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Some sum rules for non-Fermi liquids: Applications taking into account
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I. Ţifrea†
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Restudying the non-Fermi-liquid one-particle Green functions~NFLGF! we have extended the work of
Balatsky@Philos. Mag. Lett.68, 251 ~1993!# and Yin and Chakravarty@Int. J. Mod. Phys. B10, 805 ~1996!#,
among others. We use the moment approach of Nolting@Z. Phys.255, 25 ~1972!# to compute the unknown
parameters of the NFLGF’s in the framework of the Hubbard model. The zeroth-order moment requires that
our one-particle Green functions describe fermionic degrees of freedom. In order to satisfy the first-order sum
rule, a renormalization,gÞ1, of the free-electron mass is called for. The second-order sum rule or moment
imposes a relation between thenon-Fermi-liquidparameter,a, the Coulomb interaction,U, and the frequency
cutoff, vc . We have calculated the effect of the mass renormalization factor,g, on some physical quantities,

such as~i! the correlated momentum distribution function,nc(kW ), close to the effective chemical potential, at
T50; ~ii ! the superconducting critical temperature,Tc ; and~iii ! the superconducting critical interaction,lcr ,
and compared them with analytical results found in the literature. Also, we have calculated the isotope effect,
a8, for non-Fermi-liquid systems, which reduces toa851/2 ~the BCS result! when a→0. As a case of
non-Fermi-liquid systems, in the Appendix, we have studied two inequivalent coupled Hubbard layers for
which we calculate the one-particle spectral functions on the layers and perpendicular to them. We discuss the
features which appear due to the shift in the two effective chemical potentials and propose some experiments
to detect the features found from our expressions.
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I. INTRODUCTION

The unusual normal state properties in high-tempera
superconductors~HTSC! ~Ref. 1! have led to the idea tha
the usual Fermi liquid theory is no longer valid. As a cons
quence of this, several phenomenological models2,3 have
emerged with the purpose of explaining the strange meta
behavior of the normal state phase and the behavior ofTc vs
doping in the HTSC. We would like to point out that th
origins of a non-Fermi-liquid ground state for a strongly co
related material (U>2D, where U is the local repulsive
Coulomb interaction and 2D is the width of the free band! in
dimensions higher than 1, namely,d.1, are an issue that ha
not been solved analytically up to the present moment.
main arguments which have been cited as responsible fo
failure of Landau theory are as follows:

~i! The high critical superconducting temperature is attr
uted to the CuO2 planes, but it is well known that in one- o
two-dimensional systems superconductivity~or any sponta-
neous symmetry breaking! is suppressed due to fluctuatio
effects forTÞ0.

~ii ! The superconducting phase is very close to the lo
range magnetically ordered phase, and the exchange int
tion J in this strange metal can be too strong.

~iii ! The concentration of holesx, or the carrier number, is
too low.

~iv! The Coulomb interaction may be too strong so t
adiabatic assumption in Landau’s theory may not apply.

~v! For optimally doped materials, the electrical resistiv
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on the planerab}T down to Tc . For a Fermi liquid,rab

}T2. There is not a consensus regarding the origin of
anomalous in-plane transport. Two broad classes of theo
attribute the anomalous behavior either to singular forw
or large-momentum scattering.4 Furthermore, the Boltzmann
transport equation gives an expression for the magnitud
the resistivity in terms of band parameters and a mean
path between quasiparticle collisions. At low temperatur
this expression suggests a mean free path which is m
larger than the lattice constant, as in conventional met
However, at higher temperatures the resistivity smoothly
creases to large values, suggesting a mean free path whi
smaller than the lattice constant, implying the breakdown
a quasiparticle picture.5

~vi! The overdoped materials exhibit a ratio of resistiv
ties, rc /rabÞ f (T), as in standard anisotropic materials. O
the other hand, underdoped materials exhibit a divergent
of-planerc asT decreases, even ifrab is metallic. Thec-axis
data are not as universal between different cuprate famil

~vii ! The Hall coefficient,RH(T), in HTSC in the normal
state shows the striking NFL behavior.6 RH(T) follows a
Curie-Weiss-typeT dependence anduRH(T)u@1/un eu for T
→0 in the underdoped compounds, wheren is the carrier
number. Moreover,RH(T).0 for hole-doped compound
and RH(T),0 for electron-doped ones, although each
them has a similar holelike Fermi surface.

~viii ! The NMR relaxation rate 1/T1}T0 for these mate-
rials. Remember that for a Fermi liquid, 1/T1}T.

