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Wetting of potassium surfaces by superfluid4He:
A study using variational properties of the chemical potential
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The wetting of planar surfaces of K by superfluid4He films atT50 K is theoretically studied. In order to
examine the consistency of numerical results, new variational properties of the chemical potentialm are
derived. Two substrate-adsorbate interactions are analyzed:~a! the standard ‘‘3-9’’ one and~b! the more
elaborated potential recently proposed by Chizmeshya, Cole, and Zaremba~CCZ!. New results calculated
within the framework of two different nonlocal density functionals~namely, those known as the Orsay-Paris
and Orsay-Trento formalisms! are reported. It is demonstrated that the numerical solutions obtained from the
theoretical equations verify with high accuracy the derived variational conditions. The main output of this
investigation is the finding that, for both analyzed adsorption potentials, thick enough helium films exhibit a
positive square of the third-sound velocity. The wetting of a potassium substrate by superfluid4He at T
50 K suggested by experimental data is guaranteed in the case of the recent CCZ potential.
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I. INTRODUCTION
The experiment and theory of interfaces and surfaces h

been continuously developed during the past decade.
reader may follow the recent progress in Refs. 1–3. A gla
at the list of investigated problems indicates that wetting
planar solid substrates by superfluid helium is one of
most studied issues. The interest in this field has been
siderably stimulated due to the fact that the analysis of pr
erties of helium films adsorbed on weakly attractive hea
alkali metals has led to the nonwetting phenomenon.

In 1991 Chenget al.4 predicted that4He should not wet
planar surfaces of Cs, Rb, and K atT50 K. This fascinating
behavior was argued on the basis of results obtained by u
a nonlocal density functional~NLDF! theory. In this theoret-
ical framework, the ground-state energyEgs of an inhomo-
geneous liquid of4He confined by an external potential du
to a substrate,Usub(r ), may be written as5

Egs52
\2

2mE drAr~r !¹2Ar~r !

1E E dr dr 8r~r !r~r 8!Ec~r ,r 8!1E dr r~r !Usub~r !,

~1.1!

where r(r ) is the one-body density. The first term on th
right-hand side is the quantum kinetic energy of the heli
atoms of massm. The second term represents the interact
between the particles of the liquid, so that the quan
Ec(r ,r 8) is the correlation energy density depending on
approach adopted for the theoretical description.5 We shall
come back to this point later on. Finally, the last term is
interaction of helium with the external field. The spatial pa
ticle distribution r(r ) is determined by solving an Euler
PRB 620163-1829/2000/62~6!/3986~11!/$15.00
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Lagrange~EL! equation, which is derived by applying
variational procedure with the constraint of a fixed partic
numberN, i.e.,

d@Egs2mN#

dAr~r !
50. ~1.2!

Herem is the chemical potential andN is defined as

N5E dr r~r !. ~1.3!

The variation of Eq.~1.2! leads to a Hartree-like equation fo
the square root of the one-body density

F2
\2

2m
¹21VH~r !1Usub~r !GAr~r !5mAr~r !, ~1.4!

which also determinesm. HereVH(r ) is a Hartree mean-field
potential given by the first functional derivative of the tot
correlation energyEc@r#,

VH~r !5
dEc@r#

dr~r !
5

d

dr~r !
E E dr 8dr 9r~r 8!r~r 9!Ec~r 8,r 9!.

~1.5!

In the case of a planar geometry, the system is translation
invariant in thex-y plane and symmetry is broken in thez
direction giving rise to a density profiler(z). This scenario
may be caused by the action of an external potential of
form Usub(r )5Usub(z).

The theoretical results of Ref. 4 were obtained by us
the Orsay-Paris NLDF~OP-NLDF! formulation of Dupont-
Roc et al.6 and by assuming that the interaction between
lium atoms and the surfaces is described by a simple t
parameter ‘‘3-9’’ substrate-adsorbate potential of the form
3986 ©2000 The American Physical Society
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Usub~z!5U3-9~z!5S 4C3
3

27D2D 1

z9
2

C3

z3
. ~1.6!

