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Wetting of potassium surfaces by superfluid*He:
A study using variational properties of the chemical potential
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The wetting of planar surfaces of K by superflfide fims atT=0 K is theoretically studied. In order to
examine the consistency of numerical results, new variational properties of the chemical pgteatial
derived. Two substrate-adsorbate interactions are analyagdhe standard “3-9” one andb) the more
elaborated potential recently proposed by Chizmeshya, Cole, and Zar@flz. New results calculated
within the framework of two different nonlocal density functionatamely, those known as the Orsay-Paris
and Orsay-Trento formalishare reported. It is demonstrated that the numerical solutions obtained from the
theoretical equations verify with high accuracy the derived variational conditions. The main output of this
investigation is the finding that, for both analyzed adsorption potentials, thick enough helium films exhibit a
positive square of the third-sound velocity. The wetting of a potassium substrate by sup&feiidt T
=0 K suggested by experimental data is guaranteed in the case of the recent CCZ potential.

I. INTRODUCTION Lagrange(EL) equation, which is derived by applying a

The experiment and theory of interfaces and surfaces hawariational procedure with the constraint of a fixed particle
been continuously developed during the past decade. TheumberN, i.e.,
reader may follow the recent progress in Refs. 1-3. A glance
at the list of investigated problems indicates that wetting of S Egs— N]
planar solid substrates by superfluid helium is one of the ?Z
most studied issues. The interest in this field has been con- oVp(r)
siderably stimulated due to the fact that the analysis of propyere 4, is the chemical potential and is defined as
erties of helium films adsorbed on weakly attractive heavy-
alkali metals has led to the nonwetting phenomenon.

In 1991 Chenget al* predicted that*He should not wet N=f dr p(r). (1.3
planar surfaces of Cs, Rb, and Klat 0 K. This fascinating
behavior was argued on the basis of results obtained by usinthe variation of Eq(1.2) leads to a Hartree-like equation for
a nonlocal density function&dNLDF) theory. In this theoret- the square root of the one-body density
ical framework, the ground-state enerBys of an inhomo-
geneous liquid of'He confined by an external potential due
to a substratel),{r), may be written as

1.2

ﬁ2
- ﬁvz_"vH(r)‘{'Usul{r)}\/P(r):/L p(r), (1.4

which also determineg. HereV(r) is a Hartree mean-field

hZ . . . A . .
_ w2 [T potential given by the first functional derivative of the total
B ZmJ dryp(NV=p(n) correlation energ¥ [ p],

! ! ! 5EC 5
+f fdrdr p(N)p(r")Eq(r,r )+f dr p(r)Ugudr), Vi(r) = 5,)([5]: 5p(l’)f fdr’dr”p(r’)p(r”)EC(r’,r”).

(1.0 (1.5

In the case of a planar geometry, the system is translationally
where p(r) is the one-body density. The first term on the invariant in thex-y plane and symmetry is broken in tlze
right-hand side is the quantum kinetic energy of the heliundirection giving rise to a density profile(z). This scenario
atoms of mass. The second term represents the interactiomrmay be caused by the action of an external potential of the
between the particles of the liquid, so that the quantityform Ug{r)=Ug2).

E.(r,r’) is the correlation energy density depending on the The theoretical results of Ref. 4 were obtained by using
approach adopted for the theoretical descriptiolle shall  the Orsay-Paris NLDFOP-NLDP formulation of Dupont-
come back to this point later on. Finally, the last term is theRocet al® and by assuming that the interaction between he-
interaction of helium with the external field. The spatial par-lium atoms and the surfaces is described by a simple two-
ticle distribution p(r) is determined by solving an Euler- parameter “3-9” substrate-adsorbate potential of the form
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ci\1 ¢ parameters of Ref. 7. Turning to Ref. 26, the authors could
Usuf2)=Usze(2)= —32 —9——5’_ (1.6)  reproduce satisfactorily well the size of the experimental
2% z°  z contact anglé®~2° On the other hand, a PIMC simulation

performed by Boninsegni and Cdfeyielded a wetting tran-
%i:[ion at a temperaturé,~2 K consistent with the experi-
mental valu€~3In this study, the authors adopted the Aziz
potentiaf! to describe the interaction between helium par-
ticles, whereas the interaction between thdée atoms and
the Cs surface was modeled by the “3-9” potential of Eq.
§1.6). In summary, the information available in the literature
concerned the adsorption on Cs depicts a consistent pattern.
Let us now look more carefully at the current knowledge
n@bout the adsorption dfHe films on K substrate, which was
peralier, —2 K Sin the case afie on R, the i NeNoned i e ploneerng ufls e st candte o
tion is not so clear. The experimental ewgilegnce suggests th (';( theoretical results obtained with the “3-9” potential in

T,, would be about 0.3 K or perhaps zéfbo: : e
Lighter alkali metals have received less experimentaE.efS' 4(cf. Table | in the first citeand 27(see comments to

. . 4
attention®18.20 After taking into account thafi) the adsorp- ig. 9 therein, the superfluid*He should not wet flat sur-

. . . ; f K. To the contrary, more recent estimations per-
tion potential deepens as the alkali metal becomes I|ghteJaces o! . ’

and(ii) the wetting temperature fdfHe on Rb is, if different f.brlm_e((jj.m Feft'hz?fg u3|rr:g tlr;e m(;re eLal:;ortated ?Cliz a[_aﬁoten-
from zero, much smaller than that found for Cs, it become§Ia indicate that “rie should wet substrates o

plausible to expect that K, Na, and Li would be wetted by:O K. The latter prediction is supported by the already
“He atT=0 K. As a matt,er o,f fact recent measurementsmentioned experimental dat4.So, it remains to establish

reported in Ref. 18 show that helium wets potassium an(E)recisely the origin of the discrepancy between theoretical
sodium atT=0 K. In this context, although there are no conclusions drawn in Refs. 4 and 27 and that obtained in

experimental data in the case of the Li substrate, it should b ef. 29. Therefore, we have undertaken a revised study of

mentioned that quite recent path integral Monte Carlo ITnp;gR/liim t?z;%er'{i?\:g;;i%2evrvo\tl)?enr?ifl(z)l)natclhzallggls?us('zgts)l.e
(PIMC) simulation$®?? show that helium wets lithium. 9 P P s

