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Density-matrix spectra for two-dimensional quantum systems
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Fachbereich Physik, Freie Universita¨t Berlin, Arnimallee 14, D-14195 Berlin, Germany

~Received 13 April 2000!

For a two-dimensional system of coupled oscillators, the spectra of reduced density matrices can be obtained
analytically. This provides an example where the features of these quantities, which are of central importance
in numerical studies using the density-matrix renormalization-group method, can be seen.
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The density-matrix renormalization-group~DMRG!
method1 has brought enormous progress to the study of o
dimensional quantum systems and related class
problems.2 Consequently, this numerical approach has a
been applied to two-dimensional quantum problems.3,4 The
situation there, however, appears to be much less favora

The reason for this has to be sought in the properties
the density matrices which are used to select an optima
duced basis in the Hilbert space. The essential quantity is
distribution of their eigenvalues. In one dimension, one u
ally finds a rapid decay, so that a relatively small number
states is sufficient to give very good results. This basica
exponential decay can be derived explicitly for noncritic
integrable models.5,6 In nonintegrable cases, the spectra a
less regular, but still have similar features.7,8

The situation in two dimensions has been discussed
some detail for free fermions,9 and for the transverse Isin
model.10 It was found that, if one couples one-dimension
chains to form ladders, the numberm of states one needs t
maintain a certain accuracy grows exponentially with
width M of the system. This was derived either from t
limit of noninteracting chains, or from numerical calcul
tions. The spectra themselves, however, have not been
cussed so far, although they are at the core of the problem
therefore seems worthwhile to treat an example, where
can give explicit results.

This is possible for a system of coupled harmonic os
lators, which is integrable in any number of dimensions. T
problem was studied recently for the case of a linear cha6

and it was shown that the ground-state density matrices
ther for one site or for half of the system, are exponentials
bosonic operators. This is a consequence of the Gaus
form of the ground state, and holds quite generally. T
problem is only to determine the bosonic eigenvalues. T
can be done either numerically for a small system, or a
lytically in the thermodynamic limit.

To be specific, consider the system described by
Hamiltonian

H5(
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S 2
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v0

2ui
2D 1(

i , j

1

2
ki j ~ui2uj !

2, ~1!

whereui is the coordinate of thei th oscillator, andv0 its
frequency. The masses are all equal to unity, and the o
lators are coupled by springs of strengthki j . TransformingH
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to normal coordinates, one can write down the ground s
immediately. In terms of the original coordinates, it has t
form

f5expS 2
1

2 (
i , j

Ai j uiuj D . ~2!

The total density matrix is thenuf&^fu. By integrating out
part of the coordinates, one obtains reduced density matr
which have the diagonal form

r5CexpS 2(
j

« jbj
†bj D , ~3!

with bosonic operatorsbj andbj
† . The eigenvalues« j follow

from a matrix which is obtained fromAi j , and has a dimen-
sion equal to the number of kept sites. One dividesAi j into
four submatricesa11,a12,a21, anda22, according to whether
the sites i and j are kept or not. Then the matri
a11@a12(a22)21a21#21 has eigenvalues cosh2(«j/2). This can
be shown by a straightforward generalization of the appro
in Sec. II of Ref. 6. In this way, density-matrix spectra can
calculated numerically for an arbitrary assembly of coup
oscillators.

For a large system, however, the situation simplifies.
Ref. 6 it was shown that, for a chain with nearest-neigh
coupling k and oscillator frequencyv0512k, « j , for half
of the system, in the thermodynamic limit, are given by

« j5~2 j 21!«, j 51,2,3, . . . , ~4!

where

«5pI ~k8!/I ~k!. ~5!

Here I (k) is the complete elliptic integral of the first kind
andk85A12k2. The result is also valid for finite systems
the size is large compared with the correlation length.« j for
smaller systems are still similar, but there are deviatio
from Eq. ~4! which increase for larger values ofj.

