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Tomonaga-Luttinger features in the resonant Raman spectra of quantum wires
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The differential cross section for resonant Raman scattering from the collective modes in a one-dimensional
system of interacting electrons is calculated nonperturbatively using the bosonization method. The results
indicate that resonant Raman spectroscopy is a powerful tool for studying Tomonaga-Luttinger liquid behavior
in quasi-one-dimensional electron systems.

One-dimensional(1D) electron systems are important excitations” since their dispersion corresponds roughly to
paradigms for studying elementary excitations. In these syghat of the pair excitations of noninteracting electrons.
tems, electron-electron correlations can be treated exactly Especially in recent experiments on semiconductor quan-
with the bosonization technique within the Tomonaga-tum wires, these polarization-insensitive features have been
Luttinger modef-? Especially, one can rigorously show that the subject of detailed investigations in the regions of the
the energetically lowest excitations are collectivEhe only  intra- as well as intersubband transitidris?! By applying
existing modes are charge- and spin-density excitationthe bosonization method to the excitations in quantum wires,
(CDE’'s and SDE'’§ with frequency—wave-number disper- the physical nature of the intrasubband SPE features has
sions that are renormalized by the Coulomb repulsion antbeen clarified: when approaching resonance, higher-order
the exchange interaction, respectiv&ly. In particular, spin-density correlation functions give rise to sharp struc-
Landau-quasiparticle excitations are absent in such nortures in the cross section also in parallel polarization, with a
Fermi liquids, since their lifetime is vanishingly small. dispersion law close to that of the SBE.

One can also calculate correlation functions, €¢), Together with the findings at photon energies far from
which are experimentally observable. As a function of theresonance—collective CDE’s and SDE’s in parallel and per-
variablee, typical power-law behaviors have been predictedpendicular polarization, respectively—the successful inter-
Schematically, pretation of the SPE structures suggests that Raman spectros

copy should be very promising for testing the Tomonaga-
C(e)oce™), (1)  Luttinger model for quantum wires.

In the present paper, we demonstrate that this is indeed
whereu(g) is in general a noninteger exponent that containghe case. We evaluate the differential cross section near reso-
the interaction paramet@’_ Well known examp|es are pho_ nance in both polarizations. We show that the strengths of
toemission and One-photon absorpﬁ}(ﬁ[m”ar to the Fermi the peaks associated with the higher-order SDE’s behave ac-
liquid, the Tomonaga-Luttinger liquid appears to be of fun-cording to power laws similar to Eq1) when changing the
damental importance in modern condensed matter theorphoton energy and/or the temperature. This can by no means
Therefore, directly measuring such behavior is extremely imbe obtained by mean-field approaches such as the random
portant. Unfortunately, straightforward experimental evi-phase approximatio(RPA). Confirming our predictions ex-
dence is still missing, in spite of considerable efforts per-Perimentally would directly indicate that quantum wires are
formed on very different materials including quasi-1D hon-Fermi liquids.
conductors and superconductbralso, predictions obtained In general, the electronic Hamiltonian of quantum wires
by mapping fractional quantum Hall states to a Luttingerconsists of contributions of several subbands. For describing
liquid® have been found very difficult to confirm, as well as Pair excitations with small wave numbegs the subbands
Luttinger-liquid features in the dc conductance of quantumgcan be simplified to two branches denoted Yoy + with
wires® Only recently has evidence for Luttinger behavior linear dispersions near the Fermi wave numbers: and
been detected in the transport properties of nanottlbesg ~ assumed to differ only in “confinement energies;’, mea-
in resonant tunneling through an electron island in a singlesured from the minimum of the bulk conduction band,
mode quantum wiré?

