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Collective order-parameter modes for hypotheticalp-wave superconducting states in SRuO,
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We have calculated all order-parameter collective modes and their contributions to the spin and charge
susceptibilities for possiblp-wave pairing states in §RuQ,. The susceptibilities are calculated for pairing
states having gaps without and with nodes, and for wave vegtefsand nesting vectar= Q associated with
the @ and 8 bands of SSRuQ,. Important for the observability of the spin-fluctuation modes, for example, by
spin resonance or neutron scattering, and of the charge-fluctuation modes by ultrasound, is the effect of
quasiparticle damping. This effect is taken into account and discussed in connection with recent neutron-
scattering data on §RuO,.

. INTRODUCTION q=0, one finds, on the one hand, an amplitude fluctuation
mode at frequency=2A, (A, is the gap, which couples to

There are numerous experiments that show that the supegharge density and can be excited, for example, by ultra-
conducting state in SRuQ, (Ref. 1) (below about 1 Kis  sound. On the other hand, one finds spin-fluctuation modes
unconventional. In particular, th€O nuclear magnetic reso- that can be excited by external vector fields coupling to spin
nance Knight-shift experiment shows that the spin susceptidensity and lying parallel to the basal plane. The resonance
bility for the magnetic field parallel to the Ry®lane does frequencies of the latter modes are approximately given by
not change a3 decreases acrods..” It has been proposed (w/2A0)2=X;—Xg=IN(Te5/T¢1) Wheresz(Novj)‘l and the
that the superconducting state inBu0, is formed by spin-  pairing strengthv, (or transition temperatur&.,) refers to
triplet p-wave Cooper paifsin analogy to superfluidHe.*  the in-plane andg (or T,g) refers to the out-of-plane basis
The possiblep-wave pairing states have been classified invectorsd;. For finiteq and magnetic fields, the latter order-
terms of the pairing states (j=1,..,6) corresponding to the parameter fluctuations give rise to spin-wave excitations that
irreducible representations of the point groDpy, for the  may be observable by electron spin resonance for sufficiently
layered perovskite structure OfZRUO4.5 Notice that the 2  small “pinning frequency” Q4 11 This phenomenological
X2 gap matrix is given byA=d-(oicY). The d vector “pinning frequency” Q4, which has been introduced as a
formed from this basis sef;, which is directed perpendicu- measure for the tendency to restore the original direction of
lar to the basal plane and has a constant magnitude in orbitdl against external perturbatiohsjs nothing else than the
k space, seems to be compatible with all the present data gesonance frequency=2A(In Te/Te)*? for spin order-
SKLRUO,.® parameter fluctuation$discussed above.

The situation in SiRuQ, is complicated because one has Among the 12 collective modes given by the coupled
observed by quantum oscillatidhthree Fermi sheets where Bethe-Salpeter equations in the particle-particle and hole-
the y band is essentially quasi-two-dimensional isotropic,hole channel$?** one finds the so-called clapping modes
while thea and 8 bands are quasi-one-dimensional. Analysiswith frequency w= J2A, corresponding to the observed
of the London penetration depth and coherence I€mgi-  clapping modes irfHe-A.*® In recent theories of ultrasound
gests that the gap associated with théand is larger than propagation in SRuQ,, it has been claimed that the clap-
that of thea and 8 bands. For the latter bands, one expectsping modes couple to sourttt!’ However, it has been shown
sizable nesting effects at the wave ved@« (27/3,27/3). previously that the coupling of the clapping modes to charge
It has been shown that the nesting effect on the dynamicalensity vanishe¥ Instead of the clapping mode, we inves-
spin susceptibility leads to a collective mode Qitin the tigate in this paper more closely the contribution of the am-
normal state and subsequently to a competition betweeplitude fluctuation mode to sound attenuation that may yield
d-wave andp-wave superconductivitIn fact, neutron scat- a resonance if the coupling due to particle-hole asymmetry at
tering in the normal state of $RuQ, yields a large peak at the Fermi surface is appreciabfe!® The resonance fre-
wave vector(0.6m, 0.6m) close to the nesting vect® with quency w=2A, for a nodeless gap becomes abaut
energy transfer of 6.2 me¥. =/3A,, for a gap with nodes, which is similar to that of the