Now consider a two-dimensional square lattice of oscil
tors with nearest-neighbor couplingskx and ky in the two
directions. This can be reduced to a one-dimensional pr
lem by first introducing normal coordinates in the column
The corresponding normal frequencies are

v~q!25v0
212ky~12cosq!, ~6!
4191 ©2000 The American Physical Society
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where the vertical momenta for open boundary condition
the ends andM sites are given by

q5
m

M
p, m50,1,2, . . . ,~M21!. ~7!

If one now couples the columns, the different momenta
not mix, and for each value ofq a horizontal chain of the
form of Eq.~1! results, where the oscillator frequency is no
v(q) and the couplingkx . For the density matrix of the
half-system, this leads to the spectrum of Eqs.~4! and ~5!,
with the parameterk5k(q) determined from the relation
kx /v(q)5k/(12k) or, explicitly,

k5kx /@kx1v~q!#. ~8!

In this way, an analytic expression for the spectrum
obtained. For eachj, one has a band ofM eigenvalues« j (q)
due to the transverse extension of the system. This refl
the corresponding interface between the two parts into wh
the system is divided. The dispersion of the vibration
modes in the vertical direction also determines the disper
of the « band via Eq.~8!. In particular, a largev(q) also
leads to a large value of«.

Such spectra, calculated numerically for a 10310 lattice,
are shown in Fig. 1. Plotted are« j (q), arranged according to
their magnitude for different values of the transverse c
pling ky . For noninteracting horizontal chains, one has
sequence of plateaus. Turning onky(.0), the eigenvalues
increase except forq50 and form real bands. At the lowe
end, the stairlike structure still persists, while for larger v
ues of j the bands are spread more due to the factorj
21), and eventually overlap. After the proper ordering
the « ’s, a continuous curve emerges. It corresponds roug
to a linear relation of the form

«n>ln, ~9!

with an integern, and l>2«(q50)/M inversely propor-
tional to the widthM.

FIG. 1. Bosonic single-particle eigenvalues« j (q), cf. Eq. ~3!,
for half of a 10310 system, arranged in ascending order, forv0

5kx51.0, and four values of the couplingky .
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The actual eigenvalueswn of r are obtained by specifying
the occupation numbers of the bosonic single-particle lev
« j (q). This leads to an increasingly larger number of pos
bilities as more« ’s are involved, i.e., for smallerwn . The
final result is shown in Fig. 2 for the same parameters a
Fig. 1. One can see that the stairlike structure also persis
wn for small ky , although the plateaus are much longer a
given by combinatorical factors. For largerky , rather smooth
curves arise which drop increasingly more quickly. In
cases, there is a rapid initial decay followed by a slow
decrease for largern. Following Ref. 7, one can derive a
asymptotic formula from Eq.~9! which reads

wn;exp$2@l/~2 p2/3!# ln2n%, ~10!

and which is obeyed reasonably well by the curves. Due
the slow decay, the truncation error when cutting off t
spectrum also decreases slowly. Aftern5100, 500, and
1000, it is approximately 1025, 1027 and 1028, respectively,
if kx5ky5v051.0.

The dependence of thewn spectrum on the widthM is
shown in Fig. 3 for the casekx5ky51. One can see how th

FIG. 2. Density-matrix eigenvalueswn , arranged in decreasing
order, obtained from« j (q) in Fig. 1 and for the same parameters

FIG. 3. Density-matrix eigenvalueswn for systems of different
width M andv05kx5ky51.0.
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curves drop more and more slowly asM increases, in accor
dance with Eqs.~9! and ~10! and the decrease ofl with M.