Due to its extraordinary characteristic, several features requantlty is the chelmlcal potenpal, which therefore eXh'b'tS
lated to the nonwetting to wetting transitions have been exJEhe largest numerical gncertamty. .Cc.ms.equently, it becomes
tensively studied in recent years, becoming one of the goalgseml to Stl.de properties ol to gain insights as well as to
of the current investigations in this area. So, the contac"?bt"’“n relations that mlght_be utilized tp contrpl the consis-
angle of “He droplets on Cs was measufdd®® Subse- tency of the solutions. Motivated by this fact, in the present

quently, Ancilotto, Sartori, and Toigbhave reported a new work we explore the behavior of the variationpiwhen Eg.

theoretical investigation of the structure and contact angle 0?1'4) IS splved for different valut_as dd. The denvec_j relat|on_s
re applied to control the consistency of numerical solutions

4 .
He droplets adsorbed on a Cs surface. In this study, th or films of liquid “He adsorbed on substrates of K. On the

calculations were carried out by utilizing the improvedb is of th it ble t h lUsi bout
NLDF formulation proposed by the Orsay-Trento wae?;isng ese results, we are aple to reach a conclusion abou

collaboratioR’?® (OT-NLDF) and the novel substrate- . . . -
' ( ) v ! The structure of this paper is the following. Variational

adsorbate potential evaluated by Chizmeshya, Cole, and . : !
Zaremb3® (CCZ potential properties ofu are derived in Sec. Il. The relevant tools for

treating the planar geometry are provided in Sec. Ill. Section
Ueuf2)=UccA2) IV is devoted to analyzing the overall consistency of numeri-
cal results for liquid*He adsorbed on K surfaces at zero
=Vo(1+az)exp(— az) absolute temperature and to discussing the stability of these
systems. Finally, the concluding remarks are given in Sec. V.

Here D is the well depth andC; the van der Waals coeffi-
cient. Widely used values of these parameters have been d
rived by Zaremba and KoHrand are listed in Table | of the
first cite of Ref. 4.

After the prediction of Chengt al,* a large amount of
experimental work in the field was started. An instructive
review of the experiments performed in the early 1990s wa
written by Hallock® In summary, the available information
indicates that*He does not wet Cs & =0 K, but it wets
this substrate at temperatures larger than the wetting te

Coaw
- fZ[B(Z)(Z_ZvdW)]%a (1.7
(2=2Z,qw) Il. THE BEHAVIOR OF  WHEN
where THE PARTICLE NUMBER IS CHANGED

In the first part of this section, we shall study variational
exp(—X), (1.8 properties ofu for finite changes olN. Subsequently, the
limit for infinitesimal variations is analyzed.

1 X
+ X+ E

fo(x)=1—

and

A. Variation of p for finite changes ofN
a’z

T 1taz’

B(2) (1.9 Let us consider solutions of Eql.4) corresponding to
two different particle numbers denoted Bs and N;=N;

The parameters of these expressions are quoted in Table 1 ¢foN. At this stage the size afN remains arbitrary, that is,

Ref. 29. It should be noticed that, for a given substrate, thigve are not requiring small changesMfForN;, one getsu;

potential is more attractive than that of Ed..6) with the  and/p;(r) satisfying
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h? . wiNg= (it Sw)(N;+ 6N) = u;iN;+ u; SN+ Su(N; + 6N).
[—ﬁvhvmr)wm{r)} pi(1)=pmiVpi(r), ' ' e " 25
(2.1) Before proceeding further with the analysis of Eg.4), we
its variation. Starting from the definition &, we obtain
ﬁZ
_ Y gyt _
[ >m Y +VH(r)+Usul{r)}\/Pf(r) piNpi(r). Nf:Ni+5N=f dr[Vp(r) + 6vp(1) T2
(2.2
Note that the Hartree mean-field potential present in both =f dl’p(f)-l—f dr[2Vp(r)+ 8Vp(r)]16Vp(r),
these equations is different, the relation may be expressed as
Vi (r)=Vi(r)+ 8Vy(r). Accordingly, the remaining final (2.6

quantities may also be written as a sum of the initial oneSom where arises

and their variations, i.eg;=wi+ o and p:(r)=pi(r)

+6Vp(r). To simplify the notation, in what follows, we

shall drop the index when referring top;(r). Upon multi- 5N=f dr[2p(r)+8Vp(r)18Vp(r). 2.7

plying both above written equations from the left by the

square root of the corresponding one-body density and intd?erhaps, it is instructive to notice that an alternative way for

grating overdr one arrives at getting SN consists of evaluating directly the total variation
of the particle number

h? .
fdeP(f)[—ﬁVerVh(r)JrUsub(r)}VP(f) 5N:5f drp(r)=JdI’5p(r)

