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Nonlinear transport current flow in superconductors with planar obstacles
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We present a detailed description of a hodograph method, which enables us to calculate analytically the
two-dimensional distributions of the electric fiel{r) and transport current densifyr) in superconductors,
taking into account their highly nonline&-J characteristics. The method gives a unique soluig¢n) of
nonlinear steady-state Maxwell's equations for given boundary conditions, showing applicability limits of the
critical state model and pointing out where it breaks down. The nonlinear problem of calculafi@r) ol the
hodograph method reduces to solvingjreear equation for the electric potentigl(E), or the current stream
function (E) as a function ofE. For the power-law characteristiés=E.(J/J.)", calculation ofE(r) and
J(r) can be mapped onto solutions of the London equation with the inverse screening [eadth
—1)/2yn in the hodograph spacé&(E,). We give general methods of solving the hodograph equations and
obtain closed-form analytical solutions for particular current flows. The method is applied to calculate distri-
butions of E(r) and dissipation in superconductors with macroscopic planar defects, such as high-angle grain
boundaries, microcracks, etc. Current patterns around planar obstacles are shown to break up into domains of
different orientations of, separated by current domain walls. We calculate the structure of the current domain
walls, whose width depends both on the geometry of current flow and the expan€hése domain walls
differ from the current discontinuity lines of the Bean model even in the limitec. We obtained a solution
for current flow past a planar defect of length th an infinite superconductor and showed that the defect
causes strong local electric-field enhancement and long-range disturbarie@g oh length scales | ~an
>a and LH~a\/ﬁ>a perpendicular and parallel to the mean current flow, respectively. This solution also
exhibits large stagnation regions of magnetic flux near planar defects, universal distributidfr$ of the
critical state limit,n—o0, and local flux flow regions near the edges. We calculate Joule heating for nonlinear
current flow and show that planar defects cause significant excess dissipation, which affects ac losses and local
thermal instabilities in superconductors.

[. INTRODUCTION enable one to calculate the evolution of nonuniform distribu-
tions of E(r,t) andB(r,t) and thus to describe macroscopic
Macroscopic electrodynamics of type-Il superconductorsnagnetic, transport, and relaxation phenomena in
in the mixed state is determined by the pinning and thermallysuperconductors:*
activated creep of vortex structures, which gives rise to a A type-ll superconductor in the mixed state exhibits a
weakly dissipative critical current, irreversible magnetiza-highly nonlinearE(J) dependence below a critical current
tion, and slow current relaxatidiflux creep. These phenom- densityJ., which separates regimes of flux flow &tJ,
ena manifest themselves on length scales much larger thamd flux creep atl<J. (Fig. 1). The crucial behavior of
the Larkin pinning correlation length., on which the criti-  E(J) at J<J. is determined by thermally activated vortex
cal state is formed.On these macroscopic scales L., the  creep:
only material characteristic which determines the behavior of
superconductors in electromagnetic fields is the nonlinear lo-
cal relation between the electric fidldand current density, E(J)=E, ex;{ _

U(J,T,B)} 3

T

E
J—EJ(E). (1)

HereE(r,t) andJ(r,t) refer to the macroscopic electric field
and current density averaged over all relevant intrinsic scales
of pinned vortex structure, such as intervortex spacing, pin-
ning correlation lengths, etc. We consider an isotrdpid
relation (1), which, for example, models the nearly two-
dimensional(2D) current flow in theab plane of layered
high-temperature superconductofslTS’s). Equation (1), E
combined with the Maxwell equations 5

B=—-VXE, VXH=J(E), (2 FIG. 1. E-J characteristic of a type-Il superconductor.
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FIG. 2. Percolative current flow in polycrystals. Current-
blocking high-angle grain boundaries are shown as solid lines, |—
while low-angle grain boundaries, transparent to current flow, are I

shown as dashed lines. Current lead © Mcrobridge @

whereU(J,T,B) is an activation barrier, which depends on o )
J, the temperatur@&, and the magnetic inductioB, HereE, FIG. 3. Characteristic cases of the 2D nonlinear current flow
is a conditional electric-field criterion, which defines an ap-S°lvable by the hodograph method.

parentJ; by the relationU(J.,T,B)=0. For instance, vor-
tex glass/collective creep modklgive a divergent depen-
denceU=U_ (J./J)*—1] at smallJ<J., which has been
observed in transport and magnetization measurements
HTS’s3 Similar though less singular logarithmic dependenc
U=U,In(J;/J) corresponds to power-lak-J characteris-
tics, E=E,(J/J.)" with n(T,B)=U_./T~3-30. It is a good
approximation of the observeH(J) for type-1l supercon-
ductors, especially for layered Bi-based HT®'s.

ductors, thin-film superconducting electronic circuits and
HTS conductors for power applications. For instance, Fig.
a) shows a superconducting film with a strong current-
i‘miting planar defect (microcrack or high angle grain
oundary. The case in Fig. @ is also mathematically
analogous to that in Fig.(B), which shows current flow
through a faceted grain boundary with alternating segments
of differentJ. values. Other common geometries include the
If the distribution ofJ(r) varies on spatial scales greater f[:#e:rrenrilérlgjber %OE[OFrim?g)e]}t'fnfg)l(é?slssfosrngfs'% EEC)S] azngn d
thanL., a superconductor can be regarded as a highly noms ™ o el t'gf' Ig. d : ¢ densit inh gs.
linear, nonuniform conductor with a local characteristic ™’ € electric Tield and current density aré innomogeneous
on macroscopic scales and have singularities near the sharp

E(J,r). For example, Eqgs(l) and (2) describe nonlinear . 5]
transport in superconductors with macroscopic obstacles oerdges and comers. Calculations of the gl character-

. . . . ~.~" _lstics then require solving Egsl) and (2).
percolative current flow in HTS polycrystals with grain sizes : . -
>L. (Fig. 2. This case is important for understanding The highly nonlinear Eqd1) and(2) represent a difficult

current-limiting mechanisms of HTS'’s, which, in addition to mathematical problem, Wh'.Ch has, to our knowledge, not so
far been addressed analytically, except for a few results on

grain boundaries, often contain other macroscopic defectsID flux penetratiotf and flux creen dvnamids Extensive
such as second phase precipitates, microcracks, and regions P pdy

o N 6 - nhumerical studies of the dynamics of flux penetration by
of local nonstomhlometw on scales of order 10 10,(_261. Brandt’ have revealed many important features of nonlinear
Thgse cur_ren_t—blqcklng obstacles cause macrosc_:opl_cally NOKx dynamics in superconductors, such as narrow domain
uniform distributions of transport and magnetization cur- ’

rents, as revealed by magneto-optical imaging of HTS'S. walls separating regions with different directions of current

In turn. even comparatively weak inhomogeneities of Iocalﬂow’ nonlocal flux diffusion in thin samples, the influence of
' P Y 9 eometrical barrier, etc. On the other hand, the problem of

%]I(erk)j Cg?r)Czljseisx_%?;?%al%égﬁnr%;igﬁm:;aﬁf t:e Iilsglm D steady-state transport current flow has remained un-
’ ’ y 9e g solved, because even numerical simulations of Etjsand

characteristics of superconductdi&, B, T) observed in ex-  (2) pecome exceedingly time consuming as the nonlinearity
periment. Thus the behavior dfE,B,T) can be different of E(J) increases. For large values, even weak spatial
from local characteristicsl) determined by thermally acti- variations ofJ(r) around planar defects in Fig. 2 produce
vated vortex dynamics and pinning on mesoscopic scalegxponentially large variations of electric fieldE(r)
L<L.. For instance, the relation between gloBéE,B,T) =E[J(r)/3.]". This fact along with singularities ad(r)
characteristics and local(E,r) is rather complex, even in and E(r) at the edges considerably complicate numerical
nonuniform Ohmic conductors. This is even more so for analysis of Eqs(1) and(2), making it necessary to develop
superconductors, where the global and local characteristican analytical method for solving Eggl) and (2).

can exhibit different dependencies &) B, and T, because An approximate method for obtaining current distribution
the nonlinearity oE(J) makes the effective current-carrying in superconductors is given by the Bean critical state
cross section dependent 3nB, andE.*?~*° model!®°which replaces the re&(J) curve(1) by a step-

Shown in Fig. 3 are examples of 2D current flows for wise dependencel=EJ./E for E>0, andE=0 for J<J,
different cases, which could be regarded as elementar§Fig. 1. This model may be regarded as an extreme limit of
“building blocks” of a more general percolative network in the power-law characteristicE=E(J/J,)" for n—c,*’
Fig. 2. The geometries shown in Fig. 3 are also quite comwhich enables analytical solutions fd(r) for some simple
mon in experimental studies of resistive states in supercorsasegFig. 4). These solutions exhibit characteristic “discon-
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< 7 the infinite extent of current perturbations around local inho-
. _— L, mogeneitiegFig. 4), the zero thickness of the lines, and
T e < l multiple solutions of the Bean model, fixing a unique steady-
. state transport current distribution for given boundary condi-
R — ~ tions. However, the account of the nonlindaJ) requires
solving the following nonlinear equation for the scalar po-
tential ¢:

Ve

div
Vel

J(|V¢|)}=0, 4

which is obtained by substituting= —V ¢ into Eq. (1) and
then into divJ=0. The 2D Eq.(4) is rather difficult to solve
either analytically or numerically.

Recently we proposed an analytical method to calculate
2D steady-state transport current flow in superconductors
with the account of their nonlined#(J) characteristic??

FIG. 4. Magnetization current flows predicted by the Bean'ne method is based onfedographtransformation, devel-
model. Top: long slab in a parallel magnetic field. Bottom: currentoped at the beginning of the 20th century to describe com-
flow around a cylindrical voidRef. 19. Dashed lines show the pressible gas flo&>**In Ref. 21 the hodograph method was
parabolicd lines, on whichJ sharply changes direction. Current developed as to describe current flow in anisotropic super-
streamlines between the lines are circular, and centered in the conductors. Using this method, analytical steady-state solu-
void. tions of Egs.(1) and(2) for current flow past a planar defect

were obtained for the power-la#-J characteristicd® The
tinuity” lines (d lines), along which the current abruptly essence of the hodograph method is the following. Instead of
changes direction. Another feature of this model is thatdealing with the highly nonlinear equation fgi(r) in the
finite-size defects can cause current disturbances of infiniteoordinate space, we change variables and expré3sas a
range, as it occurs for current flow past a cylindrical void, infunction of the electric fieldE:
which case parabolid lines extend to infinity®2°[Fig. 4(b)].
Both the zero thickness of thetlines and the infinite spatial
scale of current perturbations are consequences of the zero ¢(1)—¢(E). ®
resistivity for the idealized Bean’B-J characteristic in the
whole interval 6<J=<J.. In this case, solving steady-state The hodograph transformatidd) reduces the nonlinear Eq.
Egs. (2) becomes an ill-defined mathematical problem,(4) for ¢(r) to alinear equation fore(E). In turn, the equa-
which reduces to the only condition of current continuity, tion for ¢(E) can be further reduced to other well-studied
divJ=0, provided thatl<J.. These conditions can be sat- linear partial differential equations, such as Thomas-Fermi or
isfied by many different current distributions for a given London equations, whose known solutions can be used to
sample geometry, since the selection of Bean’s solutions foobtain exact solutions for 2D current flows in nonlinear con-
J(r) is due to initial conditions. For example, the initial dis- ductors. For example, the nonlinear current flow around a
tribution of electric fieldE(r) can be induced by increasing planar defect can be mapped onto a solution of the London
external magnetic field. Once the initial conditions are fixedequation, which describes the magnetic-field distribution
by the magnetic prehistory, the distribution a&fr) stays from a fictitious fluxon in a film with cuts. Here the nonlin-
frozen indefinitely. earity of the power-law characteristle=E.(J/J;)" mani-

