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In this paper, | analyze the spectra of composite systems of charged modes and localized spin fields. |
determined the structure of the ground state and the excited states based on the coupling of charged modes and
spin-fluctuation waves traveling into the spin field. This is carried out considering the interplay of the renor-
malized Kondo Hamiltonian and the induced Ruderman-Kittel-Kasuya-Y@&H&Y ) interaction. The spec-
trum of these states is deduced in several cases, when the spin field state is magnetically nonordered and when
it is antiferromagnetic. | show that in both spin field states the fluctuation waves can confer a narrow band
structure character to these excited states, wkadispersion is due to thézyky interaction. In addition, for
both spin field states, the Kondo effects compete with the RKKY effects and the concatenation of the two
actions can produce different phases. | analyze the conditions for the appearance of such phases and outline
some of their properties.

I. INTRODUCTION is to formalize the determination of the wave functions for
the ground state and excited states of the mixed system
The conduction-band electrons within the Kondo lattice(charged modes and spin-fluctuation wavaad to obtain
produce a coherent interaction with the components of théhe quasimomentum dependence of their spectrum. As a con-
localized spin field$~® As it is well known, this coherent secutive study, | will analyze the conditions for the appear-
interaction induces a Heisenberg-like coupling within theance of the different phases: Kondo insulatdrs®and con-
spin field that is the so-called Ruderman-Kittel-Kasuya-ducting material8:'®~*® The band character of these
Yosida (RKKY) interaction®*®” The most simplified ver- quasiparticle structures is conferred by the RKKY interaction
sion of this induction is given in the model of two impurities and the resulting width of these bands can be narrow,
(see, for instance, Ref).1The joint action of the Kondo and strongly enhancing the effective masses of the charges lo-
RKKY interactions generates fluctuation waves in the spincated in them. A property of this mass enhancement is its
field which largely modify the Kondo exchange effects be-magnetic origin, since it is produced by the coupling of ini-
tween the conduction electron sea and the spin field latticdially extended states with spin-fluctuation waves. Since
This leads to coupled states of charged modes and fluctuati@ome years ago, different authors have suggested such an
waves in an analogous way to the case of the polaron, whichrigin for the heavy-fermion phenomenology-***There-
could allow us by analogy to call them magnetic polaronsfore the occupation of these strongly correlated electron
The formal expression of these magnetic polarons are linedSCE states can lead to find explanations for this phenom-
combinations of composed states of charged m@fj{&@S enology.
and spin fluctuation waveS§_,|GS), where |GS) Is the
ground state of the mixed systef{GS =|®)|F) and
|®) (]F)) is the ground state of the charged particle system
(the localized spin field. This allows us to introduce an
ansatz inspired in trial wave functions that have been used in A more extensive explanation of the model can be found
other previous work§”*° The spin field state can be mag- in Refs. 16 and 18. We consider the f (or s—d) exchange
netically ordered or not. In any case, the magnetic status gfjamiltoniar? which usually is named Kondo lattice model
this |F) state modifies the phenomenology of the Kondo lat-(KLM ) and whose expression’’
tice. In the present paper, | variationally determine the wave
function of|GS) and the excited states, as well as the corre-
sponding spectrum. This is carried out considering the dif- H=Ho+Hk =2 &ClaCiat I Sei-Siis 1)
ferent above-mentioned possibilities for i€ state. These Ko !
excited states of the system are many-body excitations which
propagate through the lattice with a well defined quasimowhere S,; and S;; are the spin of the conduction electrons
mentum. Therefore they can be regarded as quasiparticlend the 6=1/2) locali spin, respectively. In our analysis
state bands whose dispersion energyEisitedK) — Egs, of this model, we consider a unitary transformation of
where Egd EeycitedK)] is the energy of the ground the initial operatorscla, Cka» and S into a new set
[k-n_\omentum _exute}jstat_e_. The spect_rqm of these quasi-¢ =e Tcel, éla:efTCEaeT, "ka:efTkaeT_ The
particles contains competitive terms arising from the RKKYtransformed oerators. =& and . =&t are such
and renormalized Kondo effects, being possible that the en-""" P Pa “pa e “-q-a
ergy of the excited states is, in certain conditions, less thafat €p,|GS)=hg,|GS)=0, where|GS) is the ground state
that of the state initially considered as the ground state. I®f the interacting system. The generator of the transforma-
this case, insulator-conducting phase transitions occur antibn T can be arbitrary whenevaiGS)+0 and preserve all
new metallic phases appear. The main objetive of this papesymmetries of the initial Hamiltonian. In addition, for small

II. SUMMARY OF THE MODEL AND TRIAL WAVE
FUNCTIONS
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Kondo Coup”ng paramete]" and anyé operator, the fol- For the magnetica”)\/ nonordered SyStem, | consider a Spin
lowing equality should be valid: field state such that~|S;,|F)=0 for all j sites. In this case,
_3aA F A a the |F) state can be defined by
O=e T0e’™~0+[T,0]. 2)
Substituting the original creation and annihilation opera- |F>=2_N/2H I[1,1)), ®

tors in function of the corresponding transformed operators

in Fhe initial Kondo Hamiltonian, we obtain the expression 0fwhere|[1,1]j>: (¢ ojfjtﬁei 9’!?1'1)|O>: (e 0j|T>j tel 0j'|l>j)-

H in terms of the new degrees of freedom. . - . .