=i [ drp(r)=puiN;, 2.3
M.f p(r)=miN; (2.3 :f dr[2p(r)+8Vp(r)18Vp(r), (2.8
and ]
where use was made of the relation
ﬁZ
f dr[\/p(r)+5\/p(r)][—ﬁv2+vg(r)+usub(r)} Sp(r)=2\p(r)8\p(r)+[5Vp(r)]?. (2.9
Let us emphasize that in EqR.7) and(2.9) the total varia-
X[Np(r)+ovp(r)] tion of 8p(r) is kept because at this point, we are calculating
the total change oft when the integrodifferential Eql.4) is
:'“fj dr[«/p(r)+5‘/p(r)]2 ilolved for two arbitrarily different particle numbel§ and
f .
= Ny (2.4 In order to derive a nontrivial equation fdw, we shall

split the integral of the left-hand side of E@.4) into three
Of course, the right-hand side of the latter equation may alseontributions, performing this procedure in such a way that
be written in terms of the initial quantities and their varia- each term could be related to results obtained in E24),
tions (2.2, and (2.3

ﬁZ
fdr[\/P(r)+5\/P(r)][_ﬁvz'FVfH(r)"'Usuk)(r)}[\/P(r)‘Fts\/P(r)]

2 2

h h
=Jowp(r)[—%Vzwmr)wwar)} p<r>+Jdr@(r)[—%V2+VL<r>+usub(r>}aJp<r>

ﬁ2
+f drwpm{—mVZ+VL<r>+USU4r>}Np(r>+(Npm]
:MiNi+fdr\/P(r)5VH(r) P(f)+fdeP(f)[Mi+5VH(f)]5 P(F)+fdr5VP(r)[Mi+5ﬂ][VP(F)+5VP(V)]

= piNj+ 1 SN+ 5Mf dr[p(r)+ 5\/p(r)]5\/p(r)+f dryp(N)[Vp(r)+8Vp(r)18Vu(r). (2.10
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Upon inserting the result®.5 and(2.10 into (2.4) we ob-

: du dVy(r)
tain Nd—N—f dr p(r)

dN

(2.19

" QuantityNdu/dN plays an important role in the analysis of
f drp(nINR(N) +oVp(M18Vi(r) the stability of liquid *He films, therefore, we shall return to

this point later.
zgﬂf drp(D[Vp(r)+8Vp(r)], (2.11) For the sake of completeness, we shall point out that the
chemical potential may be expressed in terms of the super-
which leads to position of the Hartree mean-field and external potentials
Vy(r)+Ug,{r) and the derivatives of p(r) with respect to
N. In order to derive such a formula, one may start differen-
f dryp(n)[Vp(r)+ 8vp(r)]8Vu(r) tiating Eq.(2.3) with respect to the particle number

S (2.12
d +6 d h?
J er o+ 5 | [ BT = 3V U 6D
This is an exact expression féj since no contribution has
been neglected in the variational calculation. In fact, there is _ i(N ) (2.17)
a complete cancellation of terms proportional ®/p(r)]2. N e '

Furthermore, since no assumption on the sizé @(r) was
made, this relation is valid for angN. This form indicates
that the variation of the chemical potential is given by a sort dp(n) 52
of spatially weighted average over local variations of the zf dr( pN [_ﬁvz"'VH(r)’FUsut(r)}m

This procedure leads to

Hartree mean-field potential d
_ dV(r) du
fdr p(r)SVy(r) +J’ drP(f)W=M+N(m : (218
W= g~ i = o .
— Upon taking into account the previous res{@t16), one ob-
dr p(r) tai
ains
— f i dp(r h?
[ arbtovin - i u-z| dr( o ))[_ 2—V2+VH(r)+Usut(r)}\/m.
= ’ (2'13) m
f dr p(r) (2.19
This form indicates that chemical potential is given by a
the weight being the geometric average of the involved onespatially weighted average over the left-hand side of the Har-
body densities tree equatioril.4), where the normalized weight is twice the
o derivative of the square root of the one-body density with
p(r)=(p(r)[Vp(r)+ 8Vp(r)1%)Y2= pi(r)p(r). respect to the particle number. The res(@t19 is to be
(2.14  compared with that provided by E.3)
On the basis of this theoretical derivation, we can state 1 h2 5
that solutions of any system described by Hasl) and(1.4) m= Nf dryp(r)| — EV +Vu(r)+Ugr) [Vp(r).
must exhibit variations satisfying the compact relation (2.20

(2.13. Besides the physical interest of this finding, it is wor-

thy of notice that the numerical verification of this property Both expressiong2.19 and(2.20), give the chemical poten-
may provide a good test for the overall self-consistency ofial at a fixed particle number. The difference between these
evaluated results. The simple structure of E2j13 makes forms lies in the fact that the latter one is exclusively written

this proof very easy. in terms of solutions of Eq1.4) determined at the selected
N, whereas Eq(2.19 also requires information about solu-
B. The limiting case 6N—0 tions at particle numbers lying in the vicinity ®. Hence,

. Eq. (2.19 may be used to control the overall self-
For several reasons it becomes relevant to look at th‘éonsistency likewise Eq€2.13 and (2.15. On the other

behavior ofsu for 6N—O0. In this case, it is of particular g upon equating Eq€2.19 and (2.20, one gets the
interest to evaluate the limit of the ratigu/ SN self-consistent “closure” relation '

du

L few) 1 V(D) dVp(n 72
= m m)‘ﬁf drp(r>5lejo( o ) [ ar| 2R p,fl”) V()
(2.15

then we get +Usub(r)}\/p(r)=0, (2.21
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which may also be obtained by generalizing the identity and

dp(r) dp(r) r) IE 4s A(EqlA d
Ozfdr( ZN >_1:Jdr(g—(N_%) ”‘:( ar\?) :( ;(Ng/A))) :e+”0d_ne' 3.6
A A c

B Joty dyp(r) p(r) These equations lead to the well-known relation that may be
= | dryp(r)| 2 dN N | (222 150 derived starting from Eq&3.1) and (3.3)

