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Nonlinear transport current flow in superconductors with planar obstacles
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~Received 13 January 2000!

We present a detailed description of a hodograph method, which enables us to calculate analytically the
two-dimensional distributions of the electric fieldE(r ) and transport current densityJ(r ) in superconductors,
taking into account their highly nonlinearE-J characteristics. The method gives a unique solutionE(r ) of
nonlinear steady-state Maxwell’s equations for given boundary conditions, showing applicability limits of the
critical state model and pointing out where it breaks down. The nonlinear problem of calculation ofJ(r ) by the
hodograph method reduces to solving alinear equation for the electric potentialw(E), or the current stream
function c(E) as a function ofE. For the power-law characteristicsE5Ec(J/Jc)

n, calculation ofE(r ) and
J(r ) can be mapped onto solutions of the London equation with the inverse screening lengthb5(n
21)/2An in the hodograph space (ExEy). We give general methods of solving the hodograph equations and
obtain closed-form analytical solutions for particular current flows. The method is applied to calculate distri-
butions ofE(r ) and dissipation in superconductors with macroscopic planar defects, such as high-angle grain
boundaries, microcracks, etc. Current patterns around planar obstacles are shown to break up into domains of
different orientations ofJ, separated by current domain walls. We calculate the structure of the current domain
walls, whose width depends both on the geometry of current flow and the exponentn. These domain walls
differ from the current discontinuity lines of the Bean model even in the limitn→`. We obtained a solution
for current flow past a planar defect of length 2a in an infinite superconductor and showed that the defect
causes strong local electric-field enhancement and long-range disturbances ofE(r ) on length scalesL';an
@a and L i;aAn@a perpendicular and parallel to the mean current flow, respectively. This solution also
exhibits large stagnation regions of magnetic flux near planar defects, universal distributions ofJ(r ) in the
critical state limit,n→`, and local flux flow regions near the edges. We calculate Joule heating for nonlinear
current flow and show that planar defects cause significant excess dissipation, which affects ac losses and local
thermal instabilities in superconductors.
or
al
o
a

th

r o
r l

d
al
in

-

u-
ic
in

a
nt

x

I. INTRODUCTION

Macroscopic electrodynamics of type-II superconduct
in the mixed state is determined by the pinning and therm
activated creep of vortex structures, which gives rise t
weakly dissipative critical current, irreversible magnetiz
tion, and slow current relaxation~flux creep!. These phenom-
ena manifest themselves on length scales much larger
the Larkin pinning correlation lengthLc , on which the criti-
cal state is formed.1 On these macroscopic scalesL@Lc , the
only material characteristic which determines the behavio
superconductors in electromagnetic fields is the nonlinea
cal relation between the electric fieldE and current densityJ,

J5
E

E
J~E!. ~1!

HereE(r ,t) andJ(r ,t) refer to the macroscopic electric fiel
and current density averaged over all relevant intrinsic sc
of pinned vortex structure, such as intervortex spacing, p
ning correlation lengths, etc. We consider an isotropicE-J
relation ~1!, which, for example, models the nearly two
dimensional~2D! current flow in theab plane of layered
high-temperature superconductors~HTS’s!. Equation ~1!,
combined with the Maxwell equations

] tB52¹3E, ¹3H5J~E!, ~2!
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enable one to calculate the evolution of nonuniform distrib
tions of E(r ,t) andB(r ,t) and thus to describe macroscop
magnetic, transport, and relaxation phenomena
superconductors.1–4

A type-II superconductor in the mixed state exhibits
highly nonlinearE(J) dependence below a critical curre
density Jc , which separates regimes of flux flow atJ.Jc
and flux creep atJ,Jc ~Fig. 1!. The crucial behavior of
E(J) at J,Jc is determined by thermally activated vorte
creep:

E~J!5Ec expF2
U~J,T,B!

T G , ~3!

FIG. 1. E-J characteristic of a type-II superconductor.
4004 ©2000 The American Physical Society
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whereU(J,T,B) is an activation barrier, which depends o
J, the temperatureT, and the magnetic induction,B. HereEc
is a conditional electric-field criterion, which defines an a
parentJc by the relation,U(Jc ,T,B)50. For instance, vor-
tex glass/collective creep models1 give a divergent depen
denceU5Uc@(Jc /J)m21# at smallJ!Jc , which has been
observed in transport and magnetization measurement
HTS’s.3 Similar though less singular logarithmic dependen
U5Uc ln(Jc /J) corresponds to power-lawE-J characteris-
tics, E5Ec(J/Jc)

n with n(T,B)5Uc /T;3 –30. It is a good
approximation of the observedE(J) for type-II supercon-
ductors, especially for layered Bi-based HTS’s.5

If the distribution ofJ(r ) varies on spatial scales great
thanLc , a superconductor can be regarded as a highly n
linear, nonuniform conductor with a local characteris
E(J,r ). For example, Eqs.~1! and ~2! describe nonlinear
transport in superconductors with macroscopic obstacle
percolative current flow in HTS polycrystals with grain siz
@Lc ~Fig. 2!. This case is important for understandin
current-limiting mechanisms of HTS’s, which, in addition
grain boundaries, often contain other macroscopic defe
such as second phase precipitates, microcracks, and re
of local nonstoichiometry on scales of order 10–1000mm.6

These current-blocking obstacles cause macroscopically
uniform distributions of transport and magnetization c
rents, as revealed by magneto-optical imaging of HTS’s.7–10

In turn, even comparatively weak inhomogeneities of lo
J(r ) can cause exponentially strong variations of the elec
field, E(r )}J exp@2U(J)/T#, which radically change globa
characteristics of superconductorsJ̄(Ē,B,T) observed in ex-
periment. Thus the behavior ofJ̄(Ē,B,T) can be different
from local characteristics~1! determined by thermally acti
vated vortex dynamics and pinning on mesoscopic sca
L,Lc . For instance, the relation between globalJ̄(Ē,B,T)
characteristics and localJ(E,r ) is rather complex, even in
nonuniform Ohmic conductors.11 This is even more so fo
superconductors, where the global and local characteris
can exhibit different dependencies onE, B, andT, because
the nonlinearity ofE(J) makes the effective current-carryin
cross section dependent onT, B, andE.12–15

Shown in Fig. 3 are examples of 2D current flows f
different cases, which could be regarded as elemen
‘‘building blocks’’ of a more general percolative network i
Fig. 2. The geometries shown in Fig. 3 are also quite co
mon in experimental studies of resistive states in superc

FIG. 2. Percolative current flow in polycrystals. Curren
blocking high-angle grain boundaries are shown as solid lin
while low-angle grain boundaries, transparent to current flow,
shown as dashed lines.
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ductors, thin-film superconducting electronic circuits a
HTS conductors for power applications. For instance, F
3~a! shows a superconducting film with a strong curre
limiting planar defect ~microcrack or high angle grain
boundary!. The case in Fig. 3~a! is also mathematically
analogous to that in Fig. 3~b!, which shows current flow
through a faceted grain boundary with alternating segme
of differentJc values. Other common geometries include t
current injector~or magnetic flux transformer! @Fig. 3~c!# and
the microbridge@Fig. 3~d!#. In all cases shown in Figs. 2 an
3, the electric field and current density are inhomogene
on macroscopic scales and have singularities near the s
edges and corners. Calculations of the globalE-J character-
istics then require solving Eqs.~1! and ~2!.

The highly nonlinear Eqs.~1! and~2! represent a difficult
mathematical problem, which has, to our knowledge, not
far been addressed analytically, except for a few results
1D flux penetration16 and flux creep dynamics.4 Extensive
numerical studies of the dynamics of flux penetration
Brandt17 have revealed many important features of nonlin
flux dynamics in superconductors, such as narrow dom
walls separating regions with different directions of curre
flow, nonlocal flux diffusion in thin samples, the influence
geometrical barrier, etc. On the other hand, the problem
2D steady-state transport current flow has remained
solved, because even numerical simulations of Eqs.~1! and
~2! become exceedingly time consuming as the nonlinea
of E(J) increases. For largen values, even weak spatia
variations ofJ(r ) around planar defects in Fig. 2 produc
exponentially large variations of electric fieldE(r )
5Ec@J(r )/Jc#

n. This fact along with singularities ofJ(r )
and E(r ) at the edges considerably complicate numeri
analysis of Eqs.~1! and ~2!, making it necessary to develo
an analytical method for solving Eqs.~1! and ~2!.

An approximate method for obtaining current distributio
in superconductors is given by the Bean critical st
model,18,19 which replaces the realE(J) curve~1! by a step-
wise dependence:J5EJc /E for E.0, andE50 for J,Jc
~Fig. 1!. This model may be regarded as an extreme limit
the power-law characteristic,E5Ec(J/Jc)

n for n→`,17

which enables analytical solutions forJ(r ) for some simple
cases~Fig. 4!. These solutions exhibit characteristic ‘‘disco

s,
e

FIG. 3. Characteristic cases of the 2D nonlinear current fl
solvable by the hodograph method.
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4006 PRB 62ALEX GUREVICH AND MARK FRIESEN
tinuity’’ lines (d lines!, along which the current abruptl
changes direction. Another feature of this model is t
finite-size defects can cause current disturbances of infi
range, as it occurs for current flow past a cylindrical void,
which case parabolicd lines extend to infinity19,20@Fig. 4~b!#.
Both the zero thickness of thed lines and the infinite spatia
scale of current perturbations are consequences of the
resistivity for the idealized Bean’sE-J characteristic in the
whole interval 0,J<Jc . In this case, solving steady-sta
Eqs. ~2! becomes an ill-defined mathematical proble
which reduces to the only condition of current continui
div J50, provided thatJ<Jc . These conditions can be sa
isfied by many different current distributions for a give
sample geometry, since the selection of Bean’s solutions
J(r ) is due to initial conditions. For example, the initial di
tribution of electric fieldE(r ) can be induced by increasin
external magnetic field. Once the initial conditions are fix
by the magnetic prehistory, the distribution ofJ(r ) stays
frozen indefinitely.

The inherent hysteresis of the critical state makes
Bean model inappropriate for calculations of steady-s
transport current flow around planar obstacles in Figs. 2
3, for which the current-carrying cross section varies alon
superconductor. In this case current path inevitably bre
into regions in the critical state,J5Jc , and subcritical re-
gions, with 0,J,Jc . However, the particular distribution
of these regions depends on initial conditions and thus c
not be calculated by solving the steady-state equatio
div J50 andJ<Jc . This unphysical situation results from
the fact that the Bean model ignores the necessary cond
¹3E50, which can only be satisfied by taking account
the highly nonlinearE-J characteristics~1!. Although expo-
nentially small atJ,Jc , the nonzero electric field plays a
important role, since solving Eqs.~1! now becomes a well-
defined mathematical problem, for which each nonzero va
of J corresponds to a certainE. The account ofE eliminates

FIG. 4. Magnetization current flows predicted by the Be
model. Top: long slab in a parallel magnetic field. Bottom: curr
flow around a cylindrical void~Ref. 19!. Dashed lines show the
parabolicd lines, on whichJ sharply changes direction. Curren
streamlines between thed lines are circular, and centered in th
void.
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the infinite extent of current perturbations around local inh
mogeneities~Fig. 4!, the zero thickness of thed lines, and
multiple solutions of the Bean model, fixing a unique stead
state transport current distribution for given boundary con
tions. However, the account of the nonlinearE(J) requires
solving the following nonlinear equation for the scalar p
tential w:

divF ¹w

u¹wu
J~ u¹wu!G50, ~4!

which is obtained by substitutingE52¹w into Eq. ~1! and
then into divJ50. The 2D Eq.~4! is rather difficult to solve
either analytically or numerically.

Recently we proposed an analytical method to calcu
2D steady-state transport current flow in superconduc
with the account of their nonlinearE(J) characteristics.21,22

The method is based on ahodographtransformation, devel-
oped at the beginning of the 20th century to describe co
pressible gas flow.23,24 In Ref. 21 the hodograph method wa
developed as to describe current flow in anisotropic sup
conductors. Using this method, analytical steady-state s
tions of Eqs.~1! and~2! for current flow past a planar defec
were obtained for the power-lawE-J characteristics.22 The
essence of the hodograph method is the following. Instea
dealing with the highly nonlinear equation forw(r ) in the
coordinate space, we change variables and expressw(r ) as a
function of the electric fieldE:

w~r !→w~E!. ~5!