A very powerful technique for studying the electronic ex- e?(k) =Ept€j+hve(ANk—Kp), 2
citations is Raman scatterirtd; *® For energies far above the
fundamental absorption eddeff-resonancg peaks in the with the wave vector componemtin the direction of the
Raman cross section corresponding to CDE’s and SDE'svire. The electron-electron interaction contains terms that
have been identified for parallel and perpendicular polarizaeouple all of the subbands. In addition, there are matrix ele-
tions of incident and scattered light, respectively. In resonaninents that mix only states within a given subband. They
Raman scattering, for photon energies near the fundamenteescribe backward and forward scattering processes. While
absorption edge, polarization-insensitive structures haventraband forward scattering can be easily treated within the
been found. They have been interpreted as “single-particléosonization approacti,backward scattering, including the
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interband matrix elements, lead to severe complications, e€€DE’s and SDE'’s, respectively, when inserted into E).
pecially nearg~0 andT=0.2* However, for describing Ra- This is the “classical selection rule.”
man scattering, we aneot interested in the behavior at ex-  Closer to resonance, when the photon energy approaches
tremely smallg. This can be used to justify a transformation E, higher-order correlations become important. They vio-
that decouples the intra- from the interband excitationslate the above-noted selection rule. This can be seen by ex-
Eventually, the Hamiltonian can be written as a quadratigpanding D(k,q) ! in powers of ivph (k— Nkp)/(Eg+Eg
form in the corresponding charge and spin densffiels —hw,). Especially, in parallel polarization, a peak related to
order to demonstrate the main results of the present paped, higher-order SDE has been predicted. For large photon
we need only to consider the intrasubband modes, sagnergies, its intensity behaves & EtEr—fw)” 4 in con-
within the lowest subband,=0. trast to the E4+Eg— fw)) "2 behavior pred|cted for the
The bosonization technique consists of replacing the starSDE in perpendicular polarizatidi.For % w, very close to
dard Fermion flelds:“(k) associated with spis=* and resonance, the nonperturbative bosonization method leads to
branch\, by boson fieldsb}(x,y). For instance, the characteristic nonanalytic dependencies on photon en-
ergy and temperature, as will be shown now.

iA : In order to determine the correlation functi@gh) one
N A _ —1 (k=Nkg+0q/2)+ . .
Cs (k+q)cs(k)—2WLyﬁxdx dy y telvieraz needs the Heisenberg operators of the charge and spin den-
sities in the subspace of the intraband modes of the lowest
Xeﬂ(bgT(x,y)efidbg(x,y)’ 3 subband. For simplicity, we assume the dispersions of the

charge and spin modes to be approximated dy(q)
ay =v,(a)]al, with v,(q)=vd(1/g,—1)exp|ql/d)+ 1],
sm( )[p (NQ) +saM(Nq)], and 0,(q)=v,|q|, with v,=v /g, , respectively. This is
justified since the experimentally relevant region corre-
4 sponds tdq|<gq;,. The parameterg, andg,, describe the
strengths of Coulomb and exchange interactions, respec-

. - Z5 ot X tively. Generally,g,~1>g,>0.* The cutoff g, reflects
denS|_t|es, respectively, whep@(q). 2iCs (Kt a)cs(K). the finite range of the repulswe interaction in the dispersion
This can be used to evaluate in a closed form the Fourier

transform of the correlation function of the CDE.

V¥ oN —ihax
X,
DL(x,y)= L&

with p*=ph +p" and o*=p’ —p the charge and spin

By inserting Eq.(3) into Eqgs.(6) and(5) one can perform
H=iOt)([NT(g,t),N(g,0)]), 5 the thermal average. By taking into account translational in-
Xt (O(N'(a.0.N@0D ® variance along the wire, the cross section can be written in a
which contains the generalized density operator closed form as a triple integral that can computed numeri-

cally. However, the essential physics can be extracted by the
Ng)=S Vs following approximation. First, we consider contributions
q : x(q,t)cexdioy(q)t]. These generate peaklike structures in

K,\,s D(kvq)
the Raman cross section near the frequency of the SDE. We
The imaginary part of the former gives the differential crossyptain

section. The quantityys denotes an effective optical transi-

tion probability. For simplicity, we assume equal transition Im ~S(w— e )27, + e X e T. 9
probabilities for parallel and perpendicular polarizations of X(G,0)=d0=0,)[(8-€) T F|ax e Tz, (9)
incoming (polarization ) and outgoing(polarizationeo)  whereZ;(q,w,,T) andZ,(q, »,,T) are the peaks strength in

cd(k+aq)ch(k). (6)

light, independent o, parallel and perpendicular polarization, respectively. Corre-
, spondingly, when selecting(q,t) xexdiw,(q)t] (sincev
vs=v(g-eotis|gXxey|). () approximately constant for smajl), we gept ’

