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Density-matrix spectra for two-dimensional quantum systems
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For a two-dimensional system of coupled oscillators, the spectra of reduced density matrices can be obtained
analytically. This provides an example where the features of these quantities, which are of central importance
in numerical studies using the density-matrix renormalization-group method, can be seen.

The density-matrix renormalization-groupfDMRG)  to normal coordinates, one can write down the ground state
method has brought enormous progress to the study of oneimmediately. In terms of the original coordinates, it has the
dimensional quantum systems and related classicdbrm
problems? Consequently, this numerical approach has also
been applied to two-dimensional quantum probléhghe 1
situation there, however, appears to be much less favorable. ¢=exr{ ) IZJ Aiiuiui)-

The reason for this has to be sought in the properties of '
the density matrices which are used to select an optimal reFhe total density matrix is thefp){ ¢|. By integrating out
duced basis in the Hilbert space. The essential quantity is theart of the coordinates, one obtains reduced density matrices
distribution of their eigenvalues. In one dimension, one usuwhich have the diagonal form
ally finds a rapid decay, so that a relatively small number of

@)

states is sufficient to give very good results. This basically +

exponential decay can be derived explicitly for noncritical PZCGXF{ _2 &b bj)* ©)
integrable model3® In nonintegrable cases, the spectra are .

less regular, but still have similar feature. with bosonic operators; andb! . The eigenvalues; follow

The situation in two dimensions has been discussed ifom a matrix which is obtained from;; , and has a dimen-
some detail for free fermiorfsand for the transverse Ising sjon equal to the number of kept sites. One dividesinto

chains to form ladders, the numberof states one needs t0 e sitesi and j are kept or not. Then the matrix
maintain a certain accuracy grows exponentially with theall[a12(a22)fla21]fl has eigenvalues co%{bj/Z). This can
width M of the system. This was derived either from the pe shown by a straightforward generalization of the approach
limit of noninteracting chains, or from numerical calcula- j, sec. |1 of Ref. 6. In this way, density-matrix spectra can be

tions. The spectra themselves, however, have not been digaiculated numerically for an arbitrary assembly of coupled
cussed so far, although they are at the core of the problem. Hscillators.

therefore seems worthwhile to treat an example, where one g 4 |arge system, however, the situation simplifies. In
can give explicit results. _ _ Ref. 6 it was shown that, for a chain with nearest-neighbor
This is possible for a system of coupled harmonic oscil-coyplingk and oscillator frequencywo=1—Kk, ¢;, for half

lators, which is integrable in any number of dimensions. Thisyf tpe system, in the thermodynamic limit, are given by
problem was studied recently for the case of a linear chain,

and it was shown that the ground-state density matrices, ei- e=(2j—1e, j=123..., (4)
ther for one site or for half of the system, are exponentials of
bosonic operators. This is a consequence of the Gaussiarhere
form of the ground state, and holds quite generally. The
problem is only to determine the bosonic eigenvalues. This e=ml(k")/1(k). (5)
can be done either numerically for a small system, or ana-
lytically in the thermodynamic limit. Here | (k) is the complete elliptic integral of the first kind,
To be specific, consider the system described by thendk’'=1— kZ. The result is also valid for finite systems if
Hamiltonian the size is large compared with the correlation lengthfor
smaller systems are still similar, but there are deviations
from Eq. (4) which increase for larger values pf
1 Now consider a two-dimensional square lattice of oscilla-
+ Ekij(ui_uj)zr (1) tors with nearest-neighbor couplingg andk, in the two
h directions. This can be reduced to a one-dimensional prob-
lem by first introducing normal coordinates in the columns.
whereu; is the coordinate of théth oscillator, andw, its ~ The corresponding normal frequencies are

frequency. The masses are all equal to unity, and the oscil- . 2
lators are coupled by springs of strength. TransformingH w(q)°=ws+2ky(1—cosq), (6)
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o ) ] FIG. 2. Density-matrix eigenvalues,,, arranged in decreasing
FIG. 1. Bosonic single-particle eigenvaluegq), cf. Eq.(3),  order, obtained fronz;(q) in Fig. 1 and for the same parameters.
for half of a 10<10 system, arranged in ascending order, dgr
=k,=1.0, and four values of the couplirlg . The actual eigenvaluas, of p are obtained by specifying
) » the occupation numbers of the bosonic single-particle levels
where the vertical momenta for open boundary conditions agj(q). This leads to an increasingly larger number of possi-

the ends and/ sites are given by bilities as moree’s are involved, i.e., for smallew,,. The
final result is shown in Fig. 2 for the same parameters as in
q= Ew, m=0,1,2...,(M—1). (7)  Fig. 1. One can see that the stairlike structure also persists in
M w, for smallk, although the plateaus are much longer and