The hodograph transformation~5! reduces the nonlinear Eq
~4! for w(r ) to a linear equation forw(E). In turn, the equa-
tion for w(E) can be further reduced to other well-studie
linear partial differential equations, such as Thomas-Ferm
London equations, whose known solutions can be used
obtain exact solutions for 2D current flows in nonlinear co
ductors. For example, the nonlinear current flow aroun
planar defect can be mapped onto a solution of the Lon
equation, which describes the magnetic-field distribut
from a fictitious fluxon in a film with cuts. Here the nonlin
earity of the power-law characteristicE5Ec(J/Jc)

n mani-
fests itself in the nonzero effective ‘‘screening length’’l
52An/(n21). These analogies enables one to use kno
solutions of the London, Debye, or diffusion equations~see
below! to obtain analytical solutions for the 2D nonline
current flows in superconductors with macroscopic defect22

The hodograph method enables us to resolve the amb
ities of the Bean model and address analytically features
2D nonlinear transport current flow. In particular, it gives
unique steady-state distributionJ(r ) for a given sample ge-
ometry and shows that current flow breaks into domains w
different orientations ofJ separated by current domain wal
reminiscent of thed lines of the Bean model. However, the
are important differences between the current domain w
and thed lines. First of all, the domain walls have an intern
structure and a varying width, which depends both on thn
value and the geometry of current flow. For instance,
current flow past a void in Fig. 4, the width of the doma

t
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walls increases with the distance from the void. It is t
broadening of the domain walls, which provides the decay
current perturbations caused by the defect sizea on afinite
lengthL';an, much larger thana, if n@1. Moreover, the
current domain walls described by exact hodograph solut
remain different from the phenomenologicald lines even in
the critical state limit,n→`. In this case current flow nea
domain walls exhibits no discontinuities in the tangent
components ofJ(x,y) thus satisfying¹3E50.

In this and a subsequent paper25 we present a detailed
description of the hodograph method and calculate vari
steady-state 2D transport current flow in superconductors
this paper we focus on general features of current flow
isotropic nonlinear conductors illustrated by characteris
examples, which show how the method works. We pres
exact solutions of Eq.~4!, which reveal new length scales o
nonlinear current flow and the structure of current dom
walls. The second part of this work25 is devoted to calcula-
tions of the distributions ofJ(r ) andE(r ) for restricted ge-
ometries shown in Fig. 3. Because of the long-range dis
bances of theE(x,y) near defects in superconductors,22 the
effect of the sample geometry becomes crucial and in m
cases completely dominates the global nonlinear cur
transport. These results enable us to calculate globalE-J
characteristics and dissipation due to defects, which also
tain to the problems of current-carrying capability, ac loss
and thermal stability of superconductors. In addition to
perconductors, the hodograph method can also be applie
calculations of nonuniform current flow in other nonline
media, such as semiconductors, plasma, etc. For insta
E-J characteristics of gas or semiconductor plasma at h
electric fields can be approximated by the power-law dep
dence,E}Jn, with n!1.26

The paper is organized as follows. In Sec. II we consi
features of nonlinear current flow and discuss conditio
under which the steady-state current distributions in sup
conductors set in. In Sec. III we formulate the hodogra
method and give general solutions of the hodograph eq
tions, which then will be used to reveal features of the
current flows for particular geometries. In Sec. IV we co
sider current flow past a semi-infinite corner and calcul
analytically the structure of the current domain walls a
singularities inJ(r ) andE(r ) distributions near sharp edge
In Sec. V we obtain a solution for current flow past a no
conducting planar defect in an infinite superconductor, a
identify the new length scales ofE(r ) which are caused by
the nonlinearity ofE(J). We describe flux flow regions nea
the edge of the planar defect and address a nontrivial cri
state limit atn→`. In Sec. VI we calculate excess dissip
tion on planar defects for nonlinearE(J) characteristics. Sec
VII is devoted to the discussion of the results and their i
plications for nonlinear current transport and current-limiti
mechanisms in HTS’s.

II. NONLINEAR 2D CURRENT FLOW

A. Time scales

In this paper we consider the 2D steady-state trans
current flow, which sets in after initial relaxation of curre
distribution induced by switching on a dc power supply.
superconductors, such transient processes can dominat
f
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observable behavior on ‘‘human’’ time scales, because
strong nonlinearity ofJ(E) can make the relaxation timet0
astronomically large. In this case, the superconductor
mains in a metastable critical state, which relaxes v
slowly toward a true steady state. Therefore an estimatio
t0 is necessary to find the conditions, under which t
steady-state current flow actually occurs.

We estimatet0 of macroscopic current relaxation, assum
ing that a superconductor is in a high magnetic field, so t
both self-field effects and the surface or geometrical barr
can be neglected. In this casem0H5B, and J(E,B)
5J(E,B0), where B0 /m0 is a constant applied magnet
field. Eqs.~2! then reduce to

m0s] tE52¹3¹3E. ~6!

Here s(E)5]J/]E is the differential conductivity, whose
dependence onE5uEu determines the dynamics ofE(r ,t).
The important feature ofs(E) in the subcritical state (E
!Ec) is an approximately inverse dependences(E)
'J1 /E for all existing models of thermally activated vorte
dynamics described by Eq.~1!.4 This universality holds in a
very wide region ofE to the accuracy of a much weake
logarithmic variation ofJ1(E) at largen;3 –30. Here the
parameterJ15T/u]JUu5sJ can be expressed in terms of th
observed dimensionless flux creep rate,s5d ln J/d ln t.1–4

Since macroscopic electrodynamics of superconduc
becomes model independent, when formulated in terms
the electric fieldE(r ,t), the time scalet0 can be estimated by
a scaling analysis of Eq.~6!.4 Indeed, Eq.~6! can be regarded
as a nonlinear diffusion equation for the electric fieldE with
the diffusivity D(E)51/m0s. Thus the time scalet0 of cur-
rent redistribution in a region of sizeL is given by t0
;L2/D, whence

t0;m0L2J1 /E. ~7!

Here t0 determines the duration of a transient process a
which a steady-state current flow sets in. Because of
exponential dependence ofE on J, the electric fieldE in Eq.
~7! ~and thust0) can vary strongly within a superconducto
The upper bound oft0 can be estimated by substituting th
steady-stateE(r ) in Eq. ~7!. For instance, taking the standa
electric field criterion,Ec.1mV/cm for Jc and a character-
istic spacing between defects,L.100 mm, we obtain t0
.0.06 sec, forJ15sJc , Jc5106 A/cm2 ands50.05. In this
case a steady-state transport current flow sets in on a s
time scale, even for highJc values.

However, geometrical constraints for certain sample
ometries can maket0 much larger than the above estimat
As an example, we first consider the current lead of widthL1
attached to a sample of widthL2.L1 @Fig. 3~c!#, assuming
the power lawE5Ec(J/Jc)

n with n.3 –20. Let the lead be
in a uniform critical state, (E1.Ec), which sets in att.t1

.m0sJcL1
2/Ec . Then it takes t.t2.m0sJcL2

2/E2 for a
steady-state uniform current flow to occur in the samp
whereE2 is determined by the current conservation con
tion, E25E1(L1 /L2)n, giving t2.t1(L2 /L1)n12. For n
515 andL252L1, this yieldst2.1.33105t1, or about 2.2 h
for t150.06 sec.

A similar argument can be made for the important case
a planar defect in a film@Fig. 3~a!#, for which L25d, L1
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.d2a, whered is the film thickness, anda is the length of
the defect. If the electric field near defect is of orderEc , then
the electric field in the bulk,E2.(12a/d)nE1 can be much
smaller thanEc , even for a small defect,a!d. Thus the
steady-state current flow near defect sets in aftert.t1
.m0sJc(d2a)2/Ec , while it can take a much longer time
t.t2;t1 /(12a/d)n12 in the bulk. Ford51 mm, n515,
J1553104 A/cm2, we find thatt1.6.3 sec, butt2;38 sec
for a50.1d, t2;45 min for a50.3d, and t2;9.6 days for
a50.5d. For largera andn, relaxation toward a steady-sta
transport current distribution occurs on time scales well
ceeding the experimental time window.

The above examples show that, although the transien
laxation ofJ(r ,t) could be very slow for certain geometrie
the steady-state transport current flow for the most cases
cussed in the Introduction sets in on rather short time sca
Such relaxation is accelerated in HTS’s, where flux cree
rather fast, and then values are significantly smaller than
low-Tc superconductors.3 In the rest of this paper we there
fore consider the nonlinear steady-state 2D transport cur
flow in superconductors, disregarding the transient periot
,t0, on which steady-stateE(x,y) is formed. The relevan
time scalest0 can be estimated from Eq.~7! for any steady-
state distributionE(x,y).

B. Steady state

For steady-state current flow, Eqs.~2! become

¹3E50, ¹3H5J. ~8!

To satisfy the conditions divJ50 and¹3E50, for the 2D
current flow in thexy plane, we introduce the scalar potent
w and the stream functionc, related toJ andE as follows:

Jx5]yc, Jy52]xc, ~9!

Ex52]xw, Ey52]yw, ~10!

where ]a[]/]a. The magnetic fieldH(r ) is expressed in
terms ofc(x8,y8) by the Bio-Savart law,

H~r !5
1

2pEV

$~r2r 8!3@ n̂3¹8c#%

ur2r 8u3
d3r 8, ~11!

where the integral is taken over the current flow regions,
n̂ is the unit vector along thez axis. The stream functionc
coincides with the normal component of the magnetic fi
Hn for the 2D current flow in a long cylinder or slab, but ca
be very different fromHn for thin films.27–31 For Ohmic
conductors, bothw andc satisfy the Laplace equation¹2w
50, ¹2c50, so it is convenient to introduce the comple
potentialw(z)5w2 irc, which is an analytic function of the
complex coordinatez5x1 iy . Herer5E/J, and the real and
imaginary parts ofw(z) obey the boundary conditions forw
and2rc, respectively. This fact enables one to use pow
ful methods of the theory of analytic functions to calcula
the 2D transport current flow in Ohmic conductors.32 This
technique is also useful for calculation of magnetization c
rents in superconductors.27–29
-

e-

is-
s.
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l

d

d
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-

In nonlinear conductors the situation is much more co
plicated, sincew(z) is no longer analytic function. As a re
sult, nonlinear current flow generally causes bulk cha
density distribution,q5div E,

q5~]Jr!J¹J, ~12!

since the resistivityr5E/J now depends onJ. For instance,
for the case shown in Fig. 3~c!, integration of the charge
density,q5div E, gives the total charge accumulated ne
the current injector,Q̄5(A1E12A0E0). HereE1 is the elec-
tric field in the injector, andE0 is the electric field in the
conductor, in regions far away from the joint, where bothE1
and E0 are uniform, andA1 and A0 are the cross-sectiona
areas of the injector and the conductor, respectively. For
form Ohmic conductors, the chargeQ̄ vanishes becaus
A1E15A0E0. By contrast, for nonlinear conductors andA1

ÞA0, we getQ̄Þ0, sinceA1E(I /A1)ÞA0E(I /A0).
The nonlinearity ofE(J) gives rise to new length scale

for the current distribution around a local inhomogeneity.
show that, we write Eq.~4! in the form

sx]xxw1sy]yyw50, ~13!

wheresx5]Jx /]Ex and sy5]Jy /]Ey are principal values
of the differential conductivity tensors ik calculated from
Eq. ~1!:

sx5~J/E!sin2u1s cos2u, ~14!

sy5~J/E!cos2u1s sin2u. ~15!

Heres5]J/]E is a scalar differential conductivity, andu is
the angle between the direction of the local electric fie
E(x,y) and thex axis, so that tanu5Ey /Ex .

For isotropic Ohmic conductors, the conductivity tensor
also isotropic, (sx5sy), thus the electric-field perturbations
dE(x,y), decay on a length scale of order the inhomogene
sizea, both alongx andy. However, for any nonlinear iso
tropic E(J), not only doess ik depend onE, it also becomes
highly anisotropic with respect to the current flow (sx
Þsy). Assuming that far away from the inhomogeneity, t
current streamlines are nearly parallel to thex axis (u!1),
we obtain thatsx.]J/]E, and sy.J/E. In this case, the
strong nonlinearity ofE(J) in superconductors results i
sx!sy @for the power-law E5Ec(J/Jc)

n, we have sx
5sy /n!sy#. The relationsx!sy reflects the fact that the
longitudinal perturbationsdEx mostly change the modulus o
J'Jc , causing a rather weak current responsedJx
5(]EJ)dEx . By contrast, the transverse perturbationsdEy
cause a localturn of the vectorJc , resulting in a much larger
current responsedJy.(Jc /E)dEy . The fact thatsx!sy
gives rise to a decay ofE(x,y) perturbations over very dif-
ferent length scalesL i andL' along thex andy axes, respec-
tively. As follows from Eq. ~13!, we have L'

;(sy /sx)
1/2L i , whence

L';L iAn. ~16!

