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Spectrum and phase transitions in Kondo lattices
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~Received 16 June 1999; revised manuscript received 18 February 2000!

In this paper, I analyze the spectra of composite systems of charged modes and localized spin fields. I
determined the structure of the ground state and the excited states based on the coupling of charged modes and
spin-fluctuation waves traveling into the spin field. This is carried out considering the interplay of the renor-
malized Kondo Hamiltonian and the induced Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction. The spec-
trum of these states is deduced in several cases, when the spin field state is magnetically nonordered and when
it is antiferromagnetic. I show that in both spin field states the fluctuation waves can confer a narrow band
structure character to these excited states, whosek dispersion is due to theJRKKY interaction. In addition, for
both spin field states, the Kondo effects compete with the RKKY effects and the concatenation of the two
actions can produce different phases. I analyze the conditions for the appearance of such phases and outline
some of their properties.
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I. INTRODUCTION

The conduction-band electrons within the Kondo latt
produce a coherent interaction with the components of
localized spin fields.1–8 As it is well known, this coheren
interaction induces a Heisenberg-like coupling within t
spin field that is the so-called Ruderman-Kittel-Kasuy
Yosida ~RKKY ! interaction.2,4,6,7 The most simplified ver-
sion of this induction is given in the model of two impuritie
~see, for instance, Ref. 1!. The joint action of the Kondo and
RKKY interactions generates fluctuation waves in the s
field which largely modify the Kondo exchange effects b
tween the conduction electron sea and the spin field latt
This leads to coupled states of charged modes and fluctua
waves in an analogous way to the case of the polaron, w
could allow us by analogy to call them magnetic polaro
The formal expression of these magnetic polarons are lin
combinations of composed states of charged modesep

†uGS&
and spin fluctuation wavesSk2puGS&, where uGS& is the
ground state of the mixed system@ uGS&5uF&uF& and
uF& (uF&) is the ground state of the charged particle syst
~the localized spin field!#. This allows us to introduce an
ansatz inspired in trial wave functions that have been use
other previous works.7,9,10 The spin field state can be mag
netically ordered or not. In any case, the magnetic statu
this uF& state modifies the phenomenology of the Kondo l
tice. In the present paper, I variationally determine the w
function of uGS& and the excited states, as well as the cor
sponding spectrum. This is carried out considering the
ferent above-mentioned possibilities for theuF& state. These
excited states of the system are many-body excitations w
propagate through the lattice with a well defined quasim
mentum. Therefore they can be regarded as quasipart
state bands whose dispersion energy isEexcited(k)2EGS,
where EGS@Eexcited(k)# is the energy of the ground
@k-momentum excited# state. The spectrum of these qua
particles contains competitive terms arising from the RKK
and renormalized Kondo effects, being possible that the
ergy of the excited states is, in certain conditions, less t
that of the state initially considered as the ground state
this case, insulator-conducting phase transitions occur
new metallic phases appear. The main objetive of this pa
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is to formalize the determination of the wave functions f
the ground state and excited states of the mixed sys
~charged modes and spin-fluctuation waves! and to obtain
the quasimomentum dependence of their spectrum. As a
secutive study, I will analyze the conditions for the appe
ance of the different phases: Kondo insulators,11–15and con-
ducting materials.4,16–18 The band character of thes
quasiparticle structures is conferred by the RKKY interact
and the resulting width of these bands can be narr
strongly enhancing the effective masses of the charges
cated in them. A property of this mass enhancement is
magnetic origin, since it is produced by the coupling of in
tially extended states with spin-fluctuation waves. Sin
some years ago, different authors have suggested suc
origin for the heavy-fermion phenomenology.2–5,19,20There-
fore the occupation of these strongly correlated elect
~SCE! states can lead to find explanations for this pheno
enology.

II. SUMMARY OF THE MODEL AND TRIAL WAVE
FUNCTIONS

A more extensive explanation of the model can be fou
in Refs. 16 and 18. We consider thes2 f ~or s2d) exchange
Hamiltonian3 which usually is named Kondo lattice mod
~KLM ! and whose expression is3,6,7

H5H01HK 5(
k,a

«kcka
† cka1J(

i
Sei•Sf i , ~1!

whereSei and Sf i are the spin of the conduction electron
and the (s51/2) local i spin, respectively. In our analysi
of this model, we consider a unitary transformation
the initial operatorscka

† , cka , and Sf k into a new set

ĉka5e2TckaeT, ĉka
† 5e2Tcka

† eT, Ŝf k5e2TSf ke
T. The

transformed operatorsêpa5 ĉpa and ĥqa5 ĉ2q2a
† are such

that êpauGS&5ĥqauGS&50, whereuGS& is the ground state
of the interacting system. The generator of the transform
tion T̂ can be arbitrary wheneverT̂uGS&5” 0 and preserve al
symmetries of the initial Hamiltonian. In addition, for sma
415 ©2000 The American Physical Society
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416 PRB 62F. LÓPEZ-AGUILAR
Kondo coupling parameterJ, and anyÔ operator, the fol-
lowing equality should be valid:

O5e2T̂ÔeT̂'Ô1@ T̂,Ô#. ~2!

Substituting the original creation and annihilation ope
tors in function of the corresponding transformed operat
in the initial Kondo Hamiltonian, we obtain the expression
H in terms of the new degrees of freedom.

H5Ĉ1Ĥkinetic1ĤKondo1ĤRKKY, ~3!

where the different terms of the Hamiltonian are given
Refs. 16 and 18.

The general structure of the above transformed Hami
nian’s eigenstates withs5sz51/2 and wave vectork is16,18

uSCEk,1/2&5AN21/2(
p

B~p!~ êp↑
† Ŝ0,k2p1êp↓

† Ŝ1,k2p!uF&uF&.

~4!

