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Higher-order effects in the dielectric constant of percolative metal-insulator systems
above the critical point
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~Received 13 January 2000; revised manuscript received 14 April 2000!

The dielectric constant of a conductor-insulator mixture shows a pronounced maximum above the critical
volume concentration. Further experimental evidence is presented as well as a theoretical consideration based
on a phenomenological equation. Explicit expressions are given for the position of the maximum in terms of
scaling parameters and the~complex! conductances of the conductor and insulator. In order to fit some of the
data, a volume-fraction-dependent expression for the conductivity of the more highly conductive component is
introduced.
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The ac and dc conductivities of resistor and resist
capacitor (RC) networks and continuum conductor-insulat
composites have been extensively studied for many year
systems where there is a very sharp change~metal-insulator
transition or MIT! in the dc conductivity at a critical volume
fraction or percolation threshold denoted byfc , the most
successful models, for both the dc and ac properties, h
proved to be approaches using percolation theory. Rev
articles, containing the theory and some experimental res
on the complex ac conductivity and other properties of
nary metal-insulator systems include Refs. 1–3.

In Refs. 4–6 the following equation was introduced:

~12f!~s I
1/s2sM

1/s!

~s I
1/s1AsM

1/s!
1

f~sC
1/t2sM

1/t!

~sC
1/t1AsM

1/t!
50, ~1!

which gives a phenomenological relationship betweensC ,
s I , andsM . They are, respectively, the conductivities of t
conducting and insulating component and the mixture of
two components. Note that all three quantitiessC , s I , and
sM can be real or complex numbers in Eq.~1!. The conduct-
ing volume fractionf ranges between 0 and 1 withf50
characterizing the pure insulator substance (sM[s I) and
f51 the pure conductor substance (sM[sC). The critical
volume fraction or percolation threshold is denoted byfc ,
where a transition from an essentially insulating to an ess
tially conducting medium takes place, andA5(1
2fc)/fc . For s5t51 the equation is equivalent to th
Bruggeman symmetric media equation.7 Equation~1! yields
two limits, for usCu→`,sM5s Ifc

s/(fc2f)s if f,fc and
for us I u→0,sM5sC(f2fc)

t/(12fc)
t if f.fc , which

characterize the exponentss and t. Note that these expres
sions are the normalized percolation equations. Atf5fc ,

sMC5sC /A(st)/(s1t)~s I /sC! t/(s1t) ~2!

up to higher-order terms ins I /sC .
When using the above expressions to analyze ac sys

the complex conductivities (sx5sxr2 iveoe rx , wherev is
the angular frequency,eo the permittivity of free space, an
e rx the real relative dielectric constant of the compone!
must be inserted in Eq.~1!. Belowfc the leading term yields
the imaginary conductivity ImsM

2 , which is the real dielec-
tric constant ReeM

2 , while the next-order term gives the re
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conductivity ResM
2 . In turn, abovefc the real conductivity

ResM
1 is the leading term, and the real dielectric consta

ReeM
1 appears in the next-order term ImsM

1 , upon which the
present paper focuses. In many instances the approxima
sC5scr ands I52 iveoe r is made.1–3

In a recent series of papers4–6 it has been shown that th
first-order analytic expressions for ImsM

2 and ResM
1 , ob-

tained from Eq.~1!, agree with the power lawsufc2fu2s or
uf2fcu2t as given in Refs. 1–3; herex25s I /sC@fc /(fc

2f)#s1t ~for f,fc) and x15s I /sC@(f2fc)/(1
2fc)#s1t ~for f.fc) are less than 1. Agreement with th
power laws given in Refs. 1–3 was also found, whenx2 and
x1 are greater than 1, which is called the crossover region
this region, the first- and second-order terms forsM vary as
s I

s/(s1t)sC
s/(s1t) on both sides offc . Note that with s I

5 ive re i the system is dispersive withsM;v t/(s1t). Wu
and McLachlan4 showed that their ac experimental da
agreed with the scaling functions, obtained from Eq.~1!, for
all x2 andx1 in the frequency range 10 Hz to 100 MHz. Th
ac scaling functions generated from Eq.~1! in Ref. 4 were
obtained using the parameters obtained from
measurements.5 These results show that Eq.~1! is a valid
expression for both first order terms for allx2 andx1 . Sub-
sequently McLachlanet al.8 have found this to also be th
case for measurements ranging from 1022 Hz to 1 GHz
made on the cellular systems~fine conducting powders coat
ing larger insulating particles! described in Ref. 9.