Here D is the well depth andC3 the van der Waals coeffi
cient. Widely used values of these parameters have been
rived by Zaremba and Kohn7 and are listed in Table I of the
first cite of Ref. 4.

After the prediction of Chenget al.,4 a large amount of
experimental work in the field was started. An instructi
review of the experiments performed in the early 1990s w
written by Hallock.8 In summary, the available informatio
indicates that4He does not wet Cs atT50 K, but it wets
this substrate at temperatures larger than the wetting t
peratureTw.2 K.9–13 In the case of4He on Rb, the situa-
tion is not so clear. The experimental evidence suggests
Tw would be about 0.3 K or perhaps zero.14–19

Lighter alkali metals have received less experimen
attention.9,18,20After taking into account that~i! the adsorp-
tion potential deepens as the alkali metal becomes ligh
and~ii ! the wetting temperature for4He on Rb is, if different
from zero, much smaller than that found for Cs, it becom
plausible to expect that K, Na, and Li would be wetted
4He at T50 K. As a matter of fact, recent measureme
reported in Ref. 18 show that helium wets potassium a
sodium atT50 K. In this context, although there are n
experimental data in the case of the Li substrate, it should
mentioned that quite recent path integral Monte Ca
~PIMC! simulations21,22 show that helium wets lithium.

Due to its extraordinary characteristic, several features
lated to the nonwetting to wetting transitions have been
tensively studied in recent years, becoming one of the g
of the current investigations in this area. So, the con
angle of 4He droplets on Cs was measured.23–25 Subse-
quently, Ancilotto, Sartori, and Toigo26 have reported a new
theoretical investigation of the structure and contact angl
4He droplets adsorbed on a Cs surface. In this study,
calculations were carried out by utilizing the improve
NLDF formulation proposed by the Orsay-Tren
collaboration27,28 ~OT-NLDF! and the novel substrate
adsorbate potential evaluated by Chizmeshya, Cole,
Zaremba29 ~CCZ potential!

Usub~z!5UCCZ~z!

5V0~11az!exp~2az!

2 f 2@b~z!~z2zvdW!#
CvdW

~z2zvdW!3
, ~1.7!

where

f 2~x!512S 11x1
x2

2 Dexp~2x!, ~1.8!

and

b~z!5
a2z

11az
. ~1.9!

The parameters of these expressions are quoted in Table
Ref. 29. It should be noticed that, for a given substrate,
potential is more attractive than that of Eq.~1.6! with the
de-
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parameters of Ref. 7. Turning to Ref. 26, the authors co
reproduce satisfactorily well the size of the experimen
contact angle.23–25 On the other hand, a PIMC simulatio
performed by Boninsegni and Cole30 yielded a wetting tran-
sition at a temperatureTw;2 K consistent with the experi
mental value.9–13 In this study, the authors adopted the Az
potential31 to describe the interaction between helium p
ticles, whereas the interaction between the4He atoms and
the Cs surface was modeled by the ‘‘3-9’’ potential of E
~1.6!. In summary, the information available in the literatu
concerned the adsorption on Cs depicts a consistent pat

Let us now look more carefully at the current knowled
about the adsorption of4He films on K substrate, which wa
mentioned in the pioneering work4 as the last candidate t
exhibit nonwetting behavior at zero temperature. Accord
to theoretical results obtained with the ‘‘3-9’’ potential i
Refs. 4~cf. Table I in the first cite! and 27~see comments to
Fig. 9 therein!, the superfluid4He should not wet flat sur-
faces of K. To the contrary, more recent estimations p
formed in Ref. 29 by using the more elaborated CCZ pot
tial indicate that 4He should wet substrates of K atT
50 K. The latter prediction is supported by the alrea
mentioned experimental data.18 So, it remains to establish
precisely the origin of the discrepancy between theoret
conclusions drawn in Refs. 4 and 27 and that obtained
Ref. 29. Therefore, we have undertaken a revised stud
this problem by performing new variational calculations.