A similar expression is obtained for the states construc
with hole operators,

uSCEk,1/2&5AN21/2(
p

B~p!~ ĥp↑
† Ŝ0,k2p1ĥp↓

† Ŝ1,k2p!uF&uF&,

~5!

whereA is a normalization constant. These SCE states
many-body electron~hole! excitations êps

† uF& (ĥps
† uF&)

that are coupled to a cloud of spin-fluctuation waves wh
wave functions are given byŜlkuF&. The structure of theuF&
state is constituted by the true GS of the charged mo
without coupling with the spin-fluctuation waves anduF& is
the spin field ground state.

The structure of theseuSCEk,s& states depends on the n
ture of the spin field. In general, the wave functions o
spin-field stateuF& can be written as

uF&5 (
a15↑,↓ (

a25↑,↓
••• (

aN5↑,↓
Ca1a2•••aN

f̂ a1

† f̂ a2

†
••• f̂ aN

† u0&,

~6!

where theCa1a2•••aN
coefficients define the magnetic sta

of uF&. The only difference between Eqs.~4! and~5! and the
trial wave functions of our previous papers16,18 is that the
results depend here on the magnetic structure of the
field stateuF&, while in Refs. 16 and 18 the spectrum w
obtained without considering the RKKY action, thus ove
looking the structure of the spin field state. The aboveuF&
wave function for a system in a general case can be rewr
as

uF&5)
j

u@a j ,b j #&, ~7!

where u@a j ,b j #&5(aje
iu j f̂ j↑

† 1bje
iu j8 f̂ j↓

† )u0&5(aje
iu j u↑& j

1bje
iu j8u↓& j ), and in allj sitesaj

21bj
251. The phasesu and

u8 are arbitrary. Both the modules and phases of the va
tional a j and b j parameters define the magnetic structu
The actual Kondo materials are either antiferromagne
such as UPt3 and UPd2Al2,20,21 or magnetically nonordered
as CeSi2 and UBe13.20 Therefore I shall consider in thi
work only these two cases.
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For the magnetically nonordered system, I consider a s
field state such that̂FuŜjzuF&50 for all j sites. In this case
the uF& state can be defined by

uF&522N/2)
j

u@1,1# j&, ~8!

whereu@1,1# j&5(eiu j f̂ j↑
† 1eiu j8 f̂ j↓

† )u0&5(eiu j u↑& j1eiu j8u↓& j ).

In this case, theŜlkuF& states are perturbations of the sp
field in a magnetically nonordered state, i.e., these states
stitute a spin liquid of excitations within the paramagne
spin field. The wave functions of such excitations can
formally expressed as

Ŝk
1uF&5(

j

N
eik•Rj

AN2N
u@1,1#1•••@1,0# j•••@1,1#N&, ~9!

Ŝk
zuF&5(

j

N
eik•Rj

AN2N
u@1,1#1 ,•••,@1,21# j ,•••,@1,1#N&,

~10!

Ŝk
2uF&5(

j

N
eik•Rj

AN2N
u@1,1#1•••@0,1# j•••@1,1#N&. ~11!

From an easy inspection of the above equations one
see that in this case, the trivector (Ŝk

1 ,Ŝk
z ,Ŝk

2)uF& is truly
one dimensional because its three components are line
dependent~for a lattice withN→`, Ŝk

1uF&, and Ŝk
2uF& are

parallel!. Therefore, in the magnetically nonordered case,
spin excitations within the spin liquid haveS50 and thus the
uSCE& states can only haveS51/2.

For an antiferromagnetically ordereduF& state, the com-
ponents of the trivector (Ŝk

1 ,Ŝk
z ,Ŝk

2)uF& can be given in one
dimension by

Ŝk
6uF&5(

j

eik•Rj

AN
u↑&1u↓&2•••Sj

6ums& j•••&, ~12!

Ŝk
zuF&5(

j

eik•Rj

AN
u↑&1u↓&2•••Sj

zums& j•••& ~13!

~the extension to any dimension is straightforward!. For the
sake of simplicity I consider here an antiferromagnetic str
ture of two sublattices with antiparallel spin direction, th
calculations for any other antiferromagnetic structure can
deduced from this simple one. The three states in the ant
romagneticuF& state above defined are linearly independ
and hence the trivector (Ŝk

1 ,Ŝk
z ,Ŝk

2)uF& corresponds toS
51 spin waves propagating with momentumk through the
spin field. As a consequence, theuSCE& states in an antifer-
romagnetic spin field can haveS51/2 andS53/2.

III. STRUCTURES AND ENERGIES
OF THE GROUND STATE

The ground stateuGS& is composed, as mentioned abov
by a many-body charged mode wave functionuF&, and a
spin field wave function uF&. Given the operationa
structure16,18 of Ĥkinetic , ĤKondo, andĤRKKY, it is obvious
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PRB 62 417SPECTRUM AND PHASE TRANSITIONS IN KONDO LATTICES
that uF& is eigenstate of bothĤkinetic and Ĥkinetic

1ĤKondo. As a consequence, the structure ofuF& is totally
determined becauseĤkinetic is a noninteracting system o
energyĈ.

In the case of magnetically nonordereduF& states, we ob-
tain

ERKKY
0 5K FU12U(i 5” j

Ji j Ŝi•ŜjUFL
5

1

8 (
i 5” j

Ji j cos~u i1u j82u i82u j !. ~14!

The above energy only depends on the phasesu i , u j , u i8 ,
andu j8 that define a given nonordered state. As an exam
we can consider the one-dimensional lattice; here, the low
energy for a nonordereduF& state is obtained with a distri
bution of phases such thatu j85u j1(21) j (p/2). The corre-
sponding minimum energy is then

ERKKY
0 5^FuĤRKKYuF&52

1

8 (
i 5” j

uJi j u. ~15!