In this case, th&,,|F) states are perturbations of the spin
H=C+ Hyinetict Hrkondot Hrkk Y (3 field in a magnetically nonordered state, i.e., these states con-
h he diff f the Hamiltoni . __stitute a spin liquid of excitations within the paramagnetic
where the different terms of the Hamiltonian are given INgiy field. The wave functions of such excitations can be

Refs. 16 and 18.
formally expressed as
The general structure of the above transformed Hamilto- y exp

nian’s eigenstates wite=s?=1/2 and wave vectok is'®8 N gik-R

§IF)=> — (1.2 -[1,0]j- - -[1.1]y), 9)

SCBa) = AN Y23, B(P)(E] S &) Sus-) )P b N2
N ik-R;

@ S§|F>=§—JN—2$|[1,1]1,~--,[1,—1]j,---,[1,1]N>,

A similar expression is obtained for the states constructed

with hole operators, (10)
A A R N ik-R;
|SCE<,1/2>=AN‘1’2§ B(p)(h;Tso,k_whgisl,k_p>|<1>>|F(g sk-|F>:2j B TrL G R R ERE M

whereA is a normalization constant. These SCE states are From an easy inspection of the above equations one can

many-body electron(hole) excitations &f,|®) (Rl |@)) ~ See that in this case, the trivecto,(,S¢,S;)|F) is truly
that are coupled to a cloud of spin-fluctuation waves whos@n€ dimensional because its three components are linearly
wave functions are given b|F). The structure of theb) ~ dependentfor a lattice withN— =, S,|F), andS|F) are
state is constituted by the true GS of the charged modeRaralle). Therefore, in the magnetically nonordered case, the
without coupling with the spin-fluctuation waves afi) is ~ SPIn excitations within the spin liquid has&=0 and thus the
the spin field ground state. |SCB states can only havé=1/2.

The structure of thesESCE o) states depends on the na- ~ For an antiferromagnetically order¢#) state, the com-
ture of the spin field. In general, the wave functions of aponents of the trivectorg; ,S;,S,)|F) can be given in one

spin-field statgdF) can be written as dimension by
=Y 3 .3 c TEL AT o) siEy =y & .
222 Cangay Ty Ty Ta [0, SIF=3 ~ IMalDzr S may ), (12
(6)
where theC,_,,...q,, coefficients define the magnetic state KRy

gpy =3 MY
of |[F). The only difference between Eqd) and(5) and the Sk“:)_zj: JIN IThalbz---Slm)j--) (13

trial wave functions of our previous pap@ré8 is that the ) ) o )
results depend here on the magnetic structure of the spifih® extension to any dimension is straightforwaiebr the
field state|F), while in Refs. 16 and 18 the spectrum was sake of simplicity | _con5|d_er here_ an antlferr_omqgne_tlc struc-
obtained without considering the RKKY action, thus over-ture of Fwo sublattices with qntlparallel spin direction, the
looking the structure of the spin field state. The abéf calculations for gny_other antiferromagnetic structure can be
wave function for a system in a general case can be rewrittefleduced from this simple one. The three states in the antifer-
as romagnetidF) state above defined are linearly independent
and hence the trivectorS( ,5%,5,)|F) corresponds tcS
|F>=H La;.Bi1), ) =1 spin waves propagating with momenturthrough the
j spin field. As a consequence, tf8CE) states in an antifer-

romagnetic spin field can hav&=1/2 andS= 3/2.

where  |[a;,B8;1)=(a;e'’] +b;e! T )|0)=(aje’’i|1),

+bjei 0J'I|l>j), and in allj sitesajz+ bj2=1. The phases and IIl. STRUCTURES AND ENERGIES

@' are arbitrary. Both the modules and phases of the varia- OF THE GROUND STATE

tional @j and g; parameters define the magnetic structure. ) ]

The actual Kondo materials are either antiferromagnetic, The ground statéGS) is composed, as mentioned above,
such as URtand UPdAl,, 22 or magnetically nonordered by a many-body charged mode wave functish), and a
as CeSi and UBas.? Therefore | shall consider in this SPin field wave function|F). Given the operational
work only these two cases. structuré®*® of Hyinetic: Hiondo, @aNdHRkky, it is obvious
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that |®) is eigenstate of bothHneric and Hyinetic . 2 i
+Hyondo- AS a consequence, the structure|®f is totally <HK0nd0>:2N3/z > B*(P)B(P)(ep,p)

. ~ . . . pp’
determined becausH;,etic IS @ noninteracting system of

energyC. xS l(P—K)Rigi(p' —P)-Rjgi(k—p)-Rnf (& & &
In the case of magnetically nonorderit) states, we ob- |J§nr:1 1(525525n2
an CEEEE TS S
1 A~ A
EXkiy= F’— JiS-S|F .
R < 2 'E’él IJS : > <Hkinetic> reads
_ 1 2 ’ ’ A A2 ~
Tg g dicosht O mh=6). (19 (Finend = 2 [B(P)E(ep). (20

The above energy only depends on the phakess;, 6, , . . . ~
and ¢; that define a given nonordered state. As an example',3y putting together the resulting expressions (Bhinetic.

we can consider the one-dimensional lattice: here, the lowesfkondo® @nd(Hrkky), we have that
energy for a nonordereF) state is obtained with a distri-

. 2
bution of phases such tha = 6;+(—1)!("'?. The corre-

A? . A
Escek)=Eqst 55 2 [B(P)*E(ep) — =
p

sponding minimum energy is then 4N?
0 - ! X2 B*(p)I(ep,2p)B(P))
ERKKY:<F|HRKKY|F>:_§§ 331 (15 = p)J(€p,€p)B(P
i4]
E . . A? 3 1
or an antiferromagneti¢F) state, the energy of the - Z —|3ii| = = 3
ground state of th¢F) spin field is AN2 (T |47 47
. 1 1 X >, |B(p)|2cog (p—K)-Rj 21
E(F)eKKY:<F|HRKKY|F>:_§ % Jijts 2‘4] Jij, (16 2p [B(p)|*cog (p~k)- R @)