Observation of collective order-parameter modes mightamplitude collective mode fad-wave pairing'*
be a tool to determine the nature of the superconducting state More recent measurements of the specific h€ain
in SLRUQ,. Recently, the possible order-parameter colleccleaner samples of gRuQ, have shown that the residual
tive modes forp-wave pairing states in the layered pervosk-density of states is very small ar@=<T2.2° These experi-
ite structure like SIRuO, have been calculated in terms of ments have been interpreted as consequences of an aniso-
fluctuations of the pairing statels (j=1,...,6) corresponding tropic gap caused by a finite range pairing interactfoft.
to the irreducible representations Bf, .1%*® For thed vec-  The specific-heat measurements have also led to speculations
tor of the nodelesa-phase pairing statend for wave vector of f-wave pairing order parameters giving rise to vertical line
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nodes?® As has been pointed out above, these states witin the particle-hole channéfsthat are excited by external

nodes give rise to a resonance frequency of the amplitudields U, and U,, respectively. These equations are the

collective mode that lies well below the pair-breaking edgefollowing:***8

2A,. This may help to make this mode observable by ultra-

sound attenuation. . .
In the present paper, we give a more complete and de- 5Ai:”iT§ ; 121 [G(kiwn)G(q=K,iwm-—n)

tailed account of all the order-parameter collective modes "

and their contributions to the charge and spin susceptibilities X(di-dj)0A;—F(K,iw,)-F(q—K,ion_p)

that can possibly occur ip-wave pairing actually exists in . .

SrLRuQ,. These include, on the one hand, collective modes X(d;-dj) 8AT +2(d;- F(k,iwp))

6

for superconducting states without and with nodes in the gap, X (F(q—K,iwm_n)-d)8A* ]+ 2G(K,i w;,)
and, on the other hand, collective modes for wave vegtor Coment e o
=0 and for nesting vectay=Q, which are presumably rel- X[(di-F(g—k,iwm_n))Ug

evant for they band and ther and B8 bands, respectively.

In Sec. I, we present an outline of the theory of collective
order-parameter modes for spin-tripfetvave pairing in the
layered perovskite structure of RuQ,. In Sec. lll, we give )
results for the spin- and charge-fluctuation susceptibilities afiere,G andF are the normal and anomalous Green’s func-
q=0 andq=Q for states without nodes and with nodes in tions, which for unitary statesd(<d=0) are given by
the superconducting energy gap. We calculate the spin sus- R . _
ceptibility for the normal state at the ngsting vec@rand Glkiiwn) (lonteW/N, Fkion) d(k)/N,
make a fit to the neutron-scattering datln Sec. IV, we (2.2 2

. oo . ’ . N= +ep+|d(k .
discuss the possibilities to observe the spin-fluctuation (wn+eict|d(K)%) ®

modes and charge density fluctuation modes, for example, by First, we consider the so-calledphasé with d vector and
spin resonance or ultrasound attenuation technique. squared gapd|%:

_i(diXF(q_kriwm—n))'Ua] . (4)

a . 2
Il. GENERAL THEORY OF ORDER PARAMETER d=Ap2(ke+iky), [d]?=A§. (6)

COLLECTIVE MODES FOR  p-WAVE PAIRING IN St :RUO, - Tjg state is stable #fs=ve>v; (j=1,...,4). Comparison of

The p-wave pairing states; corresponding to the irreduc- the pairing interactior(2) with the effective intraorbital in-

ible representations db 4, are the following® teraction derived in Ref. 21 shows that the differences be-
tween the intraplane eigenvalugs(j=1,...,4) are caused by
Ay di=Kke+Tky, Azt do=XKy— Ky, spin-orbit coupling® For the state(6) (and all the other
states considered lajeithe system of equation) for the
Biy:dg=Xke—9ky, Boyy:ds=Xky+Jky, fluctuations 5A; and SAT (j=1,...,6) decouples into three
sets of four equations each. The first two sets of these equa-
Ey:ds=v22k,, de=v2ZK,. (1) tions yield fluctuations being proportional tal,(+d3) and