Egs— N
IIl. THE CASE OF PLANAR SYMMETRY oa=ng(e—u)= T = K (3.7

The relations derived in the preceding section will be ap- . . .
plied to examine the self-consistency of solutions obtaine(i;\'/?tﬁé)tr'lse :‘rr]:rr;tg\?vrc)nplg %B;rlzin;Il(‘:o?r;alﬂ:tiggte;trl]?alc?;s%rKcon-
for planar films of liquid *He at zero absolute temperature. ' y

In the case of this symmetry, any one-body quantity become(sjmon for ensuring the stability of a system is to require a

a one-dimensional functionf(r)=f(z), depending only positive areal isothermal compressibilitg. As pointed out

upon thez coordinate, which is the position of the atoms Inrezggsd |:r31 Btr?g?ol:lg:\;vifzm?a K this condition may be ex-
with respect to a fixeda-y plane determined by the substrate. P g way:

Accordingly, the square root of the one-body density is de- 1 doa Al dos
Eirz;med by the one-dimensional version of the EL-equation K_s: (ﬁ N= N(a(A/N)) —Ng—— an. >0 (3.8

52 42 It may be rewritten in terms of the incompressibility, which

_ has the dimension of an energy and is related to the third-
— +Vy(2)+Ugf2) |Vp(2)= z).
~2m z2 H(2)+Usuf2) | Vp(2)= pVp(2) sound velocityc; (cf. the second cite of Ref.)4
(3.
For planar geometry, instead of solving this equation for a =— —=nc—=mc§>0. (3.9
N.Ks dang dng

fixed value ofN given by Eq.(1.3), one imposes the con-
straint on the particle number per unit ardadenoted fre- At this point, one can make a connection to E2.16 de-

quently as coverage rived in the preceding section. So, quantiymay be calcu-
lated from the variation of the Hartree mean field

du * dVy(2)

mc%—ncd—nc—fo dzp(2) dn.

In order to study the energetics of planar films, it is useful

K=f0 dzp(z). (3.2

(3.10
Notice that here the liquidHe only occupies the>0 half-
space. In turn, the energy per particle becomes

2 /— to expand the energy per particle as a polynomial in powers
B 1 ﬁ_f dz( d f dzp(2)e.(2) of the inverse of coverade
N n¢l2mjo
Egs ” =%
* e=—=e,+2, —. 3.1
+J;) dzp(z)Ug2)|, (3.3 N kgl nk @19

Here e(n,—x)=e, can be identified with the saturation

eqU|I|br|um value for a three-dimensional uniforfiHe eg
—7.15 K3¢

The chemical potential derived by using E¢3.11) and

.6) becomes

where the correlation energy per partiégz) depends on
the approach adopted fé,(r,r").

In practice, Eq.(3.1) is solved for fixed coverages and,
subsequently, the energy per particle is evaluated by usmg3
the obtained solutions. This procedure yields the equation o
statee as a function oh., which must satisfy the basic laws o
of thermodynamics. As known,_ dt=0 K the variation of u=e,— E (k—l)a—E, (3.12
the ground-state energy of a single-component systeid of k=

particles, which presents flat interfaces of afgas given o T
by32-35 being independent o&;. A further simplification can be

achieved by taking into account that for thick enough slabs,
dEge= oad A+ udN, (3.9 only the van der Waals tail of the substrate-adsorbate poten-
tial,

C

where o, is the surface tensiofnotice that in this case the
pressure is zepjo The formal thermodynamic definitions of

C
o and u lead to the following expressions in terms of the utall(z)~ -~ (3.13
energy per particle,
JE I(Eqe/N) d is relevant for the growth of the system. As stated by Cheng
TA= S) ( % ) —n2—, (3.5 and Cole} in the large coverage regime, the chemical po-
IA J(AIN) dne tential varies to first-order approximation a$1§l/
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,T o F0
K=€x—py 3, 314 = 5S¢ | ]
Ne — | N p(2)x200 =
wherep,=0.021836 A 3 is the equilibrium bulk densitf® g [ N
This result implies that the coefficiemt, should be zero. o 0 =
According to the simplest version of the Frenkel-Halsay-Hill g
(FHH) model[see, e.g., Eq®) in Ref. 37, which has been T L
derived by neglecting effects due to retardation of the van'Z -5 [ e —__ 39K
der Waals forcg T is directly determined by the strength of & L coZ K
the long-range tail of the interaction betweéHe and the ﬁ I 2 3-9 Na
substrate D _10 | L —
0 20 30

I'=Try=ACi=Cuaii — Cii1, (3.19

with C{¥¢, =120 K A® being theC coefficient of a hypo-

thetlcal 4He Substrate SO the Chem|cal potennal Of Eq FIG. 1. SubStrate-adSOI’bate pOtentIH|§,b(Z) as a function Of
(3.12 may be rewritten as the distancez from the surface. The dashed and solid curves are,

respectively, the standard two parameter “3-9” potential and the
Ye * ay most recent CCZ potential, both generated by a substrate of K. For
M=€r—2—— > (k—1) o (3.1  comparison, the adsorption “3-9" potential for a substrate of Na is
k=4 Ne represented by a dot-dashed curve. Two extreme examples of the
btained density profilep(z) for n,.=0.30 A 2 are also plotted.
he dashed curve shows the OP-NLDF results for the 3-9 potential,
while the continuous curve corresponds to the OT-NLDF calcula-
(3.17) tion with the CCZ potential.

z [&]

C

where the main contribution due to the van der Waals taif}
was explicitly separated, and the coefficiegtwas renamed

Yc=2as.

