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Electron pair in a Gaussian confining potential
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Two electrons confined in quantum dd@@D’s) are studied under an assumption of a Gaussian confining
potential and its parabolic approximation. We have calculated the energy levels of singlet and triplet states as
functions of the range and depth of the confining potential in the two-dimensicirallan and three-
dimensional(spherical QD’s, and determined the critical values of these parameters, for which the electrons
form bound states. The present results allow us to explain why the commonly used parabolic approximation
fails in a description of transport-spectroscopy data for QD’s. The applicability of the Gaussian potential to the
QD’s has been discussed.

Quantum dotgQD’s) fabricated by modern semiconduc- potential well is smooth at the QD boundaries, which permits
tor nanotechnologypossess various shapes. Semiconductotis to model a compositional modulation within the Qffs.
nanocrystals with nearly spherical boundafiesnbedded in The Gaussian potential was used in nuclear physics for a
insulating materials, are examples of spherical QD’s. Thelescription of scattering of complex nuctéi.The one-
vertical gated nanodeviteconsists of the cylindrical QD, €lectron eigenvalue problem with the attractive Gaussian po-
which is treated by some authbrsas a two-dimensional tential does not admit analytical solutions. Different approxi-
(2D) circular nanostructure. Excess electrons confined irnate method$~>*were implemented to solve this problem.
nanometer-sized QD’s can form bound atomiclike statesln the present paper, we have applied a variational method to
The confining potential, which results from a conduction-the eigenvalue problems for both the one- and two-electron
band discontinuity at the QD boundary and external voltage§ystems in the 2D(circulan and 3D (spherical attractive
applied to the nanostructure, is usually approximated by &aussian potentials.
three-dimensional3D) potential well(for spherical QD'$>” We consider the electrons in the QD with the confining
and a two-dimensional parabolic potentid@r cylindrical ~ potential
QD’s).**>8-Djpole optical transitions for the electrons con- o .
fined in the parabolic potential are independent of the num- V(r)=—Voexp(—r72Rr7), @

ber of electrons. This property, known as a generalizeyhere the depth of the potential wal,>0, R is the range
Kohn's theoremt* was found to be approximately fulfilled in  of the confinement potential, which corresponds to a radius
GaAs/ALGa _4As (Ref. 13 and InGa,_,As/GaAs/AlAs  of the QD,r=|r|, wherer=(x,y) for the 2D system, and
(Ref. 14 QD's. However, recent experimental détahow = (x,y,z) for the 3D system. For/R<1, Gaussian poten-
pronounced deviations from the predictions of this theoremtjg| (1) can be approximated by the harmonic-oscillator
The parabolic potential possesses infinite depth and ranggparabolig potential
Therefore, it is inappropriate for a description of the experi-
mentally measured charging of the QD by the finite number V(r)=—Vg+ 922, 2)
of excess electron. These experimental results suggest that 5 )
the real confining potential is nonparabolic and possesses‘#here y°=V/2R". Throughout the present paper, we use
well-like shape. The charging of QD's was qualitatively the donor RydberqRp=m;Ry/s as a unit of energy, and
describel” with the use of a 3D spherical rectangular poten-the donor Bohr radiusp=cag/m; as a unit of length,
tial well of finite depth. The application of the 3D cylindrical where Ry is the atomic Rydbergg is the atomic Bohr ra-
potential well allowed UY to obtain a quantitative agreement dius, m;=m,./mg, is the ratio of the electron conduction-
with the capacitance-spectroscopy data for self-assembldshnd massn, to the electron rest mass,y, ande is the
QD’s.X8 |t was also showH that a consistent description of effective dielectric constant of the QD. The one-electron en-
these data is not possible under the assumption of parabolirgy spectrum for parabolic potenti@) is given by
confinement.

In the present paper, we propose a Gaussian attractive Eam=—Vo+2y(2n+|m[+1) ()
confining potential to study the properties of excess eIectron]s,

in the QD’s. This potential possesses the finite depth and™" the 2D case, and

range and—in the vicipity of the dqt celjter—can be approxi- EﬁP: —Vo+ y(4n+21 +3) (4)
mated by the parabolic potential, i.e., it can account for the
charging of the QD by the finite number of excess electrongor the 3D case, where,|=0,1,... , andn=0,£1,... .

and the approximate validity of the generalized Kohn's theo- For the single electron confined in potent{a) we have

rem. Anharmonic corrections to the parabolic approximatiorsolved the Schdinger equation by the variational method
are responsible for the observed deviatfdrieom this theo-  with the trial wave function expanded in the basis
rem. Contrary to the rectangular potential well, the Gaussianexp(—a;r?), wherea; are the variational parameters. The
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)  50) singlet (triplet) states,P;, is the permutation operator inter-
! 2 ‘/ changing the indices 1 and 2; are the linear variational
ADOHNT = 77 7 7 __/ parametersg;, B;, andy; are the nonlinear variational pa-
. / rameters, which have been chosen according to geometrical
—7— 19 progressions. Two-electron trial wave functit) explicitly
(1.0,(0.2) = =\= # = = = = = - ! / includes the electron-electron correlation via the