McLachlanet al.6,8 showed that the second-order diele
tric loss terms ResM

2 are dominated by the dielectric loss
the insulator. However, careful measurement and anal
have shown that the contribution due to the dispersed c
ductor ResM

2 does not vary asv2 as given in Refs. 1–3 and
that it is closer to thev (11t)/t dependence, obtained from E
~1!. The second-order term ImsM

1 or ReeM
1 , which is the

subject of this paper, can, due to instrumental limitatio
only be measured close tofc when ResM

1 is not too much
large than ImsM

1 . References 1–3 give the volume fractio
variation of ReeM

1 as (f2fc)
2s, which is not in agreemen

with any observed data, but is in agreement with Eq.~1! only
whenive re i /sC tends to zero for the first- and second-ord
terms. We begin with a further theoretical investigation
the behavior of the dielectric constante just abovefc using
4196 ©2000 The American Physical Society
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Eq. ~1!. SincesM is in general the result of finding numer
cally the root of a transcendental equation, this can only
achieved by expandingsM around fc . With the ansatz
sM(f)1/t5sMC

1/t 1d we obtain from Eq.~1!

d5
sMC

1/t s I
1/s~A21!1DfsC

1/tsMC
1/s

A~ t/s11!sMC
1/s 2t/s DfsC

1/tsMC
1/s21/t2~A21!s I

1/s
,

~3!

with Df5(f2fc)/fc . Note thatd does not vanish when
Df50, as we have to take into account additional terms
lower order that do not vanish forf5fc . These terms are
omitted in Eq.~2! but they are of the same order as term
linear in f2fc and must be incorporated for reasons
consistency. Inserting the right-hand side of Eq.~2! for sMC
it is now straightforward, albeit tedious, to obtain the po
tion of the maximum of the imaginary part. The calculati
yields for the maximum

fmax5fc1
s1t

2t

~12fc!~122fc!

fc
A22s/(s1t)S us I u

sC
D 2/(s1t)

1OXS s I

sC
D 3/(s1t)C. ~4!

We emphasize that the deviation offmax from fc is obtained
only when the expansion in powers of (s I /sC)1/(s1t) is
taken beyond the first power; in fact, the result given can
obtained only if the expressions are expanded up to the t
power. We have checked the reliability of this analytic e
pression by comparing with numerical solutions over a w
range of frequencies and are satisfied with its performan

Equation~4! allows important conclusions to be drawn f
the position of the maximum. Note thatfmax does not de-
pend on individual values ofs I or sC ; in other words the
maximum position depends only on the ratios I /sC ~or
equivalently onve0e r /sC). Note the following in particular.

~1! The deviation offmax from fc starts with the second
order term in (s I /sC)1/(s1t); recall that this first-order term
determines the width of the crossover region.1–3

~2! The larger the ratios I /sC , the further the maximum
is pushed away from the transition pointfc . In turn, the
position of the maximum tends towardsfc for s I /sC→0,
as it should.

~3! For finite values of the ratios I /sC the distance
fmax2fc increases the more rapidly the more pronounc
the inequalitys1t.2.

~4! To lowest order, the frequency dependence of the
tancefmax2fc is proportional tov2/(s1t).

The derivative of ImsM at fc is easier to obtain, but the
result is slightly more involved. We here report the essen
result

d Im sM

df U
fc

}ImF S s I
t/s

sC
s/tD 1/(s1t)

s I
1/ssC

1/tG .

We stress that the derivatives of ResM and ImsM at fc are
always continuous and tend to zero for (s I /sC)→0.

