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Restudying the non-Fermi-liquid one-particle Green functigiELGF) we have extended the work of
Balatsky[Philos. Mag. Lett68, 251(1993] and Yin and Chakravartyint. J. Mod. Phys. BLO, 805 (1996,
among others. We use the moment approach of No[tthgPhys.255, 25 (1972] to compute the unknown
parameters of the NFLGF’s in the framework of the Hubbard model. The zeroth-order moment requires that
our one-particle Green functions describe fermionic degrees of freedom. In order to satisfy the first-order sum
rule, a renormalizationy+ 1, of the free-electron mass is called for. The second-order sum rule or moment
imposes a relation between then-Fermi-liquidparameterg, the Coulomb interactiort), and the frequency
cutoff, .. We have calculated the effect of the mass renormalization fagfam some physical quantities,
such ad(i) the correlated momentum distribution functicm(l?), close to the effective chemical potential, at
T=0; (ii) the superconducting critical temperatufe,; and(iii) the superconducting critical interactian,,,
and compared them with analytical results found in the literature. Also, we have calculated the isotope effect,
a', for non-Fermi-liquid systems, which reduces d¢6=1/2 (the BCS resu)t when a—0. As a case of
non-Fermi-liquid systems, in the Appendix, we have studied two inequivalent coupled Hubbard layers for
which we calculate the one-particle spectral functions on the layers and perpendicular to them. We discuss the
features which appear due to the shift in the two effective chemical potentials and propose some experiments
to detect the features found from our expressions.

I. INTRODUCTION on the planep,,=T down to T,. For a Fermi liquid,p,p
«T2. There is not a consensus regarding the origin of the

The unusual normal state properties in high-temperaturanomalous in-plane transport. Two broad classes of theories
superconductorsHTSCO) (Ref. 1) have led to the idea that attribute the anomalous behavior either to singular forward
the usual Fermi liquid theory is no longer valid. As a conse-or large-momentum scatteriffdzurthermore, the Boltzmann
quence of this, several phenomenological mddelsave  transport equation gives an expression for the magnitude of
emerged with the purpose of explaining the strange metallithe resistivity in terms of band parameters and a mean free
behavior of the normal state phase and the behavidas  path between quasiparticle collisions. At low temperatures,
doping in the HTSC. We would like to point out that the this expression suggests a mean free path which is much
origins of a non-Fermi-liquid ground state for a strongly cor-larger than the lattice constant, as in conventional metals.
related material Y=2D, where U is the local repulsive However, at higher temperatures the resistivity smoothly in-
Coulomb interaction and2 is the width of the free bandn  creases to large values, suggesting a mean free path which is
dimensions higher than 1, nameti> 1, are an issue that has smaller than the lattice constant, implying the breakdown of
not been solved analytically up to the present moment. The quasiparticle picture.
main arguments which have been cited as responsible for the (vi) The overdoped materials exhibit a ratio of resistivi-
failure of Landau theory are as follows: ties, p./pap# f(T), as in standard anisotropic materials. On

(i) The high critical superconducting temperature is attrib-the other hand, underdoped materials exhibit a divergent out-
uted to the Cu@planes, but it is well known that in one- or of-planep. asT decreases, evenyf,, is metallic. Thec-axis
two-dimensional systems superconductivity any sponta- data are not as universal between different cuprate families.
neous symmetry breakipgs suppressed due to fluctuation  (vii) The Hall coefficientRy(T), in HTSC in the normal
effects forT#0. state shows the striking NFL behavfoiRy(T) follows a

(i) The superconducting phase is very close to the longCurie-Weiss-typ€el dependence anRy(T)|>1/n €| for T
range magnetically ordered phase, and the exchange interae~0 in the underdoped compounds, wherés the carrier

tion J in this strange metal can be too strong. number. MoreoverRy(T)>0 for hole-doped compounds
(iii) The concentration of holes or the carrier number, is and Ry(T)<0 for electron-doped ones, although each of
too low. them has a similar holelike Fermi surface.

(iv) The Coulomb interaction may be too strong so the (viii) The NMR relaxation rate T, T° for these mate-
adiabatic assumption in Landau’s theory may not apply. rials. Remember that for a Fermi liquid,T4/<T.
(v) For optimally doped materials, the electrical resistivity ~ (ix) In conventional metals, one observes a Drude peak in
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the optical conductivity aé =0, which broadens but persists wheree ,(, i represents the spiicharge energy spectrum of
for high temperatures. In contrast, in strongly correlated metthe carriers,w. is frequency cutoff introduced to maintain
als most of the spectral weight is in broad features at higlthe dimension of the 1PGF correct, agtk),e'? are renor-
frequencies. Furthermore, the Drude peak only exists at lownalization factors introduced in order to recover the usual
temperatures. properties of the Green’s functions. Outside the interval
(x) In conventional metals, the thermopower is linear in[ — w¢;wc] the Green function will have the usualelbe-
temperature, has values less tHale~87uV/K, and has havior aso—c. _ _
the same sign as the charge carriers. In strongly correlated A model based on a Green function such as the one in Eq.
metals, it can have a nonmonotonic temperature dependenc,@,) IS mo'glvat_ed by the Lu;tlnger_-hqwd model. Such a model
change sign, and have values of the ordekgfe. was studied in some detail by Yin and Chakravartgllow-
(xi) The isotope exponent;’, in HTSC is unconventional