R (d,—d,), respectively, which are excited by external fields
For simplicity, we take the orbital basis set=cos¢ and U, coupling to spin density that lie in they plane and are
ky=sin¢ on a cylindrical Fermi surface. It should be pointed directed perpendicular to these vectgsee Eq.(4)]. The
out that the theory of collective mod@s8is essentially un-  corresponding contribution to the spin susceptibility fpr

altered if the basis function&; are replaced by sig(i =0 IS the following:
=x,y) corresponding to a finite range interactfSrf! The . 5
weak-coupling pairing interaction can be written as a sum of £700.m)=—N s[wAo(F)] (LV=XX.yY.XY)
projection operators onto the basis stades$n Eq. (1) with ASERNS O%w2<F>—(x1—x6) K I
eigenvalues; (vs=vsg): 7

6 The functionF(¢,w) for g=0 and a general statl{ ¢) is

V(k,k ) == 2 vd;(k)df (k). (2)  defined by
=1
ld()|? [+ tani E/2T)

The fluctuationséd of the equilibrium pairing statel are
decomposed in terms of the basis vectors in @g.

Fl¢,w)= qd3y ). P E[4EZ=(w+i1)F]

[E?=&+[d(4)|%]. ®

In this functionF, we have introduced a phenomenological
. damping constanf. The bracketg---) in Eq. (7) denote the
Then the coupled Bethe-Salpeter equations for the ordetyerage overp from 0 to 27. The term &,—xg) in the

parameter fluctuations in the particle-particle and hole-holgjenominator of Eq(7) corresponds to the phenomenological
channel¥’ can be decomposed in terms of coupled equatlonspinning frequency” Q4 introduced in Ref. 11:

for the fluctuation componen®&); and 5AJ* . These fluctua-
tions are coupled to the charge- and spin-density fluctuations — (Q4/2A0)?=X;—Xg=IN(Tg/Tc1), Xj=1MNgv;. (9

5d<k;q,ivm>=§ 8A(q,i vy d; (k). 3)
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Here, T; are the superconducting transition temperatures ' ' : : ‘ : '

corresponding to the pairing coupling constanfsin Eqg.
(2).13 For simplicity, we assume here and in the following
that the in-plane pairing constants (j=1,...,4) are all

equal. It should be pointed out that in Refs. 10 and 18, it was

assumed that,=v, andvz=v, while v, andv 5 are differ-
ent where the differencerg—v) arises from spin-orbit cou-
pling terms. Then the pinning frequency; - xg) in Eq. (7)
is replaced by (x; + x3) — X [note that we have changed the
definition ofx; in Refs. 10 and 18 t&; — X in Eq. (9), which
is more convenient for later purpoges

The last set of four equations yields coupled equations fo
the real and imaginary fluctuation compone#tss, SAZ ,
5Ag, and 5AE of the two basis vectords anddg along the

z axis. From these equations, one obtains the amplitude fluc-

tuation mode withw?=4(|d|?), the phase fluctuation mode
with w?=0, and the two clapping modes witho?
=2(|d|?). In recent theories of ultrasound propagation in

SrRuUQ,, it has been claimed that the clapping mode couples

to sound:®’ In contrast to these theories, we find that the
coupling of the clapping modes to densjgxternal fieldU
in Eqg. (4)] vanishes. However, we find that the amplitude

fluctuation mode couples to density by a term that is small of
the order of particle-hole asymmetry at the Fermi surface.

This yields atg= 0 the following contribution to the charge-
density susceptibility:

L [4A4(N(&)&F)]?
((0*—4[d[*)F) ~

Xf1(0.@)=—Ng (10
The coupling term{N(e)&F) in the numerator of Eq10) is
different from zero if the density of stat®&f ¢) has an anti-
symmetric contribution irz at the Fermi energg=0. It has
been stressédthat in SERUQ,, the ratio of sound velocity
to Fermi velocity,s=c/vg, is small of the ordes~102.
Therefore, terms of ordef?= (vg-q)? have to be taken into
account in the theory of sound propagation and attenuatio
This means that the functidain Eq. (10) has to be replaced
by the more general functioR({,w), which has been de-
rived in the theory of collective modes itHe-A [see Eq.
(18) in Ref. 15. Furthermore, the term? in the denomina-
tor of Eq.(10) has to be replaced bys€— ¢2). However, for
direction u of sound propagation parallel to tleeaxis, the
correction terms? vanish. Thus we conclude that the ex-
pression in Eq(10) remains correct for longitudinal sound
waves withul|qg||z.