The above energy corresponds to the excitation of the system
X X by adding a new particle to the GS. This excitation propa-
spin-up sublattice. gates with & momentum and can be interpreted as a quasi-
particle of energyEscek) —Egs.

where 3| stands for the if) indexes that run over the

IV. CALCULATION OF THE TOTAL SCE ENERGY

The SCE energy is a functional of the variatiorgip) B. Antiferromagnetic |F) case

parameters of Eq$4) and(5) which should be minimized in The expression&l8) and(19) hold also in this case. How-
order to determine the SCE spectra. Therefore we have thaiver, the average values are different because of the different

L ~ . |F) state. Expressing thidgixy Hamiltonian as in Eq(18)
Esce(k) =(SCEK 4| C+ Hyinetict Hkondo™ Hriky| SCE o) and considering all different average values calculated with
~ A - - the correspondingF) state, we obtain the following de-
:C+<Hkinetic>+<HKond0)+<HRKKY>- (17 pendence of the SCE energy:

The calculation ofEscgk) obviously depends on the struc- A2 ~
ture of the|F) state. Escek)=Eest 5y % IB(P)I*E(ep)

A. Nonordered |F) case A? . ,
. . —— 2 B*(p)J(ep,25)B(p)
The calculation of the different average values of @) AN? b

is large but can easily be systematized by considering the .
structure of thgF) states given in Eq¥8)—(13). Then, we N A_ 2

. i 2 [B(p)|? —k)-Rii].
have thatHgyxy) reads N2 &2 J'l% B(p)|* cod (p—k)-Ryj]

(22

. A2 o A A
<HRKKY>=m2_ > JiBEIH(S-«S- 55
i+ P The energies of Eq9.21) and (22) are not determined
& & aar because they depend on tiBgp)-variational parameters.
(S-S 5Scp)t- (18 Therefore they lack physical meaning until these parameters
. are determined by minimizinBscgk). This is performed by
The (Hyongo term is using the variational techniques of the following section.
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V. VARIATIONAL PRINCIPLE APPLIED TO THE
SPECTRA

Esce(k)

The B(p) functions can be determined in a similar proce-

dure to Eq.(84) of Ref. 16[i.e., by minimizing theEgc«k)
energy with respect to these variational functipn$his

minimization principle leads to the following expressions:

NonorderedF) state,

[Escek) —Egs|B(p)

. 1
=E(ep)B(P) ~ 5 2 J(ep.ep)B(P')

1 (3
2N {7,

217 .J)E B(p)cog (p—k)- Ryj].

(23
Antiferromagnetid F) state,
[Esce(k) —Egs|B(p)

- 1
=E(ep)B(P)~ 55y 2 J(ep.ep)B(P)
pI

=
5 2 di2 Bpcod(p—k)-Ryl. (24
i#] P

In the cases in whichHyongo i much larger than

(Hrkky), We can operate in a similar way to that of Ref. 16.
We can initially drop the term arising from the RKKY inter-
action in order to obtaiB(p) and then, by substituting in

<|:|RKKY) the calculated values for the variational functions

we determineEgc( k).
For the magnetically nonorderéB) state, we obtain

1 2
ESCE(k) EGS+ E(O) —eX[{ JDF>

-— 2> (‘3_1|‘Jij|_%‘-]ij)

4N2

x% b(p)cog (p—k)-Rj;] (25)

and for the antiferromagneti€&) state,
1 2
2 " 7 3D,

L
to ; J@ b(p)cog (p—k)-Rj;].

Esce k) =Egst E(0)—

(26)

E(0) is the vaIueE(ep) for £,=0. This value is 0.04%
(Ref. 16 when a simple band structure 4= y|k|—1/2) in
the initial Hamiltonian (1) is considered. Then, thb(p)
functions are

oy 20 572) -
(= (8p+0Q)2

with Q=

PRB 62

1 exp(—2/IDg).

An important point in the heavy-fermion issue is the nar-
rowness of the band structure of the SCE states, since this
determines the features of this strongly correlated state. The
band structure of Eq$25) and(26) can be written in a single
expression:

Q 812+ Q)
A(k)z - —N

Zp( p+Q)22Jcos{p k)-Ri].

(28)

In this equation thel; parameters are the RKKY ex-
change terms with respect to a given site considered as ori-
gin. In order to estimate the band structure and analyze its
width, one can consider a one-dimensional system with a
distribution ofJ,, parameters such that they can be expressed
asJ,=J;a” ("1 (for instance, in the calculation carried out
in Ref. 18, | obtaine~2). Then, the band structure is

AK) Qa 812+ Q) acog(p—kja]—1
( 2N 5 (8,4 Q)2 a®+1-2a cog(p—k)a]
(29
A new simplification can be obtained if we use the exhaus-
tion Nozieges phenomenoff.We can thus consider only the
term in thep summatory fopp=0. Thus we have

J1(6,+Q)
20 42+1-2acogka)’

a?cogka)—a

A(k)~— (30)
This band structure has the minimumkat 0, the maximum
atk= = 7/a and its bandwidth is

J1(82+Q) a?

sSCEE T 1 (31)

Therefore the heavy-fermion band-structure condition will
require that the RKKY term should be preferably weak.,

J, smal)), short ranged, and/or fast decreasfng., « large),
and the initial bandwidth of Hamiltoniafl) should be as
narrow as possiblé.e., smalls).