The denominator Imx(q,w)wﬁ(w—wp)(e.~eo)210. (10)

D(k,aq)=E(k+q)—E,~ o, tS) , . : ,
Equations(9) and(10) constitute our first general, impor-

contains the energy of incident photoh®,, a dispersion- tant result: while the SDE gives rise to a peaklike structure in
less valence band ener@(, and a single-subband conduc- both polarizations, the CDE appears as a peak only in paral-
tion bandE (k)—eo(k) [cf. Eq. (2)]. At first glance, this el and not in perpendicular configuration, even near reso-
seems to be oversimplified in view of realistic, saynance. This can be most easily seen by considering the
Al,Ga _,As/GaAs, quantum wires. However, it is sufficient lowest-order term that is proportional ¢¢p in perpendicular
to explain our main results, which can be straightforwardlypolarization and thisannotgive rise to a peak at the fre-
generalized to several subbands. It is clear from Ej)sand  quency of the CDE?
(4) that(i) N(qg) contains all powers of the charge- and spin-  Furthermore, one can prove a general theorem, namely,
density operators an@i) the cross section can be evaluatedthat the terms in a power-law expansionfq) that con-
nonperturbatively tribute near the frequency of the CDE in perpendicular po-

Out of resonance, whehw, is much larger than the en- larization (i) contain at least one spin density operator, and
ergy gap,E;=E.(0)—E,, the energy denominator is ap- (ii) consist always of a product of add number of spin-
proximately constant. The first and second terms in (#j. density operators multiplied by a product of charge-density
give rise to peaks in the Raman spectra associated witbperators. Terms of this kind will not produce a peak in the
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corresponding cross section at the frequency of the CDHong asQ>q, the dependence on the temperature of the
When calculating the correlator, there is always a residuaihtegral S(Q,T) does not affect the result,

pair of spin-density operatorsy(t)o(0), which remains
time-dependent and destroys the coherence of the associated
CDE terms. This annihilates any spurious CDE peak in the

cross section.

In the following, we consider only the structures related to

the SDE. Similar results can be extracted @y Eq. (10).
The intensities of the former afgor g,=1)

T(qw,, T)= Lay” q2+( il )2 ds® (11)
w2l 2 | Biv,) ||dQ
with B8~ 1=kgT (kg is the Boltzmann constaptand
L@ D=0 |s@P (12
SR UHEE
The integral
S(Q,T)= f dy éVF(y) (13
0

depends on the “reduced photon wave numb&=(E,
+E—fhow +hveq/2)/hve. The function

) 1 Bho, . Ty ”1/2
= sin
Y (1+q2yd)H L 7y Bhiv,
IBhUp . my —2u—1/2
X py sin Bhio, (14
contains the exponent
w=(g9,+1/g,—2)/8 (15

typical for Tomonaga-Luttinger correlation functio™d.Re-

Tnx

-\ 4(1h-p)
%) . (16)

Q

For qz;>Q one obtains a dependence on temperature

) 4(1h—p)
I ( Qindtv F)
kgT

For all of interaction parameters discussed, the ratitiZ,
behaves independently of the interaction 8% or Q 2,
though the energy and temperature dependencies contain the
interaction parameter. Fa,<g,, the behavior is similar,
but cannot be treated analytically.

Traditionally, inelastic light scattering of interacting elec-
trons has been analyzed within RPA. This seems to work
well for the nonresonant case as it gives for quantum wires
similar results for the dispersion as the present approach. In
RPA, the cross section is related to the electronic polarizabil-
ity. By expanding into a power series in terms of the inter-
action, one finds that the first term, often denotedlaéq),
which is independent of the interaction, contains an energy
denominatoD (k,q) ~2. This is the only contribution iper-
pendicularpolarization® It gives a peak at the frequency of
the pair excitations of the noninteracting electrandq|.