IlI. RESULTS FOR SPIN AND CHARGE FLUCTUATION
SUSCEPTIBILITIES FOR VARIOUS STATES

In this section, we calculate the spin- and charge-
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FIG. 1. (a) Real part(solid line) and imaginary parfdashed
line) of function m% F for state(1) at T=0 [see Eq.(5)] versus
reduced frequency = w/2A, for reduced quasiparticle damping
y=T/2A4=0.01, (b) Fluctuation-spin susceptibility for statd),
Im x4” [see Eq.(2)], versusw, for T=0, y=0.01, and reduced
pinning frequency X, —Xg) =5.

he scattering of quasiparticles by spin fluctuations. It has
)een shown that fod-wave pairing in the high-; cuprates
the self-consistently calculated quasiparticle scattering due to
spin fluctuations has a large effect on the spin density and
order parameter collective modésWe determine also the
collective modes aQ=(2#/3,27/3).

We start with staté€6) having a constant energy gay.
Then the functiofF)=F(w) can be calculated analytically

at T=0 and becomes equal to

_ __arcsiiw+iy)
205F(0)=[1—(0+iy)?] lle'
P 11
w_ZTAO’ ‘}’—ZTAO- (13)

fluctuation susceptibilities in terms of the expressions given

in Egs.(7) and(10) for a number ofp-wave superconducting
states given by the vectod; in Eqg. (1). This means that we
have to calculate the angle averageésand(|d|?-F) where
the functionF is given by Eq.(8) for wave vectoq=0. We
shall see that these functions af are quite different for

In Fig. 1(a), we have plotted the real and imaginary parts
of the function(11) versusw for y=0.01. We find that the
maxima occurring near the pair-breaking edge-1 de-
crease for increasing values afAnalytically, we derive that
these maxima are of the order of magnitugie*. This

states having gaps without or with nodes. Furthermore, thes@eans that the real part of the denominatoLof the spin-
functions depend crucially on the magnitude of the phenomfluctuation susceptibility in Eq(.7) has a zero fow<1 only

enological damping constatit, which has been introduced
into the functionF. This damping constant takes into account

if ¥~ 12> (x;—xg). Here it should be recalled that the pair-
ing strengthe),=v,=v3=v, (for simplicity we have taken
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them to be equalrefer to the basis vector; lying in the
basalxy plane whilevs=uvg is the pairing strength of the
vectorsds and dg making up thed vector in Eq.(6). For
large values of the “pinning frequency® that is,
(Q4/2A0)?=x,—xg>1, the resonance of4"(0,w) occurs
just below the pair-breaking edge. In Figblwe show as an
example Imy4” versuse for y=0.01 and &, —Xxg) =5. For
(x1—xg)—0 the resonance frequency tends to zero becaus
this collective mode becomes the Goldstone mode for broke
rotational symmetry. One recognizes easily that the resc
nance of the charge-fluctuation susceptibijg in Eq. (10)
occurs for the superconducting stai® at frequencyw
=2A,. The coupling term of this mode to charge density
[see the numerator in Eq10)] is small of the ordem
=dN(e)/de at the Fermi energy, which is a measure of the
amount of particle-hole asymmetry.

We turn now to the possible collective modes at the nest
ing vectorQ=(2m/3,2m/3) for the « and B Fermi sheets of
SKL,RUO,.2 Making use of the fact that for the band energy
exro=—¢&x atQ, we find that the spin-fluctuation suscepti-
bility x#,"(Q,w) is obtained from the expression in EQT)
by replacing in the denominator the ternw¥2)(F) by
2A3(F) and the term X;—xg) by x;. A resonance occurs
close to the pair-breaking edge if the conditipn/?>x; is
satisfied. For parameter valugs=0.01 andx;=5, the plot
of Im x4"(Q, ) looks very similar to the plot of Iny;"(0,w)
shown in Fig. 1b). However, it is unlikely that the condition