A. Alternative method to obtain Egcg(k)

An alternative method within the variational calculation
consists in determining the characteristic integral equation as
in the superconducting equation cases. We start from Egs.
(24) and (25), which can be rewritten as

[Escelk) —Egs—E(ep) +Ax(p)1B(p)
1
——ﬁg I(ep,ep)B(P), (32)

whereA,(p) takes the following expressions: for the nonor-
dered|F) state

1
|J.J| Jij[cog(p—k)-Ry;], (33)

1
Ay(p)= 7N - E

for the antlferromagnetic case

L
Adp)=—§ ;J Jij cog (p—k) - Ry; 1. (34)
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g B % . FIG. 1. Schematic drawing of
g & g 5 the electronic structure of the dif-
“1 (a) - b = =l . .
4 ’ (b) K (c) = (d) ferent phases described in the text.
wie | 1P ey | Jetie> st | )enes (@) Insulating A phase.(b) Con-
ducting B phase.(c) InsulatingC
_______'_§g§_f‘)__>{@5"> Ac/2 s A2 phase.(d) ConductingD phase.
s [ A SCE® J The solid(discontinuousline cor-
> S 1682 A ISCEe> S e DOS A reponds to the density-of-states of

particles (holeg; GS in (a), (b),
and(c) stands for the energy level
corresponding to the ground state
and A (A,) is the chargedspin)
gap. The widths of these gaps are
exaggerated in order to preserve
the clearness of the figure.

From Eq.(32), we arrive to the following integral equation: All calculations of Secs. IV and V have to be also realized
considering SCE states constructed with hole opergi@s
1 J(ep,epr) Eq. (5)]. However, the calculation procedure and the results
1=- 2N < E (k) —Egs—E(eg)+A(p) 39 are strictly equal because we have considered a half filling
pr=se es™ E(ep) T Ak condition in the initial Hamiltonian(1). Therefore | drop
them in order to avoid repetitions.

The minimization ofEgcgk) from Egs. (25 and (26)

implies that the kinetic energ&(sp) must be small, which
requires thaB(p) have all its weight concentrated in a very B. Comments on the SCE spectra

narrow layer around the Fermi levihis argument is coher- | . 16.18 h h how the initial
ent with the exhaustion phenomenon explained by Ml Previous papers,”= we have shown how the initia

Noziere$?). Therefore the integration limits of the character- noninteracting system consisting of a partial_ly o_ccupied ex-
istic integral equation in this layer are such {84t ,z,) tended conduction band and a localized spin field is trans-

=J. Then, the above integral equation can be given as formed vv_hen an appropriate tfa”SfO”T‘a“O” Qf the degrees of
freedom is applied. The resulting noninteracting ground state

J dp presents a gap between a completely occupied valence band
1=—— - . (36 and another totally unoccupied conduction band. This gap
2l JAkEsce(k) — Egs— E(ep) + Ax(p) can be called charge gap and its value depends on the band

. . structure of the initial noninteracting systdian example is
The solution is not an easy problem and requires comput

. i .~ given in Ref. 16 and the gap value which depends on the
tional procedures, but single cases allow us to make estim

. X - nitial band structure of théd, Hamiltonian in that case is
tions which are not too different from the actual ones. For E(0)=0.096)2 (in bandwidth units A her band
example, considering one-dimensional lattices and shor2E(0)=0- (in bandwidth units Any other band struc-

. . 2 . .
rangeJ;; parameters, we arrive to the following solution for tU'® will yield the sameJ” dependence but with a different

the SCE spectra for the nonorderedF) state: proportionality constant The ground state of the system is
" completed with a spin field state whose energy is given in

_ Oy Egs.(14) for the general case. Equatiofib) and (16) give
=Eggst +
Escek)=EqstE(0)~(Ji/4)coska+ S(k) o the GS energies for the magnetically nonordered and antifer-
Xexd4mwp(k)/Ja)l, romagnetic case, respectively.

In the present work, | have determined the SCE spectra
where B(k)=—y+(J,a/d)sinka) and for the antiferro- [Eqs.(25) and(26)] considering the competition between the
magnetic  case: Egcdk)=Egs+E(0)—(J,/2)coska  renormalized Kondo effects and the induced RKKY interac-
+ B(k) Sexd 4mwpB(k)/Ja], with B(k)=— y+J;asin(2ka), tion. The Kondo term of these spectra is always negative,
whereJ; is the value ofJ;; for nearest neighborsy is the i.e., it tends to lower the excitation energy of the charged
proportionality constant between the initial conduction bandmode. On the other hand, the RKKY term yields two differ-
structure and the module of the momentufie., e, ent effects:(i) a positive term(gap E(0) that is produced

=vlk|); ais the lattice parameted; stands for the Kondo gye to the transformation dfi, (which generate$yinetic
coupling parameter of Hamiltoniafi) given in noninteract- and a part ofi ), and(ii) a k-depending term that pro-
ing system bandwidth units is the part of the conduction =" -2 banngﬁ;r'acter 1o the SCE states

