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Tomonaga-Luttinger features in the resonant Raman spectra of quantum wires

B. Kramer1 and M. Sassetti2

1I. Institut für Theoretische Physik, Universita¨t Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany
2Dipartimento di Fisica, INFM, Universita` di Genova, Via Dodecaneso 33, I-16146 Genova, Italy

~Received 1 May 2000!

The differential cross section for resonant Raman scattering from the collective modes in a one-dimensional
system of interacting electrons is calculated nonperturbatively using the bosonization method. The results
indicate that resonant Raman spectroscopy is a powerful tool for studying Tomonaga-Luttinger liquid behavior
in quasi-one-dimensional electron systems.
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One-dimensional~1D! electron systems are importa
paradigms for studying elementary excitations. In these s
tems, electron-electron correlations can be treated exa
with the bosonization technique within the Tomonag
Luttinger model.1,2 Especially, one can rigorously show th
the energetically lowest excitations are collective.3 The only
existing modes are charge- and spin-density excitati
~CDE’s and SDE’s!, with frequency–wave-number dispe
sions that are renormalized by the Coulomb repulsion
the exchange interaction, respectively.4–7 In particular,
Landau-quasiparticle excitations are absent in such n
Fermi liquids, since their lifetime is vanishingly small.

One can also calculate correlation functions, sayC(«),
which are experimentally observable. As a function of t
variable«, typical power-law behaviors have been predict
Schematically,

C~«!}«m(g), ~1!

wherem(g) is in general a noninteger exponent that conta
the interaction parameterg. Well known examples are pho
toemission and one-photon absorption.8 Similar to the Fermi
liquid, the Tomonaga-Luttinger liquid appears to be of fu
damental importance in modern condensed matter the
Therefore, directly measuring such behavior is extremely
portant. Unfortunately, straightforward experimental e
dence is still missing, in spite of considerable efforts p
formed on very different materials including quasi-1
conductors and superconductors.6 Also, predictions obtained
by mapping fractional quantum Hall states to a Lutting
liquid9 have been found very difficult to confirm, as well a
Luttinger-liquid features in the dc conductance of quant
wires.10 Only recently has evidence for Luttinger behavi
been detected in the transport properties of nanotubes,11 and
in resonant tunneling through an electron island in a sing
mode quantum wire.12

A very powerful technique for studying the electronic e
citations is Raman scattering.13–16For energies far above th
fundamental absorption edge~off-resonance!, peaks in the
Raman cross section corresponding to CDE’s and SD
have been identified for parallel and perpendicular polar
tions of incident and scattered light, respectively. In reson
Raman scattering, for photon energies near the fundame
absorption edge, polarization-insensitive structures h
been found. They have been interpreted as ‘‘single-part
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excitations’’ since their dispersion corresponds roughly
that of the pair excitations of noninteracting electrons.

Especially in recent experiments on semiconductor qu
tum wires, these polarization-insensitive features have b
the subject of detailed investigations in the regions of
intra- as well as intersubband transitions.17–21 By applying
the bosonization method to the excitations in quantum wir
the physical nature of the intrasubband SPE features
been clarified: when approaching resonance, higher-o
spin-density correlation functions give rise to sharp str
tures in the cross section also in parallel polarization, wit
dispersion law close to that of the SDE.22

Together with the findings at photon energies far fro
resonance—collective CDE’s and SDE’s in parallel and p
pendicular polarization, respectively—the successful int
pretation of the SPE structures suggests that Raman spec
copy should be very promising for testing the Tomonag
Luttinger model for quantum wires.

In the present paper, we demonstrate that this is ind
the case. We evaluate the differential cross section near r
nance in both polarizations. We show that the strengths
the peaks associated with the higher-order SDE’s behave
cording to power laws similar to Eq.~1! when changing the
photon energy and/or the temperature. This can by no me
be obtained by mean-field approaches such as the ran
phase approximation~RPA!. Confirming our predictions ex-
perimentally would directly indicate that quantum wires a
non-Fermi liquids.