This relation will be illustrated below by exact solutions f
particular current flows. Here we just give a simple physi
estimate ofL' andL i for a planar defect of length 2a!d, as
shown in Fig. 3~a!. The defect blocks current flow on th
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length;a, forcing the currentaJ0 to redistribute around the
defect on the scale;L' . In the regiony,L' the mean
current density and the electric field thus increase toJm
;(11a/L')J0 and Em;(11a/L')nE0, respectively. The
transverse decay length,L' , is defined by the condition
Em;E0, giving L';na. The decay length,L i;aAn, along
current flow then follows from Eq.~16!. Therefore strong
(n@1) nonlinearity of E(J) greatly increases the spati
scales of electric-field perturbations, as will be confirm
below by exact calculations. At the same time,E(x,y) can
also vary on scales much smaller thana, as it occurs in
narrow current domain walls, which replace the sharpd lines
of the Bean model.

III. HODOGRAPH TRANSFORMATION

A. General formalism

Instead of solving the nonlinear Eq.~13!, we change vari-
ables and takew andc to be functions of the complex elec
tric field Ex1 iEy5E exp(iu), whereu is the polar angle be
tweenE and thex axis. The advantage of such a hodogra
transformation is that it reduces the highly nonlinear Eq.~13!
for w(x,y) to linear equations forc(E,u) and w(E,u). To
show this we write Eqs.~8! in the differential form,

dw52Exdx2Eydy, rdc5Eydx2Exdy, ~17!

where r(E)5E/J. Equations~17! can be combined in a
single complex equationdw2 irdc52Ee2 iudz, whence

]Ez52eiu~]Ew2 ir]Ec!/E, ~18!

]uz52eiu~]uw2 ir]uc!/E. ~19!

Here z5x1 iy is the complex coordinate, ands(E)
5]J/]E is the differential conductivity~notice that in non-
linear conductorsrÞ1/s). The condition]uE

2 z5]Eu
2 z then

gives the following relations between partial derivatives oc
andw:

]uw52~E2/J!]Ec, ]Ew5~Es/J2!]uc. ~20!

Equating the mixed derivatives,]uE
2 5]Eu

2 , for c andw, we
obtain the followinglinear equations forc andw valid for
any nonlinear dependenceJ(E):

sE

J2

]2c

]u2
1

]

]E S E2

J

]c

]ED50, ~21!

J

E2

]2w

]u2
1

]

]E S J2

sE

]w

]ED50. ~22!

For the power-law dependence,E5Ec(J/Jc)
n, these equa-

tions simplify to

J2

n

]2c

]J2
1J

]c

]J
1

]2c

]u2
50, ~23!

nE2
]2w

]E2
1E

]w

]E
1

]2w

]u2
50. ~24!
d

h

In Eq. ~23! we can change variables,E5Ec(J/Jc)
n, and ex-

pressc as a function ofE andu, which is convenient for the
further analysis of electric-field distributions. Equations~23!
and ~24! can also be presented in different useful forms
introducing new variables,

w5ebhh1 , c5e2bhh2 , h5
1

An
ln

E

E0
. ~25!

Here E0 is the electric field at infinity, and the function
h1,2(h,u) satisfy the equation,

]hh
2 h1]uu

2 h2b2h50, ~26!

which has the form of the London equation with the inver
‘‘screening length’’b:

b5~n21!/2An. ~27!

Therefore the nonlinearity ofE(J) results in an effective
screening ofc(h,u) in the hodograph space, which becom
stronger asn increases. Forn51, Eq. ~26! turns into the
Laplace equation, thus the complex potentialw(u)5w
2 irc is an analytic function ofu5h2 iu in the hodograph
representation. Analytic properties of the complex poten
w(h,u) in nonlinear conductors are considered in Appen
A. We show that forn.1, w(h,u) is no longer analytic
function, but can be expressed in terms of generalized a
lytic functions.33

B. Solving the hodograph equations

The calculation of nonlinear current flow by th
hodograph method is implemented in two steps. First, a
lution of the linear Eq.~21! should be found, which satisfie
the particular boundary conditions. Then an inverse trans
mation ofc(u,E) from the hodograph plane (E,u) onto the
physicalxy plane should be performed to obtain the curre
streamlinesc5c(x,y) and spatial distributions of the elec
tric fields and currents. As shown in Appendix E, the Ja
bian of the inverse transformation does not change sign
any isotropic E-J characteristic with positive differentia
conductivity s(E).21 This fact makes the hodograph tran
formation a well-defined procedure, for which each soluti
c(E,u) corresponds to a unique spatial distribution
E(x,y) for given boundary conditions.

Solutions of Eqs.~21! and ~22! can be obtained by sepa
rating variables as follows:

c~E,u!5(
m

Cmf m~E!sin~mu1fm!. ~28!

Here Cm and fm are constants, and the functionsf m(E)
satisfy the following ordinary differential equation:

d

dE S E2

J

d fm

dE D2
m2sE

J2
f m50. ~29!

An analogous expression to Eq.~28! for the electric potential
w(E,u) can be obtained with the eigenfunctionsgm(E) sat-
isfying
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d

dE S J2

sE

dgm

dE D2
m2J

E2
gm50. ~30!

For the power-law J(E) characteristic, Eq.~23! gives
f m(E)}Eqm, soc(E,u) takes the form

c~E,u!5c01@B11B2~E/E0!1/n21#~u1u0!

1(
m

Cm
6S E

E0
D qm

6

sin~mu1fm!, ~31!

qm
65

1

2n
@12n6A~n21!214nm2#. ~32!

Here the sum runs over all integerm, the constantsB1,2,
Cm

6 , c0 , u0 , E0, and fm are determined by the bounda
conditions, andE0 can be taken as the electric field at infi
ity. We emphasize that Eqs.~31! and ~32! areexactgeneral
solutions of the nonlinear Maxwell equations which descr
various current flows.

If distributions E(x,y) contain regions ofE,E0 and E
.E0, with different sets ofCm

(1) , qm
(1) , andCm

(2) , qm
(2) , the

solutions c1(E,u) for E.E0 and c2(E,u) for E,E0
should be matched atE5E0 as to provide continuity of
c(E,u) and its derivatives. Finding the proper relation b
tweenCm

(1) and Cm
(2) can be reduced to the solution of th

following linear matrix equation:25

(
k

UmkCk5Fm , ~33!

whereUmk andFm are determined by the sample geomet
The fact that bothc2(E,u) andc1(E,u) are known exactly
is a great advantage of the hodograph method, which
reduces the initial nonlinear problem to a standard proced
of matrix inversion. In some cases the coefficientsCm can be
obtained analytically, otherwiseCm5(kUkm

21Fk can be ef-
fectively calculated numerically.25 Since the hodograph
method linearizes the Maxwell equations for anyE(J), nu-
merical calculations of nonlinear current flowJ(x,y) for the
cases shown in Figs. 2 and 3 take no longer than the co
sponding calculations ofJ(x,y) for Ohmic conductors.

The solution~31! is rather convenient for performing th
inverse transformation ofc(E,u) onto the coordinate spac
xy, giving the electric-field distributionz5z(E,u) for any
set of Cm

6 . This is a well-defined mathematical procedu
since the Jacobian of the inverse transformation is alw
positive for any isotropicE-J characteristic, as shown i
Appendix E. To obtainE(x,y), we exclude]Ew and ]uw
from Eqs.~20!, which yields

]uz5
eiu

J
~E]Ec1 i ]uc!, ~34!

]Ez5
eiu

J S i ]Ec2
s

J
]uc D . ~35!

Substituting Eq.~31! into Eq.~35! and integrating overE, we
obtain
e

-

.

us
re

e-

,
s

z5z61eiuS B1

J
1

B2E0

nE
@11 i ~n21!~u1u0!# D

2
eiu

J (
m50

` Cm
6

nqm
621

S E

E0
D qm

6

~m cosqm2 inqm
6 sinqm!.

~36!

Herez6 are constants,qm5mu1fm
6 , and the plus and the

minus signs correspond toE,E0 and E.E0, respectively.
Equations~36! represent a complete family of exact sol
tions of nonlinear Maxwell’s equations for various distrib
tions E(x,y), parameterized by an infinite set of constan
Cm . In the following sections we will show howCm can be
found for particular current flows.

Equation~26! belongs to the well-studied linear equatio
of mathematical physics, so various nonlinear current dis
butions can be obtained from known solutions for oth
physical problems described by the London or diffusi
equations. For instance, a solutionc(h,u) of Eq. ~23! inside
the region bound by the contourS in the hodograph planehu
can be expressed in terms of the surface distributioncb(s):

c~h,u!5e2bh R
S
ebh8cb~s!]nG~h,h8,u,u8!ds. ~37!

Herec(h,u) is determined by the boundary conditions, t
Green’s functionG of Eq. ~26! satisfies the boundary cond
tion G50 on S, and]n denotes the normal derivative onS.
The function G has a clear physical meaning, since it
proportional to the local magnetic field at the pointh,u pro-
duced by a fictitious London vortex located at the po
h8,u8 in a superconducting cylinder. This analogy enab
one to use extensive results on vortices in superconducto
different geometries to calculateG(h,h8,u,u8) and thus 2D
current flows in nonlinear conductors.22

Another analogy follows from the following represent
tion of Eqs.~23! and ~24!:

]uu
2 c1]hh

2 c12b]hc50, ~38!

]uu
2 w1]hh

2 w22b]hw50. ~39!

Equations~38! and ~39! have the form of diffusion equa
tions, which describe steady-state distributions of the fieldc
or w in a reference frame moving with the velocity62b.
Equations~38! and~39! also belong to the well-studied linea
equations,34 which could help on finding solutions of th
hodograph equations, using the known solutions of the c
responding diffusion problems. For instance, in the criti
state limit (n→`), Eq. ~23! becomes a simple 1D diffusion
equation in the hodograph space

]tc5]uuc, ~40!

wheret5 ln(Jc /J) andu play the roles of ‘‘time’’ and ‘‘co-
ordinate,’’ respectively. In this case the solution of Eq.~40!
for the stream function

c5Bu1 (
m51

`

CmS J

Jc
D m2

sin~mu1fm! ~41!
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PRB 62 4011NONLINEAR TRANSPORT CURRENT FLOW IN . . .
is independent ofn and therefore can be regarded as a ‘‘cr
cal state’’ limit for c(J,u). However, as will be shown be
low, Eq. ~41! can result in current distributions, which a
different from those of the Bean model.

C. Boundary conditions

To take advantage of the exact solutions forc(E,u) and
w(E,u), we need to reformulate the corresponding bound
conditions in the hodograph space. This procedure is ra
nontrivial, since even simple boundary conditions in thexy
plane, such as zero normal component ofJ on the sample
surface, or a given distribution ofJ or E on the electrodes
can become highly nonlinear in theEu plane. For instance, i
current flows past a cylindrical void of radiusR, the condi-
tion of zero normal component ofJ(x,y) requires constan
c(x,y)5c0 on the surface, x21y25R2. Taking the
hodograph solutionsx5A(E,u),y5B(E,u), we obtain the
boundary conditions in theEu plane: A2(E,u)1B2(E,u)
5R2 andc(E,u)5c0. Substituting here Eq.~36!, we arrive
at an infinite set of coupled nonlinear equations forCm and
fm . Therefore the boundary conditions become nonlin
for curved boundaries or nonuniform distributions ofJ(x,y)
on the electrodes.

However, for any 2D current flow confined between fl
piece-wise boundaries, or around planar cuts~see Figs. 2 and
3!, the boundary conditions in the hodograph space gre
simplify. Then the condition of zero normal component oJ
at the straight boundary inclined by the angleu0 becomes
linear, reducing toc(E,u0)5c0, wherec0 is a constant. For
example, for current flow around a corner shown in Fig.
the boundary conditions can be taken in the form,c(E,0)
5c(E,a)50. Therefore, for current flow around planar o
stacles, the hodograph transformation linearizes both
equation forc(E,u) and the boundary conditions. In th
case we can obtain complete exact solutions of the nonlin
Maxwell equations considered in the following sections.

IV. CORNER

One of the simplest exact solutions of Eq.~23! describes
current flow around a corner. There are two different sit
tions which we consider separately, corresponding to cur

FIG. 5. Inner~a! and outer~b! current flows around a corner.
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flow inside or outside of two unpenetrable walls inclined
the anglea ~Fig. 5!. This case allows us to calculate stru
ture of the current domain walls and trace the nonanal
crossover from large, but finiten value, to the critical state
limit n→`.

A. General solution

The solution for current flow around the corner, satisfi
the boundary conditions,c(E,0)5c(E,a)50, correspond-
ing to zero normal component ofJ on the sample surface
This solution of Eq.~23! has the form

c5CEq sinku, ~42!

wherek5p/(p2a), C is a scaling constant, and

qk
65

1

2n
@12n6A~12n!214nk2#. ~43!