~ix! In conventional metals, one observes a Drude pea
4026 ©2000 The American Physical Society



ts
e
ig
lo

in

at
n

l
e
to
-
t
re
ll
tle

y

a

(
ne

b
n
nc

tr

a

e

s.
-
b
h
on
ys

s

n

ual
val

Eq.
el

nd
d

nd
is
les.

dea
il-
a

y
-
d
n

r is

ter
.
r-
nor-

e

l
l
-
f

rk.
n

cal
-

ed
e
nal
le-

this

s-
ese

PRB 62 4027SOME SUM RULES FOR NON-FERMI LIQUIDS: . . .
the optical conductivity atv50, which broadens but persis
for high temperatures. In contrast, in strongly correlated m
als most of the spectral weight is in broad features at h
frequencies. Furthermore, the Drude peak only exists at
temperatures.

~x! In conventional metals, the thermopower is linear
temperature, has values less thankB /e'87mV/K, and has
the same sign as the charge carriers. In strongly correl
metals, it can have a nonmonotonic temperature depende
change sign, and have values of the order ofkB /e.

~xi! The isotope exponent,a8, in HTSC is unconventiona
in different respects. Optimally doped samples show a v
small a8 of the order of 0.05 or even smaller, in contrast
the BCS value of12 . This unusually small value in connec
tion with the high value ofTc led to early suggestions tha
the pairing interaction in the HTSC cuprates might be p
dominantly electronic in origin with a possible sma
phononic contribution. However, to complicate things a lit
bit more, the isotope exponent factor,a8, also shows an
unusually strong doping dependence, reaching values of1

2 , in
some cases higher, in the underdoped,Tc reduced, com-
pounds.

Among one of the models to explain theanomalousprop-
erties of the HTSC, we mention the one of Varmaet al.,2

which tries to fit the linear resistivity data of the HTSC b
means of the quasiparticle lifetime of the formt'1/@T(«k
2m)#, where T is the absolute temperature andm is the
chemical potential. This model is strictly phenomenologic
There is a second model introduced by Anderson,3 whose
starting hypothesis is the occurrence in two-dimensional
2d) systems of a state similar to the one from the o
dimensional (12d) Luttinger liquids.7 The point of view
adopted by us is that the HTSC are materials which can
treated by the Luttinger liquid model, especially in the u
derdoped regime. Being so, we explore some conseque
of this assumption.

In such a non-Fermi system, the one-particle spec
function A(«kW ,v)521/p Im@G(«kW ,v1 i01)#, where
G(kW ,v) is the one-particle Green function, satisfies the sc
ing property

A~L«kW ,Lv!5La213A~«kW ,v!, ~1!

where a, the non-Fermi-liquid parameter, is given by th
condition 0,a, 1

2 . In the case of a Fermi liquid systema
50. We mention that Wen,8 as we do in this paper@Eq.
~15!#, has shown that the exponenta is not universal, since it
depends on the coupling constant between the electron
the case of the Hubbard model,a depends on the local Cou
lomb interaction. The model that we are going to study
means of the scaling relation@Eq. ~1!# has poles and branc
cuts. This scaling behavior is a generalization to dimensi
d.1 of the fermionic propagator from one-dimensional s
tems (d51). It has been shown by different authors9–12 that
the one-particle Green function~1PGF! can be expressed a

G~«kW ,v!5
g~a!eifvc

2a

~v2«s,kW !
1/2~v2«r,kW !

1/22a
, 2vc,v,vc ,

~2!
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where«s(r),kW represents the spin~charge! energy spectrum of
the carriers,vc is frequency cutoff introduced to maintai
the dimension of the 1PGF correct, andg(a),eif are renor-
malization factors introduced in order to recover the us
properties of the Green’s functions. Outside the inter
@2vc ;vc# the Green function will have the usual 1/v be-
havior asv→`.

A model based on a Green function such as the one in
~2! is motivated by the Luttinger-liquid model. Such a mod
was studied in some detail by Yin and Chakravarty,13 follow-
ing a strategy similar to the one used by Galitskii a
Migdal,14 who constructed a model for a Fermi liquid an
examined its self-consistency. As a result, Yin a
Chakravarty13 obtained a non-Fermi-liquid state which
gapless and responds like a metal, but without quasipartic
In our paper, we intended to check self-consistently the i
that the model can be a solution for the Hubbard Ham
tonian and by applying the sum rules related to such
Hamiltonian to evaluate the constants of the model@see Eq.
~2!#. Let us mention that Eq.~1! was used by Chakravart
and Anderson15 to obtain an interlayer tunneling Hamil
tonian ~ILT !. Just recently, Chakravarty, Kee, an
Abrahams16 have used the interlayer tunneling Hamiltonia
to explain the experiments of Basovet al.17 on the c-axis
optical sum rule in some HTSC. The structure of the pape
as follows.