In parallel polarization, and far from resonandd, can
be absorbed into a geometrical series in the interaction. This
yields only one pole—corresponding to a peak in the Raman
cross section—at the frequency of the CDE. When approach-
ing resonance, such that tkedlependence db(k,q) has to
be taken into accouni], contributes separately,and pro-
duces an additional pole at the energy of the noninteracting
electron-hole pair. The corresponding peak intensity, how-
ever, does not show any nonanalytical power-law behavior.

In the Tomonaga-Luttinger approach, the low-energy ex-

17

markably, it contains the parameter of the charge interactiorgitations are collective. There are no modes at the energies of
though it describes SDE-related features. This indicates thatoninteracting electron-hole pairs. The energetically lowest
physically the higher-order SDE’s in parallel configuration excitations are SDE’s with enerdy ,|q|.

are “dressed” by CDE'’s.

In principle, the renormalization of excitation frequencies

Equations(11) to (14) constitute our second important could be achieved within a self-consistent perturbational ap-
prediction: the dependencies of the intensities of the SDEproach, generalized to include exchange interactiomtak-
peaks in resonant Raman scattering on the energy of incideifg into account consistently exchange self-energy and
photons and/or the temperature in parallel and perpendiculaiddition exchange vertex corrections If,. However, in or-
polarizations are governed by nonrational exponents that arger to obtain the above nonanalytical behavior of the inten-
characteristic for the Tomonaga-Luttinger liquid and containsity of SDE peaks when approaching resonance, these cor-
the strength of the repulsive interaction between the elecrections should include the Coulomb interactitminfinite

trons.

order, as seen in Eq(5). Thus, in perturbative language,

_Let us identify in more detail the parameter regions whereself-energy and vertex corrections are responsible for the
this “Tomonaga-Luttinger behavior” can be expected to benon-analytic power-law behaviors of the spectra close to
most clearly detectable. There are three characteristic waw@sonance. This does not contradict the well-known result

numbers: the inverse of the range of the interactigp the

wave number of the elementary excitatignand the wave

number corresponding to the temperaturgs= 1/5%:ive. We

assumeq j,>>qz>q since belowq;,, we expect the most

that far from resonance the sum of the two terms exactly
cancel due to Ward identiti&€® Indeed, the latter cannot be
applied in the presence &fdependent vertices.

Currently, the existence of the SPE in the experiments on

important interaction-induced effects. We consider interacquantum wires are well established and consistent with our

tions of experimental relevance which correspondgtp
>go Wwith gy such thatu(gy)=1/2, i.e., gp~0.2 andg,
=1.

For Q>0int, Zn*(Qin/Q)*™ (n=1,2) we are siill far

above reported findings. Unfortunately, experimental data do
not include systematic studies of the dependencies of the
peak intensities on photon energy and/or temperature. Such
studies, however, should be highly desirable since they are

from resonancé? For q;,>Q we are near resonance. As expected to contribute to solving a fundamental question of
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modern many-body physics, namely, in how far electronicWe have quantitatively determined the nonanalytical behav-
correlations beyond mean fields are important for describingor of the intensity of the peaks in the resonant Raman spec-
correctly the low-energy CDE’s and SDE’s of clean trathat are due to SDE’s. The measurement of these nonana-

quasi-1D electron systems.

lytical dependencies on photon energy and/or temperature

In summary, we have pointed out that resonant Ramapredicted above would be decisive for discovering funda-

scattering is a powerful tool for experimentally investigating

mental non-Fermi liquid behavior in clean quantum wires

We have shown that, when approaching resonance, SDE-

induced peaks appear in both parallel and perpendicular po- We acknowledge financial support by European Union
larizations of incident and scattered photons. In contrast, theia TMR, MURST via Cofinanziamento 98, and by the Deut-
CDE cannot produce peaks in perpendicular polarizationsche Forschungsgemeinschaft.
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