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Electron pair in a Gaussian confining potential
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Two electrons confined in quantum dots~QD’s! are studied under an assumption of a Gaussian confining
potential and its parabolic approximation. We have calculated the energy levels of singlet and triplet states as
functions of the range and depth of the confining potential in the two-dimensional~circular! and three-
dimensional~spherical! QD’s, and determined the critical values of these parameters, for which the electrons
form bound states. The present results allow us to explain why the commonly used parabolic approximation
fails in a description of transport-spectroscopy data for QD’s. The applicability of the Gaussian potential to the
QD’s has been discussed.
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Quantum dots~QD’s! fabricated by modern semicondu
tor nanotechnology1 possess various shapes. Semiconduc
nanocrystals with nearly spherical boundaries,2 embedded in
insulating materials, are examples of spherical QD’s. T
vertical gated nanodevice3 consists of the cylindrical QD
which is treated by some authors4,5 as a two-dimensiona
~2D! circular nanostructure. Excess electrons confined
nanometer-sized QD’s can form bound atomiclike sta
The confining potential, which results from a conductio
band discontinuity at the QD boundary and external volta
applied to the nanostructure, is usually approximated b
three-dimensional~3D! potential well~for spherical QD’s!6,7

and a two-dimensional parabolic potential~for cylindrical
QD’s!.4,5,8–11Dipole optical transitions for the electrons co
fined in the parabolic potential are independent of the nu
ber of electrons. This property, known as a generali
Kohn’s theorem,12 was found to be approximately fulfilled in
GaAs/AlxGa12xAs ~Ref. 13! and InxGa12xAs/GaAs/AlAs
~Ref. 14! QD’s. However, recent experimental data15 show
pronounced deviations from the predictions of this theore
The parabolic potential possesses infinite depth and ra
Therefore, it is inappropriate for a description of the expe
mentally measured charging of the QD by the finite num
of excess electrons.16 These experimental results suggest t
the real confining potential is nonparabolic and possess
well-like shape. The charging of QD’s was qualitative
described6,7 with the use of a 3D spherical rectangular pote
tial well of finite depth. The application of the 3D cylindrica
potential well allowed us17 to obtain a quantitative agreeme
with the capacitance-spectroscopy data for self-assem
QD’s.16 It was also shown17 that a consistent description o
these data is not possible under the assumption of para
confinement.

In the present paper, we propose a Gaussian attrac
confining potential to study the properties of excess electr
in the QD’s. This potential possesses the finite depth
range and—in the vicinity of the dot center—can be appro
mated by the parabolic potential, i.e., it can account for
charging of the QD by the finite number of excess electr
and the approximate validity of the generalized Kohn’s th
rem. Anharmonic corrections to the parabolic approximat
are responsible for the observed deviations15 from this theo-
rem. Contrary to the rectangular potential well, the Gauss
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potential well is smooth at the QD boundaries, which perm
us to model a compositional modulation within the QD’s.18

The Gaussian potential was used in nuclear physics f
description of scattering of complex nuclei.19 The one-
electron eigenvalue problem with the attractive Gaussian
tential does not admit analytical solutions. Different appro
mate methods20–23 were implemented to solve this problem
In the present paper, we have applied a variational metho
the eigenvalue problems for both the one- and two-elect
systems in the 2D~circular! and 3D ~spherical! attractive
Gaussian potentials.

We consider the electrons in the QD with the confini
potential

V~r !52V0 exp~2r 2/2R2!, ~1!

where the depth of the potential wellV0.0, R is the range
of the confinement potential, which corresponds to a rad
of the QD, r 5ur u, wherer5(x,y) for the 2D system, and
r5(x,y,z) for the 3D system. Forr /R!1, Gaussian poten
tial ~1! can be approximated by the harmonic-oscilla
~parabolic! potential

Ṽ~r !52V01g2r 2, ~2!

where g25V0/2R2. Throughout the present paper, we u
the donor RydbergRD5me

!Ry/«2 as a unit of energy, and
the donor Bohr radiusaD5«aB /me

! as a unit of length,
where Ry is the atomic Rydberg,aB is the atomic Bohr ra-
dius, me

!5me /me0 is the ratio of the electron conduction
band massme to the electron rest massme0, and « is the
effective dielectric constant of the QD. The one-electron
ergy spectrum for parabolic potential~2! is given by

Enm
2D52V012g~2n1umu11! ~3!

for the 2D case, and

Enl
3D52V01g~4n12l 13! ~4!

for the 3D case, wheren,l 50,1, . . . , andm50,61, . . . .
For the single electron confined in potential~1! we have

solved the Schro¨dinger equation by the variational metho
with the trial wave function expanded in the bas
r pexp(2air

2), wherea i are the variational parameters. Th
4234 ©2000 The American Physical Society
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parameterp is taken on as follows:p5umu for the 2D system
andp50 for the 3D system. We have performed the calc
lations with the 20-element basis and checked that our res
agree very well with those given in Refs. 20–23. The o
electron energy levels calculated for the 3D system are
played in Fig. 1 and compared with those for the parabo
potential. We note that only for the ground state the pa
bolic potential can be regarded as a fairly good approxim
tion of the nonparabolic Gaussian potential. The excit
state energy levels for the parabolic potential exhibit la
deviations from those for the Gaussian potential, which
both qualitative~degeneracy of states! and quantitative~con-
siderable shifts of levels!.