In general, the electronic Hamiltonian of quantum wir
consists of contributions of several subbands. For describ
pair excitations with small wave numbersq, the subbands
can be simplified to two branches denoted byl56 with
linear dispersions near the Fermi wave numbers6kF and
assumed to differ only in ‘‘confinement energies’’e j , mea-
sured from the minimum of the bulk conduction band,

e j
l~k!5EF1e j1\vF~lk2kF!, ~2!

with the wave vector componentk in the direction of the
wire. The electron-electron interaction contains terms t
couple all of the subbands. In addition, there are matrix e
ments that mix only states within a given subband. Th
describe backward and forward scattering processes. W
intraband forward scattering can be easily treated within
bosonization approach,23 backward scattering, including th
4238 ©2000 The American Physical Society
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interband matrix elements, lead to severe complications,
pecially nearq'0 andT50.24 However, for describing Ra
man scattering, we arenot interested in the behavior at ex
tremely smallq. This can be used to justify a transformatio
that decouples the intra- from the interband excitatio
Eventually, the Hamiltonian can be written as a quadra
form in the corresponding charge and spin densities.25 In
order to demonstrate the main results of the present pa
we need only to consider the intrasubband modes,
within the lowest subband,j 50.

The bosonization technique consists of replacing the s
dard Fermion fieldscs

l(k), associated with spins56 and
branchl, by boson fieldsFs

l(x,y). For instance,

cs
l†~k1q!cs

l~k!5
il

2pLyE2`

`

dx dy y21ei @y~k2lkF1q/2!1xq#

3e2 iFs
l†(x,y)e2 iFs

l(x,y), ~3!

Fs
l~x,y![

4pl

A2L
(
q,0

e2 ilqx

q
sinS qy

2 D @rl~lq!1ssl~lq!#,

~4!

with rl5r1
l 1r2

l and sl5r1
l 2r2

l the charge and spin
densities, respectively, wherers

l(q)5(kcs
l†(k1q)cs

l(k).
This can be used to evaluate in a closed form the Fou

transform of the correlation function

x~q,t !5 iQ~ t !^@N†~q,t !,N~q,0!#&, ~5!

which contains the generalized density operator

N~q!5 (
k,l,s

gs

D~k,q!
cs

l†~k1q!cs
l~k!. ~6!

The imaginary part of the former gives the differential cro
section. The quantitygs denotes an effective optical trans
tion probability. For simplicity, we assume equal transiti
probabilities for parallel and perpendicular polarizations
incoming ~polarization eI) and outgoing~polarization eO)
light, independent ofs,

gs5g~eI•eO1 isueI3eOu!. ~7!

The denominator

D~k,q!5Ec~k1q!2Ev2\v I ~8!

contains the energy of incident photons\v I , a dispersion-
less valence band energyEv , and a single-subband condu
tion bandEc(k)5e0

l(k) @cf. Eq. ~2!#. At first glance, this
seems to be oversimplified in view of realistic, s
Al xGa12xAs/GaAs, quantum wires. However, it is sufficie
to explain our main results, which can be straightforwar
generalized to several subbands. It is clear from Eqs.~3! and
~4! that ~i! N(q) contains all powers of the charge- and sp
density operators and~ii ! the cross section can be evaluat
nonperturbatively.

Out of resonance, when\v I is much larger than the en
ergy gap,Eg[Ec(0)2Ev , the energy denominator is ap
proximately constant. The first and second terms in Eq.~7!
give rise to peaks in the Raman spectra associated
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CDE’s and SDE’s, respectively, when inserted into Eq.~6!.
This is the ‘‘classical selection rule.’’

Closer to resonance, when the photon energy approa
Eg , higher-order correlations become important. They v
late the above-noted selection rule. This can be seen by
panding D(k,q)21 in powers of \vFl(k2lkF)/(Eg1EF
2\v I). Especially, in parallel polarization, a peak related
a higher-order SDE has been predicted. For large pho
energies, its intensity behaves as (Eg1EF2\v I)

24, in con-
trast to the (Eg1EF2\v I)

22 behavior predicted for the
SDE in perpendicular polarization.22 For \v I very close to
resonance, the nonperturbative bosonization method lead
the characteristic nonanalytic dependencies on photon
ergy and temperature, as will be shown now.