Here the plus and the minus signs correspond to current
inside and outside the region of the anglea, respectively
~Fig. 5!. Taking the origin,z50, as the vertex for both case
we obtain the distribution ofE(x,y), substituting Eq.~42!
into Eq.~35! and integrating from 0 toE for q5q1 and from
` to E for q5q2. This yields

z52
CeiuEq

~qn21!J~E!
~k cosku2 iqn sinku!. ~44!

Separating real and imaginary parts of Eq.~44!, and exclud-
ing E by dividing y(E,u) by x(E,u), we obtain the follow-
ing equation for the functionu(x,y), which determines loca
orientation of current flow

y

x
5

k tanu2nqk tanku

k1nqk tanu tanku
. ~45!

We use these results to consider two particular cases~i!
Current flow past a semi-infinite cut, for whichq521, a
→0; ~ii ! Current flow near a rectangular corner, for whic
q5q2

6 , a5p/2. In the first case,c5C sinu/E is indepen-
dent ofn, and Eq.~44! gives

z5
Ceiu

~n11!JE
~cosu1 in sinu!. ~46!

Current streamlines described by Eqs.~42! and ~46! are
shown in Fig. 6. Forn@1, current streamlines are approx
mately semicircles centered near the end of the cut, w
contours of constant electric field are close to circles wh
cross the cut. Near the edge, (x'0,y50), the electric field
E(x) has a singularity. Forx,0 andy→60, currents flow
parallel to the cut@u50 at y510, or u5p at y520, ~see
Fig. 6!#, and Eq.~46! gives x5C/(n11)JE. For x.0, we
haveu5p/2, andx52nC/(n11)JE, whence

E~x!}1/nxn/(n11), x,0, ~47!

E~x!}1/xn/(n11), x.0. ~48!

Hence the circle of constantE of radiusR crosses the cut a
the point.R/n away from the edge. For the linear case,n
51, Eq. ~48! gives the square-root singularityJ(x)
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FIG. 6. Nonlinear current flow around a semi-infinite cu
Dashed circle shows a contour of constant electric field. Fon
→`, all circular contours of constantE touch the end of the cut.

FIG. 7. Current flow near the corner of a rectangular sample
a superconductor (n550) ~a! and a normal metal~b!. The dashed
straight lines in~a! show boundaries of a diverging current doma
wall, defined as a region whereuu2p/4u,0.3.
5sE(x)}1/uxu1/2, both in J(x) and E(x) at uxu→0.24,32 For
n@1, the nonlinearity ofJ(E) in superconductors enhance
the singularity inE(x)}1/uxu, while strongly suppressing th
singularity in J(x)}1/uxu1/n. For the semiconductor-type
nonlinearity,n!1, the situation is the opposite: the singula
ity in E(x) is suppressed, but enhanced inJ(x).

The second example is the rectangular corner shown
Figs. 7 and 8. There are two different cases of current fl
inside and outside the corner, which correspond toq5q2

1

.0 and q5q2
2,0 in Eq. ~42!, respectively. ExcludingE

from Eqs.~42! and Eq.~44!, we obtain the current stream
lines x5Re z(c,u) andy5 Im z(c,u) in the form22

z5DS c

sin 2u D 121/nq2
1

~2 cos 2u2 inq2
1sin 2u!eiu, ~49!

where D5C1/nq2
1

E0
1/n/J0(nq2

121). Each streamline corre
sponds to a contour of constantc. The evolution of the cur-
rent distribution withn is shown in Fig. 7. Forn51, we have
q2

152, thus Eq.~49! gives smooth hyperbolic streamline
c}xy.24,32 By contrast, the highly nonlinear casen@1 ex-
hibits sharp changes of the current flow direction near
diagonal somewhat reminiscent of, yet different from t
piece-wise current distribution of the Bean model~see be-
low!.

Current flow past the corner in Fig. 8 exhibits quite d
ferent characteristics which manifest themselves in the
tribution of local orientations,u(x,y). For n@1 Eq. ~43!
gives nqk

2'2(n1k221), thus Eq.~45! simplifies to x/y
52tanu. The relationx/y52tanu describes circular cur-
rent streamlines centered in the vertex and is valid eve
where, except for narrow regions of angles,du.n21/2, near
u50 and u5p2a, which correspond to currents flowin
almost parallel to the sample surface. Therefore current fl
around the semi-infinite corner described by exact Eq.~45!
exhibits no trace of singulard lines characteristic of the cas
shown in Fig. 7~a!.

The solutions of this subsection contain a scaling cons
C, which remains undetermined for semi-infinite samples
the corner is a part of a defect in a finite sample, say

r

FIG. 8. Nonlinear current flow around a corner. Forn@1, cur-
rent streamlines in the upper right quadrant are nearly circular,
centered in the vertex.
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surface notch or a step in a film, the above solutions desc
current flow only near the corner. The constantC is deter-
mined by current distribution far away from the defect a
thus depends on the sample geometry and the boundary
ditions ~see below!. Here we just note that the particula
value of C does not affect the shape of the current stre
lines described by the functionu(x,y). This fact enables us
to investigate universal features of the current domain wa
based on the exact, yet simple solutions~42!–~45!, regard-
less of the particular geometry of the whole sample.

B. Structure of the current domain wall

The principal question is how the singulard line emerges
in a smooth current distribution asn→`. For the Bean
model, thed line manifests itself in a step-wise change of t
current orientation,u(x,y)5p@sgn(x2y)21#/4, as seen in
Fig. 4~a!. Although such a step-wise current configurati
satisfies the critical state assumption,J5Jc , and the conti-
nuity of the normal component ofJ, it has a jump of tangen
tial componentJi along thed line. Thus this model distribu-
tion of J(x,y) cannot exist in steady state, if any electr
field caused by current flow is taken into account. Indeed
jump in Ji on thed line would result in a discontinuity of the
tangential component ofE, which violates¹3E50.

For finiten@1 this discontinuity is smoothed out, and th
d line turns into a current domain wall of finite thickne
between regions with different orientations of current flo
as follows from extensive numerical simulations perform
by Brandt.17 Here we address the following questions, whi
are rather difficult to resolve through numerical simulatio
~i! Is there any intrinsic width of the current domain wa
which is determined by the nonlinearity ofJ(E) regardless
of the sample geometry?~ii ! Is there an analytic crossove
from large, but finiten to the Bean model behavior atn
→`? ~iii ! Is thed line of the Bean model a true steady sta
in the limit n→`? ~iv! Is there any singularity in curren
domain wall in the limitn→`?

The exact hodograph solutions show that only the
proposition is true, while the very existence of thed line
depends on the geometry of current flow. For example,
Bean model predicts thed lines for current flow both inside
and outside a corner, depending on the magnetic prehis
The results of the previous subsection indicate that, altho
some sort of singularity on the diagonal remains for the
side flow in Fig. 7~a!, the outside flow in Fig. 8 always
exhibits nonsingular circular streamlines. The latter solut
also satisfies the Bean model. Therefore we see that e
exponentially weak electric field in the critical state (n@1)
drives the step-wise current distribution in Fig. 4~a! into the
nonsingular one in Fig. 7~a!, corresponding to the true stead
state.

We now consider the structure of the current domain w
in Fig. 7~a! in more detail by analyzing the behavior of th
function u(x,y) near the diagonal, wherex'y, u52p/4
1d, andd!1. If n@1, we havenqk

1'k22k2(k221)/n, so
Eq. ~45! for d!1, simplifies to

x2y

x
52dS 3

n
1d2D . ~50!
be

on-
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From Eq.~50! it follows that there is no ‘‘intrinsic’’ width of
the current domain wall, sinced(x,y) is a power-law func-
tion of x and y near the diagonal. If we define the doma
wall as a region, in whichd,d0, then Eq.~50! gives its
width, d( l i ,d0), as a function of the conditional criteriond0
and the distancel i5(x1y)/2 from the vertex along the di
agonal. We thus obtain that the so-defined width of the c
rent domain wall,d5d0(3/n1d0

2) l i linearly increases with
l i and remains finite even in the limitn→`. The dependence
of u( l i ,l') on the coordinatel'5(x2y)/2 across thed line
at a fixed distancel i from the vertex is shown in Fig. 9. Fo
finite n, we obtain thatd5nl' /3l i is linear when l'
! l i(3/n)3/2 and acquires the universal dependenced
5( l' / l i)

1/3 when l'@ l i(3/n)3/2. Therefore the exact theor
predicts continuous broadening of thed line with l i , as ob-
served in magneto-optical experiments.7

In the limit n→`, we haved5( l' / l i)
1/3 for all l' , thus

the functionu( l') remains continuous atl'50, but the de-
rivative ]u/] l'} l'

22/3 diverges, in stark contrast to the jum
in u(x,y) for the Bean model. Such a ‘‘soft’’ singularity in
u(x,y) is rather difficult to reveal in numerical simulation
of nonlinear Maxwell’s equations in the coordinate spa
Therefore, forn→`, some kind of singulard lines do ap-
pear, but the behavior ofu( l i ,l') turns out to be quite dif-
ferent from the Bean model~see Fig. 9!. This difference is
due to the fact that the hodograph solutions satisfy the c
dition ¹3E50, even forn→`.

V. PLANAR DEFECT IN AN INFINITE
SUPERCONDUCTOR

Now we consider a more complicated problem of curre
flow past a thin nonconducting planar defect of length 2a in
an infinite media~Fig. 10!. This case models the stronge
current-limiting defects in HTS’s, such as high-angle gra

FIG. 9. Structure of the current domain wall for differentn
values. The dashed line shows the step-wise dependenced(x,y) of
the Bean model.
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boundaries, or microcracks. To capture the general feat
of c(h,u), we first consider the complex potentialw(z) for
the same geometry in the case of Ohmic conductors,24

w5 iE0Az22a2. ~51!

Expressingw via the complex electric field,E exp(2ıu)5
2dw/dz ~see Appendix A!, we obtain

w52
aE0

A11exp 2~h2 iu!
, ~52!

where h5 ln(E/E0). As follows from Eq. ~52!, the stream
function c5Im(w) has a singularity ath50, u5p/2 and
decays exponentially away from this point, on the scaleh
;1, u2p/2;1.

The boundary conditions forc(h,u) in the hodograph
plane follow from the symmetry properties of the curre
flow around the defect~Fig. 10!. First, we notice that the
zerox component ofJ on the central line~perpendicular to
the defect! requires the boundary conditionc(h,p/2)50.
Along the rayx50,2`,y,0, the electric field varies from
its value at infinity,E5E0, to zero at the stagnation poin
z50, in the center of the planar defect. Furthermore, the z
normal component ofJ on the defect surface also requir
c(h,0)5c(h,p)50, with E changing from 0 atz50 to
infinity at the edges (z56a). In the hodograph plane (h,u),
these boundary conditions givec50 along two vertical lines
at u50 andu5p and along the half-infinite line2`,h
,0 at u5p/2 ~Fig. 10!. Along the ray,h.0, u5p/2, we
have]uc50. Therefore the problem reduces to the solut
of the London Eq.~26! that describes a ‘‘vortex’’ at the en
of the half-infinite cut, in the center of a superconducti
film of thicknessp. The nonlinearity results in effective
‘‘screening’’ in Eq. ~26!, making h(h,u) more localized
near the end of the cut in Fig. 10. Forn@1, h(h,u) decays
exponentially over the scale;1/b!1, so the influence of
the boundary conditions onh(h,u) at u50, p becomes very

FIG. 10. Mapping of the current flow around a thin noncondu
ing strip in thexy plane~inset! onto the hodograph planehu.
es

t

ro

n

weak. In this case it is convenient to write Eq.~26! in polar
coordinates (r ,x), with the origin at the end of the cut,h
50, u5p/2:

] rr h1r 21] rh1r 22]xxh2b2h50, ~53!

where h5r cosx, u5p/21r sinx, and b is given by Eq.
~27!.

If pb→`, the functionh(r ,x) describes a vortex at th
end of the cut in an infinite media. In this case, an ex
vortex solution of Eq.~53! is

h5A2h0

e2br

Ar
cos

x

2
. ~54!

Solutions with higher order harmonics} cosmx/2, give un-
physical distributionsJ(x,y), which we do not consider here

To satisfy the boundary conditionc50 at u50,p, for
finite b, we use the method of images, by presentingc as a
superposition of the fields of alternating vortices and antiv
tices at h50, u5um5p(m11/2), wherem50,61, . . . .
This yields

c5h0(
m

~21!m
Ar m1h

r m
e2b(r m1h), ~55!

where r m5Ah21(u2um)2, and h0 is a scaling constant
which will be obtained below. Forn@1, the sum in Eq.~55!
converges very rapidly, since exp(2bp)!1, thus we can re-
tain only nearest neighbors (m50,61).