The inherent hysteresis of the critical state makes théests itself in the nonzero effective “screening length”
Bean model inappropriate for calculations of steady-state=2./n/(n—1). These analogies enables one to use known
transport current flow around planar obstacles in Figs. 2 angolutions of the London, Debye, or diffusion equatigase
3, for which the current-carrying cross section varies along @elow) to obtain analytical solutions for the 2D nonlinear
superconductor. In this case current path inevitably breaksurrent flows in superconductors with macroscopic defécts.
into regions in the critical state]=J., and subcritical re- The hodograph method enables us to resolve the ambigu-
gions, with 0<J<J.. However, the particular distribution ities of the Bean model and address analytically features of
of these regions depends on initial conditions and thus car2D nonlinear transport current flow. In particular, it gives a
not be calculated by solving the steady-state equationginique steady-state distributidifr) for a given sample ge-
divJd=0 andJ=<J.. This unphysical situation results from ometry and shows that current flow breaks into domains with
the fact that the Bean model ignores the necessary conditiadifferent orientations of separated by current domain walls
VXE=0, which can only be satisfied by taking account of reminiscent of thel lines of the Bean model. However, there
the highly nonlineaiE-J characteristicg1). Although expo- are important differences between the current domain walls
nentially small atJ<J., the nonzero electric field plays an and thed lines. First of all, the domain walls have an internal
important role, since solving Egél) now becomes a well- structure and a varying width, which depends both onrthe
defined mathematical problem, for which each nonzero valugalue and the geometry of current flow. For instance, for
of J corresponds to a certath. The account oE eliminates  current flow past a void in Fig. 4, the width of the domain
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walls increases with the distance from the void. It is theobservable behavior on “human” time scales, because the
broadening of the domain walls, which provides the decay obtrong nonlinearity ofJ(E) can make the relaxation tintg
current perturbations caused by the defect sizm afinite  astronomically large. In this case, the superconductor re-
lengthL | ~an, much larger thara, if n>1. Moreover, the mains in a metastable critical state, which relaxes very
current domain walls described by exact hodograph solutionslowly toward a true steady state. Therefore an estimation of
remain different from the phenomenologiahlines even in  ty is necessary to find the conditions, under which the
the critical state limith—o. In this case current flow near steady-state current flow actually occurs.
domain walls exhibits no discontinuities in the tangential We estimate, of macroscopic current relaxation, assum-
components of(x,y) thus satisfyingv X E=0. ing that a superconductor is in a high magnetic field, so that
In this and a subsequent pafrewe present a detailed both self-field effects and the surface or geometrical barriers
description of the hodograph method and calculate variousan be neglected. In this casg,H=B, and J(E,B)
steady-state 2D transport current flow in superconductors. Ie=J(E,By), where By/u is a constant applied magnetic
this paper we focus on general features of current flow irfield. Egs.(2) then reduce to
isotropic nonlinear conductors illustrated by characteristic
examples, which show how the method works. We present Moo diE=—VXVXE. (6)
exact solutions of Eq4), which reveal new length scales of
nonlinear current flow and the structure of current domai
walls. The second part of this wdrkis devoted to calcula-
tions of the distributions o8(r) andE(r) for restricted ge-
ometries shown in Fig. 3. Because of the long-range distur
bances of th&(x,y) near defects in superconductéfghe
effect of the sample geometry becomes crucial and in man

cases completely dominates the global nonlinear Curre%garithmic variation ofJ;(E) at largen~3-30. Here the

gggfg:?;tfisgzgfnéedﬁgg? aet?c;b:jeug :tso tgefeal:lfsmevl\}ﬁic%?gtl) e arameted; =T/|7,U| =sJ can be expressed in terms of the
tain to the problems of cFl)Jrrent—carr ing ca al,JiIit ac Iossre)s bserved dimensionless flux creep rated In Jdnt.'*

P . ying cap Y, ’ Since macroscopic electrodynamics of superconductors
and thermal stability of superconductors. In addition to su-

erconductors. the hodoaranh method can also be aoplied ecomes model independent, when formulated in terms of
P : ' dograp i PP Re electric fieldE(r,t), the time scalé, can be estimated by
calculations of nonuniform current flow in other nonlinear

media, such as semiconductors, plasma, etc. For instanca scaling analysis of Eq6).* Indeed, Eq(6) can be regarded
' » P K : $ a nonlinear diffusion equation for the electric figlavith

E-J characteristics of gas or semiconductor plasma at hig e _ . §
electric fields can be approximated by the power-law depent— e diffusivity D(E) =1/ugo- Thus the time scalg, of cur

dence ExJ" with n<1 28 rent2 redistribution in a region of sizé is given by tg
: : ., ~L4/D, whence

The paper is organized as follows. In Sec. Il we consider
features of nonlinear current flow and discuss conditions, toNMoLZJl/E- )
under which the steady-state current distributions in super-
conductors set in. In Sec. Il we formulate the hodographHerety determines the duration of a transient process after
method and give general solutions of the hodograph equawrhich a steady-state current flow sets in. Because of the
tions, which then will be used to reveal features of the 2Dexponential dependence Bfon J, the electric fieldE in Eq.
current flows for particular geometries. In Sec. IV we con-(7) (and thusty) can vary strongly within a superconductor.
sider current flow past a semi-infinite corner and calculaterhe upper bound ofy can be estimated by substituting the
analytically the structure of the current domain walls andsteady-stat&(r) in Eq. (7). For instance, taking the standard
singularities inJ(r) andE(r) distributions near sharp edges. electric field criterionfE.=1uV/cm for J. and a character-
In Sec. V we obtain a solution for current flow past a non-istic spacing between defects=100 um, we obtaintg
conducting planar defect in an infinite superconductor, and=0.06 sec, fod;=sJ;, J.=10° A/cm? ands=0.05. In this
identify the new length scales &{(r) which are caused by case a steady-state transport current flow sets in on a short
the nonlinearity ofe(J). We describe flux flow regions near time scale, even for high. values.
the edge of the planar defect and address a nontrivial critical However, geometrical constraints for certain sample ge-
state limit ath—o. In Sec. VI we calculate excess dissipa- ometries can makg, much larger than the above estimate.
tion on planar defects for nonlineg(J) characteristics. Sec. As an example, we first consider the current lead of width
VIl is devoted to the discussion of the results and their im-attached to a sample of width,>L; [Fig. 3(c)], assuming
plications for nonlinear current transport and current-limitingthe power lawE=E.(J/J;)" with n=3-20. Let the lead be

Here o(E)=9J/JE is the differential conductivity, whose
Mependence o&=|E| determines the dynamics &(r,t).
The important feature ofr(E) in the subcritical state K
<E.) is an approximately inverse dependenedE)
~J, /E for all existing models of thermally activated vortex
dynamics described by E¢l).* This universality holds in a
Very wide region ofE to the accuracy of a much weaker

mechanisms in HTS'’s. in a uniform critical state, £,=E_), which sets in at>t,
=uoSJL2/E.. Then it takest>t,=uosJL3/E, for a

II. NONLINEAR 2D CURRENT FLOW steady-state uniform current flow to occur in the sample,

) whereE, is determined by the current conservation condi-
A. Time scales tion, E,=E;(L,/L,)", giving ty=t;(L,/L;)"*2. For n

In this paper we consider the 2D steady-state transport 15 andL,=2L 4, this yieldst,=1.3x 10°t,, or about 2.2 h
current flow, which sets in after initial relaxation of current for t;=0.06 sec.
distribution induced by switching on a dc power supply. In A similar argument can be made for the important case of
superconductors, such transient processes can dominate tagplanar defect in a filnfFig. 3@], for which L,=d, L,
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=d—a, whered is the film thickness, and is the length of
the defect. If the electric field near defect is of orégr, then
the electric field in the bulk,=(1—a/d)"E; can be much
smaller thanE., even for a small defeca<d. Thus the
steady-state current flow near defect sets in afteit;
=uosJ(d—a)?E., while it can take a much longer time,
t>t,~t,/(1—a/d)"*? in the bulk. Ford=1 mm, n=15,
J;=5%x10* A/lcm?, we find thatt,=6.3 sec, but,~38 sec
for a=0.1d, t,~45min fora=0.3d, andt,~9.6 days for
a=0.5d. For largera andn, relaxation toward a steady-state
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In nonlinear conductors the situation is much more com-
plicated, sincen(z) is no longer analytic function. As a re-
sult, nonlinear current flow generally causes bulk charge
density distributiong=div E,

q=(d,p)IVJ, (12

since the resistivity =E/J now depends od. For instance,
for the case shown in Fig.(8), integration of the charge
density,g=div E, gives the total charge accumulated near

the current injectorQ= (A, E;—AyEy). HereE; is the elec-

transport current distribution occurs on time scales well extric field in the injector, ancE, is the electric field in the

ceeding the experimental time window.

conductor, in regions far away from the joint, where bBth

The above examples show that, although the transient reznd E, are uniform, andA; and A, are the cross-sectional

laxation of J(r,t) could be very slow for certain geometries,

areas of the injector and the conductor, respectively. For uni-

the steady-state transport current flow for the most cases dig;;, Onmic conductors. the chargg vanishes because

cussed in the Introduction sets in on rather short time scale
Such relaxation is accelerated in HTS'’s, where flux creep is !

rather fast, and tha values are significantly smaller than in
low-T, superconductor$in the rest of this paper we there-

fore consider the nonlinear steady-state 2D transport curre

flow in superconductors, disregarding the transient petiod
<ty, on which steady-statE(x,y) is formed. The relevant
time scaleg, can be estimated from E7) for any steady-
state distributiorE(x,y).

B. Steady state
For steady-state current flow, Eq®) become

VXE=0, VXH=J. (8)

To satisfy the conditions div=0 andV X E=0, for the 2D

current flow in thexy plane, we introduce the scalar potential
¢ and the stream functiowt, related toJ andE as follows:

Jy=

szﬂyw’ — ki, 9

Ex=—dxo, Ey: —(9y§0, (10)
where d,=dlda. The magnetic fieldH(r) is expressed in

terms of/(x’,y") by the Bio-Savart law,

(U)XYo

H r', 11
27 v [r—r'|3 (v

(r)=

E,=A(E,. By contrast, for nonlinear conductors aAd
# Ao, we getQ+#0, sinceAE(1/A) #AE(I/Ag).
The nonlinearity ofE(J) gives rise to new length scales

Ig r the current distribution around a local inhomogeneity. To

show that, we write Eq(4) in the form
(13

where o= dJ,/JE, and o,=dJ, /JE, are principal values
of the differential conductivity tensoo;, calculated from

Eq. (1):

Oy xx@+ oydyye=0,

o= (JIE)sirt0+ o cog o, (14

(15

Hereo=0J/JE is a scalar differential conductivity, ardis
the angle between the direction of the local electric field
E(x,y) and thex axis, so that tad=E,/E,.