In order to determine the correlation function~5! one
needs the Heisenberg operators of the charge and spin
sities in the subspace of the intraband modes of the low
subband. For simplicity, we assume the dispersions of
charge and spin modes to be approximated byvr(q)
5vr(q)uqu, with vr(q)5vF@(1/gr21)exp(2uqu/qint)11#,
and vs(q)5vsuqu, with vs5v F /gs , respectively. This is
justified since the experimentally relevant region cor
sponds touqu!qint . The parametersgr andgs describe the
strengths of Coulomb and exchange interactions, resp
tively. Generally,gs'1.gr.0.22 The cutoff qint reflects
the finite range of the repulsive interaction in the dispers
of the CDE.

By inserting Eq.~3! into Eqs.~6! and~5! one can perform
the thermal average. By taking into account translational
variance along the wire, the cross section can be written
closed form as a triple integral that can computed num
cally. However, the essential physics can be extracted by
following approximation. First, we consider contribution
x(q,t)}exp@ivs(q)t#. These generate peaklike structures
the Raman cross section near the frequency of the SDE.
obtain

Im x~q,v!'d~v2vs!@~eI•eO!2I11ueI3eOu2I2#, ~9!

whereI1(q,v I ,T) andI2(q,v I ,T) are the peaks strength i
parallel and perpendicular polarization, respectively. Cor
spondingly, when selectingx(q,t)}exp@ivr(q)t# ~sincevr

approximately constant for smallq), we get

Im x~q,v!'d~v2vr!~eI•eO!2I0 . ~10!

Equations~9! and~10! constitute our first general, impor
tant result: while the SDE gives rise to a peaklike structure
both polarizations, the CDE appears as a peak only in pa
lel and not in perpendicular configuration, even near res
nance. This can be most easily seen by considering
lowest-order term that is proportional tosr in perpendicular
polarization and thiscannotgive rise to a peak at the fre
quency of the CDE.22

Furthermore, one can prove a general theorem, nam
that the terms in a power-law expansion ofN(q) that con-
tribute near the frequency of the CDE in perpendicular p
larization ~i! contain at least one spin density operator, a
~ii ! consist always of a product of anodd number of spin-
density operators multiplied by a product of charge-dens
operators. Terms of this kind will not produce a peak in t
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corresponding cross section at the frequency of the C
When calculating the correlator, there is always a resid
pair of spin-density operators,s(t)s(0), which remains
time-dependent and destroys the coherence of the assoc
CDE terms. This annihilates any spurious CDE peak in
cross section.

In the following, we consider only the structures related
the SDE. Similar results can be extracted forI0, Eq. ~10!.
The intensities of the former are~for gs51)

I1~q,v I ,T!5
Lqg2

12~\vF!2 Fq2

2
1S p

b\vs
D 2GU dS

dQU2

, ~11!

with b215kBT (kB is the Boltzmann constant!, and

I2~q,v I ,T!5
Lqg2

~\vF!2
uS~Q,T!u2. ~12!

The integral

S~Q,T!5E
0

`

dy eiQyF~y! ~13!

depends on the ‘‘reduced photon wave number’’Q5(Eg
1E F2\v I1\vFq/2)/\vF . The function

F~y!5
1

~11qint
2 y2!m Fb\vs

py
sinhS py

b\vs
D G21/2

3Fb\vr

py
sinhS py

b\vr
D G22m21/2

~14!

contains the exponent

m5~gr11/gr22!/8 ~15!

typical for Tomonaga-Luttinger correlation functions.6–8 Re-
markably, it contains the parameter of the charge interact
though it describes SDE-related features. This indicates
physically the higher-order SDE’s in parallel configurati
are ‘‘dressed’’ by CDE’s.

Equations~11! to ~14! constitute our second importan
prediction: the dependencies of the intensities of the S
peaks in resonant Raman scattering on the energy of inci
photons and/or the temperature in parallel and perpendic
polarizations are governed by nonrational exponents that
characteristic for the Tomonaga-Luttinger liquid and cont
the strength of the repulsive interaction between the e
trons.