bapd which §upplies the charged modes that couple V.Vith 'the Another physical image of the SCE states and their cor-
spin-fluctuation waves to form the SCE states. Cons'de”ngesponding SCE spectra is described in terms of charged par-
the latter approximations, one can arrive at similar values fo[iCIe excitations from the valence band to the conduction
the SCE spectra from Eq$25) Aand (26). In th.e c.ase of band. Actually, when one of these excitations is produced,
extremely short range and weakzkky, we again find the  the excited charge interacts with the spin field, producing
expressions OEgce(k) of Ref. 16, namelyEscek)=Egs  local spin fluctuations and coupling to them. As a conse-
+E(0)— 2exp(—2/JDg). quence of this coupling, the excitation energy is decreased in
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such a way that the corresponding hole suffers the same prd.<J<J,,ax, WhereJ. is the critical value and,,,y is the
cess. The situatiofsee Fig. 1is that while the production of maximum value for which the corresponding phase is main-
an electron-hole pair without spin field implications costs antained. Obviously, the value df depends oD . For every
energyA .= 2E(0)=0.096)2, when we consider the Kondo J=J; new quantum phases, in Sonditi al’s sensé;’ are
Hamiltonian and the RKKY interaction, this energy is: produced. The name quantum phases is due to the fact that
A«(k)=0.09612— 20+ 2A(k), whereA (k) is the band dis- these phases appear by variations of the parameters which
persion of Eqs(28) and(29). A, andAg [the latter value can govern the quantum Hamiltonian in contrast to the phases
be considered the averagem§(k) in the Brillouin zond are  Yielded by the variation of temperature.

the charge and spin gaps. Therefore the chargeAgdp the

necessary energy for obtaining an electron-hole pair without A. PhaseA

considering the coupling of the charged modes with the spin- ) ) ) )
fluctuation wavesgsee Fig. 1 This electron-hole pair energy N this phasésee Fig. 1a)], the occupied and unoccupied

is reduced when each component of the pair is coupled witRtates are spllt as in any insulator. The SCE states consist of
the magnetic bosons, thus appearing the spin §afk). spin-fluctuation waves couplt_ed to charged states, therefore
Therefore, as shown in Fig. 1, the Kondo lattice system conth_e structure of these _bands in _these ms_ulators can be deter-
tains two types of collective excitationsi) noncoupled %ned by pa.ramatg?ztut: scattin?g ILt‘RCt'Or,‘ rz;s;rgrtr:r]énts.

. ~t ~t . ese experimental data can detect the spin nd the
charged pqrhcl@hole) modesepq|<1>) (hgo| ©)), and(ii) the SCE bandwidths which are usually narrower than that of the
SCE quasipatrticles that consist of charged modes stronglg(pectrum of the noncoupled charged moHeghe non-
correlated with spin-fluctuation waves induced in the Iocal'coupled charged modes are split by thegap; thérefore in
ized spinAfieId. Th(?se IatterAI\Estates which are quasieigen- principle, the conductivitye(w) is obviousl;y/ 7610 for;u
states ofHyinetic Hiondo Hriky are split by an average —q, and forT=0 it should present a peak ai~A /2. For
gap[As=0.098"—exp(~20Dg)]. increasing frequenciesbeyond A /2) o(w) should show

A point on which | wish to remark is the relevance of the the normal-metal behavior. The electronic structure of Fig.
k-dependent SCE spectra in yielding the quantitative explaj(g) does not change with the thermal action, therefefe)
nation of the different phases. In previous p_aplg‘jnge should increase witf in the interval 6<Zw<A./2, and it
determined the SCE spectra without considering the RKKYgpoy1d be quasiconstant verstigor frequencies larger than
Ham|lton|_an an.d as a consequence, the SCE bands were tR'CIZ. A, and A, have been experimentally detecgt1314
tally flat, i.e., without anyk dependence, and therefore these,nq iheir features are in agreement with the structure given in
states did not present a band character, being instead trubllg_ 1a).
2N-degenerate energy levels. In Ref. 18 | discussed the ap-
pearance of different phases varying the valued afidD ¢
parameters. For increasidgalues(keeping the value db ¢ B. PhaseB
fixed) the SCE level crosses the zero energy and produces an when A < 28scg, [see Fig. 1b)], some SCE states can
essential instability, because all SCE states transit from faye |ess energy than the GS constructed only withNhe
total unoccupation to a total occupation due to theglectrons located in the charged modes without coupling
2N-degenerate SCE levels. Therefore in Ref. 18 the idea of @ith spin fluctuations. Then, an instability appears because,
metallic phase defined as an intermediate occupation of thig, the actual ground state of the interacting system, a spon-
SCE level is an intuitive and heuristic concept which onlytaneous production of particle-hole pairs located in the SCE
acquires physical meaning wherkadispersion is obtained states is favored. Therefore the two SCE bands can be par-
width was included by hand in order to justify the appear-produced.
ance of this metallic phase. In that paper, the conducting |n a perfect impurity-lacking Kondo lattice within
phase was a foresight but its existence was not truly provedhis phase, the conductivity is governed by the phonon
On the contrary, in the present paper | have determined th@terchange from both intraband and interban@r
band character of the SCE states in such a way that we Cafinklapp ~ processes, |(SCE|Hepn/SCER.)[?  and
obtain the occupation ratio, the Fermi level, the mobility of
the charge carriers, etc., depending on their energy locatio
and theEscg(k) dispersion. Therefore the metallic phase can
be now quantitatively determined thanks to the RKKY inter-
action, which was overlooked in Ref. 18.