ing a ﬁrategy similar to the one used by Galitskii and
in different respects. Optimally doped samples show a verM'gdaI' who constructed a model for a Fermi liquid and
small o’ of the order of 0.05 or even smaller, in contrast to

¥xamined its self-consistency. As a result, Yin and
. . Chakravarty® obtained a non-Fermi-liquid state which is
t_he BC.:S value_ ofy. This unusually small value In connec- gapless and responds like a metal, but without quasiparticles.
tion with the high value off led to early suggestions that |, our paper, we intended to check self-consistently the idea
the pairing interaction in the HTSC cuprates might be prehat the model can be a solution for the Hubbard Hamil-
dominantly electronic in origin with a possible small tonjan and by applying the sum rules related to such a
phononic contribution. However, to complicate things a little Hamiltonian to evaluate the constants of the mddek Eq.
bit more, the isotope exponent factar,, also shows an (2)]. Let us mention that Eq(1) was used by Chakravarty
unusually strong doping dependence, reaching valugsiof and Andersol? to obtain an interlayer tunneling Hamil-
some cases higher, in the underdopé&d,reduced, com- tonian (ILT). Just recently, Chakravarty, Kee, and
pounds. Abraham&® have used the interlayer tunneling Hamiltonian
Among one of the models to explain taaomalousprop-  to explain the experiments of Bas@t al’ on the c-axis
erties of the HTSC, we mention the one of Varmigal,>  optical sum rule in some HTSC. The structure of the paper is
which tries to fit the linear resistivity data of the HTSC by as follows. o
means of the quasiparticle lifetime of the form=1/[T(ey In Sec. Il we show that a b_and renormalization parameter
—u)], whereT is the absolute temperature apdis the 7Y iS necessary to satisfy the first-order sum rule of Noltfhg.
chemical potential. This model is strictly phenomenological.The presence of seems to us very natural since when cor-
There is a second model introduced by AnderSavhose relations are present, the free electronic band has to be renor-

starting hypothesis is the occurrence in two-dimensional (Z1@/iz€d; too. In the same section, we find thatw., andU
—d) systems of a state similar to the one from the one2'€ closely related. The parameteis going to play an im-
dimensional (1d) Luttinger liquids’ The point of view portant role in the foIIowmg developmgnt. In Sec. Il we
adopted by us is that the HTSC aré materials which can bhgvg rec;alculatec_i the following quantltlés):the.momentqm
treated by the Luttinger liquid model, especially in the un- istribution functionn.(eg) close to the effective chemical

derdoned i Bei I otential, namelyg i~ uq; (i) the superconducting critical
erdoped regime. Being so, we explore some consequenc peratureT.; and(iii) the superconducting critical inter-
of this assumption.

. , ction strength),. In Sec. IV we present the calculation of
In such a non-Fermi system, the o.ne;part|cle spectraghe jsotope exponent or coefficient!, using the non-Fermi-
function  A(eg,w)=—1/mIm[G(eg,0+i07)],  where iquid one-particle Green functiotNFLGP). In Sec. V we
G(k,w) is the one-particle Green function, satisfies the scalpresent our conclusions and the outlook of our line of work.
ing property While the semiphenomenological theory of AnderSon
suggests anomalous exponents, ie#0, a satisfactory
derivation of them and other details await further theoretical
development?® In the Appendix we have found an applica-
tion of our theoretical treatment: two inequivalent coupled
where «, the non-Fermi-liquid parameter, is given by the Hubbard layers(ICHL). Among the features found, we
condition 0O<a<3. In the case of a Fermi liquid systemm  mention the appearance of an energy gap in the off-diagonal
=0. We mention that Wefi,as we do in this papefEq. one-particle Green function. We suggest that angle-
(15)], has shown that the exponenis not universal, since it resolved photoemission spectroscdyRPES experiments
depends on the coupling constant between the electrons. fhould be set up to measure this gap foreseen for this
the case of the Hubbard model,depends on the local Cou- type of materials[Y,Ba,Cu;0,5(247)=YBa,Cus0,(123)
lomb interaction. The model that we are going to study by YBa:Cu,Og(124)]. The results presented in this paper, es-
means of the scaling relatidiqg. (1)] has poles and branch pemally the ones of Sec. Il, represent a first step along these

cuts. This scaling behavior is a generalization to dimension%?es' i.e., the use of the sum rules of Noltifig determine

d>1 of the fermionic propagator from one-dimensional sys-t e physical parameters of the theory.

