. Tremblay and
workers have introduced a variation of the vertices in
singlet and triplet channels with doping on the basis of s
rules. This leads to very strong interaction with damp
magnons of magnetically orderedT50 phase whenU54t
asT→0. These calculations are carried out a finite size s
tems and cannot address the issues discussed here.
though increasing the magnitude ofU in the RPA will give
qualitatively the same behavior asU→0, there are likely to
be large quantitative corrections especially as the Stoner
terion for an instability is approached. An alternative to th
weak-coupling approach is to investigate the FL behavior
the t-J model and investigateS(pW ,E) due to higher powers
of 1/U for this model. This remains to be investigated.
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