In Sec. II we show that a band renormalization parame
g is necessary to satisfy the first-order sum rule of Nolting18

The presence ofg seems to us very natural since when co
relations are present, the free electronic band has to be re
malized, too. In the same section, we find thata, vc , andU
are closely related. The parameterg is going to play an im-
portant role in the following development. In Sec. III w
have recalculated the following quantities:~i! the momentum
distribution functionnc(«kW) close to the effective chemica
potential, namely,«kW'meff ; ~ii ! the superconducting critica
temperature,Tc ; and ~iii ! the superconducting critical inter
action strength,lcr . In Sec. IV we present the calculation o
the isotope exponent or coefficient,a8, using the non-Fermi-
liquid one-particle Green function~NFLGF!. In Sec. V we
present our conclusions and the outlook of our line of wo

While the semiphenomenological theory of Anderso3

suggests anomalous exponents, i.e.,aÞ0, a satisfactory
derivation of them and other details await further theoreti
development.19 In the Appendix we have found an applica
tion of our theoretical treatment: two inequivalent coupl
Hubbard layers~ICHL!. Among the features found, w
mention the appearance of an energy gap in the off-diago
one-particle Green function. We suggest that ang
resolved photoemission spectroscopy~ARPES! experiments
should be set up to measure this gap foreseen for
type of materials@Y2Ba4Cu7O15(247)[YBa2Cu3O7(123)
1YBa2Cu4O8(124)#. The results presented in this paper, e
pecially the ones of Sec. II, represent a first step along th
lines, i.e., the use of the sum rules of Nolting18 to determine
the physical parameters of the theory.

II. CALCULATION OF THE PARAMETERS
VIA SUM RULES

The model we study is the Hubbard Hamiltonian20

H5t i , j cis
† cj s1

U

2
nisni s̄2mcis

† cis , ~3!
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wherecis
† (cis) are creation~annihilation! operators for par-

ticles with spins. nis[cis
† cis , U is the local interaction,

and m the chemical potential~we work in the grand-
canonical ensemble!. We have adopted the Einstein conve
tion for repeated indices, i.e., for theNs sites~labeled byi ),
thez nearest-neighbor~n.n.! sitesj and for spin up and down
(s52s̄561). t i , j52t for n.n. and zero otherwise.

In this section we will use the first sum rules or mome
of Nolting18 applied to the Hubbard model of Eq.~3! to find
some conditions on the parameters of the theory. Before
plying the sum rules, let us present the spectral funct
A(kW ,v). It is given by

A~k,v!52
g~a!

pvc
a F sin@f2p~12a!#

~jkW2v!1/22a~hjkW2v!1/2
Q~hjkW2v!

1
sin@f2p~1/22a!#

~jkW2v!1/22a~v2hjkW !
1/2

Q~v2hjkW !Q

3~jkW2v!1
sinf

~v2jkW !
1/22a~v2hjkW !

1/2
Q~v2jkW !G

~4!

if 0 ,v,vc . In this equation,jkW[«kW2meff , h5ur /us rep-
resents the ratio of the charge and spin velocities, andQ(x)
is the usual theta function. The effective chemical poten
is defined in Eq.~8!. A similar equation can be obtained als
for the case2vc,v,0. The spectral function@Eq. ~4!# has
to satisfy the time-reversal symmetry, a condition whi
leads tof52pa/2, a result already obtained by Yin an
Chakravarty.13 Equation~4! is assumed to be the many-bod
solution to the Hubbard Hamiltonian@Eq. ~3!#.

The first moment~or zeroth-order sum rule! Mo(kW ) is
given by

Mo~kW !5E
2`

1`

A~k,v!dv51. ~5!

Let us say that the condition given by Eq.~5! represents
the equal-time anticommutation relation of fermions
pointed out by Yin and Chakravarty.13 Equation~5! is valid
-

s

p-
,

l

s

for any fermionic theory, independent of the model us
Furthermore, the area of the distribution is 1, i.e., it is n
malized. Doing the integration ofA(k,v) and using the ex-
pression given in Eq.~4!, we find

g~a!

p
sin

pa

2 H 1

a F S 11
hjkW

vc
D a

1S 12
hjkW

vc
D aG1~12h!

3
jkW

vc

a21/2

a21 F S 11
hjkW

vc
D a21

2S 12
hjkW

vc
D a21G J

1
g~a!

p
~12h!a

jkW
a

vc
a Fcos

pa

2
B~1/2,a11/2!

1sin
pa

2

a223/2a11

a~a21! G51, ~6!

whereB(x,y) is the usual beta Euler function. If we restri
ourselves to regions close to the effective chemical poten
i.e., jkW'0, then the normalization factor,g(a), is indepen-
dent ofkW and is given by

g~a!'
pa

2 sinS pa

2 D , ~7!

which reduces to 1 whena→0.
The first-order sum rule is given by

M1~kW !5E
2`

1`

vA~k,v!dv5«kW2m1rU[jkW ;

meff[m2rU. ~8!