tems @=1). It has been shown by different authtr$ that I CALCULATION OF THE PARAMETERS
the one-particle Green functiddPGH can be expressed as VIA SUM RULES

A(Aeg, Aw)=A*"1XA(eg,0), (1)

_ The model we study is the Hubbard Hamiltorfian
g(a)e o,

Glek,w)= o
(=&, ) 0—e, """

—w<w<wog,

2

U
H:ti,jCiTO'CjO'—}_inioni;_luci-ro'cia'! (3)
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Wherec . (ci,) are creationfannihilation operators for par- for any fermionic theory, independent of the model used.
ticles Wlth spino. nm_ctrcm, U is the local interaction, Furthermore, the area of the distribution is 1, i.e., it is nor-
and u the chemical potentialwe work in the grand- malized. Doing the integration &&(k,») and using the ex-
canonical ensembleWe have adopted the Einstein conven-pression given in Eq4), we find

tion for repeated indices, i.e., for ti sites(labeled byi),
the z nearest-neighbdin.n) sitesj and for spin up and down

(o=—0o=*1).t j= —t for n.n. and zero otherwise. Msinﬂ[l <1+ 7;_&( 1— ﬁ +(1-7)
i ion \ i ; 2
In this section we will use the first sum rules or moments ™ a We o
of Nolting®® applied to the Hubbard model of E€) to find Lo a1 a1
some conditions on the parameters of the theory. Before ap- i 4 1/2[( 7 ) _( — 7]_“(’:“ H
plying the sum rules, let us present the spectral function, we a—1 We We
A(k,w). It is given by g(a) 53 o
+—(1- ﬂ)a—a COSTB(]./Z,CZ-F 1/2)
wC
sin¢g—m(1—
Ak, w)=— g(ai r[¢i/2_77( @] 1/2®(77§|;— ) T a 2-3/2a+ 1
sif¢—m(1/2—a)] ) ) )
- T a - 1/2®(“’_ 7ép) O whereB(x,y) is the usual beta Euler function. If we restrict
(€~ o) (0= 7&Q) ourselves to regions close to the effective chemical potential,
i.e., &k~0, then the normalization factog(«), is indepen-
sin¢ dent ofk and is given b
X(Ei—w)+ — —0(0—&) gven By
(0= &)™ “(w— nék)
4 Ta
()~ T Taal (7)
if 0 <w<wc. In this equation{i=eg— e, 7=U,/U, rep- 2 sir<7>

resents the ratio of the charge and spin velocities, @(xl)

is the usual theta function. The effective chemical potential

is defined in Eq(8). A similar equation can be obtained also which reduces to 1 whea—0.

for the case- w.<w<0. The spectral functiofEq. (4)] has The first-order sum rule is given by

to satisfy the time-reversal symmetry, a condition which

leads to¢p=—mal/2, a result already obtained by Yin and oo

Chakravarty:® Equation(4) is assumed to be the many-body M1(|Z): f wAk,0)do=g;— pu+pU=E&;;
solution to the Hubbard HamiltonidiEq. (3)]. —

The first moment(or zeroth-order sum ru]eMo(IZ) is _
given by Meft=p—pU. (8)

The integral equal te;— w+ pU is an exact result within
- the working scheme of the Hubbard model
Mo(k)= f_w Alk,w)do=1. (5) (model-dependefit In Eq. (8), p is the carrier number per
lattice site and per spin. We work in the paramagnetic phase,
Let us say that the condition given by E&) represents namely,p,=p, =p. Combining Egs(4) and(8), i.e., doing
the equal-time anticommutation relation of fermions asthe integral ofwA(K,w) to find the center of the distribution,
pointed out by Yin and Chakravarty.Equation(5) is valid  we get

EAN —&L(1- ) (a— 12— n]—

1 =
TO! 2 o)

c

g(a) ax{_wgy-%—l +7]_§Iz)a+l ( ,r]é\;»)a+l

a 1 Na—1 N1
& (1= m)(a-1/2)— e 1+’7_§k) _(1 Wf) H g(a) a+1( e
-1 c o
Ta 1 1 1= Cmalp(a—12) 1-7n n—(a—1/2)(1—17) s
X COST?]B a+2,E)F(—1,§,a+l,—T —{—S”']7 —1 _a+1_ ~ _gk'