The derivation of the surface tension by applying Eq.and(1.7) and displayed in Fig. 1 were examined. In order to
(3.5) to the expansiort3.11) leads to facilitate a comparison, the well dep_ths and Fhe cqefﬁuents
of the long-range tail of these potentials are listed in Table |

- a together with the parameters of the “3-9” potential for a

_ (tot) o C k ) i

op=0s +3 5+ Z K== (3.18  substrate of Na. The values quoted in Table | indicate that

Ne k=4 N the depthD 4 Of the CCZ interaction lies in the middle of

where, as above, it was ﬁi:o’ and the Coefﬁcieml was the D values for K and Nisee also EC](].B)] Furthermore,

identified with the total surface tension in the limit of infinite the long-range coefficier®, 4\ is about 30% larger tha@
width for K and it is very close t&5 for Na. In summary, the new

adsorption potential for K is more similar to the “3-9” po-
a;= lim op=cl. (3.19 tential for Na than to that corresponding to K. The quantities
Ne— of interest for the analysis of the films were determined by
The incompressibility may be expressed as _solvmg the Hartree-like equatiof3.1). The results 'reported _
in the present work have been calculated by using two dif-
> a ferent approaches for the Hartree mean-field potektidk),
k - :
+ E k(k—1)—=>0. (3.20 namely, those given by the OP- and OT-NLDF formalisms.
k=4 Ne The corresponding expressions faf,(z) are provided

,35,38 i H
Perhaps it is worthwhile to stress that the incompressibility elsewheré:**The overall consistency of the solutions has
independent of the quantities. andc., ; it depends on how been checked by verifying that numerical results satisfy the

the chemical potential and the surface tension reach thedgiational relations derived in Sec. II.
asymptotic values. The integrodifferential problen8.1) has been solved for

_ —2
After taking into account the above-mentioned facts, the? 12rge ranggzof coverages uprig=0.40 A"* in steps of
energy per particle may be written as on.=0.01 A2, This maximum coverage coincides with the

=6

Ve
n3

NcKs p

(Ch) y ® 3 TABLE I. Comparison of the representative parameters of the
FREATIR NS (3.2 “He-K adsorption potentials.

Ne  nd k=4nk

e=e,+

Substrate  z, (A) @ Depth (K) Ciail (KA3)

Notice that this expansion is a generalization of E2p) 3.9 CCZ DP D¢ C.b C .c
- vdW 3 vdW

reported in Ref. 34.

K 442 448 6.26 8.11 812.0 10445

IV. RESULTS FOR “He ADSORBED ONTO A K Na 4.09 104 1070.0
SUBSTRATE

#Quantity z,;, is the coordinate at which the potentials attain their
In this section, we describe the study of liquitle films minimum values.
adsorbed on planar surfaces of K at zero absolute temperfFhese values correspond to the #3-9” potential.
ture. Both substrate-adsorbate potentials given by Hg6l  °These values correspond to the CCZ potential of Ref. 29.
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C — r T 1 ' T 1 1 sy LA B
_ - 4, -
F A 3-9 OP-NLDF “He on K . 6.5 I He on K A o ]
_5 - O 3-9 OT-NLDF — | 3-9 Adsorption Potential 1
T A CCZ OP-NLDF T | A OP-NLDF 4
[ ® CCZ OT-NLDF T g O OT-NLDF ) g
- - = LN
~— - g | 1
= _g | _ b~ eg=—7.15 K |
® L e L ) i
_7 - ]
L L L L 1 L ) L N | N L L M ';‘
0 5 10 15 .
2 3
v =1/n, [8°]

FIG. 2. Energy per particle=Eg/N as a function of the in- L
verse of coverage=1/n.. The symbols representing data calcu- 0 5 10 15
lated by using the different approaches outlined in the text are ex- = 1/n, [8%]
plicitly indicated. The full square is the bulk saturation valkee V=T

=—7.15 K. The continuous curves show the fits to E46) in-

. ] i FIG. 3. Chemical potential as a function of the inverse of cov-
cluding up Fo fifth-order terms._The dashec_i curves show the fit of a”erageyz 1/n,. The solid curves show evaluated with Eq(3.12
data to a sixth-order polynomial as explained in the text.

by keeping up to fifth-order terms and using the parameters listed in
. . . Table Il. The dash-dotted curve is the FHH approximation given by
size of the biggest films calculated by Clements, Krotschecqu. (4.2). (@) Results obtained for the “3-9” adsorption potential.

and Tymczak’ in a recent analysis of the energetics‘dfe (b) Same aga) for the CCZ adsorption potential. In addition, the
adsorbed on alkali-metal substrates of Cs, Na, and Li. Iijashed curves show the results obtained with the sixth-order poly-
order to getp(z) and i, Eq. (3.1) has been discretized in a nomial. The vertical arrows indicate the OT-NLDF valuesuofor
box of size 6<z=z =35 A, which insures that for the larg- n,=0.15 and 0.35 A2 used to calculatéu for the example dis-
est system the neglected/p(z) were smaller than cussed in the text.
10~% A~32 Four solutions were determined for every cov-
erage, i.e., one for each combination of the adsorption potersn the choice olUg,{z) and the adopted NLDF approach.
tials Ug,fz) and the NLDF formalisms mentioned above. Furthermore, Fig. 3 indicates that, for each substrate-
Two sets of the one-body densities obtained fof  adsorbate potential, the OP- and OT-NLDF results merge
=0.30 A2 are shown in Fig. 1. They correspond to theinto one another at smalb (i.e., at large coverages,
OP-NLDF results for the “3-9” potential and the OT-NLDF =0.30 A 2). This feature is due to the fact that for thick
values for the CCZ potential, these data exhibit the largesfilms, the behavior of is mainly determined by, , which
difference among the four profiles evaluated for this coverin turn depends on the van der Waals tail of thg,{z). The
age. Having determinepl(z) and the optimal Hartree mean- size of this contribution can be estimated by using Egs.
field potentialVy(z), we evaluated the energy per partiele  (3.14 and(3.15