The integral equal to«kW2m1rU is an exact result within
the working scheme of the Hubbard mod
~model-dependent8!. In Eq. ~8!, r is the carrier number pe
lattice site and per spin. We work in the paramagnetic pha
namely,r↑5r↓5r. Combining Eqs.~4! and ~8!, i.e., doing
the integral ofvA(k,v) to find the center of the distribution
we get
g~a!

pvc
a

sin
pa

2
3H 2

vc
a11

a11 F S 11
hjkW

vc
D a11

2S 12
hjkW

vc
D a11G2jkW@~12h!~a21/2!2h#

vc
a

a F S 11
hjkW

vc
D a

1S 12
hjkW

vc
D aG

1jkW
2h~12h!~a21/2!

vc
a21

a21 F S 11
hjkW

vc
D a21

2S 12
hjkW

vc
D a21G J 1

g~a!

pvc
jkW

a11
~12h!a

3H cos
pa

2
hBS a1

1

2
,
1

2DFS 21,
1

2
;a11;2

12h

h D1sin
pa

2 Fh~a21/2!

a21
2

12h

a11
2

h2~a21/2!~12h!

a G J 5jkW ,

~9!
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whereF(a,b;g;z) is the hypergeometric function. Using a
expansion aroundjkW'0 as previously, we find that

2g~a!sin@pa/2#

pa Fh2~12h!S a2
1

2D2ha GjkW'jkW ,

~10!

which leads to the following relation between the anomalo
coefficienta and the spin-charge characteristic ratioh:

a5
h21

2
. ~11!

If we analyze Eq.~11!, we can see that as long as 0,a
,1/2 and 0,h,1, the only possibility is thata50 andh
51, which is actually characteristic for the usual nonint
acting Fermi liquid. As a conclusion, in order to satisfy t
first-order sum rule, we have to introduce a new coefficieng
related to the band renormalization factor. With this coe
cient, the energyjkW will be renormalized asgjkW . By apply-
ing again the first-order sum rule, we get

g5
2

h1122a
~12!

so the band renormalization factor will be a function of t
two previous parametersa andh. We have to mention tha
the introduction of the band renormalization factor does
affect the time-reversal symmetry and the zeroth-order s
rule. We remark that this relation had not been previou
calculated in the literature because only the first sum r
@Eq. ~5!# had been used. Now, we are going further and
will apply the second-order sum rule or the width of t
distribution function,A(kW ,v), to calculatea. Indeed, what
we will find is that this sum rule imposes a condition on t
three remaining parameters of the theory, namely,vc , a,
andU. The interactionU is coming from the Hubbard mode
As the parametera is not really independent of the Coulom
interaction, our result evidently departs from the approa
adopted by T¸ ifrea21 in his Ph.D. thesis and related works22,23

@see the discussion after Eq.~15!#.
The second-order moment,M2(kW ), is given as

M2~kW !5E
2`

1`

v2A~k,v!dv5~«kW2m!212U~«kW2m!1rU2

[jkW
2
1r~12r!U2. ~13!

This is an exact relation and the model dependenc
visible through the local Coulomb interaction. Performi
the integral ofv2A(k,v) to find the width of the distribution
and using the definition of the one-particle spectral funct
given in Eq.~4!, we find that in the limitjkW'0,

2g~a!sin@pa/2#

pa

a

a12
vc

2'r~12r!U2, ~14!

which gives

a

a12
'r~12r!S U

vc
D 2

. ~15!
s

-

-
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Thus, as we already pointed out, Eq.~15! puts a strong
condition on the remaining physical variables of the theo
We immediately see thata50 for U[0, as it should be.
Also, another parameter entering in the constraint is the e
tron number/spin. As 0,a, 1

2 , we see thatUmax'vc , for
rÞ0;1. Here we appreciate the difference from the work
Ţifrea21 in his Ph.D. thesis, in which he calculates the sup
conducting critical temperature,Tc , in the presence of repul
sive local Coulomb interaction. The non-Fermi-liquid para
eter,a, continues to be a free parameter in T¸ ifrea’s approach.
Before we leave this section, we say that our energy sc
are ordered in the following way:Tc,D(0),vD!vc!D,
whereD(0) is the superconducting gap at zero temperat
and vD is the Debye frequency giving origin to the supe
conducting critical temperature,Tc .

III. DYNAMICAL AND GLOBAL QUANTITIES

In this section we will calculate somedynamicalproper-
ties of the theory, namely, the momentum distribution fun
tion, nc(kW ), in the normal phase atT50. Also, we will re-
calculate the superconducting critical temperature,Tc , and
the superconducting critical interaction strength,lcr , paying
due attention to the presence of the new parameter of
theory,g52/(h1122a) @Eq. ~12!#.

A. Calculation of nc„«k¢… at TÄ0

The correlated momentum distribution function is giv
by the following expression:

nc~«kW ![E
2`

1`

dv
A~«kW ,v!

exp~v/T!11
. ~16!