©)
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whereF(a, 8; y;z) is the hypergeometric function. Using an  Thus, as we already pointed out, E45) puts a strong
expansion aroungig~0 as previously, we find that condition on the remaining physical variables of the theory.
We immediately see that=0 for U=0, as it should be.
o E) o Also, another parameter entering in the constraint is the elec-
2/~ 7 tron number/spin. As € a<3, we see that) ,~w,, for
(10 p#0;1. Here we appreciate the difference from the work of

which leads to the following relation between the anomalous-ral—”creaz n his .P.h'D' thesis, in wh|gh he calculates the super-
coefficienta and the spin-charge characteristic ragio conducting critical temperatur&,, in the presence of repul-
sive local Coulomb interaction. The non-Fermi-liquid param-

7—1 eter,a, continues to be a free parameter, ifrda’s approach.
a=—5- (11) Before we leave this section, we say that our energy scales
are ordered in the following wayt .<A(0)<wp<w <D,
If we analyze Eq.(11), we can see that as long as<@  whereA(0) is the superconducting gap at zero temperature
<1/2 and < <1, the only possibility is thatk=0 andn  and wp, is the Debye frequency giving origin to the super-
=1, which is actually characteristic for the usual noninter-conducting critical temperaturd, .
acting Fermi liquid. As a conclusion, in order to satisfy the
first-order sum rule, we have to in_troduce anew coe_fficbenp IIl. DYNAMICAL AND GLOBAL QUANTITIES
related to the band renormalization factor. With this coeffi-
cient, the energy; will be renormalized ag/&;. By apply- In this section we will calculate sondynamicalproper-
ing again the first-order sum rule, we get ties of the theory, namely, the momentum distribution func-
tion, nc(IZ), in the normal phase &t=0. Also, we will re-
— 2 (12) calculate the superconducting critical temperatdrg, and
n+1-2a the superconducting critical interaction strength,, paying

so the band renormalization factor will be a function of thedue attention to the presence of the new parameter of the

two previous parameters and 7. We have to mention that €01y, y=2/(n+1-2a) [Eq. (12)].

the introduction of the band renormalization factor does not

affect the time-reversal symmetry and the zeroth-order sum A. Calculation of n¢(&;) at T=0

rule. We remark that this relation had not been previously The correlated momentum distribution function is given
calculated in the literature because only the first sum ruleby the following expression:

[Eq. (5)] had been used. Now, we are going further and we

will apply the second-order sum rule or the width of the +oo Aleg,w)
distribution function,A(k,w), to calculatea. Indeed, what ”c(SIZ)EJ’_Oo dwm-
we will find is that this sum rule imposes a condition on the

three remaining parameters of the theory, namely, «,
andU. The interactiorlJ is coming from the Hubbard model.
As the parametew is not really independent of the Coulomb
interaction, our result evidently departs from the approac
adopted by, frea’! in his Ph.D. thesis and related wotk$®
[see the discussion after EG.5)].

The second-order momeri| 2(I2), is given as

29(a)sin ma/2]

T

n—(1—7n) =&k,

Y

(16)

At T=0 we have to look carefully to this integral because
as long asw>0, the exponential function is infinity, which
implies a zero contribution from the integral. We still have to
r?ntegrate over the regiom<0 where the exponential func-
tion is zero.

Performing the integra®:?®we end up with

N lim n(s')—l[l Sgn £0) ( 27 w)a
. * K=5147 W\ oo,
Mz(k)=j WAK,0)do=(sg— )2+ 2U (e~ p) +pU2  [g—0 2 n+1-2a o
2 2 21« 1/2)B ! 1
=& +p(1-p)U2, (13 ~2" “a(a—1/2B| 51«
This is an exact relation and the model dependence is 2(1—7n) |&\
visible through the local Coulomb interaction. Performing mw— +a(a—1/2)
the integral ofw?A(k, ) to find the width of the distribution ¢
and using the definition of the one-particle spectral function 1-79 27 | &l
given in Eq.(4), we find that in the limitéz~0, 7\ 7T1-2a o, fle,n)|;, (17
29(a)siNmal2] o« ) wheref(a, )= [3dzz Y4 z+ (1— 5)/ n]* %2
Ta 6YJFZ“’C%P(l_P)U ’ (14) As we see from Eq(17), the correlated momentum dis-
. ) tribution function has been calculated close to the effective
which gives chemical potential. Also, we observe that fer=0 and 7
U\2 =1, we recover the jump at the chemical potential, as it is
L%p(l—p)(—) _ (150  the case for a Fermi liquid. Far#0 and»=1, this jump
+2 W has gone away, but the derivative at the effective chemical
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potential is discontinuous. A calculation of the renormaliza- 08 |
tion factorz, defined asZ=nC(§E)—nC(§|f), givesZ=0, a

result which implies that our theory is a non-Fermi-liquid
one. In the other case,=0 and»n+ 1, we obtain the case of Acr 06
a Fermi liquid with spin-charge separatiod=€1). Another
conclusion that we reach by looking at Ed.7) is that the
parametery=2/(n+ 1—2«) modifies the results of Yin and 0.4 ¢
Chakravarty® in the following way: in order to study non-