Now we come back to the general Eq.~31!, in which
B1,25fm50 by symmetry, andCm are just the Fourier co-
efficients of the functionc(E0 ,u):

Cm5
4

pE0

p/2

c~E0 ,u!sinmudu. ~56!

For n@1, c(E0 ,u) is localized aroundu5p/2, so we extend
the upper limit in Eq. ~56! to infinity and retain
only the term with m50 in Eq. ~55!. Then c(E0 ,u)
5h0 exp(2buu2p/2u)/Auu2p/2u, and Eq. ~56! gives Cm

5(4h0 /Ap)Im@exp(imp/2)/Ab2 im#, whence

C2k5h0

23/2~21!k

Apa2k

Aa2k2b, ~57!

C2k215h0

23/2~21!k

Apa2k21

Aa2k211b, ~58!

where am5Ab21m2, and k is any integer. To satisfy the
boundary conditionc(h,p/2)50 for E,E0, we take m
52k in Eq. ~31!. For E.E0, we have ]c/]u50 at u
5p/2, hencem52k21. As a result, Eq.~31! can be pre-
sented in the form

c5 (
k51

`

C2kS E

E0
D q2k

1

sin 2ku, E,E0 , ~59!

-
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c5 (
k51

`

C2k21S E0

E D uq2k21
2 u

sin~2k21!u, E.E0 .

~60!

To transformc(E,u) back onto thexy plane, we substi-
tute Eqs.~59! and~60! into Eq.~35!. SinceE50 atz50, we
obtainz(E,u) in the region ofE,E0, integrating Eqs.~35!
over E from 0 to E:

z52
eiu

J0
(
k51

`
C2k

nq2k
1 21

S E

E0
D q2k

1
21/n

3@2k cos 2ku2 inq2k
1 sin 2ku#, E,E0 . ~61!

In the region whereE.E0, we use the fact thatE5` at z
5a. Substituting Eq.~60! into Eq. ~35! and integrating over
E from ` to E, we obtain forE.E0:

z5a1
eiu

J0
(
k51

`
C2k21

nuq2k21u11 S E0

E D uq2k21
2 u11/n

3@~2k21!cos~2k21!u1 inuq2k21usin~2k21!u#.

~62!

The constanth0 calculated in Appendix B is determined b
the self-consistency conditionz(10,0)5z(20,0), which
gives forn@1

h05J0an3/4/A2p. ~63!

The current flow described by Eqs.~59!–~63! is very dif-
ferent from that of Ohmic conductors~Fig. 11!.35 The most
visible manifestation of nonlinearity is the long-range dist
bance of current streamlines on the scales much larger
the defect size, 2a. If n→`, the magnitude ofJ(x,y)5Jc
remains approximately constant everywhere, but a reg
near the central line,x50. In addition, the vectorJ changes
the direction at diverging current domain walls, reminisce
of the d lines for magnetization current flow past a cylind
cal hole in the Bean model~Fig. 4!. For finiten, the width of
the current domain walls increases as the distance from
strip increases, providing the decay of current perturbati
on the scaleL'@a.

Spatial scales of nonlinear current flow around the s
can be obtained by considering electric-field distributio
along two symmetry lines: in the plane of the defecty
50, x.a, u5p/2), and along the central line (x50, y
,0, u5p/2). In the first case, substituting Eq.~55! into Eq.
~35! at u5p/2, we obtain after integration overE:

x2a

L'

5
E0

E ln1/2~E/E0!
2

Ap

n
erfcF ln1/2S E

E0
D G , ~64!

L'5A2h0n1/4/J05an/Ap. ~65!

For n@1, the last term in Eq.~64! @proportional to the error
function erfc(x)# can be neglected. As shown in Appendix
Eq. ~64! is valid everywhere, except the very narrow vicini
of the defect edgex2a,aAn exp(2n/8), whereE→`. In
-
an

n

t

he
s

p
s

this region we can retain only one term,k51, with the
smallest exponentuq2k21

2 u11/n in the exact expansion~62!.
For n@1, this yields

E~x,0!'
E0x6

ux2au
, J~x,0!5J0S x6

ux2au D
1/n

, ~66!

wherex15uC1u/J054aAn/p for x.a, and x25uC1u/nJ0

54a/pAn for x,a. Thus the nonlinearity ofE(J) strongly

FIG. 11. Current flow around a planar defect~only one quadrant
is shown!. ~a! corresponds to a superconductor described by E
~59!–~63!, where dashed contours show extended regions of
hanced (E.1.5E0) and reduced (E,E0/2) electric field.~b! shows
current flow around the planar defect in Ohmic conductors, wh
perturbations ofJ(x,y) andE(x,y) decay on the length;a.
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suppresses the singularity inJ(x), while enhancing the sin
gularity in E(x) at x5a, as compared to the Ohmic case, f
which24

E~x,0!5
E0x

Ax22a2
, n51, x.a. ~67!

Several important results follow from Eqs.~64! and~65!,
as shown in Fig. 12. First, the nonlinearity ofE(J) consid-
erably enhances a characteristic magnitudeEm of the electric
field. SinceE;anE0 /(x2a) over a wide region,x,L' ,
near defect, we have

Em;nE0@E0 , L';na@a. ~68!

Equation~64! predicts a rather slow hyperbolic dependen
of E(x,0) with no definite length scales, so the estimate~68!
only gives a characteristic mean value ofE(x,0) in the re-
gion x;L' , whereEm@E0. HereL' quantifies a distance
from the defect whereE(x,0).anE0 /x becomes of the or-
der of the background electric fieldE0. For larger distances
x.L' , the parabolic dependenceE(x,0)}1/(x2a) gradu-
ally turns into a more rapid decay,E(x,0)2E0
;(an/x)2E0 for x@L' ~Fig. 12!.

Distributions ofE(0,y) andJ(0,y) along the central line
(x50) are also strongly affected by the nonlinearity~Fig.
13!. To calculateE(y), we setu5p/2 in Eq.~61! and obtain

uyu5y0(
k51

`
kAa2k2b

a2k~a2k2b2n21/2!
S E

E0
D a2k2b/An21/n

,

~69!

where y0525/2h0 /ApnJ054an1/4/p. The dependence
E(0,y) for n@1 is rather different from that for Ohmic con
ductors,

FIG. 12. Distributions ofEy(x) in the plane of the defect (y
50), described by Eq.~64! for n@1, and by Eq.~67! for n51. For
x2a!a, the curves have the slopes21 for n@1 and21/2 for n
51, because near the edge of the defect,E}ux2au21 and E
}ux2au21/2 for superconductors and normal metals, respectiv
The kink in ln(E/E021) atE;E0 corresponds to a crossover to th
large-x asymptotics:E2E0;nE0(a/x)2 at x;L' .
e

E~0,y!5
E0uyu

Aa21y2
, n51. ~70!

For n51, bothE(0,y)}uyu andJ(0,y)}uyu decrease linearly
near the stagnation pointy50, restoring their background
valuesE0 andJ0 on the scaley.a. By contrast, forn@1,
we observe a long-range depression ofE(0,y) on a scale
L i@a, and a cusp inJ(0,y) ~Figs. 13 and 14!.

The behavior ofE(0,y) and J(0,y) at y!a can be ob-
tained by taking the term with the minimum exponent w
k51 in Eq. ~69!, which yields forn@1

.

FIG. 13. Distribution ofE(y) along the central line,x50, de-
scribed by Eq.~69! for n@1 and by Eq.~70! for n51. The length
L i of a region of suppressedE(y) scales asaAn.

FIG. 14. Distribution ofJ(y) along the central line,x50, de-
scribed by Eq.~86! for n→` and by Eq.~82! for n51.
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J~0,y!}uyu1/3, E~0,y!}uyun/3. ~71!

For n@1, the electric field becomes exponentially small in
wide ‘‘shadow’’ regiony;aAn near the defect. Forn@1,
the length scale of variation ofE(0,y) can be obtained by
replacing the summation in Eq.~69! by integration, which
results in~see Appendix C!

E~0,y!5E0 expS 2
L i

2

y2D , L i5aAn

p
. ~72!

This formula gives a good approximation of the exact E
~69! for x.L i ~better than 1% forn.20). It follows from
Eq. ~72! that a characteristic length scaleL i of E(0,y) be-
comes much greater thana for n@1. Fory@L i , the electric
field E(0,y) approachesE0 asE(0,y)2E0.n(a/y)2E0. No-
tice that the ratioL' /L i5An@1 is in agreement with the
general result~16!. Although Eq.~72! well describesE(y)
for y.L i , it becomes invalid fory,L i , where the exponen
tial decrease ofE(y) given by Eq.~72! is very different from
the exact resultE}uyun/3. Most clearly, this difference mani
fests itself in current density distributions fory,L i : instead
of the exponential decreaseJ(y)}exp(2a2/py2) given by
Eq. ~72!, the exactJ(y) exhibits a characteristic cusp of th
form J(y)}uyu1/3 ~see Fig. 14!.

Shown in Fig. 15 is the spatial distribution of the modul
E(x,y), which reveals characteristic scales of the elect
field variation in all directions. The surface plot ofE(x,y)
also gives a good approximation for the spatial distribut
of local dissipationQ5JE near defect forn@1. In this case
variations ofJ(x,y) are week, thusQ(x,y)5J0E(x,y) to a
very good accuracy. The strong, long-range disturbance
E(x,y) near the defect results in a significant excess diss
tion, as will be shown below.

FIG. 15. Surface plot ofE(x,y) distribution around a plana
defect forn520. Shown also are the contours of constantE on the
xy plane.
.

-

n

of
a-

A. Local flux flow near sharp edges

The above solutions, obtained for the power-lawE(J),
exhibit singularities of the electric fieldE(x)}1/(x2a) near
the edges of planar defects. Such a strong enhanceme
E(x) indicates that local flux flow can be induced near t
edges, even though theE0 away from the defect is much
smaller than the crossover electric fieldEc between flux flow
and flux creep regimes. Description of the current flow n
the edges requires accounting for the full nonlinear dep
denceE(J).

First we consider current flow near a half infinite cut, f
which the solution of the hodograph Eq.~21! should satisfy
the boundary conditionsc(E,0)5c(E,p)50. This solution
of Eq. ~21! has the following simple form, valid for any
E(J):

c5
A

E
sinu, ~73!

where the constantA will be obtained below. To calculate
z(E,u), we substitute Eq.~73! into Eq. ~34! and integrate
over u, which yields

z52
A

2EJ
e2iu1 f ~E!. ~74!

Here f (E) is a real function ofE @the imaginary part van-
ishes because of the boundary conditiony(E,0)5y(E,p)
50#. The equation forf can be obtained by substituting Eq
~73! and ~74! into Eq. ~19!:

]Ef 5
A

2 S s

J2E
2

1

JE2D . ~75!

The boundary condition forf (E) follows from the fact that
the electric fieldE(x,y) becomes infinite at the end of th
cut (x5y50), as shown in Fig. 6. Then Eq.~74! gives
f (`)50, and integration of Eq.~75! yields

f ~E!5AS EE

`dE8

JE82
2

1

2JED . ~76!

Equations~73!, ~74!, and~76! give a solution of the nonlin-
ear Maxwell equations, which describe current flow arou
the half infinite cut for arbitraryJ(E). This solution also
describes approximately the current flow near the edge
cut of finite length 2a, where the scaling constantA is de-
termined by the current flow on the length of ordera away
from the edges.

To calculateA we need to match Eq.~73! with the solu-
tion of the previous section, which describes current fl
around a cut of length 2a, for the power lawJ(E). To do so
we note that forE!Ec , the power-law approximation is
valid everywhere around the cut, except small regions n
the ends. HereE@E0, so the main contribution toc comes
from the term withk51 and minimumuqk

2u in Eq. ~60!. This
yields the same universal dependencec(E,u)
5C1(E0 /E)sinu as Eq.~73!, whenceA5C1E0. Using Eqs.
~58! and ~63!, we obtain forn@1
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A5
25/2h0n3/4E0

Ap~n11!
5

4An

p
aJ0E0 . ~77!

Separating real and imaginary parts of Eq.~74!, we get

x2 f ~E!52
A

2JE
cos 2u, ~78!

y52
A

2JE
sin 2u. ~79!

Thus the contours of constantE are circles of radiusA/2JE
centered atx5 f (E), y50 ~Fig. 6!. Equation~78! and ~79!
describe the intermediate asymptotics of the current distr
tion in a small region of radiusR!a near the edge~see
below!. Away from the edge, Eqs.~78! and~79! merge with
the solution of the previous section, which describes the c
rent flow around the cut and provides the correct asympto
E→E0 at infinity.