At T50 we have to look carefully to this integral becau
as long asv.0, the exponential function is infinity, which
implies a zero contribution from the integral. We still have
integrate over the regionv,0 where the exponential func
tion is zero.

Performing the integrals,24,25 we end up with

lim
ujkW u→0

nc~«kW !5
1

2 H 12sgn~jkW !F S 2h

h1122a

ujkWu
vc

D a

2212aa~a21/2!BS 1

2
,12a D

3S 2~12h!

h1122a

ujkWu
vc

D a

1a~a21/2!

3
12h

h S 2h

h1122a

ujkWu
vc

D f ~a,h!G J , ~17!

where f (a,h)5*0
1dzz21/2@z1(12h)/h#a23/2.

As we see from Eq.~17!, the correlated momentum dis
tribution function has been calculated close to the effect
chemical potential. Also, we observe that fora50 and h
51, we recover the jump at the chemical potential, as i
the case for a Fermi liquid. ForaÞ0 andh51, this jump
has gone away, but the derivative at the effective chem
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potential is discontinuous. A calculation of the renormaliz
tion factorZ, defined asZ5nc(jkW

1)2nc(jkW
2), givesZ50, a

result which implies that our theory is a non-Fermi-liqu
one. In the other case,a50 andhÞ1, we obtain the case o
a Fermi liquid with spin-charge separation (Z51). Another
conclusion that we reach by looking at Eq.~17! is that the
parameterg52/(h1122a) modifies the results of Yin and
Chakravarty13 in the following way: in order to study non
Fermi-liquid systems, we have to consider that the freque
cutoff is effectively smaller, i.e.,vc→(12a)vc .

B. Calculation of Tc and lc in an s-wave superconductor

In the following, we will restrict ourselves to the study o
the non-Fermi-liquid system (aÞ0,h51), where the
Green’s function according to our previous calculations
given by

G0~k,v!5
g~a!e2 ipa/2

vc
a~v2gjkW !

12a
~18!

with g51/(12a). The order-parameter equation in th
framework of the Gorkov equations is given by

15V(
kW

1

b (
vn

1

G0
21~k,ivn!G0

21~2k,2 ivn!2uDkWu2
,

~19!

where b51/T. The critical temperature will be obtaine
from Eq. ~19! with the conditionDkW→0, and the difficult
problem of evaluating the sum over the Matsubara freque
will be solved by using a contour integral similar to the o
used in Refs. 21 and 22. In the limitbvD!1, the critical
temperature can be obtained exactly as

Tc
2a5

1

C~a! FD~a!~gvD!2a2
g

g2~a!

vc
2a

lA~a!G , ~20!

where l51/N(0)V and A(a), C(a), and D(a) have the
same meaning as in the paper of Muthukumaret al.22 We
have to mention that our critical temperature is differe
from the one obtained in Ref. 22, and include the renorm
ization factorg(a) and the band renormalization factor. As
result, we can see a decrease of the critical temperature
to the effective Debye frequencyvD

eff5gvD . We also ob-
tained a modified critical coupling constantlcr ,

lcr5
g

g2~a!
S vc

gvD
D 2a 1

A~a!D~a!
, ~21!

which for the same reason as an enhanced effective De
frequency seems to be enhanced. In Fig. 1 we present a
of the critical coupling constant versus the non-Fermi para
eter a. As we can see in the limita→0, we recover the
usual BCS result21 (lcr50).

IV. THE ISOTOPE EFFECT FOR NON-FERMI LIQUIDS

The isotope effect exponent is an important physical
rameter since, in the low-temperature superconduc
~LTSC!, it was used to determine the origin of the pairin
mechanism. In the HTSC, the isotope effect has been wid
-
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discussed, in particular to detect the influence of the pho
degrees of freedom onTc . As Kishore26 points out, the iso-
tope effect in the cuprates is sensible to various factors s
as~i! the form of the free density of states,~ii ! the Coulomb
interaction, ~iii ! the carrier concentration,~iv! presence of
impurities, ~v! anharmonicity, and~vi! the symmetry of the
order parameter, among others. From our Eq.~15! we can
account for the first three dependences. Here we will ca
late Tc and the isotope exponent,a8, for an s-wave super-
conductor. Thus, our expression fora8 could be approxi-
mately applicable to the cuprates to fit the data. We beli
that the numerical values of global quantities such asa8 do
not depend too much on the symmetry of the order para
eter. It appears that La22xSrCuO4 presents ans-wave sym-
metry order parameter. So, it is the natural candidate to ap
the ideas worked out here. On the other side, Bi2Sr2CaCu2O8
~Ref. 27! holds ad-wave symmetry order parameter.