Figure 2 shows the results fog as a function ofwv
=1/n.. It becomes clear from this figure that the behavior of Cpaii—CHe
the solutions obtained for the “3-9” potential is significantly M=€,—py
different from that exhibited by results corresponding to the Ne
CCZ potential. The values of the former serieseafecrease
monotonically toward the values for increasingn, (i.e., for

4.2

Figure 3 shows the results provided by this simple approxi-
mation whenC,,; takes the value€; andC, 4, quoted in

e reas Tor the Iatter potontial o105k e vats e T2ble 1. Notice that at medium coverages, the OT-NLDF
P data exhibit oscillations as a function of

coverages and attain the asymptotic value from below. On Let us now describe the verification of the relations re-

the other hand, the energy values calculated with the OP- . )
NLDF formalism lie syster?étically above the OT-NLDF re- quired by Eqs(2.13 and(2.13. We shall focus the attention

sults for both potentials on the consistency of solutions obtained for different cover-
np ’ : ages because wetting is related to the third-sound velocity,
The obtained values gf are plotted as a function of which in turn depends on the behavior @fas a function of
=1/n; in Fig. 3. From this drawing it becomes clear that, for X o

all the investigated cases, very large films always satisfy th%c' The variation of the chemical potential may be evaluated
stability condition(3.9) written in terms ofy y using the simplified version of E¢2.13 written for pla-

nar symmetry, i.e.,

du du

egn = Va0 4.1 fo dzVp(2[Vp(2)+ 8\p(2)16Vi(2)
Su= = (4.3
suggesting a possible wetting of the potassium surface. The f dzvo(z 2+ S\o(z
minimum coveragen]" that verifies this condition depends 0 Vp(@)Np(2)+op(2)]
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FIG. 4. (a) Variation of the Hartree mean-field potential as a

FIG. 5. The variation of the Hartree mean-field potential ob-

function of distancez from the substrate. The full circles stand for tained within the OP-NLDF formalism for the “3-9” potential is
data corresponding to the pair of coverages=0.15 A2 and  shown as a function of the distanzdrom the surface. The plotted
n.=0.35 A2, which were calculated within the OT-NLDF for- data correspond to pairs of coverages whose difference increases
malism for the CCZ potential. The continuous curves are the onelinearly according tosn.=n.—0.25 A2 with n,=0.26, 0.27,
body densitiep(z) given in arbitrary units, the symbo(4) and(2) 0.28, 0.29, and 0.30 2. The relevant positive contributions are
indicate, respectively, the profiles corresponding to the smaller anthagnified in the inset. The density profil&displayed in arbitrary
larger films. (b) Evolution of the change of chemical potentials units) for n.=0.25 A"2 (continuous curve and n;=0.30 A2
evaluated with Eq(4.4) for increasingzy, . (dashed curveindicate clearly that values stemming from the sur-
face region yield the crucial contributions.
It is worthwhile to emphasize the power of this equation for
testing the consistency of solutlon_s obtained for very differ-,ajue. Figure 5 shows the results for pairs whose coverage
ent coverages. Let us |IIu§trate this feature showmg_ the _bedifference increases linearly according to the relatim
havior of the results provided by OT-NLDF calculations in =n,—0.25 A2 with n,=0.26, 0.27, 0.28, 0.29, and 0.30

the case of the CCZ potential far,;=0.15 A~2 and n; A-2 Thi P
o 5 . . . This drawing indicates that for evergn., there are
=035 A" The difference between the values,ofielded well-defined positive and negative contributions localized in

by Eq. 3.1 IS 5{“:0'411 K [cf. Fig. G(b)]: Figure 4’?1) the surface region. On the balance of these contributions de-
shows the variation of the Hartree mean-field potential for ends whether a film is stable or not. The data shown in Ei
this pair of coverages as a function oflt is instructive to P ' 9-

follow the convergence of the rati6d.3 introducing the 5 can be qsed to check two different properties of the chemi-

limit of integrationz,, cal po_tentlal. On t_he one hand, one can e_valumecorre-
sponding to two different coverages by using E4.3). On

the other hand, one can determine the sldpédn, by cal-

culating the integral of Eq2.15.

Figure 6 shows results of the weighted averages over the
values of §Vy(z) calculated with Eq(4.4) for the pairs of
coverages given in the previous paragraph. The convergence
of these ratios of integrals was examined as a functiar,of

Figure 4b) indicates the evolution of E@4.4) for increasing ~ Starting from the valuey, =6.56 _A _corresponding to the
values ofzy . In the adopted notation, the horizontal line Completion of the first layer of I'|qU|d4I-!e.. This plot indi-
labeled byu(.35)— x(.15) stands for the difference of val- cates that after exhibiting an initial positive value, the quan-
ues obtained at,(=0.35 A"2 andn,=0.15 A 2 So, the lity du always strongly increases when the positité,(z)
convergence exhibited by the ratio of integrals is quite good¢ontributions displayed in the inset of Fig. 5 are included in
the limiting value is safely attained before the box sizés  the integrals, subsequentljx decreases dramatically when
reached. Notice, that in spite of the large coverage differthe negative contributions are included. However, in spite of
ence,sn,=0.20 A ?, the agreement between the value pro-the fact that the strength of the negative value$gf,(z) is
vided by Eq.(4.3) and that obtained from the two indepen- larger than that of the positive ones, their total contribution is
dent solutions of Eq(3.1) is excellent. not enough to reverse the sign & because the geometric
We shall now report a careful analysis of the numericalaverage of the involved one-body densitigg) is small in
results for the most controversial case corresponding to ORhat region ofz. The solid horizontal lines displayed in Fig. 6
NLDF calculations for the “3-9” adsorption potential. represent the differences between the chemical potentials
Looking at Fig. 3a), one can guess that there is a minimumyielded by the Hartree-like equatid8.1) for each one of the
at aboun.=0.22 A 2. So, since we are primarily interested two involved coverages. From this figure, it becomes clear
in checking the stability of the films, in the following lines that data evaluated with Eq4.4) always converge to the
we shall focus the attention on coverages bigger than thidifferencessu given by solutions of Eq(3.1).