For isotropic Ohmic conductors, the conductivity tensor is
also isotropic, &x= o), thus the electric-field perturbations,
S6E(x,y), decay on a length scale of order the inhomogeneity
sizea, both alongx andy. However, for any nonlinear iso-
tropic E(J), not only doesr;, depend orE, it also becomes
highly anisotropic with respect to the current flover(

# oy). Assuming that far away from the inhomogeneity, the
current streamlines are nearly parallel to thaxis (0<1),
we obtain thato,=dJ/JE, and oy=J/E. In this case, the
strong nonlinearity ofE(J) in superconductors results in
oy<oy [for the power-lawE=E(J/J;)", we have oy
=o,/n<oy]. The relationo, <o, reflects the fact that the

oy=(J/E)cos 6+ o sirte.

where the integral is taken over the current flow regions, anéPngitudinal perturbationsE, mostly change the modulus of

n is the unit vector along the axis. The stream functiogs
coincides with the normal component of the magnetic fiel
H,, for the 2D current flow in a long cylinder or slab, but can
be very different fromH, for thin films2’~3! For Ohmic
conductors, bothy and ¢ satisfy the Laplace equation’e
=0, V24=0, so it is convenient to introduce the complex
potentialw(z) = ¢ —ip, which is an analytic function of the
complex coordinate=x+iy. Herep=E/J, and the real and
imaginary parts ofv(z) obey the boundary conditions fagr

and — py, respectively. This fact enables one to use power-

J=~J., causing a rather weak current responsd,

d=((7E.J)5EX. By contrast, the transverse perturbatiofis,

cause a localurn of the vectord,, resulting in a much larger
current responsedJ,=(J./E)SE,. The fact thato,<o,
gives rise to a decay dE(x,y) perturbations over very dif-
ferent length scalels; andL , along thex andy axes, respec-
tively. As follows from Eqg. (13, we have L,
~(ayla) ™, whence

L, ~Lyvn.

(16)

ful methods of the theory of analytic functions to calculateThis relation will be illustrated below by exact solutions for

the 2D transport current flow in Ohmic conductd?sThis

particular current flows. Here we just give a simple physical

technique is also useful for calculation of magnetization curestimate oL, andL for a planar defect of lengthe2<d, as

rents in superconductofé:2°

shown in Fig. 8a). The defect blocks current flow on the
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length~a, forcing the currentJ, to redistribute around the In Eg. (23) we can change variableB=E.(J/J.)", and ex-
defect on the scale-L, . In the regiony<L, the mean pressy as a function ok and#, which is convenient for the
current density and the electric field thus increaseltp further analysis of electric-field distributions. Equatid28)
~(1+alL,)J, and E,,~(1+al/L,)"E,, respectively. The and(24) can also be presented in different useful forms by
transverse decay length,, , is defined by the condition introducing new variables,

En~Eg, giving L, ~na. The decay IengtH,”~a\/ﬁ, along

current flow then follows from Eq(16). Therefore strong 1 E

(n>1) nonlinearity of E(J) greatly increases the spatial ¢=e"hy,  y=e F7hy, 77:7'” g (@
scales of electric-field perturbations, as will be confirmed n 0

below by exact calculations. At the same tinix,y) can  Here E, is the electric field at infinity, and the functions
also vary on scales much smaller thanas it occurs in . (5, ¢) satisfy the equation,

narrow current domain walls, which replace the sialipes '

of the Bean model. afthraﬁgh—,Bzh:O, (26)

Il. HODOGRAPH TRANSFORMATION which has the form of the London equation with the inverse
“screening length” B:
A. General formalism
Instead of solving the nonlinear E(L.3), we change vari- B=(n— 1)/2\/5. (27)

ables and take and ¢ to be functions of the complex elec- . _ . .
tric field E,+iE,= E exp(6), whered is the polar angle be- Therefore the nonlinearity oE(J) results in an effective

tweenE and thex axis. The advantage of such a hodographScreening ofi(#, ) in the hodograph space, which becomes

transformation is that it reduces the highly nonlinear @§) ~ Stonger asn increases. Fon=1, Eq. (26) turns into the

for ¢(x,y) to linear equations fori(E, 6) and o(E,¢). To  -@place equation, thus the complex potentia(u)=¢
show this we write Eqs(8) in the differential form, —ipyis an analytic function ofi=7—i6 in the hodograph
representation. Analytic properties of the complex potential

de=—E,dx—E,dy, pdy=E,dx—E.dy, (17 w( 7, 6) in nonlinear conductors are considered in Appendix
A. We show that forn>1, w(#,6) is no longer analytic

where p(E)=E/J. Equations(17) can be combined in a function, but can be expressed in terms of generalized ana-
single complex equatiode—ipdy=—Ee '?dz, whence lytic functions32

— i6 P
Iez=—€"(Jep—ipded)/E, (18) B. Solving the hodograph equations
dgz=—€"%d,0—1pdsp)lE. (19 The calculation of nonlinear current flow by the
o ) hodograph method is implemented in two steps. First, a so-
Here z=x+iy is the complex coordinate, and(E) |ytion of the linear Eq(21) should be found, which satisfies
=dJIJE is the differential conductivitynotice that in non-  the particular boundary conditions. Then an inverse transfor-
linear conductor# 1/c). The conditiondgez=dg,z then  mation of y( 6,E) from the hodograph planeE(6) onto the
gives the following relations between partial derivativeg/of physicalxy plane should be performed to obtain the current
and ¢: streamlinesy= ¢(x,y) and spatial distributions of the elec-
B ) B ) tric fields and currents. As shown in Appendix E, the Jaco-
dop=—(E*1) 0y, Jep=(EalI?)dep. (200 pjan of the inverse transformation does not change sign for
any isotropic E-J characteristic with positive differential
conductivity o-(E).?! This fact makes the hodograph trans-
formation a well-defined procedure, for which each solution
Y(E,H) corresponds to a unique spatial distribution of
E(x,y) for given boundary conditions.
=0 (22) Solutions of Eqs(21) and(22) can be obtained by sepa-

Equating the mixed derivativegZ:=dZ,, for ¢ and ¢, we
obtain the followinglinear equations fory and ¢ valid for
any nonlinear dependend€E):

oE *y 0 (Ez w)

—_— + —_ ,
J? 96> JE\J JE rating variables as follows:
J Pe 9 [ dp :
I AT P B Y W(E,0)= 2, Cpfm(E)SINMO+ dy,). (28)
£2 g2 + JE ( oE JE 0 (22 <~ ~mim m
For the power-'aw dependencE,: EC(‘J/JC)n! these equa- Here Cm and ¢m are COHStantS, and the funCtIOIﬁ§(E)
tions simplify to satisfy the following ordinary differential equation:
P2y oy Py d (E?df,\ m?cE

P p e An analogous expression to E&8) for the electric potential
20 ¢ ¢ ¢ 0 (24) ¢(E, 6) can be obtained with the eigenfunctiogyg(E) sat-

NE2— +E—+ — =0,
9E2  IE  56? isfying
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d [ J? dg,| m?2J B i/ B1 B2Eo
9E EE)_?gm:o_ (30) z=z.+¢€ 3 + E [1+i(n—1)(6+ 6y)]
- isti I eio ~ C:i E Am +
For the power-lawJ(E) characteristic, Eq.(23) gives < +m — | "(mcosdp—ingZ sind,,).
fm(E)<Em, so ¢(E, 0) takes the form J #=0 ng;,—1 ! Eo
W(E, 0)=tho+[By+Bo(E/Eq) "™ 1](6+ o) (36)
£\ Herez. are constantsy,,=mé+ ¢,,, and the plus and the
+>, Co _) sinmo+ éy,), (31)  minus signs correspond ©<E, and E>E,, respectively.
m Eo Equations(36) represent a complete family of exact solu-
tions of nonlinear Maxwell’s equations for various distribu-
L1 5 5 tions E(x,y), parameterized by an infinite set of constants
Um=5,[1=n=V(n=1)"+4nmr]. (32 c,,. In the following sections we will show ho&,, can be
found for particular current flows.
Here the sum runs over all integer, the constant$; ,, Equation(26) belongs to the well-studied linear equation

Cr. %o, o, Eo, and ¢, are determined by the boundary of mathematical physics, so various nonlinear current distri-
conditions, andE, can be taken as the electric field at infin- butions can be obtained from known solutions for other
|ty We emphasize that qugl) and (32) areexactgenera| phySicaI prOblemS described by the London or diffusion
solutions of the nonlinear Maxwell equations which describeguations. For instance, a solutigfiz, 6) of Eq. (23) inside
various current flows. the region bound by the conto8iin the hodograph plangé

If distributions E(x,y) contain regions oE<E, andE  can be expressed in terms of the surface distribufigs):
>E,, with different sets o£{"), q("), andC{), (), the
solutions , (E,f) for E>E, and ¢_(E,f) for E<E —a—B7 3g B7' , /
should be matched #E=E, oas to provide continuity 0of vim0)=e o Yu(S)0nG (7. 7",0.6")ds. (37)
Y (E,0) and its derivatives. Finding the proper relation be-
tweenC{") andC{,’ can be reduced to the solution of the
following linear matrix equatiof®

Here (7, 0) is determined by the boundary conditions, the
Green'’s functionG of Eq. (26) satisfies the boundary condi-
tion G=0 on S andd, denotes the normal derivative &
The functionG has a clear physical meaning, since it is
E UmiCv=Fm, (33 proportional to the local magnetic field at the poiptd pro-

K duced by a fictitious London vortex located at the point
n',0' in a superconducting cylinder. This analogy enables

whereU,, andF, are determined by the sample geometry. . | . : d ¢
The fact that bothr_ (E, ) and . (E, 6) are known exactly one to use extensive results on vortices in superconductors o
o A different geometries to calculat@(», ', 6,6") and thus 2D

is a great advantage of the hodograph method, which thuéurrent flows in nonlinear conductai.

g?%’gfrfxti?ié?g;glnn?nnlslgemaé E;(;kélseméocgesf;ﬁ:?gaardcg;oggdure Another analogy follows from the following representa-
’ w tion of Egs.(23) and(24):

obtained analytically, otherwis€m=EkU[n§Fk can be ef-
fectively calculated numericalf? Since the hodograph 2 2 _

. . . J +0 +2B4d,4=0, 38
method linearizes the Maxwell equations for &BfJ), nu- v+ Tyt 2By 38)
merical calculations of nonlinear current flalfx,y) for the
cases shown in Figs. 2 and 3 take no longer than the corre-

sponding calculations af(x,y) for Ohmic conductors. Equations(38) and (39) have the form of diffusion equa-

_ The solution(31) is rather convenient for performing the s \vhich describe steady-state distributions of the figids
inverse transformation of(E, ¢) onto the coordinate space o . i 5 reference frame moving with the velocity23.

Xy, giving the electric-field distributiom=z(E, ) for any  gquationg38) and(39) also belong to the well-studied linear
set of C,. This is a well-defined mathematical procedure,equationgft which could help on finding solutions of the
since the Jacobian of the inverse transformation is alwaygodograph equations, using the known solutions of the cor-
positive for any isotropic-J characteristic, as shown in responding diffusion problems. For instance, in the critical
Appendix E. To obtainE(x,y), we excludedee and dye  state limit (1—), Eq. (23) becomes a simple 1D diffusion
from Eqgs.(20), which yields equation in the hodograph space

i0
dpz= T(EaEd/—i— idgth), (34

Topp+ 05, 0—2Bd,0=0. (39)

9= dggib, (40)

where 7=1In(J./J) and @ play the roles of “time” and “co-
Qi ordinate,” respectively. In this case the solution of E4Q)

dgz= T( i dgp— %gﬁw) . (35  for the stream function

2

i . . . * J\m
Substituting Eq(31) into Eq.(35) and integrating oveE, we _ ~ ;
e y=BO+ mzl Cn| 3| sin(mo+ bm) (42)
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flow inside or outside of two unpenetrable walls inclined at
the anglea (Fig. 5). This case allows us to calculate struc-
(a) ture of the current domain walls and trace the nonanalytic
crossover from large, but finite value, to the critical state
o limit n— oo,

A. General solution

The solution for current flow around the corner, satisfies
the boundary conditions)(E,0)= (E,a)=0, correspond-
ing to zero normal component df on the sample surface.