For an antiferromagneticuF& state, the energy of the
ground state of theuF& spin field is

ERKKY
0 5^FuĤRKKYuF&52

1

8 (
i 5” j

Ji j 1
1

2 (
i 5” j

11

Ji j , ~16!

where ( i 5” j
11 stands for the (i j ) indexes that run over the

spin-up sublattice.

IV. CALCULATION OF THE TOTAL SCE ENERGY

The SCE energy is a functional of the variationalB(p)
parameters of Eqs.~4! and~5! which should be minimized in
order to determine the SCE spectra. Therefore we have

ESCE~k!5^SCEk,suĈ1Ĥkinetic1ĤKondo1ĤRKKYuSCEk,s&

5Ĉ1^Ĥkinetic&1^ĤKondo&1^ĤRKKY&. ~17!

The calculation ofESCE(k) obviously depends on the struc
ture of theuF& state.

A. Nonordered zF ‹ case

The calculation of the different average values of Eq.~17!
is large but can easily be systematized by considering
structure of theuF& states given in Eqs.~8!–~13!. Then, we
have that̂ ĤRKKY& reads

^ĤRKKY&5
A2

2N (
i 5” j

(
p

Ji j uB~p!u2$^Ŝp2k
0 Ŝi•Ŝj Ŝk2p

0 &

1^Ŝp2k
2 Ŝi•Ŝj Ŝk2p

1 &%. ~18!

The ^ĤKondo& term is
e,
st

at

e

^ĤKondo&5
A2

2N3/2 (
pp8

B* ~p!B~p8!J~«p ,«p8!

3(
i jm

ei (p2k)•Riei (p82p)•Rjei (k2p8)•Rm$^ŜizŜjzŜmz&

2^Ŝi
2ŜjzŜm

1&1^Ŝi
2Ŝj

1Ŝmz&1^ŜizŜj
2Ŝm

1&%.
~19!

^Ĥkinetic& reads

^Ĥkinetic&5
A2

2N (
p

uB~p!u2Ê~«p!. ~20!

By putting together the resulting expressions for^Ĥkinetic&,
^ĤKondo& and ^ĤRKKY&, we have that

ESCE~k!5EGS1
A2

2N (
p

uB~p!u2Ê~«p!2
A2

4N2

3(
pp8

B* ~p!J~«p ,«p8!B~p8!

2
A2

4N2 (
i 5” j

S 3

4
uJi j u2

1

4
Ji j D

3(
p

uB~p!u2 cos@~p2k!•Ri j #. ~21!

The above energy corresponds to the excitation of the sys
by adding a new particle to the GS. This excitation prop
gates with ak momentum and can be interpreted as a qua
particle of energyESCE(k)2EGS.

B. Antiferromagnetic zF ‹ case

The expressions~18! and~19! hold also in this case. How
ever, the average values are different because of the diffe
uF& state. Expressing theĤRKKY Hamiltonian as in Eq.~18!
and considering all different average values calculated w
the correspondinguF& state, we obtain the followingk de-
pendence of the SCE energy:

ESCE~k!5EGS1
A2

2N (
p

uB~p!u2Ê~«p!

2
A2

4N2 (
pp8

B* ~p!J~«p ,«p8!B~p8!

1
A2

2N2 (
i 5” j

22

Ji j (
p

uB~p!u2 cos@~p2k!•Ri j #.

~22!

The energies of Eqs.~21! and ~22! are not determined
because they depend on theB(p)-variational parameters
Therefore they lack physical meaning until these parame
are determined by minimizingESCE(k). This is performed by
using the variational techniques of the following section.



e

:

6
r-

ns

r-
this
The

-
ori-
its

h a
sed
t

us-
e

ill

n
as
qs.

r-

418 PRB 62F. LÓPEZ-AGUILAR
V. VARIATIONAL PRINCIPLE APPLIED TO THE ESCE„k…
SPECTRA

TheB(p) functions can be determined in a similar proc
dure to Eq.~84! of Ref. 16@i.e., by minimizing theESCE(k)
energy with respect to these variational functions#. This
minimization principle leads to the following expressions

NonordereduF& state,

@ESCE~k!2EGS#B~p!

5Ê~«p!B~p!2
1

2N (
p8

J~«p ,«p8!B~p8!

2
1

2N (
i 5” j

S 3

4
uJi j u2

1

4
Ji j D(

p
B~p!cos@~p2k!•Ri j #.

~23!

AntiferromagneticuF& state,

@ESCE~k!2EGS#B~p!

5Ê~«p!B~p!2
1

2N (
p8

J~«p ,«p8!B~p8!

1
1

N (
i 5” j

22

Ji j (
p

B~p!cos@~p2k!•Ri j #. ~24!

In the cases in whicĥ ĤKondo& is much larger than

^ĤRKKY&, we can operate in a similar way to that of Ref. 1
We can initially drop the term arising from the RKKY inte
action in order to obtainB(p) and then, by substituting in

^ĤRKKY& the calculated values for the variational functio
we determineESCE(k).

For the magnetically nonordereduF& state, we obtain

ESCE~k!5EGS1Ê~0!2
1

2
expS 2

2

JDF
D

2
1

4N2 (
i 5” j

S 3

4
uJi j u2

1

4
Ji j D

3(
p

b~p!cos@~p2k!•Ri j # ~25!

and for the antiferromagneticuF& state,

ESCE~k!5EGS1Ê~0!2
1

2
expS 2

2

JDF
D

1
1

2N2 (
i 5” j

22

Ji j (
p

b~p!cos@~p2k!•Ri j #.

~26!

Ê(0) is the valueÊ(«p) for «p50. This value is 0.048J2

~Ref. 16! when a simple band structure («p5guku21/2) in
the initial Hamiltonian ~1! is considered. Then, theb(p)
functions are

b~p!52
V~V1d/2!

~«p1V!2
~27!
-

.

with V5 1
2 exp(22/JDF).