§SCE(H|He_ph|éla<D>|2, respectively. The umklapp scatter-
Ings are different from zero but their contribution can be
negligible because the energies of the initial and final
charged states are split by a gap 4./2), and this gap can
be much larger thalgT* (T* is the coherence tempera-
ture). Therefore the conductivity in this case is
=2e?n7*/m*, where all variables concern the SCE band
(the factor 2 is due to the existence of identical SCE bands,
The centenX) of the narrow SCE bands is located at anone of particles and another of holek general, the relax-
energyX=A4/2=0.0481>— }exp(— 2/JD¢) with respect to  ation time in an ideal system without impurities is caused
the ground statézero energy. For different values of and by the inelastic interaction with the lattice, which is given
density of states aEr (Dg) of the initial noninteracting by*®> 7 *=%.,G,(q,T) 8l esce ke +0) — escelKe) — g, ],
HamiltonianH,, we obtain different patterns corresponding whereG,, is a function which includes the electron-phonon
to the insulating and conducting phases of Fig. 1. Each of theoupling strength for any temperature corresponding to the
four phases of this figure appears in a determidéuterval  SCE band of charged particles and thband of phonons. A

VI. DIFFERENT PHASES OF THE SYSTEM
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fundamental point to obtain the relaxation timés to know \/N](é;r)TASO,k—p"'égl’\sl,k—p)|o>i vyhere .|0> is thg total

, i e &acuum state. The SCE band is partially occupied and the
function of the above expression. Taking into account thegfround state in this case is given by:

calculations that lead to the band-structure expressions o

Egs. (28) and (29) for the SCE states, we have a procedure

for obtaining the relaxation time and therefore the conduc1¢>*> H |q“>|SCE4a>

tivity. The partial occupation of both the hole- and the aq=dgg

particle-SCE band ensures the nonzero conductivity, and
therefore the metallic behavior of the material in this phase.

[T {cl.=d[B(P)/VNI(E]Soq-p+ el Sig-p)HO),

The quantitative analysis of these relaxation times requires a aq=gr
large and complex systematic which is out of the scope of
this paper, and it deserves a detailed analysis. where the wave functiopP*) should be totally antisymme-

An important point is that the particle SCE band in Bhe trized because this state is formed by fermion states. The
phase cannot be analyzed without considering simultabirac sea is transformed in such a way that at0, the SCE
neously the hole SCE band, since the existence of the formetates in|®*) are occupied without production of SCE
generates fortiori the latter. In this excitonic gas, for each particle-hole pairs. The occupation of these SCE states is
particle SCE state occupied with an enefgya momentum produced by the unoccupation of some noncoupled charged
k, a chargee™, and a spino, another hole SCE state is modes at the top of the valence band which have, in this
occupied with the same ener@y —k, e*, and—o. This  phase, a larger energy. As a consequence, SCE states coexist
picture, although being obvious, can lead, | believe, to drasat Ex with charged modes noncoupled to the spin-fluctuation
tic and interesting consequences. Namely, from the Lorentwaves[see Fig. 1d)]. The conducting properties of th3
force point of view, the SCE pair in thi8 phase phase become again those of a metallic material. The differ-
(|SCE?;SCEM _ )) maintains its structure in the presence ence between thB and D phasegcompare Figs. (b) and
of an external electric field. This field increases theno-  (d)] is that inB there are only SCE statesi&¢ , while in D,
mentum of each pair component but keeps null the momenSCE states and noncoupled charged modes are locakgd at
tum of the gravity center of the pair, and doubles the(the latter, however, in less numbeihe relation between
electric current generated by each mate. On the othehe number of noncharged modes and SCE statés a a
hand, the magnetic field can produce a current orthogondeature which has crucial influence in the low-energy prop-
to this field in a similar way to that produced by an electronerties, and depends on the narrowness of the corresponding
pair. In addition, when a electron-hole SCE pair is spon-bands.
taneously occupied in the ground state, an attractive The coexistence, in thi® phase, 0f&$a|0> modes and
interaction  arises  because the interacting processcE states dr, implies that the phonon relaxation is gov-
(SCE,;SCE', _|FrkkyISCE,;SCE',_,) can be nega- erned by the intraband processes of the types
tive. Therefore each SCE-exci_to_nic pair f(_)rms a composite_p(scﬁ(a|He_ph|sc|;ka>|2 and|<o|&ka|-|e_ph&l,a|o>|2, and the
boson whose features and their influence in the macroscop klapp processes of the WDHSCﬁa|He-phéga|0>|2-

physical responses of the excitonic gas should be analyze herefore the conductivity cannot be expressed by means of
additive formulas for each banfd.e., o+ =;(e’n; 7, /m*)]
C. PhaseC due to the existence of nonvanishing umklapp processes be-

When J increases furthefisee Fig. 1c)], for X values in  tween SCE states and single charged states such,¢8).
the interval — 5sce>X>—A./2, every hole- and particle- However, the strength of the umklapp scattering is necessar-
SCE state is below the zero energy of the Dirac sea. Therdly smaller than that of the SCE statéathough nonvanish-
fore all SCE states are occupied and the insulating phasg8g) because the corresponding mixed matrix elements are
appears again becauseg(k) becomes negative for al mo- different from zero due to the action of the electron-phonon
menta. This situation remains in the parameter space untinteraction terms assisted by spin fluctuations. Obviously,
the gravity center of the SCE bands tends toward valuethese spin-fluctuation-assisted electron-phonon terms are
close to—A /2. The thermodynamic and conducting proper-smaller than those provided by the direl:d:g_ph. Therefore
ties of this phase differ from those of pha&esince now the  the conduction behavior of tH2 phase is more standard than
states that can be occupied by thermal or electromagnetibat of B, since the presence of SCE states and noncoupled
interactions are the noncoupled states instead of the SC&harged states & activates the interband inelastic scatter-
states(as it is the case in phask). This implies that the ing. The influence of these interband phonon interactions im-
magnetic amplitude response of the systgfw) does not plies that7 ! in the D phase is close to that of the Kondo
contain any peak fohw=Ag as it can occur in phask, lattice with the features of a normal heavy-fermion metal.