It is well known that the eigenvalue problem for two ele
trons in the parabolic potential can be separated into cen
of-mass and relative coordinates, which leads to the sim
Schrödinger equation for the relative motion.8–10,24–26For
certain values ofg, this equation can even be solve
analytically.24 For arbitraryg, accurate numerical method
are available,8–10,26which allow us to obtain exact solution
to the relative-motion eigenvalue problem. For the Gauss
confinement potential, the two-electron eigenvalue prob
is not separable. In order to solve the corresponding Sc¨-
dinger equation, we have proposed the following variatio
trial wave function:

C~r 1 ,r 2 ,r 12!5~16P12!(
i 51

NB

ci exp~2a i r 1
22b i r 2

22g i r 12
2 !,

~5!

wherer 1 andr 2 are the electron-dot center separations,r 12 is
the electron-electron distance, sign1(2) corresponds to the

FIG. 1. One-electron energy levels for the Gaussian~solid lines!
and harmonic-oscillator~dashed lines! 3D potential with V0

550RD and R5aD . The energy levels are labelled by quantu
numbers (n,l ). The shapes of both the potential energies are a
shown as functions of distancer from the QD center. Energy is
expressed in donor RydbergsRD and length in donor Bohr radi
aD .
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singlet ~triplet! states,P12 is the permutation operator inter
changing the indices 1 and 2,ci are the linear variationa
parameters,a i , b i , andg i are the nonlinear variational pa
rameters, which have been chosen according to geomet
progressions. Two-electron trial wave function~5! explicitly
includes the electron-electron correlation via t
r 12-dependent terms. We have performed test calculati
with the increasing numberNB of basis elements in tria
wave function ~5! and checked that taking onNB555 is
sufficient to achieve the required accuracy. For example,
differences between the results obtained withNB555 and
NB5190 do not exceed 1023RD . Trial wave function~5!
has been also tested for two electrons in the harmo
oscillator potential and a very good agreement has b
found with the exact results24,26 for both the singlet and trip-
let states.

Figures 2~a! and 2~b! show the results obtained for the 2
and 3D few-electron systems confined in the Gaussian
parabolic potentials. The singlet and triplet two-electr
states with the total angular momentumL50 (S states! are
denoted by1S and 3S, respectively. Figures 2~a! and 2~b! as
well display the lowest one-electron energy levels fors-like
states, i.e., the states withm50 for 2D and l 50 for 3D
systems. The potential-well depthV0550RD corresponds to
the GaAs QD’s in the Al0.3Ga0.7As matrix, for which RD
56 meV andaD510 nm. The plots in Figs. 2 correspond
the QD’s with the strong and intermediate confinement, i
R<2aD . The condition of binding ofN-electron quantum
staten with energyEn(N) has the form6,7

En~N!,Eth~N!. ~6!

The continuum-threshold energyEth(N) for the N-electron
system is determined as follows:6,7 Eth(N)5E0(N21) and
Eth(1)50, whereE0(N21) is the ground-state energy o
the (N21)-electron system. For the harmonic-oscillator p
tential given by Eq.~2!, we have introduced the artificia
continuum threshold~cf. Fig. 1!, corresponding toṼ(r )50,
in order to compare the results for both the potentials. F
ures 2~a! and 2~b! show that the qualitative properties o
energy levels for the 2D and 3D systems are similar. Ho
ever, the quantitative differences are also visible: all the
ergy levels for the 2D system are located slightly below
corresponding levels for the 3D system. This effect resu
from the enhanced effective confinement of electrons in
2D nanostructure. We note that in both the 2D and 3D s
tems the energy levels for the Gaussian confining poten
are considerably shifted downwards with respect to the c
responding levels for the parabolic confinement. The cal
lations performed in the weak-confinement regime show t
the ground-state energy levels for both the potentials sta
coincide with each other forR@aD @cf. the (0,0) and1S
levels atR.2aD]. However, the excited-state energy leve
are still different even for large QD’s.