An important point in the heavy-fermion issue is the na
rowness of the band structure of the SCE states, since
determines the features of this strongly correlated state.
band structure of Eqs.~25! and~26! can be written in a single
expression:

D~k!52
V

2N (
p

d/21V

~«p1V!2 (
i

Ji cos@~p2k!•Ri #.

~28!

In this equation theJi parameters are the RKKY ex
change terms with respect to a given site considered as
gin. In order to estimate the band structure and analyze
width, one can consider a one-dimensional system wit
distribution ofJn parameters such that they can be expres
asJn5J1a2(n21) ~for instance, in the calculation carried ou
in Ref. 18, I obtaina'2). Then, the band structure is

D~k!52
Va

2N (
p

d/21V

~«p1V!2

a cos@~p2k!a#21

a21122a cos@~p2k!a#
.

~29!
A new simplification can be obtained if we use the exha
tion Nozières phenomenon.22 We can thus consider only th
term in thep summatory forp50. Thus we have

D~k!'2
J1~d21V!

2V

a2 cos~ka!2a

a21122a cos~ka!
. ~30!

This band structure has the minimum atk50, the maximum
at k56p/a and its bandwidth is

dSCE5
J1~d/21V!

V

a2

a221
. ~31!

Therefore the heavy-fermion band-structure condition w
require that the RKKY term should be preferably weak~i.e.,
J1 small!, short ranged, and/or fast decreasing~i.e., a large!,
and the initial bandwidth of Hamiltonian~1! should be as
narrow as possible~i.e., smalld).

A. Alternative method to obtain ESCE„k…

An alternative method within the variational calculatio
consists in determining the characteristic integral equation
in the superconducting equation cases. We start from E
~24! and ~25!, which can be rewritten as

@ESCE~k!2EGS2Ê~«p!1Dk~p!#B~p!

52
1

2N
(
p8

J~«p ,«p8!B~p8!, ~32!

whereDk(p) takes the following expressions: for the nono
dereduF& state

Dk~p!5
1

2N (
i 5” j

F3

4
uJi j u2

1

4
Ji j Gcos@~p2k!•Ri j #, ~33!

for the antiferromagnetic case

Dk~p!52
1

N
(
i 5” j

22

Ji j cos@~p2k!•Ri j #. ~34!
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FIG. 1. Schematic drawing o
the electronic structure of the dif
ferent phases described in the tex
~a! Insulating A phase.~b! Con-
ducting B phase.~c! InsulatingC
phase.~d! Conducting D phase.
The solid~discontinuous! line cor-
reponds to the density-of-states o
particles ~holes!; GS in ~a!, ~b!,
and~c! stands for the energy leve
corresponding to the ground sta
and Dc(Ds) is the charged~spin!
gap. The widths of these gaps a
exaggerated in order to preserv
the clearness of the figure.
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From Eq.~32!, we arrive to the following integral equation

152
1

2N (
p8

J~«p ,«p8!

ESCE~k!2EGS2Ê~«p!1Dk~p!
. ~35!

The minimization ofESCE(k) from Eqs. ~25! and ~26!

implies that the kinetic energyÊ(«p) must be small, which
requires thatB(p) have all its weight concentrated in a ve
narrow layer around the Fermi level~this argument is coher
ent with the exhaustion phenomenon explained
Nozières22!. Therefore the integration limits of the characte
istic integral equation in this layer are such thatJ(«p ,«p8)
5J. Then, the above integral equation can be given as

152
J

2GEDk

dp

ESCE~k!2EGS2Ê~«p!1Dk~p!
. ~36!

The solution is not an easy problem and requires comp
tional procedures, but single cases allow us to make est
tions which are not too different from the actual ones. F
example, considering one-dimensional lattices and sh
rangeJi j parameters, we arrive to the following solution f
the SCE spectra for the nonordereduF& state:

ESCE~k!5EGS1Ê~0!2~J1/4!coska1b~k!d

3exp@4pb~k!/Ja!],

where b(k)52g1(J1a/4)sin(ka) and for the antiferro-
magnetic case: ESCE(k)5EGS1Ê(0)2(J1/2)cos 2ka
1b(k)d exp@4pb(k)/Ja#, with b(k)52g1J1a sin(2ka),
whereJ1 is the value ofJi j for nearest neighbors;g is the
proportionality constant between the initial conduction ba
structure and the module of the momentum~i.e., «p
5guku); a is the lattice parameter;J stands for the Kondo
coupling parameter of Hamiltonian~1! given in noninteract-
ing system bandwidth units;d is the part of the conduction
band which supplies the charged modes that couple with
spin-fluctuation waves to form the SCE states. Conside
the latter approximations, one can arrive at similar values
the SCE spectra from Eqs.~25! and ~26!. In the case of
extremely short range and weakĤRKKY, we again find the
expressions ofESCE(k) of Ref. 16, namelyESCE(k)5EGS

1Ê(0)2 1
2 exp(22/JDF).
y

a-
a-
r
rt-

d

e
g
r

All calculations of Secs. IV and V have to be also realiz
considering SCE states constructed with hole operators@i.e.,
Eq. ~5!#. However, the calculation procedure and the resu
are strictly equal because we have considered a half fil
condition in the initial Hamiltonian~1!. Therefore I drop
them in order to avoid repetitions.

B. Comments on the SCE spectra

In previous papers,16,18 we have shown how the initia
noninteracting system consisting of a partially occupied
tended conduction band and a localized spin field is tra
formed when an appropriate transformation of the degree
freedom is applied. The resulting noninteracting ground s
presents a gap between a completely occupied valence
and another totally unoccupied conduction band. This g
can be called charge gap and its value depends on the
structure of the initial noninteracting system@an example is
given in Ref. 16 and the gap value which depends on
initial band structure of theH0 Hamiltonian in that case is
2Ê(0)50.096J2 ~in bandwidth units!. Any other band struc-
ture will yield the sameJ2 dependence but with a differen
proportionality constant#. The ground state of the system
completed with a spin field state whose energy is given
Eqs.~14! for the general case. Equations~15! and ~16! give
the GS energies for the magnetically nonordered and ant
romagnetic case, respectively.