| " 2@ o @+ svp@ Vw2

Su= lim

ZMHOO

fOZMdZ\/P(Z)[\/P(Z)+ 5Np(D)]
(4.4
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FIG. 6. Variation of the chemical potential given by the ratio of  FIG. 7. Ratio of the variation of the Hartree mean-field potential
integrals(4.4) as a function of the limit of integratiomy, for the  to the variation of the coverage as a functiorzéér the same pairs
same pairs of coverages considered in Fig. 5. The solid horizontalf coverages considered in Fig. 5. Full circles joined by the solid
lines represent differences between the corresponding chemical pgurve indicate the limit of the ratio fosn,—0. The continuous
tentials obtained directly from the solutions of £8.1) and plotted  curve in the upper part stands for the density prgf{i) of the film
in Fig. 3(@. As in Fig. 5, the density profile@lisplayed in arbitrary  with coveragen,=0.25 A2 plotted in arbitrary units. The deriva-
unity) for n.=0.25 A"? (continuous curveand n;=0.30 A™?  tive du/dn, atn,=0.25 A 2 evaluated according to E¢4.5) by
(dashed curveindicate clearly that values stemming from the sur- ysing the displayed values of |ymﬁ0[ 8Vy(2)/6n,] is indicated
face region yield the crucial contributions. by the horizontal dashed line. The relevant positive contributions

anddu/dn, are magnified in the inset.

We shall now examine the extent to which the numerical
results satisfy the requisite imposed (#/15. This require-
ment implies that at eaaf., the derivativedu/dn, must be
equal to the weighted average over the values 0{
Iimgnﬁo[évH(z)lénC], ie.,

where all the coefficients of terms up to fifth-degree were left
ree, while all the coefficienta, with k>5 were set at zero.
n practice, this analysis has been extended to data covering
the range &cv=11 A? where the valueg=—7.15 K cor-
responding to bulk liquid at saturati$hwas included in the
dpu 1 (= . [6Vu(2) fits following the procedure discussed in Ref. 34. The ex-
d_ —f de(Z) lim . (45) (tot) . .

n: N¢Jo ne tracted values ok.., o, 7, Y., &4, andas are listed in
Table Il. As expected, all the results fer, are consistent

We illustrate this part of the study describing the behavior ofVith €. For both adsorption potentials, the extracted values
ratios of the variation of the Hartree mean-field potential to0f ¥ are somewhat smaller than the corresponding FHH
the variation of the coverage corresponding to the same paifstimations indicating a retardation effé€igure 2 shows
of coverages considered in Fig. 5. Figure 7 showghat fits of all the sets of energy data are quite good over the
8V(2)/ 8n, as a function of the position These ratios were ~considered range of coverages. _ _
used to determine the limit fofn.—0 at each value of. The chemical potential evaluated by inputting the ex-
The obtained results are also plotted in Fig. 7 together witiracted parameters in E(3.16 is displayed in Fig. 3. This
the density profile(z) for the film ofn,=0.25 A 2 needed plot indicates that such. estimations reprqduce satisfactorily
for the evaluation of the average. The computation of EqWell the values ofu obtained from the solutions of E¢3.1)
(4.5) yields du/dn.=0.315 KA2. Since this value agrees Up 10 »=9 A? (i.e., small coverages of abouh,
with the derivative calculated directly with the data plotted in=0.11 A‘2)_, except for the CCZ OT-NLDF case where the
Fig. 3(@), the necessary conditio@.5) is successfully veri- agreement is good only up to=7 A? (n;=0.15 A™?).
fied. Notice that for very thick filmgsmall values ofv) the fitting

In fact, we have calculated the local variatioié,(z) for ~ curves merge into the lowest-order approximation given by
all the pairs of considered coverages and verified the consiq. (4.2). Table Il also contains the valueg" indicating the
tency of the solutions. In summary, this test has been satigoverages at which the initial negative slops(nc)/dn,
factorily applied to all the sets of data pfdisplayed in Fig. are reversed. Sincel'"=0.10 A™2, the stability of thin
3 giving a strong support to the overall consistency of thefilms with n;=0.043 A 2 s ruled out in agreement with the
solutions. Having checked this point, let us turn to the analy{inding of Boninsegni and Colé:

5ﬂc—>0

sis of the data o€ as a function of Ti.. For the sake of completeness, we have performed a sec-
In a first step, each set @{(n.) has been fitted to the ond fit of the energy data corresponding to the CCZ potential
polynomial including here all the values plotted in Fig. 2. In this case,

the term a6/n§ was added to Eq(4.6) and in the fitting

procedure two coefficients were taken fixed, namely,
(4.6 =eg and y.= 70ccz- The extracted values are also quoted in

Table Il. This extension improves, at small coverages, the

(tot)
O Yo Q4

5
3 4 5’
C

e=e,+
Ne n
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TABLE II. Coefficients of the expansion for the energy per partefer “He adsorbed on a potassium substrate.