(b) This solution of Eq(23) has the form

o =CEYsinké, (42

wherek=7/(7— «a), Cis a scaling constant, and

1
FIG. 5. Inner(a) and outer(b) current flows around a corner. di =%[1— n=+(1-n)?+4nk’]. (43)

is independent af and therefore can be regarded as a “criti- Here the plus and the minus signs correspond to current flow
cal state” limit for ¢(J,0). However, as will be shown be- inside and outside the region of the angle respectively
low, Eq. (41) can result in current distributions, which are (Fig. 5. Taking the originz=0, as the vertex for both cases,

different from those of the Bean model. we obtain the distribution oE(x,y), substituting Eq.(42)
into Eq.(35) and integrating from 0 t& for g=q* and from
C. Boundary conditions « to E for g=q~. This yields
To take advantage of the exact solutions §diE, §) and Celgd _ .
»(E, ), we need to reformulate the corresponding boundary z=— m(k coskf—ignsinkd).  (44)

conditions in the hodograph space. This procedure is rather
nontrivial, since even simple boundary conditions in #ye  Separating real and imaginary parts of E44), and exclud-
plane, such as zero normal componentlabn the sample ing E by dividing y(E, 8) by x(E, ), we obtain the follow-
surface, or a given distribution af or E on the electrodes, ing equation for the functiod(x,y), which determines local
can become highly nonlinear in it plane. For instance, if orientation of current flow

current flows past a cylindrical void of radid® the condi-

tion of zero normal component afx,y) requires constant y _ ktanf—ngq,tanké (45)
J(X,y)=1o on the surface,x?>+y?=R2 Taking the x k+ngctandtanké”

hodograph solutiong=A(E, 8),y=B(E,#), we obtain the . . .
boundary conditions in th&€# plane: A%(E, 6) + B%(E, 6) We use these results to consider two particular cases:

=R? and ¢(E, 6) = i,. Substituting here Eq36), we arrive Current flow past a semi-infinite cut, for whiap= —1, «
at an infinite set of coupled nonlinear equations@y and ~ —0; (ii) Current flow near a rectangular corner, for which
ém. Therefore the boundary conditions become nonlineafl=0d; , a=/2. In the first casey= C sind/E is indepen-
for curved boundaries or nonuniform distributionsJ¢k,y) ~ dent ofn, and Eq.(44) gives
on the electrodes. ‘0
However, for any 2D current flow confined between flat, 7= Ce
piece-wise boundaries, or around planar ¢aé Figs. 2 and (n+1)JE
3), the boundary conditions in the hodograph space greatl
simplify. Then the condition of zero normal componentlof
at the straight boundary inclined by the anglg becomes
linear, reducing ta/(E, 6,) = o, Whereiyy, is a constant. For
example, for current flow around a corner shown in Fig. 5
the boundary conditions can be taken in the foifdE,0)
= (E,a)=0. Therefore, for current flow around planar ob-
stacles, the hodograph transformation linearizes both th ig. )], and Eq.(46) gives x=C/(n+1)JE. For x>0, we

equation fory(E,#) and the boundary conditions. In this have 6= /2, andx= —nC/(n+1)JE, whence
case we can obtain complete exact solutions of the nonlinear ' '

Maxwell equations considered in the following sections. E(x)x1nx"(+1)  x<0, (47)

(cosf+insing). (46)

Current streamlines described by Ed42) and (46) are
shown in Fig. 6. Fon>1, current streamlines are approxi-
mately semicircles centered near the end of the cut, while
contours of constant electric field are close to circles which
'cross the cut. Near the edges~0,y=0), the electric field
E(x) has a singularity. Fox<0 andy— *+0, currents flow
arallel to the cuf =0 aty=+0, or =7 aty=—0, (see

IV. CORNER E(x)xc 1Y) x>0. (48)

One of the simplest exact solutions of E83) describes Hence the circle of constaii of radiusR crosses the cut at
current flow around a corner. There are two different situathe point=R/n away from the edge. For the linear case,
tions which we consider separately, corresponding to current 1, Eq. (48) gives the square-root singularity(x)
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FIG. 6. Nonlinear current flow around a semi-infinite cut.
Dashed circle shows a contour of constant electric field. fror
—oo, all circular contours of constafit touch the end of the cut.

n=1
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n=50

FIG. 8. Nonlinear current flow around a corner. o1, cur-
rent streamlines in the upper right quadrant are nearly circular, and
centered in the vertex.

=0E(X)>1/|x|*?, both inJ(x) and E(x) at |x|—0.24%2 For
n>1, the nonlinearity ofJ(E) in superconductors enhances
the singularity inE(x) « 1/|x|, while strongly suppressing the
singularity in J(x)=1/x|*". For the semiconductor-type
nonlinearity,n<1, the situation is the opposite: the singular-
ity in E(x) is suppressed, but enhancedliix).

The second example is the rectangular corner shown in
Figs. 7 and 8. There are two different cases of current flow
inside and outside the corner, which correspondyteq,
>0 andq=q, <0 in Eq. (42), respectively. Excludindg=
from Egs.(42) and Eq.(44), we obtain the current stream-
linesx=Re z(¢,0) andy= Im z(¢,6) in the fornt?

20|

where D=C¥% EX¥/3.(ng; —1). Each streamline corre-
sponds to a contour of constaiit The evolution of the cur-
rent distribution withn is shown in Fig. 7. Fon=1, we have

q, =2, thus Eq.(49) gives smooth hyperbolic streamlines,
Y xy.?432 By contrast, the highly nonlinear case>1 ex-
hibits sharp changes of the current flow direction near the
diagonal somewhat reminiscent of, yet different from the
piece-wise current distribution of the Bean modste be-
low).

Current flow past the corner in Fig. 8 exhibits quite dif-
ferent characteristics which manifest themselves in the dis-
tribution of local orientationsg(x,y). For n>1 Eq. (43
gives ng, ~—(n+k?—1), thus Eq.(45) simplifies tox/y
= —tanéd. The relationx/y= —tané describes circular cur-
rent streamlines centered in the vertex and is valid every-
where, except for narrow regions of anglé®~=n~"2 near
0=0 and 6= 7— «, which correspond to currents flowing
almost parallel to the sample surface. Therefore current flow
around the semi-infinite corner described by exact &§)
exhibits no trace of singulat lines characteristic of the case

) l—l/nqzr

Sn 20 (2 cos 9—ing, sin26)e'?, (49)

FIG. 7. Current flow near the corner of a rectangular sample foshown in Fig. Ta).

a superconductom(=50) (a) and a normal metalb). The dashed

The solutions of this subsection contain a scaling constant

straight lines in(@) show boundaries of a diverging current domain C, which remains undetermined for semi-infinite samples. If

wall, defined as a region whefé— m/4/<0.3.

the corner is a part of a defect in a finite sample, say, a
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surface notch or a step in a film, the above solutions describ¢ 0.3
current flow only near the corner. The constéahis deter-

mined by current distribution far away from the defect and

thus depends on the sample geometry and the boundary cor 0.2}
ditions (see below. Here we just note that the particular
value of C does not affect the shape of the current stream
lines described by the functiof(x,y). This fact enables us 0.1
to investigate universal features of the current domain walls,
based on the exact, yet simple solutidd®)—(45), regard-
less of the particular geometry of the whole sample.

0 -n/4

6=

B. Structure of the current domain wall

The principal question is how the singuldtine emerges
in a smooth current distribution as—o°. For the Bean
model, thed line manifests itself in a step-wise change of the _g.a}
current orientationg(x,y) = [ sgnk—y) —1]/4, as seen in
Fig. 4(a). Although such a step-wise current configuration
satisfies the critical state assumptidns J;, and the conti- -03 s s s s
nuity of the normal component df it has a jump of tangen- -0.2 -0.1 0 0.1 0.2
tial component); along thed line. Thus this model distribu- (x-y)/x

tion of J(x,y) cannot exist in steady state, if any electric FIG. 9. Structure of the current domain wall for differemt

field caused by current flow is taken into account. Indeed, ga1yes. The dashed line shows the step-wise dependimcg) of
jump inJ; on thed line would result in a discontinuity of the  the Bean model.

tangential component d&, which violatesV X E=0.
For finiten>1 this discontinuity is smoothed out, and the

From Eq.(50) it follows that there is no “intrinsic” width of

g I;ne turns into a %";?f?t d0{na|_n v;/atl_l of f|r;|te th|cI:r;less the current domain wall, sincé(x,y) is a power-law func-
etween regions wi Iiterent orientations of current Tow, g, of » andy near the diagonal. If we define the domain

as follows from extensive numerical simulations pen‘ormeq/\h,jlII as a region, in whichs<d,, then Eq.(50) gives its

by Brandt!’ Here we address the following questions, which, .o d(l1.00) as a function ofot,he conditional criterian,

are rather difficult to resolve through numerical simulations:_ "+ - d”i’staon’cq ~(x-+y)/2 from the vertex along the di-
(i) Is there any intrinsic width of the current domain wall, agonal. We thuslobtain that the so-defined width of the cur-
which is determined by the nonlinearity 6{E) regardless rent do.main walld= 8,(3in+ 62)1, linearly increases with

fOf thel samp:)e g(?_o_metry(ﬁ)hls tBr:ere an 3”?'%“?] crossover |} and remains fin’ite e\?en in thg Iipnit—wo The dependence
rom large, but finiten to the Bean model behavior at : - : :

—o0? (iii ) Is thed line of the Bean model a true steady stategI g(fli!(’;é) dci)sr;atzs C?gg}'?ﬁ;% ;rg;i)s/)éﬁ:v(\:/?isns gml gnle:or
in the limit n—o? (iv) Is there any singularity in current finite . we obtﬁi‘n thats=nl, /31, is linear wﬁ.enlll

domain wall in the limitn—o? 3/2 ; .
The exact hodograph solutions show that only the Iastfl\\(?’/n) and acquires the universal dependende

proposition is true, while the very existence of ttdine _(Ii.””)l/3 When|i>|”(3/n)3{2' Therefqre thg exact theory
depends on the geometry of current flow. For example, th@red'CtS. continuous brqadenlng 9f tWeine with [, as ob-
Bean model predicts the lines for current flow both inside served in magneto-optical experlmeﬁtsl./s

and outside a corner, depending on the magnetic prehistory. In the _I|m|t n—>e, We have5_=(IL/I”) foralll, , thus
The results of the previous subsection indicate that, although e functioné(l, ) remains continuous at =0, but the de-

: —23 : ;
some sort of singularity on the diagonal remains for the in-J1vative d6/4l, I, == diverges, in stark contrast to the jump

side flow in Fig. Ta), the outside flow in Fig. 8 always [N @(x.y) for the Bean model. Such a “soft” singularity in
exhibits nonsingular circular streamlines. The latter solution?(X.) is rather difficult to reveal in numerical simulations
also satisfies the Bean model. Therefore we see that evélf nonlinear Maxwell's equations in the coordinate space.
exponentially weak electric field in the critical states¢1) ~ 'herefore, forn—ce, some kind of singulad lines do ap-
drives the step-wise current distribution in Figajinto the ~ Pear, but the behavior oi(l},1,) turns out to be quite dif-
nonsingular one in Fig.(@), corresponding to the true steady férent from the Bean modébee Fig. 9. This difference is
state. due to the fact that the hodograph solutions satisfy the con-
We now consider the structure of the current domain waldition VXE=0, even forn— .
in Fig. 7(a) in more detail by analyzing the behavior of the
function 6(x,y) near the diagonal, where~y, 6= — /4
+ 6, andd<1. If n>1, we haveng, ~k®—k?(k?—1)/n, so
Eq. (45) for §<1, simplifies to

V. PLANAR DEFECT IN AN INFINITE
SUPERCONDUCTOR

Now we consider a more complicated problem of current

flow past a thin nonconducting planar defect of lengéhi2
(50) an infinite media(Fig. 10. This case models the strongest
current-limiting defects in HTS'’s, such as high-angle grain
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FIG. 10. Mapping of the current flow around a thin nonconduct-
ing strip in thexy plane(inse) onto the hodograph planeé.
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weak. In this case it is convenient to write E&6) in polar
coordinates I, x), with the origin at the end of the cuy
=0, 0=7/2:

dch+r719h+r"29, h—p%h=0, (53
where n=r cosy, = m/2+r siny, and B is given by Eq.
(27).