In the present work, I have determined the SCE spe
@Eqs.~25! and~26!# considering the competition between th
renormalized Kondo effects and the induced RKKY intera
tion. The Kondo term of these spectra is always negat
i.e., it tends to lower the excitation energy of the charg
mode. On the other hand, the RKKY term yields two diffe
ent effects:~i! a positive term~gap! Ê(0) that is produced
due to the transformation ofH0 ~which generatesĤkinetic

and a part ofĤRKKY), and~ii ! a k-depending term that pro
vides the band character to the SCE states.

Another physical image of the SCE states and their c
responding SCE spectra is described in terms of charged
ticle excitations from the valence band to the conduct
band. Actually, when one of these excitations is produc
the excited charge interacts with the spin field, produc
local spin fluctuations and coupling to them. As a con
quence of this coupling, the excitation energy is decrease
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such a way that the corresponding hole suffers the same
cess. The situation@see Fig. 1# is that while the production o
an electron-hole pair without spin field implications costs
energyDc52Ê(0)50.096J2, when we consider the Kond
Hamiltonian and the RKKY interaction, this energy i
Ds(k)50.096J222V12D(k), whereD(k) is the band dis-
persion of Eqs.~28! and~29!. Dc andDs @the latter value can
be considered the average ofDs(k) in the Brillouin zone# are
the charge and spin gaps. Therefore the charge gapDc is the
necessary energy for obtaining an electron-hole pair with
considering the coupling of the charged modes with the s
fluctuation waves~see Fig. 1!. This electron-hole pair energ
is reduced when each component of the pair is coupled w
the magnetic bosons, thus appearing the spin gapDs(k).
Therefore, as shown in Fig. 1, the Kondo lattice system c
tains two types of collective excitations:~i! noncoupled
charged particle~hole! modesêps

† uF& (ĥqs
† uF&), and~ii ! the

SCE quasiparticles that consist of charged modes stro
correlated with spin-fluctuation waves induced in the loc
ized spin field. These latter 2N states which are quasieigen
states ofĤkinetic1ĤKondo1ĤRKKY are split by an average
gap @Ds50.096J22exp(22/JDF)#.

A point on which I wish to remark is the relevance of th
k-dependent SCE spectra in yielding the quantitative ex
nation of the different phases. In previous papers,16,18 we
determined the SCE spectra without considering the RK
Hamiltonian and as a consequence, the SCE bands wer
tally flat, i.e., without anyk dependence, and therefore the
states did not present a band character, being instead
2N-degenerate energy levels. In Ref. 18 I discussed the
pearance of different phases varying the values ofJ andDF
parameters. For increasingJ values~keeping the value ofDF
fixed! the SCE level crosses the zero energy and produce
essential instability, because all SCE states transit from
total unoccupation to a total occupation due to t
2N-degenerate SCE levels. Therefore in Ref. 18 the idea
metallic phase defined as an intermediate occupation of
SCE level is an intuitive and heuristic concept which on
acquires physical meaning when ak dispersion is obtained
due to the action of the RKKY effects. In Ref. 18, the ban
width was included by hand in order to justify the appe
ance of this metallic phase. In that paper, the conduc
phase was a foresight but its existence was not truly prov
On the contrary, in the present paper I have determined
band character of the SCE states in such a way that we
obtain the occupation ratio, the Fermi level, the mobility
the charge carriers, etc., depending on their energy locat
and theESCE(k) dispersion. Therefore the metallic phase c
be now quantitatively determined thanks to the RKKY inte
action, which was overlooked in Ref. 18.

VI. DIFFERENT PHASES OF THE SYSTEM

The center~X! of the narrow SCE bands is located at
energyX5Ds/250.048J22 1

2 exp(22/JDF) with respect to
the ground state~zero energy!. For different values ofJ and
density of states atEF (DF) of the initial noninteracting
HamiltonianH0, we obtain different patterns correspondin
to the insulating and conducting phases of Fig. 1. Each of
four phases of this figure appears in a determinedJ interval
ro-
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Jc,J,Jmax, whereJc is the critical value andJmax is the
maximum value for which the corresponding phase is ma
tained. Obviously, the value ofJc depends onDF . For every
J5Jc new quantum phases, in Sondhiet al.’s sense,24 are
produced. The name quantum phases is due to the fact
these phases appear by variations of the parameters w
govern the quantum Hamiltonian in contrast to the pha
yielded by the variation of temperature.

A. PhaseA

In this phase@see Fig. 1~a!#, the occupied and unoccupie
states are split as in any insulator. The SCE states consi
spin-fluctuation waves coupled to charged states, there
the structure of these bands in these insulators can be d
mined by paramagnetic scattering function measuremen12

These experimental data can detect the spin gap (Ds) and the
SCE bandwidths which are usually narrower than that of
spectrum of the noncoupled charged modes.12 The non-
coupled charged modes are split by theDc gap; therefore, in
principle, the conductivitys(v) is obviously zero forv
50, and forT50 it should present a peak atv;Dc/2. For
increasing frequencies~beyond Dc/2) s(v) should show
the normal-metal behavior. The electronic structure of F
1~a! does not change with the thermal action, therefores(v)
should increase withT in the interval 0,\v,Dc/2, and it
should be quasiconstant versusT for frequencies larger than
Dc/2. Dc andDs have been experimentally detected12,11,13,14

and their features are in agreement with the structure give
Fig. 1~a!.

B. PhaseB

When Ds,2dSCE, @see Fig. 1~b!#, some SCE states ca
have less energy than the GS constructed only with thN
electrons located in the charged modes without coup
with spin fluctuations. Then, an instability appears becau
in the actual ground state of the interacting system, a sp
taneous production of particle-hole pairs located in the S
states is favored. Therefore the two SCE bands can be
tially occupied and as a consequence a conducting pha
produced.