Relation of this D phase with the heavy-fermion metallic
state.An interesting analysis of this phase is the relation with
the heavy-fermion state. Strictly speaking, the heavy-fermion

When X<—A_.2, a new insulating-conducting phase metals are conducting compounds whose charge carrier gas
transition arises. In this phase, the Dirac sea is transformegresent an anomalously large effective héattween 100
and and 2000 times larger than that of the free-electron.a&®
a new lower energy state appedmee Fig. 1d)]. The  The origin of such heavy-fermion feature, common to some
SCE states can be redefined gSCE ,)=2,[B(p)/ metals, is still strongly debated. However, the spin-

D. PhaseD
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FIG. 2. C(T) for 6=8 meV andX—E=0.2 meV.

fluctuation influence seems to be the most extensively a
cepted originsee for instance, Refs. 3, 4, 26, and.2id any

case, this property is not acquired through a quantum pha
transition, as occurs in the different phases described abovg

It corresponds to a gradual property which can be present
any Kondo lattice according to how the magnetic boson
influence the charges located in states closego This in-

fluence clearly appears in the temperature evolution of th

system specific heat. In Fig. 1, one can see thabthmhase
corresponds to a conductor whose specific heat can

strongly affected by the presence of the SCE states. In ord
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keT=3%(X—Eg); a maximum forkgT~0.31(X—Eg) (in
Fig. 2 this maximum is~1 K); and for kgT=10(X
—Eg), C(T)=C%T). For temperatures lower than the
maximum, the above expression 6{T) can be approxi-
mated to a polynomial function. Actually, in the interval 0
<KgT< $(X—Eg) Eq.(37) can be approximated by the fol-
lowing equation:

C(T)

0.056 1.75(kBT)6+14.6J(kBT)25
yT

+
X~Br  (X-Ep)?  (X-Ep)®

(39

where they parameter is the standard linear coefficient of
the specific heat corresponding ®°(T). In a previous
paper® | determinedC(T) by means of the first terms of the
Sommerfeld theory of the specific heat in metals and | gave
a polynomial expression. On the other hand, there is experi-
ental evidence for some U compoufiésoncretely UBgy)
owing how the specific heat at low temperatures increases
i olynomically with T. From expressiong37) and (38) for
5@(T) and the results of Fig. 2, one can see {B&T) can be
thousands of times larger than in the normal phases of con-
entional metals. Therefore the main feature of the heavy-
ermion state can be explained by the partial occupation of

lﬁee SCE bands. The methodology described above can also

termineC(T) for the phase#\, B, andC.

to obtain the possible heavy-fermion feature, the SCE den-

sity of stategDOS) can be modelized by a narrow Lorentz-
ian curve:Nged @)~ (2N/7) Sscel[ (0 — X)?+ 85c4]. Then,
the SCE states in thB phase are occupied up to a level
(EF) that is given by:Ef =X— dscecof #M/N], M being
the number of occupied SCE states axdhe number of
crystal unit cells. In thé phaseEf coincides with the true

Er of the system. In these conditions, the enhancement q
the specific heat with respect to that of the free-electron gas
can be calculated by means of the thermodynamic relatio

C(T)=—T(8?FI1T?), whereF is the free energy defined by
F=—NKkgTInZ, andZ is the partition function considering
the vacuum statéGS) and the|SCE,) states. The resulting
specific heat of thi® phase, with the assumption of narrow

SCE bands, can easily be obtained by means of the aboyg 5ur modeft6-18

systematic and its expression is

(T m* +i (X—Ep)?6 -
cxm m 4’ (KBT)3cosH"<);; E_l_F)
B

whereé is the width of the conduction band arising from the
energy dispersion dfljnetic. Figure 2 show€(T) from Eq.

VIl. COMPARISION WITH SOME PREVIOUS ANALYSES

Since some years ago, several variational and perturbative
analysis of thes—f Hamiltonian in the Kondo limit have
been realize§."?2~%The Kondo limit allows to consider a
spin field within a fixedS= 1/2 spin representation where the
pin direction fluctuations generate a boson gas. The interac-
on of this spin-wave gas with the conduction electrons be-
omes the reason and the origin of a rich phenomenology:
Rondo lattice phenomena, heavy-fermion state, competence
and concomitance between antiferromagnetism and super-
conductivity, etc. Some of the above cited works analyze the
electronic gas spectrii® and others separately determine
the fermionic and bosonic gas spedt&® On the contrary,
we approximately determine the many-
body eigenstates of the—f Hamiltonian considering the
coupling of the fermionic and bosonic gas forming compos-
ite fermionic states which we have named strong correlated
stated SCE). The operational kind of the Kondo Hamiltonian
suggests this coupling in a natural way, which is used in
several other previous papéers!®in these papers, similar
associations between fermion charged modes and bosonic
spin fluctuation states are utilized for obtaining composite

(37). C(T) thus deduced can be thousands of times largefermions as those of the SCE spectra of Fig. 1.
than that of conventional metals. The main characteristic of The variational procedures are usually used in heavy-

this electronic specific heat is that at low temperaturegermion systents>®’3°hecause with these methods one can