We can further simplify Eq.~76!, using the fact thatJ(E)
in superconductors varies rather weakly, even for signific
~by several orders of magnitude! changes ofE ~see Fig. 1!.
Since the main contribution to the integral in Eq.~76! comes
from E8.E, we can therefore take the slowly varying fun
tion J(E8)'J(E) out of the integral and obtain

f 5A/2JE. ~80!

To calculate corrections tof (E) due to flux flow, we assume
that J(E)5Jc1s fE for E.Ec , wheres f is the flux flow
conductivity. Then the integration of Eq.~76! gives f
>A/2JcE1As f /2Jc

2 , if s fE/Jc!1.
The radiusR of the circular flux flow region near the edg

@E(x,y).Ec# can be obtained by settingE5Ec in Eqs.~78!
and ~79! and substituting there Eqs.~77! and ~80!:

R5
A

2JcEc
5

2aAn

p S E0

Ec
D . ~81!

Excludingu from Eqs.~78!–~80!, we obtain the electric-field
distribution near the edge:

E~x,y!5
4aAnxE0

p~x21y2!
, x.0. ~82!

The above matching of two solutions near the edge
around the strip is justified, if the radius of the flux flo
region R is small compared to the length of the strip 2a.
From Eq.~81! we find thatR!a if E0!Ec /An. This condi-
tion indicates that because of the enhancement of the ele
field near the edges, the local flux flow occurs when the b
E0 is much smaller than the crossover fieldEc . However,
there is a much stronger applicability condition of the abo
description, based on the one-term approximation of the s
in Eq. ~62!. As shown in Appendix C, the terms withk.1 in
Eq. ~62! can be neglected, ifE0!Ef;Ec exp(2n/8). For
E0@Ef , the flux flow region near the edge becomes non
cular, being essentially stretched out along thex axis @Fig.
11~a!#. An analysis of this case given in Appendix C, sho
u-

r-
s

nt

d

ric
lk

e
m

-

that asE0 increases, the size of the flux flow region along t
x axis, L' , turns out to be much larger than its size,L i ,
along they axis:

L';anE0 /Ec , L i;aAnE0 /Ec . ~83!

The condition that the flux flow region is much smaller th
a now requiresE0!Ec /n.

B. Critical state limit, n\`

The hodograph method enables us to trace the evolu
of current flow withn and see what happens in the critic
state limit, n→`. Because of the ambiguity of the Bea
model discussed in the Introduction, current flow in the tr
critical state should be first calculated for large, but finiten
values and only then the limitn→` is to be taken. We
consider this rather nontrivial limit in detail for current flow
past a planar defect, assuming thatJ05Jc at infinity. As was
shown before, the solution forJ(x,y) describes two regions
of current flow, corresponding toJ,Jc andJ.Jc . The so-
lutions forJ,Jc can be obtained from Eqs.~61! straightfor-
wardly, by taking the limitn→`. However, the solutions
with J.Jc should be handled with care, since in the Be
model, current densitiesJ5Jc10 correspond to infiniteE.

For J,Jc , andn→`, the stream functionc described by
Eq. ~61! can be presented in the following form independe
of n:

c5
8aJc

p (
k51

`

~21!kkS J

Jc
D 4k2

sin 2ku, ~84!

z52
16a

p
eiu(

k51

`
~21!kk2

4k221
S J

Jc
D 4k221

3~cos 2ku22ik sin 2ku!. ~85!

The sums in Eqs.~84! and~85! can be expressed in terms o
elliptical theta functions.37 The asymptotics ofJ(x,y) con-
siderably simplify far away from the defect, (uzu@a), as
shown in Appendix D.

From Eqs.~85!, we obtain the current distributionJ(y)
along the central linex50, u5p/2,

uyu5
16a

p (
k51

`
k2

4k221
S J

Jc
D 4k221

, ~86!

which is shown in Fig. 14. Near the stagnation point,y→0,
the functionJ(y).Jc(3py/16a)1/3 exhibits a cusp. Notice
thatJ(y) restores the bulk valueJc on the length;a, unlike
the electric fieldE(y), which varies on the scale;aAn.

The limit n→` cannot be directly taken in the regionJ
.Jc , since the sum in Eq.~62! diverges. So we first conside
the well-behaved case of large, but finite,n and calculate the
boundary between the regions of current flow withE.E0
and E,E0 in the real space@see Fig. 16~a!#. As shown in
Appendix D, the boundary is given by the curvey(x), which
for n@1 is described parametrically as follows:

x2a5h0

e2bg

Ag
, ~87!
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uyu5h0S 1

Ang
1Ag D e2bg, ~88!

whereg5p/22u. From Eqs.~87! and ~88!, we obtain that
uyu.(x2a)/An far away from the defect. In the limitn
→`, the whole region ofE.E0 reduces to a ray along thex
axis, where the electric field formally diverges. The volta
across this region,V0;E(x)Dy, is of orderE0aAn, since
E(x);E0an/(x2a), and Dy;(x2a)/An. In the limit n
→`, we should takeJ05Jc20, so that the voltage acros

FIG. 16. Current flow around the planar defect for large~a! and
infinite ~b! n values, described by Eqs.~59!–~63! and Eqs.~84! and
~85!, respectively. The dashed line in Fig. 16~a! shows the boundary
between the regions of current flow withE.E0 andE,E0. In the
limit n→`, this boundary reduces to a ray,y50, shown in~b!. The
dashed line in~b! shows thed line, which is well described by the
parabolic function~89! for x.2a.
the singular lineV0;aAnEc(J0 /Jc)
n, vanishes. Thus we

may ignore the regionE.E0, and Eqs.~84! and~85! give a
complete description of the current distribution in the tr
critical state,E50. Shown in Fig. 16~b! are the current
streamlines given by Eqs.~84!, which are practically indis-
tinguishable from those for large but finiten values in Figs.
11~a! and 16~a!. However, the dc electric field distributio
for large but finiten remains very different from the critica
state predictions. Indeed, instead of converging to a stra
line along thex axes, the region ofE.E0 in Fig. 16~b!
significantly extends along the direction of current flow ev
for n5300, which is much larger than typical values ofn
;10–50 for superconductors.

In the limit, n→`, current flow around the defect has th
singulard lines, which come out of the stagnation points a
extend to infinity as shown in Fig. 16~b!. Near the stagnation
point thed lines make a 45° angle with thex axis and have
the same structure as for current flow near the corner,
scribed by Eq.~50!. For (uzu@a), the following simple equa-
tion of thed line can be obtained, as shown in Appendix

x5y2/y` , ~89!

wherey`58a/A2pe'1.94a. Therefore, far away from the
planar defect, thed lines become parabolic, whereas the cu
rent streamlines between thed lines in Fig. 15~b! are ap-
proximately circular, to the accuracy of slowly varying log
rithmic factors ~see Appendix D!. These results are
qualitatively similar to current flow around the cylindrica
void in the Bean model~Fig. 4!. However, unlike Bean’sd
line in Fig. 4, current flow near thed lines described by exac
Eqs.~85! exhibits no discontinuity in the tangential comp
nent ofJ, thus satisfying the condition¹3E50, even in the
limit n→`.

VI. DISSIPATION NEAR PLANAR DEFECTS

In this section we obtain a general expression for the
cess total dissipationQ due to defects:

Q5E dx dy~JE2J0E0!, ~90!

where the termJ0E0 corresponds to a uniform sample with
out defects. Now we transform from integration overx andy
to the hodograph variables,E andu, and obtain~see Appen-
dix E!

Q5E
0

2p

duE
0

`

~EJ2E0J0!FE~]Ec!21
s

J
~]uc!2GdE

J2
.

~91!

Substituting Eq.~28! into Eq. ~91! and integrating overu
from 0 to 2p, we presentQ in the form

Q5p(
m

Cm
2 E

0

`

~JE2J0E0!FE~]Ef m!21
sm2

J
f m

2 GdE

J2
.

~92!

Here integration from 0 to 2p implies that current flow con-
tains all possible orientations ofJ, as it occurs for a plana
defect in an infinite superconductor.
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We apply these formulas to calculate dissipation powerQ,
caused by planar defects. We first consider a simpler cas
a semi-infinite cut in Fig. 6 and calculate the total dissipat
powerDQ inside a circular region at the edge whereE ex-
ceeds a certain electric-field threshold,Ec . Substituting Eq.
~73! into Eq. ~91!, we first integrate overu from 0 to p ~as
seen from Fig. 6, the current flow around a semi-infini
unlike planar defects of finite length, is represented by o
half of the hodograph plane, 0,u,p). Integrating then over
E, as explained in Appendix E, we obtain a simple ex
result,

DQ5pA2/2JcEc , ~93!

valid for anyJ-E relation. For instance, ifEc is chosen in the
flux creep region,DQ is unaffected by the flux flow portion
of E(J).

Now we calculateQ for a planar defect of length 2a for
the power-lawE(J) characteristic. Substituting Eq.~23! into
Eq. ~91! and integrating overE, we obtain

Q5
pE0

2J0
~n11! (

m51

` F uq2m21
2 uC2m21

2

nuq2m21
2 u11

2
q2m

1 C2m
2

nq2m
1 21

G ,

~94!

where the subscripts1 and 2 corresponds to the signs i
front of the square root in Eq.~32!. The positive terms, pro
portional toC2m21

2 in Eq. ~94!, represent an excess dissip
tion due to enhanced electric field around a defect, while
negative terms, proportional toC2m

2 , account for reduced
dissipation in the stagnation regions. For Ohmic conduct
these two opposite contributions exactly cancel each ot
giving Q50 for n51 ~see Appendix E!. For n@1, the spa-
tial distribution of Joule dissipationJE is similar toE(x,y)
shown in Fig. 15. In this case, there appears an excess d
pation (Q.0), since the contribution toQ from the electric-
field enhancement along thex axis ~on the scaleL';na) is
much greater than the negative contribution of the stagna
regions~on the scaleL i;Ana). Substituting Eqs.~58! for
Cm , into Eq. ~94! and evaluating the sum as explained
Appendix E, we obtain

Q5J0E0a2~n21!An. ~95!

For n@1, Eq. ~95! is an exact asymptotics ofQ(n), which
approximates Eq.~94! to an accuracy better than 1% forn
.10 and 6% for 5,n,10. The physical meaning of Eq
~95! becomes more transparent, by presentingQ in the form
Q.pL iJ0*a

`(E2E0)dx, which is just the excess dissipatio
in the region of substantial enhancement ofE(r ) by the de-
fect. Using Eqs. ~64! and ~65! for E(x), we obtain
Q;pJ0E0L iL' , which gives the correct leading term
Q.E0J0a2n3/2.

VII. DISCUSSION

The analytical results obtained in this paper reveal ess
tial features of nonlinear 2D current flow, which can affe
the current-carrying capability and macroscopic electro
namics of superconductors. This influence mostly res
from the fact that planar obstacles cause strong enhance
and long-range decay of electric-field disturbances. Th
of
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effects are important for applications, in particular, ac loss
critical state stability, and current flow in thin-film superco
ducting circuits. The use of the hodograph technique enab
us to address such characteristics of nonlinear current fl
as orientational current flow domains and the structure
current domain walls. In addition, we were able to trace
evolution of current distributions withn and a nonanalytic
crossover to the critical state limit,n→`, when singulard
lines emerge.