In a perfect impurity-lacking Kondo lattice within
this phase, the conductivity is governed by the phon
interchange from both intraband and interband~or
umklapp! processes, u^SCEkauHe-phuSCEka&u2 and
u^SCEkauHe-phuêka

† F&u2, respectively. The umklapp scatte
ings are different from zero but their contribution can
negligible because the energies of the initial and fi
charged states are split by a gap (.Dc/2), and this gap can
be much larger thanKBT* (T* is the coherence tempera
ture!. Therefore the conductivity in this case iss
52e2nt* /m* , where all variables concern the SCE ba
~the factor 2 is due to the existence of identical SCE ban
one of particles and another of holes!. In general, the relax-
ation time in an ideal system without impurities is caus
by the inelastic interaction with the lattice, which is give
by:25 t215(qnGn(q,T)d@«SCE(kF1q)2«SCE(kF)2\vqn#,
whereGn is a function which includes the electron-phono
coupling strength for any temperature corresponding to
SCE band of charged particles and then band of phonons. A
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fundamental point to obtain the relaxation timet is to know
the band structures within the argument of the Dirac de
function of the above expression. Taking into account
calculations that lead to the band-structure expression
Eqs. ~28! and ~29! for the SCE states, we have a procedu
for obtaining the relaxation time and therefore the cond
tivity. The partial occupation of both the hole- and th
particle-SCE band ensures the nonzero conductivity,
therefore the metallic behavior of the material in this pha
The quantitative analysis of these relaxation times require
large and complex systematic which is out of the scope
this paper, and it deserves a detailed analysis.

An important point is that the particle SCE band in theB
phase cannot be analyzed without considering simu
neously the hole SCE band, since the existence of the for
generatesa fortiori the latter. In this excitonic gas, for eac
particle SCE state occupied with an energyE, a momentum
k, a chargee2, and a spins, another hole SCE state i
occupied with the same energyE, 2k, e1, and 2s. This
picture, although being obvious, can lead, I believe, to dr
tic and interesting consequences. Namely, from the Lore
force point of view, the SCE pair in thisB phase
(uSCEks

(e) ;SCE2k2s
(h) &) maintains its structure in the presen

of an external electric field. This field increases thek mo-
mentum of each pair component but keeps null the mom
tum of the gravity center of the pair, and doubles t
electric current generated by each mate. On the o
hand, the magnetic field can produce a current orthogo
to this field in a similar way to that produced by an electr
pair. In addition, when a electron-hole SCE pair is spo
taneously occupied in the ground state, an attrac
interaction arises because the interacting proc

^SCEks
e ;SCE2k2s

h uĤRKKYuSCEks
e ;SCE2k2s

h & can be nega-
tive. Therefore each SCE-excitonic pair forms a compo
boson whose features and their influence in the macrosc
physical responses of the excitonic gas should be analyz

C. PhaseC

When J increases further@see Fig. 1~c!#, for X values in
the interval 2dSCE.X.2Dc/2, every hole- and particle
SCE state is below the zero energy of the Dirac sea. Th
fore all SCE states are occupied and the insulating ph
appears again becauseDs(k) becomes negative for allk mo-
menta. This situation remains in the parameter space u
the gravity center of the SCE bands tends toward val
close to2Dc/2. The thermodynamic and conducting prope
ties of this phase differ from those of phaseA, since now the
states that can be occupied by thermal or electromagn
interactions are the noncoupled states instead of the
states~as it is the case in phaseA). This implies that the
magnetic amplitude response of the systemx(v) does not
contain any peak for\v5Ds as it can occur in phaseA,

D. PhaseD

When X,2Dc/2, a new insulating-conducting phas
transition arises. In this phase, the Dirac sea is transfor
and
a new lower energy state appears@see Fig. 1~d!#. The
SCE states can be redefined as:uSCEk,1/2&5(p@B(p)/
a
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AN#(êp↑
† Ŝ0,k2p1êp↓

† Ŝ1,k2p)u0&, where u0& is the total
vacuum state. The SCE band is partially occupied and
ground state in this case is given by:

uF* &5 )
aq<qF

uqa&uSCEqa&

5 )
aq<qF

$ĉqa
† (p@B~p!/AN#~ êp↑

† Ŝ0,q2p1êp↓
† Ŝ1,q2p!%u0&,

where the wave functionuF* & should be totally antisymme
trized because this state is formed by fermion states.
Dirac sea is transformed in such a way that atT50, the SCE
states in uF* & are occupied without production of SC
particle-hole pairs. The occupation of these SCE state
produced by the unoccupation of some noncoupled char
modes at the top of the valence band which have, in
phase, a larger energy. As a consequence, SCE states co
at EF with charged modes noncoupled to the spin-fluctuat
waves@see Fig. 1~d!#. The conducting properties of thisD
phase become again those of a metallic material. The dif
ence between theB and D phases@compare Figs. 1~b! and
~d!# is that inB there are only SCE states atEF , while in D,
SCE states and noncoupled charged modes are locatedEF
~the latter, however, in less number!. The relation between
the number of noncharged modes and SCE states atEF is a
feature which has crucial influence in the low-energy pro
erties, and depends on the narrowness of the correspon
bands.

The coexistence, in thisD phase, ofĉqa
† u0& modes and

SCE states atEF , implies that the phonon relaxation is gov
erned by the intraband processes of the typ
u^SCEkauHe-phuSCEka&u2 andu^0uĉkaHe-phĉk8a

† u0&u2, and the

umklapp processes of the typeu^SCEkauHe-phĉqa
† u0&u2.