If wB— o, the functionh(r,y) describes a vortex at the

end of the cut in an infinite media. In this case, an exact
vortex solution of Eq(53) is

e A
h=\2hg—— cosX (54)
r

%

Solutions with higher order harmoniescosmy/2, give un-
physical distributiong(x,y), which we do not consider here.
To satisfy the boundary conditiog=0 at §=0,7, for
finite B, we use the method of images, by presentings a
superposition of the fields of alternating vortices and antivor-
tices at n=0, 0= 60,=m(m+1/2), wherem=0,=1, ....

boundaries, or microcracks. To capture the general featureﬁqis ields
of ¥(n,0), we first consider the complex potentia(z) for y
the same geometry in the case of Ohmic conductors,
J Y Vimt7n
y=hoX (~)"—"—e Fntn (55
m m

w=iEq\z?—aZ.

Expressingw via the complex electric fieldE exp(—16)=
—dw/dz (see Appendix A we obtain

(51)

akEg

Vi+exp2n—ib) '

where »=In(E/Ep). As follows from Eq.(52), the stream
function ¢=Im(w) has a singularity aty=0, 6= /2 and

decays exponentially away from this point, on the scale
~1, 0—mw/2~1.

The boundary conditions fog(7,0) in the hodograph
plane follow from the symmetry properties of the current
flow around the defectFig. 10. First, we notice that the
zerox component of) on the central lindperpendicular to
the defeck requires the boundary conditio#(7,7/2)=0.
Along the rayx=0,—<y<0, the electric field varies from
its value at infinity,E=E,, to zero at the stagnation point,

(52

z=0, in the center of the planar defect. Furthermore, the zero

normal component of on the defect surface also requires
(1,0)=(n,7)=0, with E changing from 0 aiz=0 to
infinity at the edgesZ= *a). In the hodograph planey 6),
these boundary conditions give=0 along two vertical lines
at =0 and 6= and along the half-infinite line-<y
<0 at #=«/2 (Fig. 10. Along the ray,»>0, = m/2, we

where r,,= 7%+ (6—6,,)%, and hy is a scaling constant,
which will be obtained below. Fan>1, the sum in Eq(55)
converges very rapidly, since expfm)<1, thus we can re-
tain only nearest neighborsn=0,+1).

Now we come back to the general E@1), in which
B1,=¢nm=0 by symmetry, andC,, are just the Fourier co-
efficients of the function/(Eg, 6):

4 (w2
Cm=;f0 Y(Eq,6)sinmeda. (56)

Forn>1, y(Ey,6) is localized around= /2, so we extend
the upper limit in Eqg. (56) to infinity and retain
only the term withm=0 in Eq. (55. Then ¢(Eg,¥6)

=hg exp(— Bl6—=/2|)/\|6—nI2|, and Eq.(56) gives C,

= (4hy/J7)Im[expimm/2)/B—im], whence

23/2( _ 1)k
Cox=hg—F—=""Vay—B, (57)
\/;azk
23/2( _ l)k
Cok-1=hg——=—"""Vay 1t+8, (59)
\/;a2k—1

where a,,=/BZ+m?, andk is any integer. To satisfy the

haved,=0. Therefore the problem reduces to the solutionboundary conditiony( 7, 7/2)=0 for E<E,, we takem
of the London Eq(26) that describes a “vortex” at the end — i in Eq. (31). For E>E,, we havedy/d6=0 at 0

of the half-infinite cut, in the center of a superconductingzwlz' hencem=2k—1. As a result, Eq(31) can be pre-
film of thickness 7. The nonlinearity results in effective ggnted in the form

“screening” in Eg. (26), making h(#,0) more localized
near the end of the cut in Fig. 10. Foe1, h(#, ) decays
exponentially over the scale-1/8<1, so the influence of

59
the boundary conditions dm( , #) at =0, = becomes very ®9

” E q2+k
Y=, Cul =] sinkeo, E<E,,
k=1 Eo
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sin(2k—1)0, E>E,.
(60)

Eo| %1
E

C2kl(

To transformy(E, ) back onto thexy plane, we substi-
tute Eqs(59) and(60) into Eq.(35). SinceE=0 atz=0, we
obtainz(E, #) in the region ofE<E,, integrating Eqs(35) 5} 1
overE from O toE:

y/a

. e +
ela C2k ( E )qZkl/n

Z:—— JE—
Jo k=1 gy, — 1\ Eo

X[2k cos XH—inq,, sin2kd], E<E,. (61)

In the region wherd&e>E,, we use the fact thdE=o atz
=a. Substituting Eq(60) into Eq. (35 and integrating over
E from « to E, we obtain forE>E: ne=20 (a)

_ -13 : ! :
Eo)q2k1|+1/“ 0 4 8 12

el o Cok-1

E

zZ=a x/a

+_ R —
Jo &1 n[agk-q|+1

X[ (2k—1)cos 2k— 1) 6+ in| g |sin(2k—1) 6] 0

(62) /
/
The constanhg calculated in Appendix B is determined by L~
the self-consistency conditioz(+ 0,0)=z(—0,0), which
gives forn>1

-1t
ho=Joan®¥ 2. (63

The current flow described by Eq&9)—(63) is very dif- gs
ferent from that of Ohmic conductof§ig. 11).%° The most
visible manifestation of nonlinearity is the long-range distur-
bance of current streamlines on the scales much larger tha -2r
the defect size, & If h—o, the magnitude ofl(x,y)=J;
remains approximately constant everywhere, but a regior
near the central linex=0. In addition, the vectod changes
the direction at diverging current domain walls, reminiscent
of the d lines for magnetization current flow past a cylindri-
cal hole in the Bean modéFig. 4). For finiten, the width of -3
the current domain walls increases as the distance from th 0
strip increases, providing the decay of current perturbations

on the scald., >a. FIG. 11. Current flow around a planar deféenly one quadrant
Spatial scales of nonlinear current flow around the strigis shown. (a) corresponds to a superconductor described by Egs.

can be obtained by considering electric-field distributions(59)—(63), where dashed contours show extended regions of en-

along two symmetry lines: in the plane of the defegt ( hanced E>1.5E,) and reducedE<E,/2) electric field.(b) shows

=0, x>a, 6=/2), and along the central linex€O0, y current flow around the planar defect in Ohmic conductors, where

<0, 0==/2). In the first case, substituting EG5) into Eq.  perturbations ofi(x,y) andE(x,y) decay on the length-a.

(35 at 6= /2, we obtain after integration ovér.

x/a

this region we can retain only one terrk=1, with the

X—a Eo 77 o smallest exponert),,_ |+ 1/n in the exact expansio(62).
= ——erfgIn? =—||, (64 e i

L, EInY2E/E) N Eo For n>1, this yields

L, =2hon¥Jy=an/\/x. (65) Xt

EOX+ 1/n
E(x,00~ ——, J(x,0)=J0(—) , (66)

Forn>1, the last term in Eq(64) [proportional to the error x—al x—al

function erfcf) ] can be neglected. As shown in Appendix C,

Eq. (64) is valid everywhere, except the very narrow vicinity wherex, = |C1|/J0=4a\/ﬁ/7r for x>a, andx_=|C4|/nJ,

of the defect edge—a<ay/n exp(—n/8), whereE—x. In  =4a/m/n for x<a. Thus the nonlinearity oE(J) strongly
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FIG. 12. Distributions ofE,(x) in the plane of the defecty( 00 5 1'0 1'5 20
=0), described by Eq64) for n>1, and by Eq(67) for n=1. For y/a
X—a<a, the curves have the slopesl for n>1 and—1/2 forn
:1’ because near the edge of the def@tg'x_a|7l and E FIG. 13. DiStI’ibution OfE(y) along the Centl’al ||nex:0, de-

«|x—a| ~2 for superconductors and normal metals, respectivelyScribed by Eq(69) for n>1 and by Eq/(70) for n=1. The length
The kink in INE/E,—1) atE~E, corresponds to a crossover to the L of a region of suppressegl(y) scales amyn.
largex asymptoticsE — Eq~nEg(a/x)? atx~L, .

suppresses the singularity &fx), while enhancing the sin- E(0y)= %, n=1. (70
gularity inE(x) atx=a, as compared to the Ohmic case, for vasty
which?*
Forn=1, bothE(0y)x|y| andJ(0y)=|y| decrease linearly
EoX near the stagnation point=0, restoring their background
E(x,0)= T2 n=1, x>a. (67)  valuesE, andJ, on the scaley=a. By contrast, fom>1,

we observe a long-range depressionEg,y) on a scale
. Li>a, and a cusp id(0,y) (Figs. 13 and 14
Several important results follow from Eqg$4) and (65), | The behavior ofE(0yy) and J(Oy) at y<a can be ob-

as shown in Fig. 12. First, the.nonline.arity B(J) consiq- tained by taking the term with the minimum exponent with
erably enhances a characteristic magnitgeof the electric | _ 1 i, Eq. (69), which yields forn>1

field. SinceE~anE,/(x—a) over a wide regionx<L, ,

near defect, we have ;

En~nEy>E,, L,~na>a. (68

Equation(64) predicts a rather slow hyperbolic dependence
of E(x,0) with no definite length scales, so the estim&®
only gives a characteristic mean value B©fx,0) in the re-
gion x~L, , whereE,,>E,. HereL, quantifies a distance
from the defect wher&(x,0)=anE,/x becomes of the or- 06+
der of the background electric fiekel,. For larger distances,
x>L, , the parabolic dependendg(x,0)1/(x—a) gradu-
ally turns into a more rapid decayE(x,0)—E,
~(an/x)?E, for x>L, (Fig. 12. 04f
Distributions ofE(0,y) andJ(0,y) along the central line
(x=0) are also strongly affected by the nonlineariBig.
13). To calculateE(y), we setd= /2 in EqQ.(61) and obtain

o K\am— B E | a2k BI\A-1n
ymyZ, el [
k=1 ay(ax—B—n ") \Fo

0.8f

JidJ

0.2

(69) % 05 1 15 2 25 8 35 4
fa
where yo=2%h,/JmnJy=4an'¥w. The dependence y

E(0)y) for n>1 is rather different from that for Ohmic con- FIG. 14. Distribution ofJ(y) along the central linex=0, de-
ductors, scribed by Eq(86) for n—« and by Eq.(82) for n=1.
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A. Local flux flow near sharp edges

The above solutions, obtained for the power-1&¢J),
exhibit singularities of the electric fielH(x)«1/(x—a) near
the edges of planar defects. Such a strong enhancement of
E(x) indicates that local flux flow can be induced near the
edges, even though thg, away from the defect is much
smaller than the crossover electric fiéld between flux flow
and flux creep regimes. Description of the current flow near
the edges requires accounting for the full nonlinear depen-

denceE(J).
First we consider current flow near a half infinite cut, for
//'W'(’ which the solution of the hodograph E@1) should satisfy
L e o the boundary conditiong(E,0)= (E,)=0. This solution

of Eqg. (21) has the following simple form, valid for any
E(J):

e 73
VES Esm 0, (73
yla - Ya where the constanA will be obtained below. To calculate

Z(E, 0), we substitute Eq(73) into Eqg. (34) and integrate
FIG. 15. Surface plot oE(x,y) distribution around a planar gver ¢, which yields
defect forn=20. Shown also are the contours of constamn the
Xy plane.

z=— iem+f(E) (74)
2EJ '