The fact that a planar obstacle of sizea greatly enhances
electric-field disturbances over scalesL';an perpendicular
to current flow orL i;aAn along current flow results in
long-range interaction between defects, and strong effec
the sample geometry. Indeed, even a sparse network of
nar defects can substantially reduce the effective curr
carrying cross section, if the mean spacing between the
fects is smaller thanL;an. For typical values ofn;30,
such a nonlinear blockage of transport current by defects
occur at rather small concentration of obstacles, which
cupy only few percent of the geometrical cross section o
superconductor. This effect can have important implicatio
for current percolation through arrays of planar defects, s
as grain boundaries in HTS polyscrystals~Fig. 2!. It also
contributes to multiple current-limiting mechanisms in HT
conductors, such as Bi tapes and biaxially textur
YBa2Cu3O7 coated conductors.38 For instance, a microcrack
in a film of thicknessd ~Fig. 3!, can cause a strong local pea
of E(x) in YBCO coated conductor, even for rather sm
defectsa.d/n!1. In turn, such local peaks of voltage an
dissipation change the global current-voltage character
of the whole conductor, similar to the effect of macroscop
random inhomogeneities.12 A detailed analysis of the signifi
cant finite-size effects for current flow in restricted geo
etries shown in Fig. 3 will be given elsewhere.25

The features of nonlinear current flow discussed ab
can be observed by the magneto-optical~MO! technique,
which indeed revealed long-range disturbances of the nor
component of H(x,y) around macroscopic defects i
HTS’s.7,9 For instance, characteristic flamelike shapes of
magnetic-flux disturbances around defects on MO images
similar to the contours of constantE shown in Figs. 11 and
15. By measuring the scalesL' and L i of magnetic-flux
disturbance, one can extract both then value,n.(L' /L i)

2,
and the size of the defect,a;L' /n, even if the defect is
smaller than the MO resolution~usually.50–10 mm). Ex-
tensive stagnation regions (L i;aAn) of exponentially small
electric field constitute another feature of nonlinear curr
flow around planar defects@Fig. 11~a!# which could be ob-
served in MO experiments. This nonlinear ‘‘shadow effec
manifests itself in the distribution of flux velocities,v5@H0
3E#/H0

2, in a strong magnetic fieldH0 when vortices move
along equipotential lines,w(x,y)5const. Vortex velocityv
sharply increases in the regions of enhanced electric fi
near the edges of the planar defect, which thus becom
flow channel for magnetic flux@see Figs. 11~a! and 15#.
These flux jets are sandwiched between two macrosc
stagnation regions of nearly motionless flux which res
from the geometry of the current flow and the strong nonl
earity of E(J), but are not due to enhanced flux pinning.
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The excess dissipationQ caused by defects is anoth
important feature of the strong nonlinearity ofE(J). Super-
conducting materials, and especially HTS’s, contain ma
macroscopic current-limiting defects~microcracks and high-
angle grain boundaries!,6 which contribute significantly to
the overall ac losses and dissipation. As an example,
consider a sparse array of planar defects of size;a spaced
by l @a. Then we obtain from Eq.~95! that the defects resul
in the excess dissipation power;n3/2(a/ l )2J0E0 per unit
volume, which becomes of the order of the background b
dissipation powerJ0E0, if l ,an3/4. Therefore the overal
dissipation will be dominated by defects, if they occupy
rather small fraction;n23/4 of the geometrical cross sectio
of the sample~few percent for the typicaln values;20–30
for superconductors!. The excess dissipation due to defec
can also trigger local thermal instabilities in high-Jc
superconductors.36 Such instabilities develop mostly in th
regions of enhanced heat generationE.E0 in Figs. 11~a!
and 15, which dominate the overallQ. Another type of ori-
entational current instabilities can be caused by the high
isotropy of HTS’s,21 when current is forced to flow along th
c axis by microcracks8 or a ‘‘brick-wall’’ structure of in-
plane tilt grain boundaries.39
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APPENDIX A: ANALYTIC PROPERTIES OF THE
COMPLEX POTENTIAL

2D current flow in Ohmic conductors is described by t
complex potential

w~z!5w2 irc, ~A1!

which is an analytic function ofz5x1 iy . The analyticity of
w(z) greatly simplifies the calculation of 2D current distr
butions, allowing exact solutions for the geometries shown
Fig. 3 to be obtained using conformal mapping.32 The con-
dition thatw(z) is an analytic function can be written in th
form

dw

dz̄
50, ~A2!

where the bar denotes complex conjugate, and the com
differentiation of any functionf (z)5u1 iv is defined as34

d f

dz̄
5

1

2 S ]u

]x
2

]v
]y D1

i

2 S ]v
]x

1
]u

]yD . ~A3!

The fact thatd f /dz̄50 for any analytic functionf (z) fol-
lows from the Cauchy-Riemann conditions,]xu5]yv, ]yu
52]xv. The electric-field distribution,Ex1 iEy5E exp(iu),
can be calculated from

Ee2 iu52
dw

dz
. ~A4!
y

e

lk

n-

F

n

ex

Another feature of Ohmic conductors is that the comp
potentialw(u) is also an analytic function in the hodograp
plane,u5h2 iu, whereh5 ln(E/E0).

In nonlinear conductors,r depends onE, so neitherw(z)
nor w(u) are analytic functions. We consider properties ofw
for the power lawE(J), for which Eqs.~20! can be written in
the following symmetric form:

]hw5~r0 /An!e2bh]uc, ~A5!

]uw52~r0 /An!e2bh]hc, ~A6!

where b5(n21)/2An, h5n21/2 ln(E/E0), and r05E0 /J0.
Defining new functions, h15w exp(2bh) and h2

5(An/r0)c exp(bh), we present Eqs.~A5! and ~A6! in the
form

]hh12]uh252bh1 , ~A7!

]uh11]hh15bh2 . ~A8!

These equations can be combined into a single comp
equation for the effective complex potential,w05h12 ih2.
Using complex differentiation~A3! with respect tou5h
2 iu, we obtain the equation forw0 in the form of a first-
order Carleman equation,

dw0

dū
52

b

2
w̄0 , ~A9!

which describes generalized analytic functions.33 Therefore
calculations of current flow in nonlinear conductors can
formulated in terms of generalized analytic functions for t
effective potentialw0(u) in the hodograph plane,u5h
2 iu. This fact enables one to calculate 2D nonlinear curr
flow by constructing an appropriate generalized analyti
function,22 using methods which have been developed in
literature.33 Expressingw0 in terms ofw andc, we obtain

w05we2bh2
ir0

An
ebhc. ~A10!

For n51, the effective potentialw0 reduces tow.

APPENDIX B: NORMALIZATION CONSTANT

To calculateh0, we equate Eqs.~61! and ~62! to obtain
the self-consistency conditionz(10,0)5z(20,0), whence

a52
1

J0An
(
k51

` S 2k

uk
C2k1

2k21

pk
C2k21D . ~B1!

It is convenient to write Eq.~B1! ash052aJ0 /I , whereI is
obtained from Eqs.~57! and ~58! in the form

I 5
23/2

Apn
(

m51

` F2m~21!mAa2m2b

~4m221!a2m
S a2m1b1

1

An
D

1
~2m21!~21!mAa2m211b

a2m21~a2m211b11/An!
G . ~B2!
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For n@1, this sum is dominated by the first term in th
square brackets, where 1/An in (a2m1b11/An) can be ne-
glected. ThenI reduces to

I 5
23/2

Apn
(

m51

`

~21!mS Aa2m1b

~4m221!a2m

1
Aa2m1b

a2m
D .

~B3!

The first part of this sum,I 1, is rapidly converging overm
;1, so the slowly varying factorAa2m1b/a2m can be re-
placed by its constant value atm51. Then the summation
yields

I 152
p22

Apnb
. ~B4!

The second part ofI is an expression of the formI 2

5(m51
` (21)mFm , whereFm , given by the second term in

the square brackets, decreases slowly withm for n@1. To
turn I 2 into a rapidly converging series, we write

I 25 (
m51

`

~F2m2F2m21!5 (
m51

`

(
k51

`
1

2kk!

dkF2m

dmk
, ~B5!

where Fm is nearly constant form,b, and decreases a
1/Am for m.b. Therefore each differentiation ofFm overm
brings a small factor;1/An, so the main contribution toI 2
comes from the term withk51. SincedFm /dm is a slow
function of m, we can replace summation in Eq.~B5! by
integration using the Poisson-Euler formula34 written in the
form

(
m51

`

f ~m!'E
0

`

f ~x!dx2
f ~0!

2
2

]mf ~0!

12
, ~B6!

where f m50.5dFm /dm. SinceFm is a function ofm2, the
second term in the right-hand side of Eq.~B6! vanishes, and
the last term;b25/4!1 is negligible. As a result, the sum
~B6! equals2F0/2, thus

I 252
2

Apnb
. ~B7!

Combining I 1 and I 2, we obtain Eq.~63!, which approxi-
mates Eq.~B1! to the accuracy better than 1% forn.5.

APPENDIX C: ASYMPTOTICS OF z„E,u…

To sum up Eq.~69! at n@1, we consider the region o
x,aAn, whereE!E0. The convergence of the sum is the
mostly determined by the factors (E0 /E)lk, where lk

5(a2k2b)/An21/n. In this case the main contribution t
Eq. ~69! for n@1 comes from the regionk,b, where the
slowly varying factora2k can be taken out of the sum atk
51. Thena2k2b'2k2/b, lk'4k2/n, and Eq.~69! reduces
to

y5
4a

p (
k51

` S E

E0
D 4k2/n

. ~C1!
For n@1, the sum in Eq.~C1! can be evaluated with the us
of Eq. ~B6!, giving @pn/ ln(E/E0)#

1/2/4. As a result, we arrive
at Eq.~72!. This approach gives the intermediate asymptot
of E(0,y) at y;L i . The behaviors ofE(0,y) for y→`
should be obtained in a different way, since forE→E0, the
sum in Eq.~69! diverges. The main contribution then com
from k@b, and Eq.~69! becomes

y5
a

pA2n1/4 (
k51

`
1

Ak
S E

E0
D 2k/An

. ~C2!

For n@1, evaluation of this sum with the use of Eq.~B6!,
gives y5aAn/p ln21/2(E0 /E). This yields the same
asymptotic behavior ofE(0,y)2E05E0(L i /y)2 as Eq.~72!.

To calculate the distribution ofE(x,y) near the edges, we
write Eq. ~62! in the form

z2a5
23/2h0eiu

ApJ0
(
k51

`
~21!kAa2k211b

pka2k21
S E0

E D sk

3F2k21

An
cos~2k21!u

1 i ~a2k211b!sin~2k21!uG , ~C3!

wheresk5uq2k21u11/n. Near the edges, whereE@E0, the
convergence of this sum is determined by the small fac
(E0 /E)sk5exp@2sk ln(E/E0)# at (2k21)2,n. There are
two characteristic domains. The first one is very close to
edge (E→`), so that the sum~C3! is dominated by the term
k51, for which the exponents15111/n is minimum. In
this case the term withk52 is negligible, that is, exp@2(s2
2s1)ln(E/E0)#!1. For n@1, we gets25119/n, thus the
sum in Eq.~C3! is determined by only one term withk51, if
(8/n)ln(E/E0).1. This criterion defines the size of the re
gion, r c;aAn exp(2n/8), at the edge, where the one-ter
approximation holds.

Since r c decreases exponentially withn, there is a wide
region near the planar defect where ln(E/E0)@1, but the
terms withk.1 in Eq.~C3! cannot be neglected. In the larg
regionr c!x!an, whereE@E0, the convergence of the sum
~C3! is mostly determined by the factor (E0 /E)sk, while the
much weakerk dependence ofa2k21 can be neglected. In
this case we can replacea2k21'b and expandsk'1
1(2k21)2/n. As a result, Eq.~C3! for n@1 reduces to

z2a5
25/2h0eiu

Apn1/4J0
S E0

E D S I 8

n
1I D , ~C4!

I ~u,t!5 (
k51

`

~21!ke2t(2k21)2 sin~2k21!u. ~C5!

Heret5n21 ln(E/E0), I 85]uI , andI (u,t) can be expressed
in terms of elliptical theta-functions.37 Notice that I (u,t)
satisfies the ‘‘diffusion’’ equation

]tI 5]uuI . ~C6!
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Separating real and imaginary parts of Eq.~C4!, we express
x(u,t) andy(u,t) in terms ofI (u,t):

x2a5 l @~ I 8/n!cosu2I sinu#, ~C7!

y5 l @~ I 8/n!sinu1I cosu#, ~C8!

where l 5(4aAn/p)(E0 /Ec). To calculateI (u,t), we mul-
tiply Eq. ~C5! by sin(2m21)u and integrate from 0 top/2:

E
0

p/2

I cos~2m21!gdg5
p

4
e2(2m21)2t, ~C9!

whereg5p/22u. We consider the wide region ofE, where
ln(E/E0).1, but t!1. The main contribution to the integra
in Eq. ~C9! then comes fromg!1, so we can extend th
upper integration limit tò and obtain

I ~g,t!5
Ap

4At
e2g2/4t. ~C10!

This is a well-known solution of the diffusion Eq.~C6!,
which describes the evolution ofI (g,t) in an infinite 1D
media after applying a pulse}d(g)d(t).34

Substituting Eq.~C10! into Eqs.~C7! and~C8! and using
the fact thatg!1, we obtain the distributionE(x,y) in the
following parametric form:

x2a5 l I , y5@111/2 ln~E/E0!# lgI . ~C11!

Excluding g from Eq. ~C11!, we obtain contours of equa
E(x,y)5Ec :

uyu5g~x2a!ln1/2
L'

x2a
, ~C12!

g5
2

An
ln1/2~Ec /E0!S 11

1

2 ln~Ec /E0! D , ~C13!

L'5
an

Ap ln1/2~Ec /E0!
S E0

Ec
D . ~C14!