Let us identify in more detail the parameter regions wh
this ‘‘Tomonaga-Luttinger behavior’’ can be expected to
most clearly detectable. There are three characteristic w
numbers: the inverse of the range of the interactionqint , the
wave number of the elementary excitationq, and the wave
number corresponding to the temperature,qb51/b\vF . We
assumeq int@qb.q since belowqint we expect the mos
important interaction-induced effects. We consider inter
tions of experimental relevance which correspond togr

.g0 with g0 such thatm(g0)51/2, i.e., g0'0.2 andgs

51.
For Q.qint , In}(qint /Q)4/n (n51,2) we are still far

from resonance.22 For q int.Q we are near resonance. A
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long asQ.qb the dependence on the temperature of
integralS(Q,T) does not affect the result,

In}S qint

Q D 4(1/n2m)

. ~16!

For qb.Q one obtains a dependence on temperature

In}S qint\vF

kBT D 4(1/n2m)

. ~17!

For all of interaction parameters discussed, the ratioI1 /I2
behaves independently of the interaction asb2 or Q22,
though the energy and temperature dependencies contai
interaction parameter. Forgr,g0, the behavior is similar,
but cannot be treated analytically.

Traditionally, inelastic light scattering of interacting ele
trons has been analyzed within RPA. This seems to w
well for the nonresonant case as it gives for quantum w
similar results for the dispersion as the present approach
RPA, the cross section is related to the electronic polariza
ity. By expanding into a power series in terms of the inte
action, one finds that the first term, often denoted asP2(q),
which is independent of the interaction, contains an ene
denominatorD(k,q)22. This is the only contribution inper-
pendicularpolarization.16 It gives a peak at the frequency o
the pair excitations of the noninteracting electrons,vFuqu.

In parallel polarization, and far from resonance,P2 can
be absorbed into a geometrical series in the interaction. T
yields only one pole—corresponding to a peak in the Ram
cross section—at the frequency of the CDE. When approa
ing resonance, such that thek dependence ofD(k,q) has to
be taken into account,P2 contributes separately,15 and pro-
duces an additional pole at the energy of the noninterac
electron-hole pair. The corresponding peak intensity, ho
ever, does not show any nonanalytical power-law behav

In the Tomonaga-Luttinger approach, the low-energy
citations are collective. There are no modes at the energie
noninteracting electron-hole pairs. The energetically low
excitations are SDE’s with energy\vsuqu.

In principle, the renormalization of excitation frequenci
could be achieved within a self-consistent perturbational
proach, generalized to include exchange interaction,but tak-
ing into account consistently exchange self-energy andin
additionexchange vertex corrections inP2. However, in or-
der to obtain the above nonanalytical behavior of the int
sity of SDE peaks when approaching resonance, these
rections should include the Coulomb interactionto infinite
order, as seen in Eq.~15!. Thus, in perturbative language
self-energy and vertex corrections are responsible for
non-analytic power-law behaviors of the spectra close
resonance. This does not contradict the well-known re
that far from resonance the sum of the two terms exa
cancel due to Ward identities6,26 Indeed, the latter cannot b
applied in the presence ofk-dependent vertices.

Currently, the existence of the SPE in the experiments
quantum wires are well established and consistent with
above reported findings. Unfortunately, experimental data
not include systematic studies of the dependencies of
peak intensities on photon energy and/or temperature. S
studies, however, should be highly desirable since they
expected to contribute to solving a fundamental question
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modern many-body physics, namely, in how far electro
correlations beyond mean fields are important for describ
correctly the low-energy CDE’s and SDE’s of clea
quasi-1D electron systems.

In summary, we have pointed out that resonant Ram
scattering is a powerful tool for experimentally investigati
Tomonaga-Luttinger behavior in quasi-1D electron syste
We have shown that, when approaching resonance, S
induced peaks appear in both parallel and perpendicular
larizations of incident and scattered photons. In contrast,
CDE cannot produce peaks in perpendicular polarizat
sti

m

,

L.

n,
c
g

n

s.
E-
o-
e
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We have quantitatively determined the nonanalytical beh
ior of the intensity of the peaks in the resonant Raman sp
tra that are due to SDE’s. The measurement of these non
lytical dependencies on photon energy and/or tempera
predicted above would be decisive for discovering fund
mental non-Fermi liquid behavior in clean quantum wir
and represents major challenges for experiment.
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