given above is satisfied because, on the one hand, the pairing

strengthsNgv, of the basis states in they plane are much
smaller than one, that ig;>1. On the other hand, the damp-
ing I of the quasiparticles ned) is at least in the normal
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FIG. 2. Fit to neutron-scattering data from Eg) of Ref. 9 on
SKLRUQ, at Qy=(0.67,0.6r) and T=10.4K versusw/2T for
damping constarif =9 meV (dashed curve Bare spin susceptibil-
ity for normal state at nesting vect@, Im x>, [see Eq(7)], versus
/2T for reduced quasiparticle dampidy2T= 1.8 (solid curve.
RPA spin susceptibility, Iny,,, for a=(NoU) 1= (Ngve) =1
andI'/2T=5 (dashed-dotted curye

X9 Q, @) =Ng| Xg+ (@ +iT)2[§*

o de
4e?—(w+il)?

tanHe/2T)

€

(13

state quite large as has been shown by neutron scattering dfe neutron-scattering results for jtQo,») versuse at

Sr,RuQ, (Ref. 9 (see discussion belgw

For d-wave pairing, a collective mode occurs in the
random-phase approximatioRPA) spin susceptibility at the
antiferromagnetic nesting vectd@= (7, 7).** This mode
has been observed by neutron scattering in the Mighu-

Qo=(0.67,0.67r) have been parametrized by an expression
proportional towI'/(w?+T'?) (Ref. 9 (see dashed line ver-
susw/2T for T=10.4K andl’=9 meV in Fig. 2. The curve

of Im x2, in Eq. (13) versusw/2T, which lies closest to the fit
to the experimental pointsee solid curve in Fig.)2is ob-

perconductors. A similar mode could occur in the dynamicakained for a ratio ofl /2T=1.8. We have also tried to de-

RPA spin susceptibilityy,,= x2(1—Ux2,) ~* for p-wave
pairing2° For the superconducting state), we find that at
the nesting vectoQ=(2#/3,27/3) of the @ and B bands
with nesting relationshige, . o= — &y the irreducible spin
susceptibilityx?, is given by

X Q@) =No[ X6+ w?2A5F (w)]. (12
Recall that afT=0 the function AgF(w) is given by Eq.
(11), which is plotted in Fig. (a) versusw for y=0.01. A
zero of the real part of the denominator of the RPA spin
susceptibility is, according to E¢11), given by the equation
®?2A5 ReF(w)=(NoU) *—(Ngug) %, which means that the

scribe the fit to the data points with the full RPA expression
(see above The result for parameter values=(NyU) !
—(Ngvg) "'=1 andI'/2T=5 is also shown in Fig. Zsee
dashed-dotted curyeThis curve shows the experimental de-
crease for largew, and the value of /2T=5 agrees ap-
proximately with the value obtained from the experimental
values ofl" andT. This large value of the reduced damping
makes it unlikely that the condition {§>x, for obtaining a
resonance inf"(Q,w) below T, is satisfied. Therefore, its
contribution toXSX(Q,w) may be neglected.

For completeness of our discussion, we remark that the
collective mode corresponding to the Goldstone mode for
broken gauge invariance gt 0 (Ref. 10 gives rise at wave

right-hand side of this equation has to be positive. Fowvector Q to a charge-fluctuation susceptibilityy(Q, ),
d-wave pairing, it has been shown that this stringent condiwhich differs from the spin-fluctuation susceptibility

tion for occurrence of a spin density collective mode is dras;

x4"(Q,w) in thatx; in the denominator is replaced by.

tically weakened if the feedback effect of the quasiparticleSince xg<<x;, it seems to be more likely that a collective
self-energy on the dynamical spin susceptibility is taken intomode atQ can be excited by external fields coupling to

account'®

For A,—0 in the normal state, E§12) goes over into the
following expression for the Lindhard function at the nesting
vectorQ:

charge density like ultrasound than by external vector fields
coupling to spin density.