These results confirm that the situation worsens as
system becomes more two dimensional. The faster initial
cay before the onset of the combinatorical effects helps
numerical calculations. Also, the interaction helps here
some extent, since the« values increase withky , but this
does not remove the basic 1/M dependence in the exponen
The same features are found if one assumes that one is
ing with fermionic operators in Eq.~3!. This would corre-
spond to a fermionic system with pair terms such that
Hamiltonian expressed in Fermi operators has the s
structure as Eq.~1! expressed in Bose operators. In this ca
the combinatorical possibilities are reduced, but this le

FIG. 4. Density-matrix eigenstates for the left part of a chain
32 sites. Shown are the amplitudes as a function of the position
the lowest three« j values forv05k50.5.
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only to a changel→2l in Eq. ~10!. One should also note
that we have treated a noncritical system where the situa
is in general more favorable. One could extend the consid
ations to three dimensions, in which case one has two
menta for the transverse directions, and therefore an e
larger number of« values in each band.

Returning briefly to one dimension, we would like t
mention that our model also shows the origin of the differe
DMRG performance for chains and rings1 very clearly. This
problem is, in fact, closely related to those discussed abo
If one calculates the density-matrix spectrum for a half-rin
one finds the same« j values at the lower end as for th
half-chain, but each value appearstwice. When plotted, this
leads to a structure as in Fig. 1, with steps of length two. T
reason lies in the form of the eigenstates ofr which, for
small « j , are concentrated near the boundary between
tem and environment. This feature, which was conjectu
before,1,11 can be seen explicitly here, and is illustrated
Fig. 4. The effect is known from the closely related corn
transfer matrix of the massive Gaussian model.12 For a half-
ring, which has two points of contact, one then finds tw
such sets of states which are approximately independen
each other for small« j . Therefore,r>rLrR , whererL and
rR are density matrices for only a left boundary or only
right boundary. Thus the situation is the same as for a lad
consisting of two only weakly interacting chains.

Coming back to the two-dimensional problem, the spec
found here explain, in a very direct way, the difficulties
the DMRG in this case. To apply the method, one should
as many symmetries as possible.10 However, to treat very
large systems, a procedure which avoids the extended in
faces between the parts of the system would be neces
Whether the momentum-space approach of Ref. 4 can
here is not yet clear.

We thank X. Wang for discussions, and A. Gendiar f
correspondence. M.C.C. acknowledges the support of D
scher Akademischer Austauschdienst~DAAD !.

f
or
v. B
r-
1S.R. White, Phys. Rev. Lett.69, 2863~1992!; Phys. Rev. B48, 10
345 ~1993!.

2For a review, seeDensity-Matrix Renormalization, edited by I.
Peschel, X. Wang, M. Kaulke, and K. Hallberg, Lecture No
in Physics Vol. 528~Springer, Berlin, 1999!.

3S.R. White and D.J. Scalapino, Phys. Rev. Lett.80, 1272~1998!;
81, 3227~1998!; Phys. Rev. B61, 6320~2000!.

4T. Xiang, Phys. Rev. B53, R10445~1996!; see also T. Xiang and
X. Wang, inDensity Matrix Renormalization~Ref. 2!.

5I. Peschel, M. Kaulke, and O¨ . Legeza, Ann. Phys.~Leipzig! 8,
153 ~1999!.
6I. Peschel and M.C. Chung, J. Phys. A32, 8419~1999!.
7K. Okunishi, Y. Hieida, and Y. Akutsu, Phys. Rev. E59, R6227

~1999!.
8C. Ritter, Ph.D.thesis, Universita¨t Bonn, 1999.
9S. Liang and H. Pang, Phys. Rev. B49, 9214~1994!.

10M.S.L. du Croo de Jongh and J.M.J. van Leeuwen, Phys. Re
57, 8494~1998!; M.S.L. du Croo de Jongh, Ph.D.thesis, Unive
siteit Leiden, 1999; see pre-print, cond-mat/9908200.

11S.R. White and D.A. Huse, Phys. Rev. B48, 3844~1993!.
12I. Peschel and T.T. Truong, Ann. Phys.~Leipzig! 48, 185~1991!.