(0,2) ro-dependent terms. We have performed test calculations
,'/ (.0 with the increasing numbeNg of basis elements in trial
25 |— TP W ] wave function(5) and checked that taking oNg=55 is

©.1) sufficient to achieve the required accuracy. For example, the

; differences between the results obtained witg=55 and
Ng=190 do not exceed IGRy. Trial wave function(5)
0.0) has been also tested for two electrons in the harmonic-
oscillator potential and a very good agreement has been
found with the exact resuft$?®for both the singlet and trip-
let states.

Figures Za) and 2b) show the results obtained for the 2D
and 3D few-electron systems confined in the Gaussian and
L | L | L | L parabolic potentials. The singlet and triplet two-electron

2 0 2 states with the total angular momenturs=0 (S state$ are
denoted by*S and 3S, respectively. Figures(a) and 2b) as

FIG. 1. One-electron energy levels for the Gaussimtid lineg ~ Well display the lowest one-electron energy levels dike
and harmonic-oscillator(dashed lines 3D potential with v,  States, i.e., the states with=0 for 2D and|=0 for 3D
=50R, and R=ap. The energy levels are labelled by quantum Systems. The potential-well depth=50R, corresponds to
numbers (,1). The shapes of both the potential energies are alséhe GaAs QD’s in the AJGa-As matrix, for whichRp
shown as functions of distanaefrom the QD center. Energy is =6 meV andap=10 nm. The plots in Figs. 2 correspond to
expressed in donor Rydberd, and length in donor Bohr radii the QD’s with the strong and intermediate confinement, i.e.,
ap - R<2ap. The condition of binding olN-electron quantum
stater with energyE,(N) has the forrf’

energy

-50 p—

parametep is taken on as followgp=|m| for the 2D system
andp=0 for the 3D system. We have performed the calcu- E,(N)<E(N). (6)
lations with the 20-element basis and checked that our results
agree very well with those given in Refs. 20—23. The one-The continuum-threshold enerdy,(N) for the N-electron
electron energy levels calculated for the 3D system are dissystem is determined as folloWs:E,(N) =Eq(N—1) and
played in Fig. 1 and compared with those for the parabolid=¢,(1)=0, whereEq(N—1) is the ground-state energy of
potential. We note that only for the ground state the parathe (N—1)-electron system. For the harmonic-oscillator po-
bolic potential can be regarded as a fairly good approximatential given by Eq.(2), we have introduced the artificial
tion of the nonparabolic Gaussian potential. The excitedcontinuum thresholdcf. Fig. 1), corresponding t&/(r)=0,
state energy levels for the parabolic potential exhibit largen order to compare the results for both the potentials. Fig-
deviations from those for the Gaussian potential, which argres 2a) and 2b) show that the qualitative properties of
both qualitative(degeneracy of stateand quantitativécon-  energy levels for the 2D and 3D systems are similar. How-
siderable shifts of levels ever, the quantitative differences are also visible: all the en-
It is well known that the eigenvalue problem for two elec- ergy levels for the 2D system are located slightly below the
trons in the parabolic potential can be separated into centetorresponding levels for the 3D system. This effect results
of-mass and relative coordinates, which leads to the simpleom the enhanced effective confinement of electrons in the
Schralinger equation for the relative motién'®**"**For 2D nanostructure. We note that in both the 2D and 3D sys-
certain values ofy, this equation can even be solved tems the energy levels for the Gaussian confining potential
analytically* For arbitrary y, accurate numerical methods are considerably shifted downwards with respect to the cor-
are availablé ****which allow us to obtain exact solutions responding levels for the parabolic confinement. The calcu-
to the relative-motion eigenvalue problem. For the Gaussiamations performed in the weak-confinement regime show that
confinement potential, the two-electron eigenvalue problenthe ground-state energy levels for both the potentials start to
is not separable. In order to solve the corresponding Schraoincide with each other foR>ap [cf. the (0,0) and'S
dinger equation, we have proposed the following variationalevels atR=2ap]. However, the excited-state energy levels

trial wave function: are still different even for large QD’s.
Based on the present results, we can speculate about ex-
Ng . - ) .
_ 5 5 5 pected properties of many-electron systems in QD’s with
W(ry,rarip)=(1= PlZ)iZl Ci eXp(—air1=Bir2= %12, nonparabolic confinement. The many-electron quantum