The isotope effect exponent is defined asTc}M 2a8.
Then, it is given by

a852
] ln Tc

] ln M
, ~22!

whereM is the isotope mass. Another relation that we w
use is the relation between the Debye frequency and the
tope mass, namely,vD}M 21/2. Now, Eq.~20! can be rewrit-
ten as

1

l
5g2~a!A~a!F~vD ,a,Tc!,

F~vD ,a,Tc!5Fg2a21D~a!S vD

vc
D 2a

2
C~a!

g S Tc

vc
D 2aG . ~23!

Deriving Eq.~23! with respect toM, we get that

a852

vDS ]F

]vD
D

2TcS ]F

]Tc
D . ~24!

Let us mention that Eq.~24! is valid for the case thata
Þ f (vD). The casea5 f (vD) will be discussed later on@Eq.
~26!#. Performing the partial derivatives, we come down
the following expression:

FIG. 1. The critical coupling constant versus the non-Fermi
rametera. The two lines correspond to the renormalized~1! g
51/(12a) and nonrenormalized~2! g51 case.
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a85
1

2 F12
g

g2~a!
S vc

gvD
D 2a 1

lA~a!D~a!G21

. ~25!

From Eq.~25! we gain the BCS case, i.e.,a851/2 when
a50. In Fig. 2 we plot the isotope coefficient versus t
non-Fermi parametera for different values of the coupling
constant. As we expected, there is a deviation for the u
BCS result asa increases. Also, we mention that the isoto
coefficient depends on the coupling constant, a result sim
with the one obtained for the 2D(0)/Tc ratio.21

While leaving this section, let us mention that ifa would
depend onvD , then the isotope effect exponent should
obtained from the following expression:

a852

vDF ]F

]vD
1

]F

]a

]a

]vD
G

2TcS ]F

]Tc
D . ~26!

We could makea5 f (vD) by choosing vc}vD , as
Ţifrea has done in his Ph.D. thesis.21 This contribution is
important to get full agreement with the experimental da
namely, thata8'0 at optimal doping. We argue that th
lowering of a8 from the BCS result should come from th
second contribution in the numerator in Eq.~26!. We leave
this task for the future. However, the result found in t
present section should be applicable in the underdoped
gime of the HTSC’s.

V. CONCLUSIONS AND OUTLOOK

We have applied the first three sum rules of Nolting18 for
the NFLGF of Eq.~4!, which is assumed to be a solution
the Hubbard model@Eq. ~3!# for frequenciesuvu<vc . This
NFLGF is anomalous due to the presence of the non-Fe
liquid exponent,a. Due to the requirement that the firs
order sum rule of the spectral function be satisfied, a n
parameter has to be called for.g, the so-called mass reno
malization factor, plays an important role in the theory. D
to its presence, we have recalculated some results foun
the literature and pointed out the role ofg. Also, an addi-
tional quantity, the isotope effect exponent ora8, has been
calculated for non-Fermi-liquid systems.a8 reduces to the

FIG. 2. The isotope coefficient versus the non-Fermi param
a for different values of the coupling constant@~1! l50.33, ~2! l
50.66, ~3! l51#.
al

ar

,

e-
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w
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BCS case when the Coulomb interaction is zero, namely,
a50. The fact thata}U2 comes out from the application o
the second-order sum rule to the spectral function. Due
Eq. ~15!, a is a model-dependent parameter, a result fou
previously in the literature by Wen.8 According to our view,
Tc decreases witha ~Ref. 21! anda}U2; then we can con-
clude that the local Coulomb repulsive interaction is de
mental to superconductivity. This result has been found
other approaches.29,30

We would like to point out that our spectral function@Eq.
~4!# does not reduce to the well known Diracd function
whena50, h51. In order to reobtain the usuald form of
the spectral function, we have to seta50 andh51 in our
starting Green function. Even without doing that fora50
and h51, the spectral function@Eq. ~4!# will satisfy the
usual scaling relation for a Fermi-liquid systemA(L@k
2kF#,Lv)5L21A(@k2kF#,v). We used this property in
some parts of the paper and we have recovered known
tures, such as~i! the jump atm of the momentum distribution
function, nc(kW ), which is a Fermi-liquid behavior;~ii ! the
superconducting critical interaction is zero, namely,lcr50;
and ~iii ! the BCS isotope exponent,a85 1

2 .
In the Appendix we have applied the formalism dev

oped in this paper to two inequivalent coupled Hubbard l
ers ~ICHL! extending the calculation of Yin and
Chakravarty13 for equivalent planes. Hildebrandet al.28 have
applied the FLEX formalism to ICHL’s. In particular
our expressions for G11(kW ,ivn), G22(kW ,ivn), and
G12(kW ,ivn)5G21(kW ,ivn) are different from the ones of Ref
13 due to the presence of a shift in the effective chem
potential, i.e.,m1,eff5m2,eff1d. Experiments should be de
signed to detect the results found in our work~see the Ap-
pendix!. In particular, the presence of the theoretical gap
the off-diagonal one-particle spectral function,A12(kW ,v),
calls for ARPES experiments to be performed in the
materials.31