0.7

051

T X 0.3t
Fermi-liquid systems, we have to consider that the frequency
cutoff is effectively smaller, i.e.p.—(1— a)w.. 0.2
01t
B. Calculation of T, and A in an s-wave superconductor
O 1 1 1 1
In the following, we will restrict ourselves to the study of 0 0.05 0.1 0.15 0.2 0.25

. . . a
the non-Fermi-liquid system a(#0,7=1), where the FIG. 1. The critical coupling constant versus the non-Fermi pa-

Green’s function according to our previous calculations iS;ymetera. The two lines correspond to the renormalized y

given by =1/(1- a) and nonrenormalize(®) y=1 case.
g(a)efiﬂ'a/Z ) ) ) )
Go(k,w)= —_— (18 discussed, in particular to detect the influence of the phonon
wc(w—y&) degrees of freedom of,. As Kishoré&® points out, the iso-

tope effect in the cuprates is sensible to various factors such
as(i) the form of the free density of statgd,) the Coulomb
interaction, (iii) the carrier concentratior(jv) presence of

with y=1/(1-«). The order-parameter equation in the
framework of the Gorkov equations is given by

1 1 impurities, (v) anharmonicity, andvi) the symmetry of the
1=Vv> => , order parameter, among others. From our Bd) we can
v B, Ggl(k,iwn)Ggl(—k,— oy —|Ag? account for the first three dependences. Here we will calcu-

(19 late T. and the isotope exponent,’, for an swave super-

where B=1/T. The critical temperature will be obtained conductor. Thus, our expression fer could be approxi-
from Eq. (19) with the conditionA;—0, and the difficult mately applicable to the cuprates to fit the data. We believe

problem of evaluating the sum over the Matsubara frequencg“"‘t;he nudmencal V"ﬂ“es %f global quantl?eﬁ sucgaasjo
will be solved by using a contour integral similar to the one/'0t dépend too much on the symmetry of the order param-

used in Refs. 21 and 22. In the limBwp<<1, the critical eter. It appears that baXSrC_IqQ presents arswave sym-
temperature can be obtained exactly as metry order parameter. So, it is the natural candidate to apply

the ideas worked out here. On the other sidgSBICaCyOq

1 y w2 (Ref. 27 holds ad-wave symmetry order parameter.
Té“:m D(a)(ywp)**— = XAE ik (20 The isotope effect exponent is defined FisxM~*'.
9°(a) Then, it is given by
where A=1/N(0)V and A(«), C(a), andD(«) have the b ainT, 22)
same meaning as in the paper of Muthukureaal??> We “ T 9w

have to mention that our critical temperature is different ) ) _ .
from the one obtained in Ref. 22, and include the renormalWhereM is the isotope mass. Another relation that we will
ization factorg(«) and the band renormalization factor. As a YS€ 1S the relation between the Debye frequency and the iso-

—-1/2 H
result, we can see a decrease of the critical temperature d{@P® mass, namelyypcM ™= Now, Eq.(20) can be rewrit-
to the effective Debye frequenaygﬁ= ywp . We also ob- ten as

tained a modified critical coupling constaxy,, 1=gz(a)A(a)F(wD @, Ty
)\ &y ey
2a
Y We 1 2 2
= , 21 3 wp\“* Cla)[T.\°°
" g%a) | oo/ Al@)D(a) & F(wD,a,Tc)=[y2“ 'D(a) w—D) - (w—) } (23

which for the same reason as an enhanced effective Debye . )
frequency seems to be enhanced. In Fig. 1 we present a piot D€Ving Eq.(23) with respect toM, we get that

of the critical coupling constant versus the non-Fermi param- JF
eter . As we can see in the limitk— 0, we recover the 9D\ S
usual BCS result (\=0). @ =— —alf' (24)
o1 7
IV. THE ISOTOPE EFFECT FOR NON-FERMI LIQUIDS dTe