(=2 K) there is a maximum, while fof larger than 4 K,

approximately obtain a diagonalization of the many-body

C(T) is linear as any metal. A similar behavior appears inHamiltonian eluding some possible convergence problems

several uranium compounds such as YBe*°

Let us analyze the resultinG(T) at low temperatures,
within the interval 6<kgT<10(X—Eg). The aboveT inter-
val can be between<9T<10 K if one considers standard
values foré andX — Eg (see Fig. 2. According to the above
expression,C(T) presents an inflexion point at roughly

which the perturbative theories would produce. The varia-
tional analyses® consider many-electron trial wave func-
tions, and they obtain an effective Hamiltonian whose diago-
nalization yields two effective bands of electrons similar to
those of the perturbative study of Ref. 28. These bands can
be split by a gap, and are generated by the hybridization of
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extended electron bands with the lattice of localizéelels.  from perturbative treatments of the Kondo lattice effects
The hybridization implies a certain delocalization of the could be justified by the thermal occupationfgfeaks of the
states which partially contribute to the bands, and therefor®0S just aboveEr, and from our variational insight this
the electron hopping among differehielectron atoms can state is interpreted as depending on the energy location of the
occur. The probability of appearance of this hopping in-SCE states. In addition, in these cited pafititss also con-
creases when one of the two bands tends to be more than haliided that instabilities of the ground state can be reliable. In
filled. As a consequence, the number of doutdeconfigu-  Sec. VI, | describe several phase transitions which are com-
rations tends to vary in the electron conduction. Thiege patible with this conclusion. On the other hand, a small gap
tersite electronic transferences can imply a contradiction ifin the magnon spectrum appears in previous calculdions
the Kondo limit theory. Therefore the variational calcula- the case of antiferromagnetic spin field. This gap can un-
tions are usually considered for band occupations that miniequivocally be related with the spin gagd) of Fig. 1 be-
mize the effects of thesé transferences. However, the causeA arises from the Kondo and RKKY effects in the
Kondo effect arises from the thermal occupation of the SCE states which, as said above, do have a neutral boson
peaks in the DOS. Therefore this conduction effect should beomponent of the same nature as the IK magnon structure.
explained by the movement of the electrons in the part of th@©n the other hand, | have not been able to find resemblance
band with strong component and, on the contrary, the cal- between thé8 phase, where the electron-hole pairing is more
culation of these bands is usually obtained fixing the numprobable, and the pattern yielded by the analyses of previous
bers of singlef* and doublef? configurations. In our model, literature!:627-30
the Kondo peaks nedtr arise from the SCE states whose
component corresponds to the spin-wave fluctuations devel- VIIl. CONCLUDING REMARKS
oped in thef spin field. Therefore the conduction electron
movements through the SCE states occur maintaining intact | have presented here a calculation of the spectrum of the
the Kondo limit condition in all phases described in Sec. VI.Kondo lattices. This is made considering a model already
Some perturbative analyses of the Kondo lattices apply &xplained in previous papet®:'® The essential difference
mean-field theory to magnetically ordered Kondo lattites. with those calculatio§~8 is that only the renormalized
Other studie® deal with a “poor man scaling” approath Kondo term was considered to calculate the SCE spectra,
for obtaining the renormalized magnetic parameters anavhereas in the present work the SCE spectra is determined
band dispersion of magnons. The first sttfdg based on the by including both the renormalized Kondo term and the in-
one-body DOS of the ground state of the interacting systenguced RKKY Hamiltonian. From the spectra of the SCE
and, in Ref. 29, the spin-wave spectrum and the renormabands(one of them corresponding to holes and another of
ized interacting parameters in magnetically ordered systemgarticle3 we describe the different phases which can appear
are given(the paramagnetic spin field is not worked becausevhen the density of states & and the Kondo coupling
within perturbative scheme the authors considered compliparameted of the initial Hamiltonian(1) are modified. For a
cated this magnetically nonordered cade our analysis(i)  given D four phases can appear. For smal/alues, the
we determine the ground state and the excited many-bodsystem is a small-gap insulator. Increasia first insulator-
states(the SCE spectyain the Kondo lattice which are ob- conductor transition occurs. The charge-carrier relaxation
tained from a variational procedure, afid the SCE spectra times in this conducting phase are governed by the inter-
correspond to many-body states based on the couplinghange of phonons between strongly correlated SCE states.
among charged modes and neutral bosons in paramagneti¢hen increasing) further a different insulating phase ap-
and antiferromagnetic spin field structures. However, alpears, and for even largdra second insulating-conducting
though the procedures of our analysis and those of Irkhin anttansition can be produced. In the final conducting phase
Katsnelson(IK) are different, our results seem to be qualita-(D), the conductivity is standard even in the case of narrow
tively compatible with theirs. The Kondo resonance justSCE bands. This is so, because inEhphase both intraband
above Er given in IK paper® could be related with the and interband inelastic processes can be produced. Therefore
peaks arising from the SCE statésee Fig. 1 (obviously, this D phase presents a normal conductivity similar to other
this relation cannot be interpreted as a coincidence due to th@ormal (nonsuperconducting heavy-fermion metals. The
different nature of this resonance and that of the SCE statesmain heavy-fermion feature, namely, the huge electronic
Therefore the electronic structure of phd3eof Fig. 1, de-  specific heat, is obtained for small SCE bandwidi:.
scribed as normal metallic Kondo lattice phase present¥hus the temperature evolution and valdiesorder of mag-
some similarity with the IK result® because in the Fermi nitude of the specific heat of paradigmatic heavy-fermion
level, there are both extended charged modes and states ansaterials such as UBgand CeA} could be justified by the
ing from the dynamics of-spin field. The given DO$Ref.  occupation of these SCE states.
28) corresponds to a band occupation less than half filling,
but it is clear that. in the half-filling limit thfesc gap of Fig. ACKNOWLEDGMENTS
1 of my calculation could also appear in these previous
calculations’® Therefore the insulating Kondo lattice phase  This work has been financed by the SpaniZineccion
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