We have assumed that the non-Fermi-liquid parametera,
is independent ofkW . This seems not to be the case
Meden32 has pointed out. He concludes that the asympto
behavior of the one-particle Green functions of Luttinger l
uids at large space-time distances is notuniversal. Namely,
along certain directions the exponent of the asympto
power law is not given by the Luttinger-liquid paramete
Due to this consideration,a could depend onkW . This possi-
bility is outside the scope of the present paper. Among o
of the possibilities we would like to explore is the calculatio
of pressure effects33 in some HTSC materials, when correla
tion is important, i.e.,aÞ0. Another possibility worth con-
sidering, for the case of inequivalent coupled Hubbard l
ers, isa1Þa2, as the two non-Fermi-liquid parameters o
the two planes. This approach is likely more demanding th
the one followed in the paper. We leave for the futu
theself-consistent calculation ofr1 andr2 on the two layers
@see Eq.~A5!#. On the other hand, the presence of the m
renormalization parameter,g, will modify the zero tempera-
ture order parameter,D(0). However, its calculation has
been left out of the present work. Of course, withD(0), we
could calculate the ratio 2D(0)/Tc5 f (U)Þ3.5, seeing its
dependence onU ~or a). Another aspect which should b
addressed in the future is the superconducting propertie

er
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two inequivalent coupled Hubbard layers. In this case,
mean-field Hamiltonian becomes a 434 matrix in the
Nambu formalism, giving rise to pairing on the planes a
perpendicular to them. We would like to end by saying th
the nature of the superconducting transition is strongly
lated to how anomalous~non-Fermi-liquid-like! the normal
state spectral function is, and as such, is dependent upo
doping level.34 The anomalous properties of the normal st
spectral function are visible in the underdoped regime of
HTSC.
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APPENDIX: NON-FERMI-LIQUID ONE-PARTICLE
GREEN FUNCTIONS FOR TWO INEQUIVALENT

COUPLED HUBBARD LAYERS

In Ref. 28, Hildebrandet al. have studied the case of tw
inequivalent coupled Hubbard layers for the case
Y2Ba4Cu7O15(247)[YBa2Cu3O7(123)1YBa2Cu4O8(124).
We will restudy this system using NFLGF for each one
the layers with the purpose of finding new theoretical con
quences of this assumption. For example, we are going

ts
e

g

FIG. 4. ~a! The diagonal one-particle spectral functio

A11(kW ,v), vs v, for some values ofgh1,kW and gh2,kW , namely,
gh1,kW51.2 andgh2,kW50.9. Compare withF11(x) of Ref. 13. We
notice that the symmetry aroundv50.9 is lost. This is a realization
of inequivalent coupled Hubbard layers. In a similar form

A22(kW ,v) vs v should not be symmetric aroundv51.2, in accord
with the given parameters.~b! The off-diagonal one-particle spec

tral function,A12(kW ,v), vs v. Same values as in~a!. Compare with
F12(x) of Ref. 13. Now we have a gap in the energy spectr
betweenv50.9 andv51.2. This is also a consequence of havi
inequivalent coupled Hubbard layers. Both spectral functions
calculated fora50.25.
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compare with the results of Refs. 13 and 28. The Ham
tonian of the system is given by

H5S G1
21~«kW ,ivn! t'

t' G2
21~«kW ,ivn!

D ,

where t' is the coupling matrix element between the tw
inequivalent Hubbard layers andGj («kW ,ivn), j 51,2, are the
normal state non-Fermi-liquid one-particle Green functio
of the layers. They are given by

Gj~«kW ,ivn!5
g~a!

vc
ae6 ipa/2

1

~ ivn2gh j ,kW !
12a

Q~6vn!,

~A1!

with h1,kW[«kW2meff and h2,kW[h1,kW2d, i.e., we have in-
cluded a shift between the two effective chemical potenti
A simple calculation allows us to calculate the diagonal a
off-diagonal one-particle Green functions. They are
l-

s

s.
d

G j j («k ,ivn)
5G j21(«k ,ivn)G121(«k ,ivn)G221(«k ,ivn)2t'2 ;

j 51,2; 1̄52; 2̄51,
~A2!

G12~«kW ,ivn!5
t'

G1
21~«kW ,ivn!G2

21~«kW ,ivn!2t'
2

,

G21~«kW ,ivn!5G12~«kW ,ivn!.

The excitation spectrum is determined by the roots of
denominator of Eq.~A2!. There are branch points atv
5gh j ,kW . Let us assume thath1,kW.h2,kW.0. Thus, forv.0,
we must divide the complex plane in six regions nam
I –II –III –IV –V–VI, as shown in Fig. 3~a!. The poles are
given by the solutions of

eipavc
2ag22~a!~v2gh1,kW1 i01!12a~v2bh2,kW1 i01!12a

5t'
2 e2inp; n an integer. ~A3!