Based on the present results, we can speculate abou
pected properties of many-electron systems in QD’s w
nonparabolic confinement. The many-electron quant
states are mainly built from the excited one-electron sta
for which the energy levels for the Gaussian and parab
potential essentially differ between themselves~cf. Fig. 1!.
This will cause large deviations of the results obtained in
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frame of the harmonic-oscillator model from those for t
nonparabolic potential. The largest differences will app
for the weakly bound many-electron states~with energies
near the continuum threshold!, which determine the uppe
limit for the filling of the QD by the excess electrons. Th
effect is already visible for the two-electron triplet excite
state@Figs. 2~a! and 2~b!#, for which the difference betwee
the energy levels for the Gaussian and parabolic potentia
considerably larger than that for the singlet ground state
remains noticeable up toR.10aD . The common usage o

FIG. 2. Energy levels of singlet~1S) and triplet (3S) states of
two electrons confined in Gaussian~solid curves! and harmonic-
oscillator ~dashed curves! potential as functions of rangeR for the
2D ~a! and 3D ~b! systems. One-electron energy levels~0,0! and
~1,0! are also shown for both potentials. Dotted curves corresp
to the two-electron states, which are bound in the parabolic po
tial and possess higher energies than the one-electron ground
The units are the same as in Fig. 1.
r

is
d

the parabolic confining potential4,5,8–11 is based on the as
sumption that—in the vicinity of the dot center—the re
confining potential can be approximated by a quadratic fu
tion of electron-dot center distance. The present results s
that this approximation can only be justified for the QD
with the confined-electron energy levels, which lie suf
ciently deeply below the continuum-threshold energy. Ne
ertheless, in transport experiments with QD’s,3,16 the major
contributions originate from the electron states with the
ergies near the continuum threshold, for which the parab
approximation fails.

Condition~6! allows us to determine critical values of Q
parameters (R and V0), above which the excess electron
form atomiclike bound states. We have performed the ca
lations for different values ofR and V0 and established
‘‘phase transitions’’ for the few-electron systems. The resu
for the 3D QD’s are reported in Fig. 3. These ‘‘phase tra
sitions’’ can be interpreted as follows: if the values ofR and
V0 exceed those depicted by solid curves, then the quan
capacity6 of the QD is sufficiently large in order for the
correspondingN-electron quantum state to be bound. T
critical values ofR andV0 for the electron binding increas
with the increasing number of electrons. Therefore,
curves in Fig. 3 also provide lower bounds on the critic
values of the QD parameters for the binding ofN-electron
states withN.2. The results shown in Fig. 3 can be use
in determining whether or not the QD, characterized by
certain parameters, can be charged by electrons. The tr
port experiments3 are performed with entirely filled QD’s,27

which correspond to the solid curves in Fig. 3, for which t
differences between the Gaussian and harmonic-oscill
potential are large. We note that for the commonly us
parabolic potential of the formg2r 2, all theN-electron states

d
n-
ate.

FIG. 3. ‘‘Phase diagrams’’ on theR2V0 plane for electrons in
3D QD’s. Solid ~dashed! curves display the critical values of th
QD parameters, above which the corresponding quantum sta
bound for the Gaussian~parabolic! confining potential. Solid curves
correspond to the conditions at which the electrons can tun
through the QD. The units are the same as in Fig. 1.
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PRB 62 4237BRIEF REPORTS
are bound and the dashed curves, which result from the
ficially introduced continuum-energy threshold, do not a
pear.

The present results are qualitatively similar to those
tained in our previous paper6 for few-electron systems in th
finite rectangular potential well of spherical symmetry. Th
means that the depth and range of the potential well are
most important parameters characterizing the model con
ing potential. We note, however, that the Gaussian poten
does not exhibit the discontinuity at the QD boundary, wh
is the undesirable property of the rectangular potential, si
it leads to the discontinuity of the second derivative of t
wave function. Due to its continuity and finite depth a
range, the Gaussian potential fairly well approximates
real confinement potential in QD’s. In particular, the Gau
ian confinement potential can be applied to the ga
controlled QD’s,3 for which the real confinement potentia
calculated27 from the Poisson equation exhibits the stro
nonparabolicity, and to the self-organized QD’s with t
compositional modulation.18 The softness of the Gaussia
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potential enables us to model the slowly varying confini
potential, which results from a nonabrupt interface betwe
the QD and matrix regions.18 Therefore, the attractive Gauss
ian potential is sufficiently flexible and possesses all the
quired properties to be applicable as a realistic confining
tential in the QD’s.

In summary, we have applied the Gaussian confining
tential to a description of few-electron states in semicond
tor QD’s. We have determined the energy levels of the s
glet and triplet states as functions of the potential depth
range for the 2D and 3D systems, and determined the crit
values of the QD parameters for the binding of the fe
electron states. The same calculations performed with
parabolic approximation of the Gaussian potential lead to
results, which are qualitatively and quantitatively differe
The results of the present paper allow us to recommend
Gaussian potential as a good approximation of the real c
fining potential, which should be especially useful for a d
scription of many-electron systems in self-organized QD
with a varying composition.
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