Next we consider the order-parameter fluctuations for the
so-calledb-phase staté whose gap has nodes
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FIG. 3. (a) Real part(solid line) and imaginary par{dashed
line) of function A3(F) for state(8) [see Eq.(9)] versusw for y
=0.01. (b) Function Z|d|?F) [see Eq.(10)] versusw for y
=0.01. (c) Fluctuation-charge susceptibility for statg), Im x,°
[see Eq(3)], versusw for y=0.01.

d=(1M2)Ao2(ks—ky), |d|2=A(2)(1—sin 2¢)12.
(14

For this state, we obtain from Eg8) the following angle
averageF(w)) at T=0:

AYF(0))=1+i(o+iy) {K(@+iy)—E(@+iy)]
(@=wl2Ay, y=TI2A).

K(w,+iy)~Inf4[1—(o+iy)?] Y2 (w=<1). (15
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creasingw in consequence of the gap nodes, while Iatsr(fE
is almost zero up taw=<1 and then rises steeply to a high
peak at the pair-breaking edge= 1. This result for RA3(F)
implies that there exists a zero of the real part of the denomi-
nator in Eq. (7) only if the reduced pinning frequency
squared X, — Xg) is smaller than one.

For the charge-fluctuation susceptibiligf(0,0) in Eq.
(10), we need to know the average value of the gap squared.
For T=0, we obtain from Eq(8) for the state(14):

2(|dI*F)=1+3(0+iy)?+iz(o+iy) HYK(w+iy)
X[1+3(w+iy)?]—-E(w+iy)[1+ (0+iy)%].
(16)

This function is plotted in Fig. @) versusw for y=0.01. It
turns out that a zero of the denominatorx?f)(o,w) in Eq.
(10) is obtained only ify is finite and sufficiently large,
namely, y=0.24. For increasing, the zero of the denomi-
nator tends to about,= /3. These results are quite simi-
lar to those for the amplitude fluctuation mode of thevave
pairing state in the high~, superconductor¥. The height of
the peak of Imy>’ at the resonance frequenay, increases
with increasingy. In Fig. 3c), we show Imy}° versusw for
v=0.01. Here, we have taken a constant value for the small
numerator in Eq(10), which is of the order of magnitude
(dN/de)?.

The resonance of the spin- and charge-fluctuation modes
at the nesting vecto are obtained from the equations
where the functiom\é(F) in Eq.(15) is set equal tox; or Xg,
respectively. Sincd3(F)<1 [see Fig. 8)], one obtains no
solutions.

We have investigated also the collective modes for
p-wave pairing states witld vectors lying in the basaty
plane and obtain analogous results to the foregoing ones. As
a first example, we consider=A(Xk,+ yk,) with constant
energy gap squaredd|?=A3. For wave vectorg=0, we
find a charge-fluctuation contributiog, corresponding to
Eqg. (10) with resonance frequency=2A,. Furthermore,
we obtain spin-fluctuation contributiong;” corresponding
to Eq. (7) where the reduced pinning frequency; € Xg) is
replaced by Xg—X4) for uv=xx, and by &,—x;) for uv
=zz Recall thatx;=1/Ngv;. Since the stable pairing state
has the largest pairing strengtNyv,, the inequalitiesxg
>x, andx,>Xx; hold. For nesting vecto® of the « and 8
bands, we find again that in the expressions ¢t in Eq.

(7), the term @?%/2)(F) has to be replaced byA%(F), and
that (x;—Xg) has to be replaced by; for wv=xx, and by
X, for pv=zz Otherwise the results are the same as for
state(6), in particular,F is given by Eq.(11) [see Fig. 1a)].

As a second example, we consider the polar state,

d=(Ag/2)(d;+d3) =A%k, with squared gap |d|?

Here,K andE are the complete elliptic integrals. One recog- =A3co$ ¢. We obtain analogous results to the previous

nizes that the function in Eq15) is quite different from the

ones for the fluctuation susceptibilities in Eqg) and (10)

corresponding function 23F for a constant energy gap in apart from the fact that now angle averages avéave to be

Eq. (11) as can be seen by comparing Fig&)3and Xa) for

taken with the functiond()|%/(|d|?)=2 cog ¢ in F(¢,w)

y=0.01: ReA)(F) stays almost constant up to the pair- [see Eq(8)]. The reduced pinning frequencyy(— xs) in Eq.

breaking edga»= 1, while Re 2A2F exhibits a peak neab

(7) has now to be replaced bxd—x;) for u,v=y,y, and

=1. On the other hand, I(F) increases rapidly with in- by (x,—x,) for uv=zz The averageéF(w)) and(|d|?F)
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are given again by Eq$15) and (16). Thus the results for
the stated= A Xk, are analogous to those for thephase
state(14).