. given by combinatorical factors. For lardey, rather smooth
If one now couples the columns, the different momenta dqyryes “arise which drop increasingly more quickly. In all
not mix, and for each value af a horizontal chain of the cages there is a rapid initial decay followed by a slower
form of Eq. (1) results, where the oscillator frequency is NOW gecrease for largem. Following Ref. 7, one can derive an

o(g) and the couplingk,. For the density matrix of the asymptotic formula from Eq(9) which reads
half-system, this leads to the spectrum of E@8.and (5),

with the parametek=Kk(q) determined from the relation w,~exp{ —[N/(2 7?/3)]In?n}, (10)

kx/0(q)=k/(1=k) or, explicitly, and which is obeyed reasonably well by the curves. Due to
k=K, /[k + o(q)]. ®) the slow decay, the truncation error when cutting off the
spectrum also decreases slowly. After=100, 500, and

In this way, an analytic expression for the spectrum isL000, it is approximately 1%, 10~ and 10 °, respectively,
obtained. For each one has a band &fl eigenvalues:;(q) if ky=ky=wo=1.0. . )
due to the transverse extension of the system. This reflects The dependence of the, spectrum on the widtiM is
the corresponding interface between the two parts into whichown in Fig. 3 for the case,=k,=1. One can see how the
the system is divided. The dispersion of the vibrational ,
modes in the vertical direction also determines the dispersior 10 :
of the ¢ band via Eq.(8). In particular, a large»(q) also
leads to a large value of.

Such spectra, calculated numerically for ax11D lattice, 10°
are shown in Fig. 1. Plotted arg(q), arranged according to
their magnitude for different values of the transverse cou-
pling k,. For noninteracting horizontal chains, one has a,
sequence of plateaus. Turning &p(>0), the eigenvalues ™»
increase except fogy=0 and form real bands. At the lower
end, the stairlike structure still persists, while for larger val- LN .
ues ofj the bands are spread more due to the factgr (2 s ~ e i
—1), and eventually overlap. After the proper ordering of S~ T
the e’s, a continuous curve emerges. It corresponds roughly -
to a linear relation of the form e

20 . )
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gn=A\N, 9 n
with an integern, and A=2¢(q=0)/M inversely propor- FIG. 3. Density-matrix eigenvalues, for systems of different

tional to the widthM. width M and wo=k,=k,=1.0.
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1 ' ' . ' ' only to a change.— 2\ in Eq. (10). One should also note
05 L that we have treated a noncritical system where the situation
) st is in general more favorable. One could extend the consider-
0.6 - e §“§ , ations to three dimensions, in which case one has two mo-
: menta for the transverse directions, and therefore an even
04 - . larger number ot values in each band.
02 | | Returning briefly to one dimension, we would like to
) mention that our model also shows the origin of the different
0 DMRG performance for chains and rifgeery clearly. This
problem is, in fact, closely related to those discussed above.
-02 - If one calculates the density-matrix spectrum for a half-ring,
—o04 L one finds the same; values at the lower end as for the
half-chain, but each value appedvdce When plotted, this
0.6 leads to a structure as in Fig. 1, with steps of length two. The
reason lies in the form of the eigenstatespofvhich, for
—08 & small e;, are concentrated near the boundary between sys-
-1 . . . ! ‘ . . tem and environment. This feature, which was conjectured
2 4 6 8 10 12 14 16  peforel! can be seen explicitly here, and is illustrated in

n Fig. 4. The effect is known from the closely related corner

FIG. 4. Density-matrix eigenstates for the left part of a chain Oftransfer matrlx of the m{_:lsswe Gaussian mddétor a_ half-
32 sites. Shown are the amplitudes as a function of the position fofi"d. Which has two points of contact, one then finds two
the lowest three;; values forwo=k=0.5. such sets of states which are approximately independent of
each other for smak; . Thereforep=p pgr, Wherep, and
. . pr are density matrices for only a left boundary or only a
curves drop more and more slowly Bsincreases, in accor- gt houndary. Thus the situation is the same as for a ladder
dance with Eqs(9) and(10) and the decrease af with M. consisting of two only weakly interacting chains.

These results confirm that the situation worsens as the Coming back to the two-dimensional problem, the spectra
system becomes more two dlmens_lonal._The faster initial d_eround here explain, in a very direct way, the difficulties of
cay before the onset of the combinatorical effects helps ifhe pMRG in this case. To apply the method, one should use
numerical calculations. Also, the interaction helps here to,g many symmetries as possibfleHowever 'to treat very
some extent, since the values increase with, , but this  |5:qe systems, a procedure which avoids the extended inter-
does not remove the basicM/dependence in the exponent. 5cas petween the parts of the system would be necessary.

The same features are found if one assumes that one is de%ether the momentum-space approach of Ref. 4 can help
ing with fermionic operators in Eq3). This would corre-  pere is not yet clear.

spond to a fermionic system with pair terms such that the

Hamiltonian expressed in Fermi operators has the same We thank X. Wang for discussions, and A. Gendiar for
structure as Eq1) expressed in Bose operators. In this casecorrespondence. M.C.C. acknowledges the support of Deut-
the combinatorical possibilities are reduced, but this leadscher Akademischer Austauschdie(3BAAD).
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