(5) states are mainly built from the excited one-electron states,
for which the energy levels for the Gaussian and parabolic

wherer ; andr, are the electron-dot center separationsjs  potential essentially differ between themselyes Fig. 1.
the electron-electron distance, sigi{ —) corresponds to the This will cause large deviations of the results obtained in the
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FIG. 3. “Phase diagrams” on thR—V, plane for electrons in
3D QD’s. Solid (dashed curves display the critical values of the
QD parameters, above which the corresponding quantum state is
bound for the Gaussiaiparaboli¢ confining potential. Solid curves
correspond to the conditions at which the electrons can tunnel
through the QD. The units are the same as in Fig. 1.

the parabolic confining potentfa1®~1tis based on the as-
sumption that—in the vicinity of the dot center—the real
confining potential can be approximated by a quadratic func-
tion of electron-dot center distance. The present results show
that this approximation can only be justified for the QD’s
with the confined-electron energy levels, which lie suffi-
ciently deeply below the continuum-threshold energy. Nev-
ertheless, in transport experiments with QB¥,the major
contributions originate from the electron states with the en-
ergies near the continuum threshold, for which the parabolic
approximation fails.

100 1 l 1 Condition(6) allows us to determine critical values of QD
0 R/la 2 parameters R and V;), above which the excess electrons
b form atomiclike bound states. We have performed the calcu-

FIG. 2. Energy levels of singletsS) and triplet ¢S) states of !f”mons for d!fferegt values oR and V, and established
two electrons confined in Gaussigsolid curves and harmonic- phase transitions” for the few-electron systems. The results

oscillator (dashed curvéspotential as functions of range for the ~ 1OF the 3D QD's are reported in Fig. 3. These “phase tran-
2D (a) and 3D (b) systems. One-electron energy levéls) and ~ Sitions™ can be interpreted as follows: if the valuesfoand
(1,0 are also shown for both potentials. Dotted curves correspondo €xceed those depicted by solid curves, then the quantum
to the two-electron states, which are bound in the parabolic poter\CapaCitﬁ of the QD is sufficiently large in order for the
tial and possess higher energies than the one-electron ground stag@rrespondingN-electron quantum state to be bound. The
The units are the same as in Fig. 1. critical values ofR andV,, for the electron binding increase
with the increasing number of electrons. Therefore, the
frame of the harmonic-oscillator model from those for thecurves in Fig. 3 also provide lower bounds on the critical
nonparabolic potential. The largest differences will appeawalues of the QD parameters for the bindingNlectron
for the weakly bound many-electron statesith energies states withN>2. The results shown in Fig. 3 can be useful
near the continuum threshg)dwhich determine the upper in determining whether or not the QD, characterized by the
limit for the filling of the QD by the excess electrons. This certain parameters, can be charged by electrons. The trans-
effect is already visible for the two-electron triplet excited port experimentsare performed with entirely filed QD%
state[Figs. 2a) and 2b)], for which the difference between which correspond to the solid curves in Fig. 3, for which the
the energy levels for the Gaussian and parabolic potentials iifferences between the Gaussian and harmonic-oscillator
considerably larger than that for the singlet ground state angotential are large. We note that for the commonly used
remains noticeable up tB=10a,. The common usage of parabolic potential of the forny?r2, all the N-electron states
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are bound and the dashed curves, which result from the artpotential enables us to model the slowly varying confining
ficially introduced continuum-energy threshold, do not ap-potential, which results from a nonabrupt interface between
pear. the QD and matrix region¥ Therefore, the attractive Gauss-
The present results are qualitatively similar to those ob4{an potential is sufficiently flexible and possesses all the re-
tained in our previous papefor few-electron systems in the quired properties to be applicable as a realistic confining po-
finite rectangular potential well of spherical symmetry. Thistential in the QD’s.
means that the depth and range of the potential well are the In summary, we have applied the Gaussian confining po-
most important parameters characterizing the model confirtential to a description of few-electron states in semiconduc-
ing potential. We note, however, that the Gaussian potentiabr QD’s. We have determined the energy levels of the sin-
does not exhibit the discontinuity at the QD boundary, whichglet and triplet states as functions of the potential depth and
is the undesirable property of the rectangular potential, sinceange for the 2D and 3D systems, and determined the critical
it leads to the discontinuity of the second derivative of thevalues of the QD parameters for the binding of the few-
wave function. Due to its continuity and finite depth andelectron states. The same calculations performed with the
range, the Gaussian potential fairly well approximates thgarabolic approximation of the Gaussian potential lead to the
real confinement potential in QD’s. In particular, the Gauss+esults, which are qualitatively and quantitatively different.
ian confinement potential can be applied to the gateThe results of the present paper allow us to recommend the
controlled QD’s; for which the real confinement potential Gaussian potential as a good approximation of the real con-
calculated’ from the Poisson equation exhibits the strongfining potential, which should be especially useful for a de-
nonparabolicity, and to the self-organized QD’s with thescription of many-electron systems in self-organized QD’s
compositional modulatio® The softness of the Gaussian with a varying composition.
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