IV. CONCLUSIONS

We have studied the large variety of order-parameter col
lective modes for possiblp-wave superconducting states in

COLLECTIVE ORDER-PARAMETER MODES F&.. ..
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feature below 0.8 K that has been recently observed in the
in-plane anisotropy of the upper critical field in,RuQ,
(Ref. 23 corresponds to the in-plarig;;, while T, corre-
sponds to the stable stalealong thec axis. Then, we would
obtain for T;;=0.8K and T,=1.46K a squared ratio
(Q4/2A)?=0.6, which means thaf)4 falls far below the
pair-breaking threshold and might be observable by spin
resonance.

SrLRUQ,. These modes may be observable if their coupling For nesting vectorg=Q associated with ther and B

to spin or charge density is sufficiently large and if their
resonance frequenciesfall below the pair-breaking thresh-

bands of SJRuQ,, the resonance frequencies of the collec-
tive modes are close toA% or larger and, therefore, it is

old 2A,. The dynamics of the Cooper pair modes is givenunlikely that they can be observed. However, the full RPA

by the functionF(w) defined in Eq.(8). The sharp pair-
breaking thresholdv=2A,, which can be seen in If(w)
for a state with constant gafy, [see Fig. 1a)] is largely
washed out for a state with a node in the {jape Fig. 83)].
Recent specific heat measurements on cleaner samples
Sr,RuQ, (Ref. 19 have led to speculations that the gap is
very anisotropit’ or has node4’ We obtain for these pro-
posed gap functions very similar results as those shown i
Fig. 3. The pair-breaking edge of IR{w) is washed out also
by scattering of quasiparticles on spin fluctuatidrté and
impurities?° This quasiparticle damping is simulated here by
a damping constarit. Our fit of the neutron-scattering data
on SpRUQ, (Ref. 9 (see Fig. 2 shows thafl" is rather large
at least in the normal state.

Those fluctuation$d of the pairing stat@, which couple
to spin density, can be excited by external vector figlgds
that are directed perpendiculardoTheir resonance frequen-
cies for wave vectorg=0 fall below the pair-breaking
thresholdw=2A if the pinning of thed vector by the an-
isotropic pairing interactionsee Eq.(2)] is sufficiently
weak. This pinning frequency)y is given by Q4/2A,)?
=In(T,/T) [see Eq(9)], whereT, is the transition tempera-
ture corresponding to the stable staieandT; is the tran-
sition temperature of the statg lying in the direction ofU,
and 6d. One might speculate that the additional transition

spin susceptibilitywithout the fluctuation contributiormay
exhibit atg=Q a resonance belowX, if the on-site Cou-
lomb repulsiond is smaller than the BCS pairing interaction
constant. This is very similar to the RPA spin susceptibility
fof d-wave pairing in the highF, cuprates, where a reso-
nance has been actually observed by neutron scattering
around the antiferromagnetic wave vectbit is promising
that one has observed already in the normal state 6fU&,
a broad peak in the neutron-scattering intensity close to the
nesting vectoQ.®

In contrast to recent theories of ultrasound propagation
and attenuation in SRuQ,, %" we find that the coupling of
the clapping mode with frequenay=\2A, to charge den-
sity vanishes® However, the fluctuatio@d in the direction
of d couples to charge density with a coupling strength that
is small of the order of particle-hole asymmetry of the den-
sity of states at the Fermi energy. This amplitude fluctuation
mode has a resonance frequenecy 2A, for a state with
constant gap\, and a resonance frequenay=/3A, for a

state with nodes in the gap. Since the specific heat measure-

ments favor a state with a strongly anisotropic &yt
seems possible that for sound propagation perpendicular to

the basal plane, a resonance can be detected in ultrasound

attenuation provided that the amount of particle-hole asym-
metry at the Fermi surface is not too small.
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