In solving the optimization problem~1.4!, the least stable
quantity is the chemical potentialm, which therefore exhibits
the largest numerical uncertainty. Consequently, it becom
useful to study properties ofm to gain insights as well as to
obtain relations that might be utilized to control the cons
tency of the solutions. Motivated by this fact, in the prese
work we explore the behavior of the variation ofm when Eq.
~1.4! is solved for different values ofN. The derived relations
are applied to control the consistency of numerical solutio
for films of liquid 4He adsorbed on substrates of K. On t
basis of these results, we are able to reach a conclusion a
wetting.

The structure of this paper is the following. Variation
properties ofm are derived in Sec. II. The relevant tools fo
treating the planar geometry are provided in Sec. III. Sect
IV is devoted to analyzing the overall consistency of nume
cal results for liquid 4He adsorbed on K surfaces at ze
absolute temperature and to discussing the stability of th
systems. Finally, the concluding remarks are given in Sec

II. THE BEHAVIOR OF µ WHEN
THE PARTICLE NUMBER IS CHANGED

In the first part of this section, we shall study variation
properties ofm for finite changes ofN. Subsequently, the
limit for infinitesimal variations is analyzed.

A. Variation of µ for finite changes ofN

Let us consider solutions of Eq.~1.4! corresponding to
two different particle numbers denoted asNi and Nf5Ni
1dN. At this stage the size ofdN remains arbitrary, that is
we are not requiring small changes ofN. ForNi , one getsm i

andAr i(r ) satisfying
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F2
\2

2m
¹21VH

i ~r !1Usub~r !GAr i~r !5m iAr i~r !,

~2.1!

while for Nf one obtainsm f andAr f(r ) obeying

F2
\2

2m
¹21VH

f ~r !1Usub~r !GAr f~r !5m fAr f~r !.

~2.2!

Note that the Hartree mean-field potential present in b
these equations is different, the relation may be expresse
VH

f (r )5VH
i (r )1dVH(r ). Accordingly, the remaining fina

quantities may also be written as a sum of the initial on
and their variations, i.e.,m f5m i1dm and Ar f(r )5Ar i(r )
1dAr(r ). To simplify the notation, in what follows, we
shall drop the indexi when referring tor i(r ). Upon multi-
plying both above written equations from the left by t
square root of the corresponding one-body density and i
grating overdr one arrives at

E drAr~r !F2
\2

2m
¹21VH

i ~r !1Usub~r !GAr~r !

5m iE dr r~r !5m iNi , ~2.3!

and

E dr @Ar~r !1dAr~r !#F2
\2

2m
¹21VH

f ~r !1Usub~r !G
3@Ar~r !1dAr~r !#

5m fE dr @Ar~r !1dAr~r !#2

5m fNf . ~2.4!

Of course, the right-hand side of the latter equation may a
be written in terms of the initial quantities and their vari
tions
h
as

s

e-

o

m fNf5~m i1dm!~Ni1dN!5m iNi1m idN1dm~Ni1dN!.
~2.5!

Before proceeding further with the analysis of Eq.~2.4!, we
shall expressdN in terms of the initial one-body density an
its variation. Starting from the definition ofNf , we obtain

Nf5Ni1dN5E dr @Ar~r !1dAr~r !#2

5E dr r~r !1E dr @2Ar~r !1dAr~r !#dAr~r !,

~2.6!

from where arises

dN5E dr @2Ar~r !1dAr~r !#dAr~r !. ~2.7!

Perhaps, it is instructive to notice that an alternative way
gettingdN consists of evaluating directly the total variatio
of the particle number

dN5dE dr r~r !5E drdr~r !

5E dr @2Ar~r !1dAr~r !#dAr~r !, ~2.8!

where use was made of the relation

dr~r !52Ar~r !dAr~r !1@dAr~r !#2. ~2.9!

Let us emphasize that in Eqs.~2.7! and~2.9! the total varia-
tion of dr(r ) is kept because at this point, we are calculati
the total change ofm when the integrodifferential Eq.~1.4! is
solved for two arbitrarily different particle numbersNi and
Nf .