Therefore the conductivity cannot be expressed by mean
additive formulas for each band@i.e., s5” ( i(e

2nit i /mi* )]
due to the existence of nonvanishing umklapp processes
tween SCE states and single charged states such asĉka

† u0&.
However, the strength of the umklapp scattering is neces
ily smaller than that of the SCE states~although nonvanish-
ing! because the corresponding mixed matrix elements
different from zero due to the action of the electron-phon
interaction terms assisted by spin fluctuations. Obviou
these spin-fluctuation-assisted electron-phonon terms
smaller than those provided by the directĤe-ph . Therefore
the conduction behavior of theD phase is more standard tha
that of B, since the presence of SCE states and noncou
charged states atEF activates the interband inelastic scatte
ing. The influence of these interband phonon interactions
plies thatt21 in the D phase is close to that of the Kond
lattice with the features of a normal heavy-fermion metal

Relation of this D phase with the heavy-fermion meta
state.An interesting analysis of this phase is the relation w
the heavy-fermion state. Strictly speaking, the heavy-ferm
metals are conducting compounds whose charge carrier
present an anomalously large effective heat~between 100
and 2000 times larger than that of the free-electron gas!.3,5,26

The origin of such heavy-fermion feature, common to so
metals, is still strongly debated. However, the sp
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fluctuation influence seems to be the most extensively
cepted origin~see for instance, Refs. 3, 4, 26, and 27!. In any
case, this property is not acquired through a quantum ph
transition, as occurs in the different phases described ab
It corresponds to a gradual property which can be presen
any Kondo lattice according to how the magnetic boso
influence the charges located in states close toEF . This in-
fluence clearly appears in the temperature evolution of
system specific heat. In Fig. 1, one can see that theD phase
corresponds to a conductor whose specific heat can
strongly affected by the presence of the SCE states. In o
to obtain the possible heavy-fermion feature, the SCE d
sity of states~DOS! can be modelized by a narrow Lorent
ian curve:NSCE(v)'(2N/p)dSCE/@(v2X)21dSCE

2 #. Then,
the SCE states in theD phase are occupied up to a lev
(EF* ) that is given by:EF* 5X2dSCEcot@pM /N#, M being
the number of occupied SCE states andN the number of
crystal unit cells. In theD phase,EF* coincides with the true
EF of the system. In these conditions, the enhancemen
the specific heat with respect to that of the free-electron
can be calculated by means of the thermodynamic rela
C(T)52T(]2F/]T2), whereF is the free energy defined b
F52NkbT ln Z, andZ is the partition function considering
the vacuum stateuGS& and theuSCEka& states. The resulting
specific heat of thisD phase, with the assumption of narro
SCE bands, can easily be obtained by means of the ab
systematic and its expression is

C~T!

C0~T!
5

m*

m
.11

3

4p2

~X2EF!2d

~KBT!3 cosh2S X2EF

2KBT D , ~37!

whered is the width of the conduction band arising from th
energy dispersion ofĤkinetic . Figure 2 showsC(T) from Eq.
~37!. C(T) thus deduced can be thousands of times lar
than that of conventional metals. The main characteristic
this electronic specific heat is that at low temperatu
(.2 K) there is a maximum, while forT larger than 4 K,
C(T) is linear as any metal. A similar behavior appears
several uranium compounds such as UBe13.5,26

Let us analyze the resultingC(T) at low temperatures
within the interval 0,kBT,10(X2EF). The aboveT inter-
val can be between 0,T,10 K if one considers standar
values ford andX2EF ~see Fig. 2!. According to the above
expression,C(T) presents an inflexion point at rough

FIG. 2. C(T) for d58 meV andX2EF50.2 meV.
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kBT. 1
6 (X2EF); a maximum for kBT'0.31(X2EF) ~in

Fig. 2 this maximum is'1 K); and for kBT510(X
2EF), C(T)'C0(T). For temperatures lower than th
maximum, the above expression ofC(T) can be approxi-
mated to a polynomial function. Actually, in the interval
,KbT, 1

6 (X2EF) Eq. ~37! can be approximated by the fo
lowing equation:

C~T!

g T
'11

0.05d

X2EF
2

1.75~kBT!d

~X2EF!2
1

14.61~kBT!2d

~X2EF!3
,

~38!

where theg parameter is the standard linear coefficient
the specific heat corresponding toC0(T). In a previous
paper,18 I determinedC(T) by means of the first terms of th
Sommerfeld theory of the specific heat in metals and I g
a polynomial expression. On the other hand, there is exp
mental evidence for some U compounds4 ~concretely UBe13)
showing how the specific heat at low temperatures increa
polynomically with T. From expressions~37! and ~38! for
C(T) and the results of Fig. 2, one can see thatC(T) can be
thousands of times larger than in the normal phases of c
ventional metals. Therefore the main feature of the hea
fermion state can be explained by the partial occupation
the SCE bands. The methodology described above can
determineC(T) for the phasesA, B, andC.

VII. COMPARISION WITH SOME PREVIOUS ANALYSES

Since some years ago, several variational and perturba
analysis of thes2 f Hamiltonian in the Kondo limit have
been realized.6,7,28–30The Kondo limit allows to consider a
spin field within a fixedS51/2 spin representation where th
spin direction fluctuations generate a boson gas. The inte
tion of this spin-wave gas with the conduction electrons
comes the reason and the origin of a rich phenomenolo
Kondo lattice phenomena, heavy-fermion state, compete
and concomitance between antiferromagnetism and su
conductivity, etc. Some of the above cited works analyze
electronic gas spectrum6,30 and others separately determin
the fermionic and bosonic gas spectra.28,29 On the contrary,
in our model,16–18 we approximately determine the man
body eigenstates of thes2 f Hamiltonian considering the
coupling of the fermionic and bosonic gas forming compo
ite fermionic states which we have named strong correla
states~SCE!. The operational kind of the Kondo Hamiltonia
suggests this coupling in a natural way, which is used
several other previous papers.7,9,10 In these papers, simila
associations between fermion charged modes and bos
spin fluctuation states are utilized for obtaining compos
fermions as those of the SCE spectra of Fig. 1.