Following the analysis performed by Yin and Chakravarty13

we conclude that, forh1,kW.h2,kW.0, there are solutions only
in the regions denoted byI and V. In the case that 0,h1,kW

.h2,kW,0, still for v.0, we divide the complex plane in
four regionsI –II –III –IV as shown in Fig. 3~b!. Similarly to
the previous analysis, we conclude that there is a solutio
region I only. The analysis is similar for the caseh1,kW

,h2,kW,0.
The poles are localized at
v1,25
g~h1,kW1h2,kW !6@g2~h1,kW2h2,kW !

214t',eff
2 e6[ ipa/(12a)] #1/2

2
; t',eff[g~a!t'S g~a!t'

vc
D a/(12a)

. ~A4!

From Eq.~A4! we recover the case of equivalent coupled planes of Yin and Chakravarty13 by makingh1,kW5h2,kW . Now, we are
in a position of calculating the one-particle spectral functions, namely,Ai , j (kW ,v), with i , j 51,2. The results are~with gh1,kW

.gh2,kW)

A11~kW ,v!5
sin~pa/2!X2

12a

pt' 5
11~X2X1!12a

11~X2X1!2(12a)22 cos~pa!~X2X1!12a
if v,gh2,kW,gh1,kW or gh2,kW,gh1,kW,v

1

11~X2X1!12a
if gh2,kW,v,gh1,kW ,

whereXj[uv2gh j ,kWu/ut',effu,

A22~kW ,v!5
sin~pa/2!X1

12a

pt' 5
11~X2X1!12a

11~X2X1!2(12a)22 cos~pa!~X2X1!12a
if v,gh2,kW,gh1,kW or gh2,kW,gh1,kW,v

1

11~X2X1!12a
if gh2,kW,v,gh1,kW ,

A12~kW ,v!5A21~kW ,v!5
sin~pa!~X1X2!12a

pt' 5
1

11~X2X1!2(12a)22 cos~pa!~X2X1!12a
if v.gh1

21

11~X2X1!2(12a)22 cos~pa!~X2X1!12a
if v,gh2

0 if gh1,v,gh2 .
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In Fig. 4 we show the behavior of the diagonal and o
diagonal one-particle spectral functions. From Fig. 4~a! we
observe that the symmetry of the diagonal spectral funct
A11(kW ,v), is lost around the frequencyv5gh2,kW50.9. To
realize this feature, we refer the reader to the respective
ure @F11(x)# in Ref. 13. Also, the symmetry ofF22(x) in
Ref. 13 is lost aroundv5gh1,kW51.2. In consequence
ARPES experiments shedding light on layer 1 or laye
should detect these fine details. Namely, we will have t
symmetry breakings, 1→1 and 2→2. Now, from Fig. 4~b!
we see that there is an interval of energy whereA12(kW ,v)
50. This feature was not obtained for the off-diagonal on
particle spectral function for equivalent planes@seeF12(x) in
Ref. 13#. Another aspect which we would like to point out
the fact that in the one-particle spectral functions there is
a unique variable to describe thedata. We have two relevan
energy scales in the problem, for each value ofkW . For the
type of materials we are studying, it seems natural to find
theoretical grounds, a gap in the energy spectrum. ARP
experiments should be designed to detect the gap found
s
.

-

n,

g-

2
o

-

ot

n
S
m

our expressions.31 We mention that the gap found i
A12(kW ,v) depends on the relative carrier number in the t
inequivalent coupled Hubbard layers. Therefore, the pr
ence of a shift between the two effective chemical potent
produces new theoretical results for the spectral densities
particular, non-Fermi-liquid quasiparticles acquire a mo
complex structure@Eq. ~A4!# than the case of equivalen
planes.

In order to calculate the carrier number per site per s
per plane, atT50, we have to perform the following inte
grals:

r1(2)5
1

4E2D

1D

d«E
2vc

0

N~«!A11(22)~«,v!dv, ~A5!

which have to be computed numerically. Work is in progre
to solve Eq.~A5! self-consistently.N(«) is the uncorrelated
density of states. To conclude this appendix, we say that
results generalize the case of Yin and Chakravarty.13 With
respect to the results of Ref. 28, they have not discussed
two one-particle spectral functions,A11(kW ,v) andA12(kW ,v),
around the effective chemical potential. Most likely the r
sults of Ref. 28 are valid for large values of frequencies.
-
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M. Crişan, Physica B259-261, 464 ~1999!; V.N. Muthukumar,
D. Sa, and M. Sardar, Phys. Rev. B52, 9647~1995!; I. Grosu, I.
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