System Data source € ooy YeX10®  ayx10° agx10®  agx 10 nmin
(K) (KIA% (KIA®) (KIA®) (KIA19 (KIATY (A2
Bulk “He Experiment
es ~7.152
“He-K Theory
Adsorption Formalism
Potential
“3-9” b FHH ¢ (y3_o) 3.60
OP-NLDF —7.153 0.1997 2.78 —0.422 0.0167 0.22
OT-NLDF —7.151 0.1597 2.91 —-0.421 0.0164 0.17
ccz¢ FHH ¢ (12, 4.81
OP-NLDF —7.154 —0.0129 4.46 —0.512 0.0169 0.14
—7.15° —0.0132 4.468 —0.545 0.0232 —0.302
OT-NLDF —7.155 —0.0561 4.48 —0.501 0.0164 0.10
—7.15° —0.0562 4.48 —0.539 0.0238 —0.349

3Bulk energy per particle quoted in Table Il of Ref. 36 and used for fixing the parameters of both examined NLDF formalisms.
bStandard two-parameter adsorption potential.

Coefficienty, estimated by using the FHH approach as explained in text.

dAdsorption potential proposed in Ref. 29.

®These values were kept fixed.

fits for e and the predictions for as can be seen in Figs. 2 versions are given in Sec. |. The calculations have been per-
and 3b), respectively. However, the oscillations gf ob-  formed within the framework of two different NLDF formal-
tained within the OT-NLDF approadicaused by the layered isms, namely, those known as Orsay-Parignd
structure of the filmscannot be described with the polyno- Orsay-Trentd’ functionals. A special effort was devoted in
mial expression of the typ&3.21). This feature is also order to analyze the consistency of solutions corresponding
present, although attenuated, in the case of the “3-9” potento different coverages. For this purpose, variational relations
tial. have been derived for the chemical potential, which is a cru-
Let us now center the attention on the wetting. It wasjg quantity of this problem.
found that, in all the analyzed cases, the chemical potential | ot us now briefly summarize our investigation concern-
determined for films of large coverages satisfy the Necessaiyy the variational properties of the Hartree-like equation

condition for stability (3.9). However, according to Dzy- (1.4). We proved that if the ground-state energy of a many-
aloshinskii, Lifshitz, and Pitaevskfl (see discussion of Fig. body Bosg system is writteg as a functional g¥ the partic)I/e

12 therein, for insuring a permanent complete wetting of the . 2 " :
investigated substrate, one must also examine the behavior(cjfLrIbUtlon p(r) according to Eq(1.1) and consequently

: . : r) is determined by EqJ1.4), then the solutions for finite
the grand potential per unit areg, given by Eq.(3.18. The P e e
“true” stable state of the film corresponds to that for which systems must present variations satisfying the reld@atg.

. - . . .~ We would like to stress the remarkable simplicity of the
op is @ minimum. In practice, when searching for wetting, . . L
, latter equation, which expresses that the variation of the
one should compare the asymptotic value of the surface : . . .
. c¢hemical potentiaj for finite changes of the particle num-
grand potential o !
ber N is given by a sort of weighted average over the local
Q(ng—) variations of the Hartree mean-field potentig|(r). Besides
oa(Ne—0) = T=o£§°°, (4.7  the intrinsic beauty of this compact form, it should be em-
phasized that Eq2.13 may be used as a tool to control the
with oa(n.=0)=0 (see Fig. 8 in the second cite of Rej. 4 overall self-consistency of evaluated solutions. In particular,
The values o quoted in Table Il indicate that the wet- the results for the chemical potential which is the least
ting is guaranteed in the case of the CCZ potential, while th&table quantity, can be tested. Furthermore, the limit for in-

standard “3-9” interaction leads to metastable states. finitesimal variations(2.19 yields that the derivative oft
with respect td\ may be written as a weighted average over

the local derivativeslVy(r)/dN.
In light of the obtained results, we concluded that all the
In the present work, we studied the stability of liqfide  numerical solutions determined in this study satisfy with
films adsorbed to planar surfaces of K. Two different pro-high accuracy the derived variational properties written for
posals for the interaction betweéile atoms and the potas- the planar geometry. In the case of this symmetry, the de-
sium surface have been examined. These are the standardative du/dn, has physical importance because it is related
“3-9” substrate-adsorbate potential and a more elaboratetb the stability of a Bose many-body systéai., Eq.(3.9)].
one developed by Chizmeshya, Cole, and Zarefitimth An important result of this investigation is the finding

V. CONCLUDING REMARKS
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that, for every combination of the examinéd,{z) poten- tential yield30§§°°<0 for both analyzed NLDF approaches.
tials and utilized NLDF approaches, whepgrows continu-  In summary, on the basis of results provided by the more
ously from a certain minimum coverage to then u ap-  elaborated adsorption potential we can state that the liquid
proaches the asymptotic value,=eg=—7.15 K from  “He wets the surface of K ai=0 K. This feature is in
below (see Fig. 3. This behavior is in agreement with the agreement with the experimental evidefc8.

description of wetting given in the first cite of Ref. 4. Even |5 aqdition, in all the examined cases, our results support

for the weaker interaction, i.e., the "3-9 potential, the e finding of Boninsegni and Cdfethat thin quasi-two-
present calculations for thick enough films yielded Positivejimensional films with.~0.043 A2 are unstable
=0. .

values of the square of the third-sound velocim%
=n.du/dn.. However, the additional condition outlined in
Ref. 40 which in practice requires a negativ€® is not
satisfied by the results obtained with the “3-9” potential.
Therefore, the standard “3-9” adsorption potential used for This work was supported in part by the Ministry of Cul-
the potassium substrate in Refs. 4 and 27 may only lead tture and Education of Argentina through Grants PIP-
metastable films. On the other hand, the stronger CCZ pdcONICET No. 4486/96 and SIP No. EX-01/TX55.
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