JOy)=ly[*s, E(0y)]y[", (79
Here f(E) is a real function ofE [the imaginary part van-
Forn> 1, the electric field becomes exponentially small in aishes because of the boundary conditip(E,0)=y(E,)
wide “shadow” regiony~a\/ﬁ near the defect. Fan>1, =0]. The equation fof can be obtained by substituting Egs.
the length scale of variation d&(0,yy) can be obtained by (73) and(74) into Eq.(19):
replacing the summation in E@69) by integration, which

results in(see Appendix € Al o 1
Ief==| —— —|. (75
2\ % JE?
L n "
E(0y)=Eoexp —— |, Lj=a p (72)  The boundary condition fof (E) follows from the fact that
y the electric fieldE(x,y) becomes infinite at the end of the

cut (x=y=0), as shown in Fig. 6. Then Edq74) gives
This formula gives a good approximation of the exact Ed.f(«)=0, and integration of Eq75) yields
(69 for x>L (better than 1% fon>20). It follows from

Eq. (72) that a characteristic length scdle of E(Oy) be- »dE’ 1
comes much greater tharfor n>1. Fory>L, the electric f(E)=A —_ . (76)
field E(0,y) approache&, asE(0y) — Eq=n(a/y)?E,. No- g2 2JE

tice that the ratioL, /Lj=+n>1 is in agreement with the
general resul(16). Although Eq.(72) well describesE(y) Equations(73), (74), and(76) give a solution of the nonlin-
fory>L, it becomes invalid foy <L, where the exponen- ear Maxwell equations, which describe current flow around
tial decrease OE(y) given by Eq.(72) is very different from  the half infinite cut for arbitraryJ(E). This solution also
the exact resulEx|y|"3. Most clearly, this difference mani- describes approximately the current flow near the edge of a
fests itself in current density distributions fprc L : instead ~ cut of finite length 2, where the scaling constaAtis de-
of the exponential decreasKy)xexp(—a?/my?) given by termined by the current flow on the length of ordeaway
Eqg. (72), the exactl(y) exhibits a characteristic cusp of the from the edges.
form J(y)|y|*® (see Fig. 14 To calculateA we need to match Eq73) with the solu-
Shown in Fig. 15 is the spatial distribution of the modulustion of the previous section, which describes current flow
E(x,y), which reveals characteristic scales of the electricaround a cut of length&, for the power lawJ(E). To do so
field variation in all directions. The surface plot B{x,y) = we note that forE<E., the power-law approximation is
also gives a good approximation for the spatial distributionvalid everywhere around the cut, except small regions near
of local dissipatiorQ=JE near defect fon>1. In this case the ends. Her&>E,, so the main contribution t¢: comes
variations ofJ(x,y) are week, thuQ(x,y)=JoE(x,y) to a  from the term withk=1 and minimuniq, | in Eq. (60). This
very good accuracy. The strong, long-range disturbance ofields the same universal dependencel(E,6)
E(x,y) near the defect results in a significant excess dissipa=C,(Ey/E)sin 6 as Eq.(73), whenceA=CE,. Using Egs.
tion, as will be shown below. (58) and (63), we obtain forn>1
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252hn3E, 4\n that ask increases, the size of the flux flow region along the

= = aJoEp. (77)  xaxis,L,, turns out to be much larger than its siis,,

Jan+1)  m along they axis:

Separating real and imaginary parts of Ef4), we get L, ~anE,/E,, L\\Na\/ﬁEo/Ec- (83)

A The condition that the flux flow region is much smaller than
x—f(E)=—57gcos %, (78 anow requiresE,<E./n.
B. Critical state limit, n—
y=-53gsin2é. (79) The hodograph method enables us to trace the evolution

of current flow withn and see what happens in the critical

Thus the contours of constaBtare circles of radiug\/2JE state limit, n—. Because of the ambiguity of the Bean
centered ak=f(E), y=0 (Fig. 6). Equation(78) and(79)  model discussed in the Introduction, current flow in the true
describe the intermediate asymptotics of the current distribueritical state should be first calculated for large, but fimite
tion in a small region of radiuR<a near the edgdsee values and only then the limih—« is to be taken. We
below). Away from the edge, Eq$78) and(79) merge with  consider this rather nontrivial limit in detail for current flow
the solution of the previous section, which describes the curpast a planar defect, assuming thgt J.. at infinity. As was
rent flow around the cut and provides the correct asymptoticshown before, the solution fal(x,y) describes two regions
E—E, at infinity. of current flow, corresponding té<<J. andJ>J.. The so-

We can further simplify Eq(76), using the fact thai(E) lutions for J<<J. can be obtained from Eq&1) straightfor-
in superconductors varies rather weakly, even for significantvardly, by taking the limith—oc. However, the solutions
(by several orders of magnitudehanges oE (see Fig. L with J>J; should be handled with care, since in the Bean
Since the main contribution to the integral in E@6) comes  model, current densitie3=J.+ 0 correspond to infinité.
from E’=E, we can therefore take the slowly varying func-  ForJ<J., andn— o, the stream functiow described by

tion J(E")~J(E) out of the integral and obtain Eq. (61) can be presented in the following form independent
of n:
f=A/2JE. (80 . X
8aJ; WA
To calculate corrections thE) due to flux flow, we assume = k21 (=1)%| 57| sin2e, (84)
= C

that J(E) =J.+ o+E for E>E_, whereo; is the flux flow

conductivity. Then the integration of Eq.76) gives f - 2 a1
=ARJE+Aci202, if o(ElJ<1. oo 18 s (ZDK (i)
The radiusR of the circular flux flow region near the edge T k=1 4k%-1 \Je
[E(x,y)>E.] can be obtained by settirig=E. in Egs.(78) o
and(79) and substituting there Eq&Z7) and (80): X (cos Xko—2ik sin 2k 0). (85

The sums in Eq984) and(85) can be expressed in terms of
elliptical theta functions’ The asymptotics ofi(x,y) con-
siderably simplify far away from the defect|z(>a), as
shown in Appendix D.

Excluding @ from Eqs.(78)—(80), we obtain the electric-field From Egs.(85), we obtain the current distributiod(y)
distribution near the edge: along the central lin&=0, = 7/2,

A 2ayn

T 2J.E. w \E.

R E.

. (81

_ 4aynxE

(P +y?)

>

k=1 4k?>—1

5 (86)

E(x,y) x>0. (82 ly|=

16a &, k2 [J\4*1
hich is shown in Fig. 14. Near the stagnation poynt; 0,
e functionJ(y)=J.(3my/16a)'® exhibits a cusp. Notice
thatJ(y) restores the bulk valug, on the length~a, unlike
the electric fieldE(y), which varies on the scale a/n.

The above matching of two solutions near the edge anﬁ/1
around the strip is justified, if the radius of the flux flow
region R is small compared to the length of the strig.2

F_“’"F EQ'(SD we find thatR<a if Eg< EC/\/H' This condi- . The limit n—o cannot be directly taken in the regidn
tion indicates that because of the enhancement of the electrg: . . . . .
J., since the sum in Ed62) diverges. So we first consider

field near the edges, the local flux flow occurs when the bu”?he well-behaved case of large, but finiteand calculate the

Eo is _much smaller than the crossover f|e§E<_'€i. However, boundary between the regions of current flow Wik E,
there is a much stronger applicability condition of the above

description, based on the one-term approximation of the su and E<.E° in the real spaqésge Fig. 1@)]. As showr) n
in Eq.(62). As shown in Appendix C, the terms wik®>1 in %?pne;ci'xisDaégirﬁfeudndggge%'r\ifglbé;h%ﬁgvryg()’ which
Eq. (62 can be neglected, IEq<E;~E;exp(n/8). For P y :

Eqo>E;s, the flux flow region near the edge becomes noncir- o BY

cular, being essentially stretched out along thaxis [Fig. x—a=hy—— (87)
11(a)]. An analysis of this case given in Appendix C, shows Jy
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the singular lineVy~a\nE.(Jy/J.)", vanishes. Thus we
may ignore the regioe>E,, and Eqs(84) and(85) give a
complete description of the current distribution in the true
critical state, E=0. Shown in Fig. 1) are the current
streamlines given by Eq$84), which are practically indis-
tinguishable from those for large but finitevalues in Figs.
11(a) and 16a). However, the dc electric field distribution
for large but finiten remains very different from the critical
state predictions. Indeed, instead of converging to a straight
line along thex axes, the region oE>E, in Fig. 16b)
significantly extends along the direction of current flow even
for n=300, which is much larger than typical values rof
~10-50 for superconductors.

In the limit, n— o, current flow around the defect has the
singulard lines, which come out of the stagnation points and
extend to infinity as shown in Fig. U6). Near the stagnation
point thed lines make a 45° angle with theaxis and have
the same structure as for current flow near the corner, de-
scribed by Eq(50). For (|z|>a), the following simple equa-
tion of thed line can be obtained, as shown in Appendix D:

x/a
x=y?/y.., (89

wherey..,=8a/\2m7e~1.94a. Therefore, far away from the
planar defect, the lines become parabolic, whereas the cur-
~ rent streamlines between tlklines in Fig. 1%b) are ap-
- proximately circular, to the accuracy of slowly varying loga-
-~ rithmic factors (see Appendix [ These results are
sl St~ | qualitatively similar to current flow around the cylindrical
T void in the Bean mode(Fig. 4). However, unlike Bean'sl
line in Fig. 4, current flow near thetlines described by exact
Egs. (85 exhibits no discontinuity in the tangential compo-
nent ofJ, thus satisfying the conditio X E=0, even in the
limit n— oo,

y/a

—-10}
VI. DISSIPATION NEAR PLANAR DEFECTS

In this section we obtain a general expression for the ex-
cess total dissipatio due to defects:

-1 . .
50 5 10 15
x/a

Q=f dx dyJE—JoEy), (90)
where the ternidyE, corresponds to a uniform sample with-
out defects. Now we transform from integration oxeandy

to the hodograph variableg,and #, and obtain(see Appen-
dix E)

FIG. 16. Current flow around the planar defect for latgeand
infinite (b) n values, described by Eq&9)—(63) and Eqs(84) and
(85), respectively. The dashed line in Fig.(&6shows the boundary
between the regions of current flow wih>E, andE<E,. In the
limit n— oo, this boundary reduces to a ray= 0, shown in(b). The o " o dE
dashed line inb) shows thed line, which is well described by the Q= J ng (EJ— EOJO)[ E(3E¢)2+ —((99111)2}—.
parabolic function89) for x> 2a. 0 0 J J?

(93)

Substituting Eq.(28) into Eq. (91) and integrating ovel
from O to 27, we presen) in the form

1

=hy| —=+y|e #,
where y=7/2— 6. From Eqs.(87) and (88), we obtain that
ly|=(x—a)/\/n far away from the defect. In the limin
—oo, the whole region oE>E reduces to a ray along the
axis, where the electric field formally diverges. The voltage
across this regiony,~E(x)Ay, is of orderEqayn, since  Here integration from O to # implies that current flow con-
E(x)~Epan/(x—a), and Ay~(x—a)/yn. In the limit n tains all possible orientations df as it occurs for a planar
—oo, we should takelo=J.—0, so that the voltage across defect in an infinite superconductor.

(89)

= om? _]dE
Q=72 c&nfo (J E—JOEO)[E(&Efm)2+ TffnL—z.
(92)
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We apply these formulas to calculate dissipation po@er effects are important for applications, in particular, ac losses,
caused by planar defects. We first consider a simpler case efitical state stability, and current flow in thin-film supercon-
a semi-infinite cut in Fig. 6 and calculate the total dissipationducting circuits. The use of the hodograph technique enabled
powerAQ inside a circular region at the edge whéfeex-  us to address such characteristics of nonlinear current flow,
ceeds a certain electric-field threshol},. Substituting Eq.  as orientational current flow domains and the structure of
(73) into Eq. (91), we first integrate oved from O tom (as  current domain walls. In addition, we were able to trace the
seen from Fig. 6, the current flow around a semi-infinite,eyolution of current distributions witm and a nonanalytic
unlike planar defects of finite length, is represented by only.rossover to the critical state limi— o, when singulard
half of the hodograph plane<00< ). Integrating then over |ines emerge.