For our first analysis of experimental data~Fig. 1! we
examine a relatively simple percolation system with at value
close to the universal value of 2.2,3 A system that satisfies
e
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this requirement is a water-oil emulsion, using a surfactan
ensure uniform drop size. Data for such systems have b
published in Refs. 10–12 and we present in Fig. 1 data fr
Fig. 1 of Ref. 10 and from Fig. 4 of Ref. 11, which have be
fitted using Eq.~1! with the same value ofsC above and
below fc . The values used, i.e.,sC51.9(1.5)(V m)21,s I
52 i 2310211v, fc50.2(0.06) for the left~right! display
andn5105 Hz, are based on the dielectric and conductiv
curves given in the quoted papers. The fitting curves uss
51.15(1.35) andt51.85(2.1). Note that the values oft are
close to the universal value. Better fits should be obtain
with a more precise knowledge of the system paramet
Note that these data have been previously analyzed using
~1! with a single exponent (s5t) in Ref. 13.

Unfortunately, as shown in Ref. 6, Eq.~1! only qualita-
tively fits the data for systems with a high nonuniversal va
of t. We propose an expression forsC for such systems tha
will allow us to fit the data. In continuum systems a
models14–16 for a nonuniversalt are based on the premis
that a distribution of conductances in the conducting com
nent has a power law singularity. As the models given
Refs. 15 and 16 do not allow fort values as high as thos
actually observed, Balberg14 has recently proposed a mod
that allows still highert values. Therefore, in order to bette
fit the dielectric data we propose an effective dependenc
sC on f that is based in spirit on the model due to Balbe
for nonuniversal values oft. The model accounts for value
of t higher than those allowed by the random void~RV! and
inverse random void model~IRV!.15,16 In this model Balberg
assumes that the resistance distribution functionh(e), where
e is the proximity parameter, has the forme2w ase→0, and
does not tend towards a constant as in the RV and I
models. Using the approach of Refs. 16 and 17 and kee
the underlying node links and blobs model,18 Balberg derives
an expression for a nonuniversalt that is equal to the one
obtained from the RV model whenw50 but can give a
larger t for w.0. For w.0 the model also shows that th
average resistance in the network can diverge whenf
→fc . The increase int beyond its universal valuetun as
found by Balberg can be added intot5tun1tnun1r , wherer
is the extra contribution due to thecharacteristicresistance
of the network diverging atf→fc . This increase inchar-
acteristic resistance is incorporated into Eq.~1! and hence
into its limits, by substitutingsC with

sC
eff5s001sc0S f2fc

12fc
D r

, f.fc ~5!

with r .0. The solution of Eq.~1! should yield a continuous
sM acrossfc , which means that the conductivitysC should

FIG. 1. Fits of experimental data at 100 KHz of a water-
emulsion using a hydrophil agent for uniform droplet size.
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nowhere vanish. As a consequence,sC must reach a nonzer
value denoted bys00 at fc , which is expected to be consid
erably lower thansc0. To avoid too many parameters th
simplest assumption was made forf,fc , that is, sC
[s00 We note that, while the exponentr is justified by Bal-
berg’s model, the new parameters00 is necessitated to avoi
an unphysical singularity atfc . This choice should be rea
sonably valid just belowfc . We stress that the effect of th
modification by Eq.~5! is virtually indiscernible with regard
to first-order effects for the solutionsM of Eq. ~1! or the
corresponding percolation power laws in the region wh
the power laws are obeyed (x1 ,x2,1). Computer simula-
tions show that using Eq.~5! or a constantsC in Eq. ~1!
causes a difference insM(f2fc)(f.fc) or eM(fc2f)
(fc.f), which is too minute to be resolved from availab
experimental data. The same holds for dispersion p
againstv of sM abovefc andeM belowfc as given in Ref.
4. For this reason it has never been necessary previous
consider the modification given by Eq.~5!. However, in our
context the higher-order effects are discernible in the die
tric constant just beyondfc and can be fitted much mor
satisfactorily than in Ref. 6 using Eqs.~1! and ~5!.