The isotope effect exponent is an important physical pa- Let us mention that Eq.24) is valid for the case that
rameter since, in the low-temperature superconductors f(wp). The caser=f(wp) will be discussed later ofEq.
(LTSC), it was used to determine the origin of the pairing (26)]. Performing the partial derivatives, we come down to
mechanism. In the HTSC, the isotope effect has been widelthe following expression:
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BCS case when the Coulomb interaction is zero, namely, for
"""" | a=0. The fact thatv<U? comes out from the application of
the second-order sum rule to the spectral function. Due to
//' Eqg. (15, a is a model-dependent parameter, a result found
previously in the literature by WehAccording to our view,
T. decreases witlr (Ref. 21) and axU?; then we can con-
- clude that the local Coulomb repulsive interaction is detri-
_ mental to superconductivity. This result has been found in
: other approaches:*
We would like to point out that our spectral functipiq.
(4)] does not reduce to the well known Dirat function
0 0.02 0.04 0.06 0.08 0.1 whena=0, »=1. In order to reobtain the usualform of
o the spectral function, we have to se=0 and»=1 in our
FIG. 2. The isotope coefficient versus the non-Fermi parametestarting Green function. Even without doing that f@e=0
a for different values of the coupling constditt) A\=0.33,(2) A and =1, the spectral functiofEq. (4)] will satisfy the
=0.66,(3) \=1]. usual scaling relation for a Fermi-liquid system(A[k
—kel,Aw)=A"*A([k—kg],»). We used this property in
1 v we |2 1 some parts of the paper and we have recovered known fea-
a'= 5[ 1- g%(a) ( wa) MA(a)D(a) (25 tures_, such a§) the_jum_p atu of th_e momentum Qist_ribution
function, n.(k), which is a Fermi-liquid behavior(ii) the
superconducting critical interaction is zero, namely,=0;
From Eq.(25 we gain the BCS case, i.er) =1/2 when  gng (iii) the BCS isotope exponent, = 1.
a=0. In Fig. 2 we plot the isotope coefficient versus the | the Appendix we have applied the formalism devel-
non-Fermi parametes for different values of the coupling oped in this paper to two inequivalent coupled Hubbard lay-
constant. As we expected, there is a deviation for the usugyg (ICHL) extending the calculation of Yin and
BCS result agy increases. AlSO, we mention that the iSOtOpeChakravartgﬁ’ for equiva'ent p|aneS. H||debrarm a|_28 have
coefficient depends on the coupling constant, a result similagpplied the FLEX formalism to ICHL's. In particular,
with the one obtained for the/X0)/T, ratio?* our expressions for Gy(Kiw,), Gy(Kiw,), and
While leaving this section, let us mention thakifwould G (K iw,)=G,y(K,iw,) are different from the ones of Ref.
depend onwp , then the isotope effect exponent should bej3 due to the presence of a shift in the effective chemical
obtained from the following expression: potential, i.e.,uq o= Koot 8. Experiments should be de-

25

Isotope Coefficient
o

-1

JF  OF da signed to detect the results found in our wdgee the Ap-
wp _ﬁwD +£ —&wD pendix. In particular, the presence of the thgoreticgl gap in
a'=— pr= . (26)  the off-diagonal one-particle spectral functioA;,(k,),
2Tc<_) calls for ARPES experiments to be performed in these
aTe materials>!

. We have assumed that the non-Fermi-liquid parameter,
We could makea=f(wp) by choosing w.;xwp, as quid p el

Tifrea has done in his Ph.D. the&isThis contribution is 'S indegendent_oﬂz. This seems not to be the case as
important to get full agreement with the experimental dataMeder.? has pointed out. He concludes_ that the asymptotic
namely, thate’~0 at optimal doping. We argue that the b%hawtolr of the one-;t)_amctljg ?reen fgnctl?\?s oflnglttlngcler lig-
lowering of o’ from the BCS result should come from the uids at large space-time distances IS nolversal Namely,

second contribution in the numerator in E86). We leave along certe_lin diregtions the expo'nent Qf j[he asymptotic
this task for the future. However, the result found in thePOWer law is not given by the Luttinger-liquid parameters.

present section should be applicable in the underdoped ré2ue to this considerationy could depend oik. This possi-

gime of the HTSC's. bility is outside the scope of the present paper. Among one
of the possibilities we would like to explore is the calculation
S CONCLUSIONS AND OUTLOOK of pressure effectdin some HTSC materials, when correla-