The contoury(x) shown in Fig. 11~a! is quite different from
the circular flux flow regions of thek51 approximation.
Here the lengthL' of the domain withE.Ec along thex
axis becomes much larger than its sizeL i along they axis.
Indeed, the maximum ofy(x)5L i occurs atx5L' /Ae. Sub-
stituting this into Eq.~C12!, we obtain

L i5aA2n

peF11
1

2 ln~Ec /E0!G S E0

Ec
D . ~C15!

To the accuracy of slowly varying logarithmic terms, w
again arrive at the universal relationL';AnLi .

APPENDIX D: CRITICAL STATE LIMIT

To calculate the boundary (h50) between the region
E,E0 andE.E0, we integrate Eq.~34!, written in the form

]gx52~cosg]gc1n21/2sing]hc!e2h/An/J0 , ~D1!

]gy5~sing]gc2n21/2cosg]hc!e2h/An/J0 , ~D2!
whereg5p/22u, and

c5
h0e2bAh21g22bh

Ah21g2
@Ah21g21h#1/2. ~D3!

After differentiating Eq.~D3! in Eqs.~D1! and ~D2!, we set
h50. From the form ofc for b@1, it follows that the main
contribution in Eqs.~D1! and ~D2!, comes fromg!1. This
allows us to expand sing and cosg in g, retaining only linear
and quadratic terms. Then integration of Eqs.~D1! and~D2!
from g to `, with the boundary conditionsx(`)5a,y(`)
50, yields

x5a1
h0e2bg

J0Ag
2

h0A2p

J0n3/4
erfcAbg, ~D4!

y5
h0e2bg

J0
S 1

Ang
1Ag D 1

3A2ph0

4J0n5/4
erfcAbg. ~D5!

These formulas determine parametrically the boundaryy(x)
of the region of enhanced dissipation (E.E0) around the
planar defect. Forn@1, the terms proportional to the erro
function erfc(x) can be neglected, which gives Eqs.~87! and
~88!.

Now we calculateJ(x,y) far away from the defect. To
sum up Eq.~85!, we present it in the form

z52beiu~ I 01 i I 08!, ~D6!

I 05 (
k51

`
~21!kk2

k221/4
e2(4k221)t cos 2ku, ~D7!

whereI 085]uI 0 , b54a/p, andt5 ln(Jc /J).0. We consider
J(x,y) for uzu@a, whereJ→Jc , thust!1. In this caseI 0
reduces to

I 05 (
k51

`

e24k2t cos 2kg1
1

4 (
k51

`
cos 2kg

k221/4
, ~D8!

where the complimentary angleg(x,y)5p/22u is small
~see Fig. 15!. The second sum is rapidly converging, so w
omitted the factore24k2t, inessential fort!1. The first sum
is calculated using Eq.~B6!, and the second sum equals
2p sing. Hence

I 05
Ap

4At
e2g2/4t2

p

4
sing, ~D9!

I 085
Apg

8t3/2
e2g2/4t1

p

4
cosg. ~D10!

Combining Eqs.~D6! and ~D10!, we obtain the following
parametric description ofz(t,g):

x52b~singI 02cosgI 08!, ~D11!

y52b~cosgI 01singI 08!. ~D12!
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To reveal thed lines, we calculate the functiong(x,y)
from Eqs.~D11! and ~D12!, expressingt for x@a,y,0 as
follows:

t52
g@x sing1y cosg#

2@x cosg2y sing#
. ~D13!

Substituting Eq.~D13! into Eqs.~D11! and ~D12!, and ex-
panding ing!1, we obtain the following relation:

8x2

pb2
5

~11gj!

~j2g!3g
expF2

g~11gj!

j2g G , ~D14!

which determinesg(x,y) as a function ofx and j52y/x.
Now we find the position of thed line, on which the spatia
derivatives ofg(x,y) diverge. Considering Eq.~D14! as an
explicit expression of the formx5x(j,g), we conclude that
]gx50, that is, the gradient ofg along the liney52jx
diverges on thed line. Differentiating Eq.~D14! over g for
j5const, we obtain that the condition]gx50 givesg5j/2.
Substituting this back into Eq.~D14!, we arrive at Eq.~89!.

APPENDIX E: DISSIPATION

To transform from integration overdxdy to the
hodograph variables in Eq.~90!, we write dxdy5WdudE,
where the Jacobian,W5]ux]Ey2]uy]Ex, is calculated us-
ing Eqs.~34! and ~35!. This yields

W5
1

J2 S E~]Ec!21
s

J
~]uc!2D . ~E1!

The valueQ does not change sign for any isotropicJ(E)
with a positive differential conductivity,s5]J/]E. This fact
makes the hodograph transformation a single-valued pr
dure, that is, a given solutionc(E,u) corresponds uniquely
to physical distributions ofE andJ in the coordinate spac
xy.

To calculateDQ in the flux flow region near the edge o
a half infinite cut, we substitutec5A sinu/E in Eq. ~91! and
integrate overu from 0 to p:

DQ5
p

2
A2E

Ec

` S 11
sE

J D dE

JE2
. ~E2!

Integrating the second term in the brackets by parts, we
tain

E
Ec

` sdE

J2E
5

1

EcJc
2E

Ec

` dE

JE2
. ~E3!

After substituting Eq.~E3! into Eq. ~E2!, the integral terms
cancel out and we arrive at Eq.~93!.

To calculateQ for a planar defect, we present Eq.~94! in
the form

Q5
4E0h0

2

J0
S 11

1

nD (
m51

` S ~a2m211b!2

a2m21
2 ~a2m211b11/An!

2
~a2m2b!2

a2m
2 ~a2m2b21/An!

D . ~E4!
e-

b-

For n@1, the terms in the brackets decay rather slowly w
m, so the main contribution to the sum comes fromm@1. In
this case we can neglect 1/An in the denominators and re
write Eq. ~E4! in the form

Q5
4E0h0

2

J0
(

m51

` F S 1

a2m21
2

1

a2m
D1bS 1

a2m21
2

1
1

a2m
2 D G ,

~E5!

where am5Am21b2. Expanding 1/a2m21'1/a2m
20.5]m(1/a2m) in the first parentheses and using Eule
formula ~B6!, we obtain that the sum of the first term in th
square brackets equals 1/2a051/2b. The summation of the
second term in the square brackets yieldsp/221/2b. Com-
bining these two contributions, we obtain

Q52pE0h0
2/J05a2J0E0n3/2, ~E6!

where we used Eq.~63! for h0. Equation~E6! gives the lead-
ing term in the expansion ofQ(n) in n@1. In Eq. ~95! we
also took into account the next term of ordera2J0E0An,
obtained from the best fit of the full dependenceQ(n) given
by Eq.~E4!. Eq.~95! not only well describes the exactQ(n),
but also provides the correct limitQ50 for n51.

In conclusion, we calculateQ for a planar defect in
Ohmic conductors (n51). It is instructive to do so using Eq
~51!, which gives the complex electric fieldE exp(2iu)
52dw/dz in the form

Ee2 iu52 i
zE0

Az22a2
. ~E7!

Substituting Eq.~E7! into Eq. ~90!, we obtain

Q

Q0
5E

0

2p

daE
0

rcF r2

Ar422r2 cos 2a11
21Grdr,

~E8!

whereQ05sE0
2a2, x5ar cosa, y5ar sina. To avoid the

formally diverging integral in the brackets, we introduce
auxiliary constantrc@1 and obtain after integration overr
in the limit rc→`:

Q5Q0E
0

p

@cos 2a ln~2rc
2/e!

2cos 2a ln~12cos 2a!21#da. ~E9!

The term proportional to lnrc vanishes after integration ove
a. Integrating the second term in Eq.~E9! by parts, we ob-
tain that it cancels the contribution from the last term in t
integrand, givingQ50. Thus a planar defect in an infinit
Ohmic conductor does not cause any excess overall diss
tion. In this case excess dissipation at the edges is exa
compensated by reduced dissipation in stagnation region
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~1990!; A. Gurevich, H. Küpfer, and C. Keller, Europhys. Lett
15, 789 ~1991!.

14J. Straley and S. Kenkel, Phys. Rev. B29, 6299~1984!; E. Hin-
richsen, S. Roux, and A. Hansen, Physica C167, 433 ~1990!;
P.L. Leath and W. Xia, Phys. Rev. B44, 9619 ~1991!; R.
Haslinger and R. Joynt,ibid. 61, 4206~2000!.

15A. Goyal, E.D. Specht, D.M. Kroeger, and T.A. Manson, Ap
Phys. Lett.68, 711 ~1996!; E.D. Specht, A. Goyal, and D.M
Kroeger, Phys. Rev. B53, 3585~1996!.

16V.M. Vinokur, M.V. Feigelman, and V.B. Geshkenbein, Phy
Rev. Lett.67, 915 ~1991!.

17E.H. Brandt, Phys. Rev. B54, 3530~1996!; 54, 4246~1996!; 55,
14 513 ~1997!; 58, 6506 ~1998!; 58, 6523 ~1998!; 59, 3369
~1999!.

18C.P. Bean, Rev. Mod. Phys.36, 31 ~1964!.
19A.M. Campbell and J.E. Evetts, Adv. Phys.21, 1191~1972!.
.

.

-

.

20Th. Schuster, H. Kuhn, and M.V. Indenbom, Phys. Rev. B52,
15 621~1995!.

21A. Gurevich, Phys. Rev. B46, 3638~1992!.
22A. Gurevich and J. McDonald, Phys. Rev. Lett.81, 2546~1998!.
23S.A. Chaplygin,On Gas Jets~Brown University, Providence, RI,

1944!; L.I. Sedov,Two-Dimensional Problems in Hydrodynam
ics and Aerodynamics~Interscience, New York, 1965!.

24L.D. Landau and E.M. Lifshits,Fluid Mechanics~Pergamon, Ox-
ford, 1987!; L.M. Milne-Thompson,Theoretical Aerodynamics
~Dover, New York, 1973!.

25M. Friesen and A. Gurevich~unpublished!.
26K. Seeger, Semiconductor Physics~Springer-Verlag, Berlin,

1982!.
27W.T. Norris, J. Phys. D3, 489 ~1970!.
28J.R. Clem, R.P. Huebener, and D.E. Gallus, J. Low Temp. P

12, 449 ~1973!.
29E. Zeldov, A.I. Larkin, V.B. Geshkenbein, M. Konczykowski, D

Mayer, B. Khaykovich, V.M. Vinokur, and H. Shtrikman, Phy
Rev. Lett.73, 1428~1994!.

30E. Zeldov, J.R. Clem, M. McElfresh, and M. Darwin, Phys. Re
B 49, 9802~1994!.

31E.H. Brandt and M.V. Indenbom, Phys. Rev. B48, 12 893~1994!.
32L.D. Landau and E.M. Lifshits,Electrodynamics of Continuou

Media, Theoretical Physics Vol. VIII~Pergamon, Oxford, 1963!.
33I.N. Vekua, Generalized Analytical Functions~Pergamon, Lon-

don, 1962!.
34P.M. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!.
35Equations~57!–~63! were obtained forn@1, so they do not re-

duce to the Ohmic case (n51), described by Eqs.~51! and~52!.
However the discrepancy between Eqs.~57!–~63! and the exact
solution becomes exponentially small forn.3, since the accu-
racy of Eqs.~57!–~63! is of order exp(2pb)!1. The discrep-
ancy manifests itself as a mismatch of two exact hodogr
solutions c1(x,y) and c2(x,y) at the contourE(x,y)5E0,
which separates the regions of current flow withE.E0 and E
,E0, respectively. This mismatch is visible atn,3, but be-
comes undetectable in Figs. 11–16, which correspond ton.3.

36A.V. Gurevich, R.G. Mints, and A.L. Rakhmanov,The Physics of
Composite Superconductors~Begell House, New York, 1997!.

37Handbook of Mathematical Functions, Applied Mathematics Se-
ries Vol. 55, edited by M. Abramowitz and I.R. Stegun~Na-
tional Bureau of Standards, Washington, DC, 1964!.

38X.D. Wu, S.R. Foltyn, P.N. Arendt, W.R. Blumenthal, I.H
Campbell, J.D. Cotton, J.Y. Coulter, W.L. Hults, M.P. Male
H.F. Safar, and J.L. Smith, Appl. Phys. Lett.67, 2397 ~1995!;
D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M
Kroeger, E.O. Specht, Q. He, B. Saffian, M. Paranthaman, C
Klabunde, D.F. Lee, B.C. Sales, and F.A. List, Science274, 755
~1996!.

39L.N. Bulaevskii, J.R. Clem, L.I. Glazman, and A.P. Malozemo
Phys. Rev. B45, 2545~1992!.