In Fig. 2 we display data and corresponding fits for co
ducting Fe3O4 grains in a wax-coated talcum-powd
matrix.8,9 The fits are better than those presented in Ref
We have chosen~somewhat arbitrarily! s005sC/10 with the
values sC5sc052.6331021 (V m)21 obtained from
extrapolating dc experimental results tof51,
and s I52 ive0e r , where e r is measured separately
each frequency. Good fits are obtained f
(t2r ,r ,s)5(4.7,0.5,0.97),(4.3,0.7,0.98),(4.4,0.6,1.0), and
~5.6,0.4,1.6! when moving from the top left to the bottom
right display in Fig. 2. The valuefc50.025, obtained from
dc measurements, is used in Figs. 2 and 3. Note thatt5tun
1tnun1r is somewhat larger than the separately measu
nonuniversal dc value of 4.2. Also note that in all case
turned out thatr ,1. This implies a steep increase ofsC

eff

just abovefc . The fits are not necessarily optimal as t
multiparameter landscape of the least-square expres
usM

expt2sM
numu2 in the parameterst,s, andr ~for fixed s00) has

many local minima. However, the quality of the fits at t
different local minima does not vary greatly for accepta
fits.

FIG. 2. Fits of experimental data at 1 Hz, 10 Hz, 1 kHz, and
MHz ~top left to bottom right! for conducting Fe3O4 grains in a
wax-coated talcum-powder matrix. The parameters used are g
in the text.
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While this second-order behavior ofe is in principle a
complicated function of the various parameters the posit
of the maximum atfmax is essentially dependent only on th
quotients I /sC . This implies that a decrease of frequen
~which is a decrease ofs I) has an effect similar to a corre
sponding increase ofsC , which can be obtained by an in
crease of temperature. This is convincingly demonstrate
Fig. 3 where fits are obtained for the same system as in
2 at different temperatures, i.e., at different values ofsC and
e r . The experimental data and the theoretical curves sh
that an increase insC is equivalent to a decrease inv ~or
s I). The experimental data appear somewhat erratic as
usually do for the low frequency chosen~1 Hz!. The data in
the first column of Fig. 3 are slightly different from those
the first column of Fig. 2, as the former are taken in
temperature-controlled oven. Much better fits are obtain
for higher frequencies as illustrated in the bottom row of F
3 ~1 kHz! as the dielectric data are more reliable at high
frequencies. Similar to Fig. 2, experimental values a
used for e r(v,T) with sc05sC53.2231021 (V m)21 at
25° C and sc05sC51.42 (V m)21 at 120° C. The fits
were obtained with the parameters (t2r,r,s)
5(4.65,0.5,1.0),(3.4,0.6,1.0),(4.4,0.6,1.0),(3.5,0.9,1.0), ag
choosing the fixed values005sC/10.

To summarize, the pronounced hump observed exp
mentally for the dielectric constant of percolative metal
sulator systems just above the critical concentration can
modeled using the higher-order terms of Eq.~1! nearfc . In
the cases wheret is well above the universal value, Eq.~5!,
the effects of which are seen only in the second-order ter
must be used to quantitatively model the dielectric data. N
also that all previous experiments on the dielectric cons
‘‘below’’ fc , wherefc has not been independently me
sured by dc conductivity measurements, have probably
correctly identified values offc . Based on the results of th
present paper we believe that the theoretical and experim
tal results in Refs. 4–6 show that for nonvanishings I /sC
Eq. ~1! is an appropriate equation for real continuum syste
rather than the power laws given in Refs. 1–3. Note also
Eq. ~1! provides an analytic expression that generates
scaling functionsF2 andF1 , which are valid for allf and
v ~up to 1 GHz!.

en

FIG. 3. Fits of experimental data at 1 Hz forT525° C~top left!
andT5120° C~top right!. The bottom row displays correspondin
results for 1 KHz. The system is the same as in Fig. 2. The par
eter values are given in the text.
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