tion is important, i.e.a# 0. Another possibility worth con-

We have applied the first three sum rules of Noltfhipr  sidering, for the case of inequivalent coupled Hubbard lay-
the NFLGF of Eq.(4), which is assumed to be a solution of ers, isa;# a5, as the two non-Fermi-liquid parameters on
the Hubbard moddlEq. (3)] for frequencie§w|<w.. This  the two planes. This approach is likely more demanding than
NFLGF is anomalous due to the presence of the non-Fermihe one followed in the paper. We leave for the future
liquid exponent,a. Due to the requirement that the first- theself-consistent calculation pf andp, on the two layers
order sum rule of the spectral function be satisfied, a neWysee Eq.(A5)]. On the other hand, the presence of the mass
parameter has to be called foy, the so-called mass renor- renormalization parametey, will modify the zero tempera-
malization factor, plays an important role in the theory. Dueture order parameterd(0). However, its calculation has
to its presence, we have recalculated some results found lreen left out of the present work. Of course, wikl0), we
the literature and pointed out the role of Also, an addi- could calculate the ratio £(0)/T.=f(U)# 3.5, seeing its
tional quantity, the isotope effect exponent®ft, has been dependence ol (or a). Another aspect which should be
calculated for non-Fermi-liquid systema! reduces to the addressed in the future is the superconducting properties of
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1 T FIG. 4. (@ The diagonal one-particle spectral function,
W 02 \I /01 ® Au(K,®), Vs w, for some values ofyn,; and y7,;, namely,
32 2 yni=1.2 andyn,=0.9. Compare withF,(x) of Ref. 13. We
T 1 notice that the symmetry aroung= 0.9 is lost. This is a realization
av 1 O of inequivalent coupled Hubbard layers. In a similar form,
1

A,(K, ) Vs w should not be symmetric aroung= 1.2, in accord
with the given parametergb) The off-diagonal one-particle spec-
tral function, A (K, »), vs w. Same values as if@. Compare with
Fx(x) of Ref. 13. Now we have a gap in the energy spectrum
betweenw=0.9 andw=1.2. This is also a consequence of having
FIG. 3. (@ For >0, yn.>yn,i, and N12y>0, we have inequivalent coupled Hubbard layers. Both spectral functions are
divided the complex plane in six regions, showing the branch pointgalculated fora=0.25.
(ym2k andyn,x) and branch cuts. The branch cuts are given by the
dashed lines. The solutions far>0 are in regiong1) I, namely,  sor L. D. Almeida, Professor F. Kokubun, Professor M.
n=0; and(2) V. (b) For ©>0, y71>ymok, and 7:1¢>0, 725 Crisan, and Dr. I. C. Ventura for interesting discussions.
<0, we have divided the complex plane in four regions, showingT\o of the authorgJ.J.R.N. and S.G.Macknowledge par-
the.branch points and branch cuts. kor 0, the solutions are in tial support from FAPERGS-BrazilProject 98/0701)
regionl. CONICIT-VenezueldProject F-139, and CNPg-Brazil. One
two inequivalent coupled Hubbard layers. In this case, ouPf Us (1.T.) gratefully acknowledges financial support from
mean-field Hamiltonian becomes ax4 matrix in the INFM Italy under the project PRA-HTS(1999. We thank
Nambu formalism, giving rise to pairing on the planes andProfessor M. D. GareiGonzéez for reading the manuscript.
perpendicular to them. We would like to end by saying that
the nature of the superconducting transition is strongly re-
lated to how anomalou&on-Fermi-liquid-like the normal
state spectral function is, and as such, is dependent upon the GREEN FUNCTIONS FOR TWO INEQUIVALENT
doping level* The anomalous properties of the normal state COUPLED HUBBARD LAYERS
spectral function are visible in the underdoped regime of the |, Ret. 28, Hildebrandt al. have studied the case of two

HTSC. inequivalent coupled Hubbard layers for the case of

Y ,Ba,Cuy045(247)=YBa,Cu;0,(123)+ YBa,Cu,0g(124).

We will restudy this system using NFLGF for each one of
We thank Professor R. Kishore, Professor E. V. L. dethe layers with the purpose of finding new theoretical conse-

Mello, Professor A. A. Schmidt, Professor H. Beck, Profes-quences of this assumption. For example, we are going to

APPENDIX: NON-FERMI-LIQUID ONE-PARTICLE
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compare with the results of Refs. 13 and 28. The Hamil-Gjj(ek,iwn)

tonian of the system is given by =Gj—1(ek,ion)G1l—-1(ek,ion)G2—1(ek,iwn)—tL2;
i=1,2; Tzz; 521,
(A2)
_ . t
B G ek, iwy) t, G, iwg) =———— L_l : =,
H= t, Gil(eﬁ,iwn) ' G, (ek,iwn) G, (e iwp) —t]

Goi(eg,iwn) =G eg,iwy).