E, as explained in Appendix E, we obtain a simple exact

result The fact that a planar obstacle of siagreatly enhances
u ’

electric-field disturbances over scales~an perpendicular
AQ=mA2/2] E,, (93)  to current f'low orl._||~a n along current flow results in
_ _ _ _ _ long-range interaction between defects, and strong effect of
valid for anyJ—'E relat|pn. For instance, E. is chosen in t_he the sample geometry. Indeed, even a sparse network of pla-
flux creep regionAQ is unaffected by the flux flow portion g defects can substantially reduce the effective current-
of E(J). carrying cross section, if the mean spacing between the de-
Now we calculateQ for a planar defect of lengthéfor  focts js smaller tha.~an. For typical values ofh~ 30,
the pgwer-l(?\{\E(J) charactensnc. Sgb§t|tut|ng E@3) into such a nonlinear blockage of transport current by defects can
Eq. (92) and integrating oveE, we obtain occur at rather small concentration of obstacles, which oc-
E * [ gz 4|C2 a4 C2 cupy only few perce_:nt of the geometri_cal Cross _secti_on _of a
Q= O » 2m-11~2m-1 _ H2m>2m superconductor. This effect can have important implications
2Jp m=1| n|gom_4/+1 noy,—1 for current percolation through arrays of planar defects, such
(94) as grain boundaries in HTS polyscrystdlg. 2). It also
contributes to multiple current-limiting mechanisms in HTS
conductors, such as Bi tapes and biaxially textured
YBa,Cu;0; coated conductor€ For instance, a microcrack,

where the subscripts- and — corresponds to the signs in
front of the square root in Eq32). The positive terms, pro-

portional tocgm,l in Eq. (94), represent an excess dissipa- : i X
tion due to enhanced electric field around a defect, while thd! & film of thicknessd (Fig. 3), can cause a strong local peak

negative terms, proportional t62, account for reduced of E(x) in YBCO coated conductor, even for rather small
dissipation in the stagnation regions. For Ohmic conductorgiéfectsa>d/n<1.In turn, such local peaks of voltage and
these two opposite contributions exactly cancel each Otheglssmatlon change the global current-voltage characteristic
giving Q=0 for n=1 (see Appendix E Forn>1, the spa- of the whole conductor, similar to the effect of macroscopic
tial distribution of Joule dissipatiodE is similar toE(x,y) ~ random inhomogeneiti€s.A detailed analysis of the signifi-
shown in Fig. 15. In this case, there appears an excess dis§@nt finite-size effects for current flow in restricted geom-
pation Q> 0), since the contribution t from the electric- ~ €tries shown in Fig. 3 will be given elsewhére.

field enhancement along theaxis (on the scald | ~na) is The features of nonlinear current flow discussed above
much greater than the negative contribution of the stagnatiopan be observed by the magneto-opti¢slO) technique,
regions(on the scale |~ Jna). Substituting Eqs(58) for ~ which indeed revealed long-range disturbances of the normal
C,, into Eg.(94) and evaluating the sum as explained incomponent of H(x,y) around macroscopic defects in

Appendix E, we obtain HTS’s.”? For instance, characteristic flamelike shapes of the
magnetic-flux disturbances around defects on MO images are
Q=JoEpa%(n—1)n. (95  similar to the contours of constaBtshown in Figs. 11 and

Forn>1, Eq.(95) is an exact asymptotics @(n), which 1.5' By measuring the scalds and Ly of magnehc-ﬂgx
approximates Eq(94) to an accuracy better than 1% for dlsturbange, one can extract both ﬂnealue',n:(Li L) '
>10 and 6% for 5n<10. The physical meaning of Eq. and the size of the defeoaf L, /n, even if the defect is
(95) becomes more transparent, by presen@ig the form ~ Smaller than the MO resolutiofusually =50-10 um). Ex-
Q=L Jof 5(E—Eg)dx, which is just the excess dissipation tensive s_tagnanon_reg|ons‘(~a\/ﬁ) of exponentl_ally small
in the region of substantial enhancementEgf) by the de-  electric field constitute another feature of nonlinear current
fect. Using Egs.(64) and (65 for E(x), we obtain flow around planar defec{sig. 11(a)] which could be ob-
Q~mJoEoL|L, , which gives the correct leading term, served in MO experiments. This nonlinear “shadow effect”
Q=EyJya2n2. manifests itself in the distribution of flux velocities=[H,
X E]/H3, in a strong magnetic fielt, when vortices move
VII. DISCUSSION along equipotential linesp(x,y)=const. Vortex velocity
sharply increases in the regions of enhanced electric field
The analytical results obtained in this paper reveal essemear the edges of the planar defect, which thus becomes a
tial features of nonlinear 2D current flow, which can affectflow channel for magnetic fluxsee Figs. 1(a) and 185.
the current-carrying capability and macroscopic electrodyThese flux jets are sandwiched between two macroscopic
namics of superconductors. This influence mostly resultstagnation regions of nearly motionless flux which result
from the fact that planar obstacles cause strong enhancementm the geometry of the current flow and the strong nonlin-
and long-range decay of electric-field disturbances. Thesearity of E(J), but are not due to enhanced flux pinning.
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The excess dissipatio® caused by defects is another Another feature of Ohmic conductors is that the complex
important feature of the strong nonlinearity BfJ). Super-  potentialw(u) is also an analytic function in the hodograph
conducting materials, and especially HTS'’s, contain manylane,u= n—i6, where n=In(E/E).
macroscopic current-limiting defectmicrocracks and high- In nonlinear conductorg; depends ork, so neithemw(z)
angle grain boundarig§ which contribute significantly to norw(u) are analytic functions. We consider propertiesvof
the overall ac losses and dissipation. As an example, weor the power lawE(J), for which Eqs(20) can be written in
consider a sparse array of planar defects of sizespaced the following symmetric form:
by I>a. Then we obtain from Eq95) that the defects result

in the excess dissipation powern®%(a/l)2J,E, per unit 3,0 =(po/n)€?P79 4, (A5)
volume, which becomes of the order of the background bulk
dissipation powerJoE,, if |<an®%. Therefore the overall dg0=—(po/\N)e?F7d,y, (AB)

dissipation will be dominated by defects, if they occupy a

rather small fraction-n~3* of the geometrical cross section Where 8=(n—1)/2Jn, »=n""2In(E/E), and po=Eq/J;.
of the samplefew percent for the typicah values~20—30  Defining new functions, h;=¢exp(-B7) and h;
for superconductoys The excess dissipation due to defects=(\n/po) #rexp(87), we present EqSA5) and (A6) in the
can also trigger local thermal instabiliies in higp- form

superconductor® Such instabilities develop mostly in the

regions of enhanced heat generatleirE, in Figs. 11a) d,n1—3dshy=—pBhy, (AT)
and 15, which dominate the over&)l. Another type of ori-
entational current instabilities can be caused by the high an- dghy+d,hy=ph;. (A8)

isotropy of HTS's?! when current is forced to flow along the
c axis by microcracksor a “brick-wall” structure of in-
plane tilt grain boundarie¥.

These equations can be combined into a single complex
equation for the effective complex potentialy=h;,—ih,.
Using complex differentiation(A3) with respect tou= 75
—i6, we obtain the equation faw, in the form of a first-
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APPENDIX A: ANALYTIC PROPERTIES OF THE which describes generalized analytic functihherefore
COMPLEX POTENTIAL calculations of current flow in nonlinear conductors can be

formulated in terms of generalized analytic functions for the

2D current flow in Ohmic conductors is described by theeffective potentialwy(u) in the hodograph planey= 7
complex potential —i 6. This fact enables one to calculate 2D nonlinear current
. flow by constructing an appropriate generalized analytical
wW(2)=e—ip¥, (A1) function?? using methods which have been developed in the

. 33 . . .
which is an analytic function af=x-+iy. The analyticity of  llterature== Expressingwy, in terms of¢ andy, we obtain

w(z) greatly simplifies the calculation of 2D current distri- .
butions, allowing exact solutions for the geometries shown in IPo

=gpe B1— “aB7
Fig. 3 to be obtained using conformal mappiigrhe con- Wo= € \/ﬁe v (AL0)
dition thatw(z) is an analytic function can be written in the
form Forn=1, the effective potentialv, reduces tow.
dW_0 (A2) APPENDIX B: NORMALIZATION CONSTANT
dz To calculateh,, we equate Eqs61) and (62) to obtain

where the bar denotes complex conjugate, and the complet>|2e self-consistency conditiar(+0,0)=2(—0,0), whence

differentiation of any functiorf (z)=u+iv is defined a¥ o

1 2 (ZKC +2k_1C ) B

a=— — —Co1]-

df_1<au ), i au) 3 Joyn &1 lu T p AT
dz 2\dx dy/ 2\ox dy] It is convenient to write Eq(B1) ashy=—aJ,/I, wherel is

— . . obtained from Eqs(57) and (58) in the form
The fact thatdf/dz=0 for any analytic functionf(z) fol-

lows from the Cauchy-Riemann conditiongu=d,v, dyu 3|2 = 1" e — 3
= —dyv. The electric-field distributioni,+iE,=E exp(6), | = 2 2m(= 1) Nazm= B apm+ B+ i
can be calculated from \Jrn m=1 (Am?—1) ayp, Jn
. dw 2m-1)(-1)"Vaom 1+ 8
Ee 'f=——. (A4) + : (B2
dz @om—1(@om_1+ B+ 1NN
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For n>1, this sum is dominated by the first term in the Forn>1, the sum in Eq(C1) can be evaluated with the use

square brackets, where\ld in (a,,+ B+ 1/y/n) can be ne-
glected. Ther reduces to

0

> (-

m=1

3/2

Jan

\/a2m+ B

" \/a2m+ B
(4m2— '

Aom

nm

Daym
(B3)

The first part of this suml, is rapidly converging ovem
~1, so the slowly varying factof/asy,+ B/ @5, can be re-
placed by its constant value at=1. Then the summation
yields

T2
\/Wnﬂ.

The second part of is an expression of the forn,
=37 _1(=1)"F,, whereF,,, given by the second term in
the square brackets, decreases slowly witfior n>1. To
turnl, into a rapidly converging series, we write

I4 (B4)

[’

1
l,= 2 (Fam—Fam-1)
m=1

m2:1 kgl 2Kkl dmk (5
where F, is nearly constant fom< 3, and decreases as
1/\Jm for m> B. Therefore each differentiation &f,, overm
brings a small factor-1/yn, so the main contribution tb,
comes from the term wittkk=1. SincedF,,/dm is a slow
function of m, we can replace summation in E5) by
integration using the Poisson-Euler formtlavritten in the

form

f(0)

2

9,f(0)
12

mE=1 f(m)~

where f,,=0.5dF,,/dm. SinceF, is a function ofm?, the
second term in the right-hand side of E6) vanishes, and
the last term~ B8~5%<1 is negligible. As a result, the sum
(B6) equals—F/2, thus

f(x)d - (B6)

I, (B7)

Combining |, andl,, we obtain Eq.(63), which approxi-
mates Eq(B1) to the accuracy better than 1% for-5.