The variational procedures are usually used in hea
fermion systems2,3,6,7,30because with these methods one c
approximately obtain a diagonalization of the many-bo
Hamiltonian eluding some possible convergence proble
which the perturbative theories would produce. The var
tional analyses6,30 consider many-electron trial wave func
tions, and they obtain an effective Hamiltonian whose dia
nalization yields two effective bands of electrons similar
those of the perturbative study of Ref. 28. These bands
be split by a gap, and are generated by the hybridization
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extended electron bands with the lattice of localizedf levels.
The hybridization implies a certain delocalization of thef
states which partially contribute to the bands, and there
the electron hopping among differentf electron atoms can
occur. The probability of appearance of this hopping
creases when one of the two bands tends to be more than
filled. As a consequence, the number of doublef 2 configu-
rations tends to vary in the electron conduction. Thesef in-
tersite electronic transferences can imply a contradiction
the Kondo limit theory.7 Therefore the variational calcula
tions are usually considered for band occupations that m
mize the effects of thesef transferences. However, th
Kondo effect arises from the thermal occupation of thf
peaks in the DOS. Therefore this conduction effect should
explained by the movement of the electrons in the part of
band with strongf component and, on the contrary, the c
culation of these bands is usually obtained fixing the nu
bers of singlef 1 and doublef 2 configurations. In our model
the Kondo peaks nearEF arise from the SCE states whosef
component corresponds to the spin-wave fluctuations de
oped in thef spin field. Therefore the conduction electro
movements through the SCE states occur maintaining in
the Kondo limit condition in all phases described in Sec.

Some perturbative analyses of the Kondo lattices app
mean-field theory to magnetically ordered Kondo lattices28

Other studies29 deal with a ‘‘poor man scaling’’ approach23

for obtaining the renormalized magnetic parameters
band dispersion of magnons. The first study28 is based on the
one-body DOS of the ground state of the interacting syst
and, in Ref. 29, the spin-wave spectrum and the renorm
ized interacting parameters in magnetically ordered syst
are given~the paramagnetic spin field is not worked becau
within perturbative scheme the authors considered com
cated this magnetically nonordered case!. In our analysis:~i!
we determine the ground state and the excited many-b
states~the SCE spectra! in the Kondo lattice which are ob
tained from a variational procedure, and~ii ! the SCE spectra
correspond to many-body states based on the coup
among charged modes and neutral bosons in paramag
and antiferromagnetic spin field structures. However,
though the procedures of our analysis and those of Irkhin
Katsnelson~IK ! are different, our results seem to be quali
tively compatible with theirs. The Kondo resonance ju
above EF given in IK papers28 could be related with the
peaks arising from the SCE states~see Fig. 1! ~obviously,
this relation cannot be interpreted as a coincidence due to
different nature of this resonance and that of the SCE sta!.
Therefore the electronic structure of phaseD of Fig. 1, de-
scribed as normal metallic Kondo lattice phase prese
some similarity with the IK results,28 because in the Ferm
level, there are both extended charged modes and states
ing from the dynamics off-spin field. The given DOS~Ref.
28! corresponds to a band occupation less than half filli
but it is clear that in the half-filling limit theDc gap of Fig.
1 of my calculation could also appear in these previo
calculations.28 Therefore the insulating Kondo lattice pha
of Fig. 1~a!, described in Sec. VI, could also be deduced a
consequence of the IK calculation. The heavy-fermion s
re
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from perturbative treatments of the Kondo lattice effe
could be justified by the thermal occupation off peaks of the
DOS just aboveEF , and from our variational insight this
state is interpreted as depending on the energy location o
SCE states. In addition, in these cited papers28 it is also con-
cluded that instabilities of the ground state can be reliable
Sec. VI, I describe several phase transitions which are c
patible with this conclusion. On the other hand, a small g
in the magnon spectrum appears in previous calculations29 in
the case of antiferromagnetic spin field. This gap can
equivocally be related with the spin gap (Ds) of Fig. 1 be-
causeDs arises from the Kondo and RKKY effects in th
SCE states which, as said above, do have a neutral b
component of the same nature as the IK magnon struct
On the other hand, I have not been able to find resembla
between theB phase, where the electron-hole pairing is mo
probable, and the pattern yielded by the analyses of prev
literature.7,6,27–30

VIII. CONCLUDING REMARKS

I have presented here a calculation of the spectrum of
Kondo lattices. This is made considering a model alrea
explained in previous papers.16–18 The essential difference
with those calculations16–18 is that only the renormalized
Kondo term was considered to calculate the SCE spec
whereas in the present work the SCE spectra is determ
by including both the renormalized Kondo term and the
duced RKKY Hamiltonian. From the spectra of the SC
bands~one of them corresponding to holes and another
particles! we describe the different phases which can app
when the density of states atEF and the Kondo coupling
parameterJ of the initial Hamiltonian~1! are modified. For a
given DF four phases can appear. For smallJ values, the
system is a small-gap insulator. IncreasingJ, a first insulator-
conductor transition occurs. The charge-carrier relaxat
times in this conducting phase are governed by the in
change of phonons between strongly correlated SCE sta
When increasingJ further a different insulating phase ap
pears, and for even largerJ a second insulating-conductin
transition can be produced. In the final conducting ph
(D), the conductivity is standard even in the case of narr
SCE bands. This is so, because in theD phase both intraband
and interband inelastic processes can be produced. Ther
this D phase presents a normal conductivity similar to oth
normal ~nonsuperconducting! heavy-fermion metals. The
main heavy-fermion feature, namely, the huge electro
specific heat, is obtained for small SCE bandwidthdSCE.
Thus the temperature evolution and values~in order of mag-
nitude! of the specific heat of paradigmatic heavy-fermi
materials such as UBe13 and CeAl3 could be justified by the
occupation of these SCE states.
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