The excitation spectrum is determined by the roots of the
wheret, is the coupling matrix element between the two denominator of Eq.(A2). There are branch points ab
inequivalent Hubbard layers a®(ei,iw,), j=1,2, arethe = ¥7jk- Let us assume tha; x> 7,x>0. Thus, foro>0,

normal state non-Fermi-liquid one-particle Green functiong¥e must divide the complex plane in six regions named
of the layers. They are given by I =1l =11 =1V-V=VI, as shown in Fig. @&). The poles are
' given by the solutions of

w39 % (a)(w— yng+i0") T N(w— Bryg+i0 )

9(@) 1 =t?¢?"™  n  aninteger. (A3)

a i 12 (: ~
wc€e Tra ('wn_777j,k

Gj(slzriwn): 1,a®(iwn),
) Following the analysis performed by Yin and Chakravarty,
(A1) we conclude that, for, ;> 7,7>0, there are solutions only
in the regions denoted blyandV. In the case that € 7,
>n,x<0, still for >0, we divide the complex plane in
) ) ] four regiond —I1 —I11 =1V as shown in Fig. ®). Similarly to
with 771 =eg— pert and 7=71x— 6, i.e., we have in-  the previous analysis, we conclude that there is a solution in
cluded a shift between the two effective chemical potentialsiegion | only. The analysis is similar for the casg,
A simple calculation allows us to calculate the diagonal and< 7, ;<0.

off-diagonal one-particle Green functions. They are The poles are localized at

Y1t 120 LY (i 1202+ 4L2 e [Imel Gl 12 B
w1~ > ;o er=g(a)t

(A4)

g(a)tl> al(1—a)

C

From Eq.(A4) we recover the case of equivalent coupled planes of Yin and Chakrla?\/ﬂy[makingnly,;z 72k - Now, we are
in a position of calculating the one-particle spectral functions, narm])(,lz,w), with i,j=1,2. The results aréwith y», ¢
> Yn2K)
1+ (XX
sin(mal2)X3™ % | 14 (XoX1)?A" 9 -2 cog ma) (X X))@
at, 1
1+ (XXt

if o<ymp<ymg OF Yy <yni<w
All(kyw)z

f ymr<o<ynyg,

whereX;=[w—y7; gl/|t, e,

1+ (XXq) e
sin(mal2)X} ™« | 14 (XoX1)?" =2 cog ma) (X X))t @

if o<ymp<ymg OF yn<ymp<w

Ak, w)= t, 1
— if << c,
1+ (XXt @ Y72k Y71k
r ! f w>
w
| 1+ (XX p) 2292 cog mar) (XpXy) L G
- - S”'l(’77'&)()(1)(2)176t
Ak, w) =~z (K, 0)= : . -1 _
L if w<yn,
1+ (X,X1)?A" 9 =2 cogma) (X,X) 1@
L0 if ym<w<yn,.
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In Fig. 4 we show the behavior of the diagonal and off-our Qexpression?. We mention that the gap found in
diagonal one-particle spectral functions. From Fi¢g) 4ve Alz(k,_w) depends on the relative carrier number in the two
observe that the symmetry of the diagonal spectral functionnequivalent coupled Hubbard layers. Therefore, the pres-
As(K, ), is lost around the frequency=y7,;=0.9. To  €nce of a shift between the two effective chemical potentials

realize this feature, we refer the reader to the respective figgroduces new theoretical results for the spectral densities. In

. . articular, non-Fermi-liquid quasiparticles acquire a more
ure [Fy;(X)] in Ref. 13. Also, the symmetry of;5(X) In complex structurd Eq. (A4)] than the case of equivalent
Ref. 13 is lost aroundw=y»;x=1.2. In consequence, planes.

ARPES experiments shedding light on layer 1 or layer 2 In order to calculate the carrier number per site per spin
should detect these fine details. Namely, we will have twaper plane, aff =0, we have to perform the following inte-
symmetry breakings, -1 and 2-2. Now, from Fig. 4b)  grals:

we see that there is an interval of energy Wheﬁg(lz,w)

=0. This feature was not obtained for the off-diagonal one- 1(+Db 0

particle spectral function for equivalent plarieseF ;(x) in pl(Z)ZZf_D de f_w N(e)Aw(z2( e, 0)dw,  (AS)
Ref. 13. Another aspect which we would like to point out is ¢

the fact that in the one-particle spectral functions there is nowhich have to be computed numerically. Work is in progress
a unique variable to describe tdata We have two relevant {0 Solve Eq.(A5) self-consistentlyN(e) is the uncorrelated

: > density of states. To conclude this appendix, we say that our
energy scales in the problem, for each valuekoFor the = o 0 generalize the case of Yin and Chakravhriyith

type of materials we are studying, it seems natural to find, ORagnect to the results of Ref. 28, they have not discussed the
theoretical grounds, a gap in the energy spectrum. ARPEg, one-particle spectral functiondy (K, w) andA (K, o),

experiments should be designed to detect the gap found frogyound the effective chemical potential. Most likely the re-
sults of Ref. 28 are valid for large values of frequencies.
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