APPENDIX C: ASYMPTOTICS OF z(E, )

To sum up Eq.(69) at n>1, we consider the region of
x<ayn, whereE<E,. The convergence of the sum is then
mostly determined by the factorsE§/E)«, where X\
=(ayu—B)//n—1/n. In this case the main contribution to
Eqg. (69) for n>1 comes from the regiok<g, where the
slowly varying factora,, can be taken out of the sum lat
=1. Thenay— B~2k? B, A\ ~4k?/n, and Eq.(69) reduces
to

(CD

of Eq. (B6), giving [ 7n/In(E/Ey)]*%4. As a result, we arrive

at Eq.(72). This approach gives the intermediate asymptotics

of E(0y) at y~L;. The behaviors ofE(0y) for y—o

should be obtained in a different way, since B+ E,, the

sum in Eq.(69) diverges. The main contribution then comes
a

from k>3, and Eq.(69) becomes
o 1 E 2k/\n
e
W\/En k=1 \/E Eo

For n>1, evaluation of this sum with the use of E@g6),
gives y=an/wIn"Y(Ey/E). This vyields the same
asymptotic behavior dE(0,y) —Eq=Eq(L 1y)? as Eq.(72).

To calculate the distribution d(x,y) near the edges, we
write Eq. (62) in the form

(C2

2%’ & (- D ag 1+ B Eo)"k
2-a 3 © =
N = Pr@2k-1 E
o q2k—1)6
CcOo —
Jn

+i(a2kl+ﬁ)sin(2k—1)0], (C3)

whereo,=|q,,_1|+1/n. Near the edges, wheie>E,, the
convergence of this sum is determined by the small factor
(Eo/E)7«=exd —oyIn(E/Ey)] at (2k—1)?><n. There are
two characteristic domains. The first one is very close to the
edge E—x), so that the sumC3) is dominated by the term
k=1, for which the exponentr;=1+1/n is minimum. In
this case the term witk=2 is negligible, that is, exp-(o»
—op)In(E/Ey)]<1. Forn>1, we geto,=1+9/n, thus the
sum in Eq.(C3) is determined by only one term with=1, if
(8/n)In(E/Ex)>1. This criterion defines the size of the re-
gion, r.~a+nexp(—n/8), at the edge, where the one-term
approximation holds.

Sincer . decreases exponentially with there is a wide
region near the planar defect where Bfffy)>1, but the
terms withk>1 in Eq.(C3) cannot be neglected. In the large
regionr ;<x<<an, whereE> E,, the convergence of the sum
(C3) is mostly determined by the factoE§/E) %, while the
much weakelk dependence ofv,,_; can be neglected. In
this case we can replace,,_;~B and expando,~1
+(2k—1)%/n. As a result, Eq(C3) for n>1 reduces to

25/2h ei6’ ( E K
z—a= = +I (CY
\/—n1/4JO
1(6,7)=> (—1)ke " D?sin2k—1)6. (C5)
k=1
Herer=n"tIn(E/Ey), | '=4d,l, andl(6,7) can be expressed

in terms of elliptical theta-function¥. Notice that!(6,)
satisfies the “diffusion” equation

(97.| = (999| . (CG)
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Separating real and imaginary parts of EG4), we express
x(0,7) andy(#6,7) in terms ofl(6,7):

x—a=I[(l1"/n)cosf—1 sind],

(C7
y=I[(1"/n)sin§+1 cosb], (CY

wherel = (4a\/n/m)(Ey/E.). To calculatel (6,7), we mul-
tiply Eq. (C5) by sin(2n—1)6 and integrate from O tar/2:

72 T 2
fo | cog2m—1)ydy= Ze‘(zm_l) T (C9)
wherey=m/2— 6. We consider the wide region &, where
In(E/Eg)>1, but 7<<1. The main contribution to the integral
in Eq. (C9) then comes fromy<1, so we can extend the
upper integration limit toe and obtain

7

2
— e 7 /47"
4y

This is a well-known solution of the diffusion EqC6),
which describes the evolution dfy,7) in an infinite 1D
media after applying a pulses(y) 8(7).3*

Substituting Eq(C10) into Egs.(C7) and(C8) and using
the fact thaty<1, we obtain the distributio&(X,y) in the
following parametric form:

[(y,7)= (C10

x—a=Il, y=[1+12In(E/Ex)]lyl. (C1D

Excluding y from Eg. (C11), we obtain contours of equal
E(x,y)=Ec:

L
lyl=g(x—a)in*? =, (€12
g:iln”z(E IE)| 1+ = (C13
Jn ¢i =0 2In(E¢/Ep) )’
L an (EO) 14
* JrInYYE,/Ey) | Ec/)

The contoury(x) shown in Fig. 11a) is quite different from
the circular flux flow regions of th&=1 approximation.
Here the lengthL, of the domain withE>E_ along thex
axis becomes much larger than its slqgalong they axis.
Indeed, the maximum gf(x) =L occurs ak=L, /\/e. Sub-
stituting this into Eq(C12), we obtain

Eo

E_C .

2n
Li=aV 4
me

1

1 SInE./Ey)

(C19

To the accuracy of slowly varying logarithmic terms, we

again arrive at the universal relation ~\n Ly

APPENDIX D: CRITICAL STATE LIMIT

To calculate the boundaryn=0) between the regions
E<E, andE>E,, we integrate Eq(34), written in the form

d,x=—(cosyd,p+n"*sinya, y)e” """y, (DI)

d,y=(sinyd,y—n"Y2cosya,y)e” """y, (D2)
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where y=7/2— 0, and
hoe Bn*+y*~B7
VPt v

After differentiating Eq.(D3) in Egs.(D1) and(D2), we set
n=0. From the form ofy for g>1, it follows that the main
contribution in Eqs(D1) and(D2), comes fromy<1. This
allows us to expand sinand co¥ in v, retaining only linear
and quadratic terms. Then integration of EG31) and(D2)
from vy to «, with the boundary conditiong(«)=a,y(®)
=0, yields

[N+ y*+7"% (DY)

h e*'BV hgv/2
+ -2 0 erfc\/ , (D4)
Joy  Jon¥
h06737 l 3\/2’7Th0
= —+ + ——7—erfcyBy. (D5
y JO (\/n_’y \/; o 5/4 By ( )

These formulas determine parametrically the boungdxy
of the region of enhanced dissipatiok E,) around the
planar defect. Fon>1, the terms proportional to the error
function erfcfk) can be neglected, which gives E¢87) and
(88).

Now we calculatel(x,y) far away from the defect. To
sum up Eq(85), we present it in the form

z=—be(ly+ilg), (D6)

2 (—1)kKk? 2
0= e~ (4 ~1)7cos %6, D7
21 —-1/4 @7

wherely=dgl o, b=4alm, and 7=In(J./J)>0. We consider
J(x,y) for |z|>a, whereJ—J., thus7<1. In this casd,
reduces to

©

= e **7cosky+ -
k=1 4

1 & cosXky
>

k=1 k2—1/4"

(DY)

where the complimentary angle(x,y)=m/2—6 is small
(see Fig. 15 The second sum is rapidly converging, so we
omitted the factoe*‘”‘zf, inessential forr<1. The first sum

is calculated using EqB6), and the second sum equals 2
— siny. Hence

2
[ e Y4~ —siny, (D9)
0 4\/; Y
NTY
P L o
IO_873’2 YT+ —cosy (D10

Combining Eqgs.(D6) and (D10), we obtain the following
parametric description of( 7, y):
x=—Db(sinyly—

cosyl), (D11)

y=—b(cosylg+sinylg). (D12
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To reveal thed lines, we calculate the functiom(x,y) Forn>1, the terms in the brackets decay rather slowly with
from Egs.(D11) and (D12), expressingr for x>a,y<0 as  m, so the main contribution to the sum comes from 1. In
follows: this case we can neglect\ld in the denominators and re-

. write Eq. (E4) in the form
y[Xsiny+y cosy]

~ 2[xcosy—ysiny]’

T=

(D13

- . 4Eqhg < 1 1 1 1
Substituting Eq.(D13) into Egs.(D11) and (D12), and ex- =3 > - +8| +— |
panding iny<<1, we obtain the following relation: 0 m=1 2m=1 ©2m Am-1  A2m

8% (1+y§) y(1+y¢)

g (f——)3 XF{ et (D14  where a,=Vm?+B2. Expanding ldyy,_1~1lasm

. vy —0.59(2/asy) in the first parentheses and using Euler’s
which determinesy(x,y) as a function ofx and é=—y/x.  formula (B6), we obtain that the sum of the first term in the
Now we find the position of the line, on which the spatial square brackets equals &Z=1/2B8. The summation of the
derivatives ofy(x,y) diverge. Considering EJD14) as an  second term in the square brackets yietd2—1/28. Com-
explicit expression of the form=x(&,y), we conclude that bining these two contributions, we obtain
d,x=0, that is, the gradient of along the liney=—§&x
diverges on thal line. Differentiating Eq.(D14) over vy for
&=const, we obtain that the conditienx=0 givesy=§&/2.
Substituting this back into EqD14), we arrive at Eq(89).

Q=2mEyh3/Jo=a%JEqn?, (E6)

where we used Ed63) for hy. Equation(E6) gives the lead-
APPENDIX E: DISSIPATION ing term in the expansion d@(n) in n>1. In Eq. (95) we
also took into account the next term of ordefJ,Eq\n,
To transform from integration overdxdy to the  gbtained from the best fit of the full depender@én) given
hodograph variables in E¢90), we write dxdy=Wd@dE, by Eq.(E4). Eq.(95) not only well describes the exa@(n),
where the JacobiaW=d,Xdgy — dgydeX, is calculated us-  but also provides the correct lim@=0 forn=1.
ing Eqgs.(34) and(35). This yields In conclusion, we calculat&® for a planar defect in
Ohmic conductorsri{=1). It is instructive to do so using Eq.
(51), which gives the complex electric fiel& exp(—i6)

1 o
—_ 2 _ 2
W= 72 E(de)™+ J (99" (ED =—dw/dzin the form

The valueQ does not change sign for any isotropi¢E)
with a positive differential conductivityy= 9J/ JE. This fact i 4=
makes the hodograph transformation a single-valued proce- Ee =i v (E7)
dure, that is, a given solutio#(E, #) corresponds uniquely
to physical distributions of andJ in the coordinate space o ) ]
XY. Substituting Eq(E7) into Eq.(90), we obtain

To calculateAQ in the flux flow region near the edge of
a half infinite cut, we substitut¢= A sin /E in Eq.(91) and

2

2 c
integrate over from 0O to ng daJp P —1|pdp,
Qo Jo o | Vp*—2p’cos2u+1
A _wAzf“’ 14 oE\ dE Es (E8)
Q_ 2 Ec J JEZ ( )

WhererzoEéaz, X=ap CoSa, Y=ap Sina. To avoid the
Integrating the second term in the brackets by parts, we olformally diverging integral in the brackets, we introduce an
tain auxiliary constanp.>1 and obtain after integration over
in the limit pg—oe:
»gdE 1 » dE

E. J°E - Ecdc - ECE.

(E3
= "[cos 2 In(2p2/e
After substituting Eq(EJ3) into Eq. (E2), the integral terms Q ono : (2pcle)
cancel out and we arrive at E(3).
To calculateQ for a planar defect, we present E§4) in
the form

—cos 2xIn(1—cos 2v)—1]da. (E9)

The term proportional to Ip. vanishes after integration over
4Egh3 1) < (apm-1+B)? «a. Integrating the second term in E@9) by parts, we ob-
T (l+ ﬁ) m§=:1 2 (a + B+ 11n) tain that it cancels the contribution from the last term in the
2m-117F2m=1 integrand, givingQ=0. Thus a planar defect in an infinite
(apm— B)2 thic conductor does not cause any excess overa_ll dissipa-
- . (E4)  tion. In this case excess dissipation at the edges is exactly
aom(aom= B~ 1/\/5) compensated by reduced dissipation in stagnation regions.
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