In order to derive a nontrivial equation fordm, we shall
split the integral of the left-hand side of Eq.~2.4! into three
contributions, performing this procedure in such a way t
each term could be related to results obtained in Eqs.~2.1!,
~2.2!, and~2.3!
E dr @Ar~r !1dAr~r !#F2
\2

2m
¹21VH

f ~r !1Usub~r !G@Ar~r !1dAr~r !#

5E drAr~r !F2
\2

2m
¹21VH

f ~r !1Usub~r !GAr~r !1E drAr~r !F2
\2

2m
¹21VH

f ~r !1Usub~r !GdAr~r !

1E drdAr~r !F2
\2

2m
¹21VH

f ~r !1Usub~r !G@Ar~r !1dAr~r !#

5m iNi1E drAr~r !dVH~r !Ar~r !1E drAr~r !@m i1dVH~r !#dAr~r !1E drdAr~r !@m i1dm#@Ar~r !1dAr~r !#

5m iNi1m idN1dmE dr @Ar~r !1dAr~r !#dAr~r !1E drAr~r !@Ar~r !1dAr~r !#dVH~r !. ~2.10!
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Upon inserting the results~2.5! and ~2.10! into ~2.4! we ob-
tain

E drAr~r !@Ar~r !1dAr~r !#dVH~r !

5dmE drAr~r !@Ar~r !1dAr~r !#, ~2.11!

which leads to

dm5

E drAr~r !@Ar~r !1dAr~r !#dVH~r !

E drAr~r !@Ar~r !1dAr~r !#

. ~2.12!

This is an exact expression fordm since no contribution has
been neglected in the variational calculation. In fact, ther
a complete cancellation of terms proportional to@dAr(r )#2.
Furthermore, since no assumption on the size ofdAr(r ) was
made, this relation is valid for anydN. This form indicates
that the variation of the chemical potential is given by a s
of spatially weighted average over local variations of t
Hartree mean-field potential

dm5m f2m i5

E dr r̄~r !dVH~r !

E dr r̄~r !

5

E dr r̄~r !@VH
f ~r !2VH

i ~r !#

E dr r̄~r !

, ~2.13!

the weight being the geometric average of the involved o
body densities

r̄~r !5~r~r !@Ar~r !1dAr~r !#2!1/25Ar i~r !r f~r !.
~2.14!

On the basis of this theoretical derivation, we can st
that solutions of any system described by Eqs.~1.1! and~1.4!
must exhibit variations satisfying the compact relati
~2.13!. Besides the physical interest of this finding, it is wo
thy of notice that the numerical verification of this proper
may provide a good test for the overall self-consistency
evaluated results. The simple structure of Eq.~2.13! makes
this proof very easy.

B. The limiting case dN\0

For several reasons it becomes relevant to look at
behavior ofdm for dN→0. In this case, it is of particula
interest to evaluate the limit of the ratiodm/dN

dm

dN
5 lim

dN→0
S dm

dND5
1

NE dr r~r ! lim
dN→0

S dVH~r !

dN D ,

~2.15!

then we get
is

t

-

e

f

e

N
dm

dN
5E dr r~r !

dVH~r !

dN
. ~2.16!

QuantityNdm/dN plays an important role in the analysis o
the stability of liquid 4He films, therefore, we shall return t
this point later.

For the sake of completeness, we shall point out that
chemical potential may be expressed in terms of the su
position of the Hartree mean-field and external potent
VH(r )1Usub(r ) and the derivatives ofAr(r ) with respect to
N. In order to derive such a formula, one may start differe
tiating Eq.~2.3! with respect to the particle number

d

dN S E drAr~r !F2
\2

2m
¹21VH~r !1Usub~r !GAr~r ! D

5
d

dN
~Nm!. ~2.17!

This procedure leads to

2E dr S dAr~r !

dN D F2
\2

2m
¹21VH~r !1Usub~r !GAr~r !

1E dr r~r !
dVH~r !

dN
5m1NS dm

dND . ~2.18!

Upon taking into account the previous result~2.16!, one ob-
tains

m52E dr S dAr~r !

dN D F2
\2

2m
¹21VH~r !1Usub~r !GAr~r !.

~2.19!

This form indicates that chemical potential is given by
spatially weighted average over the left-hand side of the H
tree equation~1.4!, where the normalized weight is twice th
derivative of the square root of the one-body density w
respect to the particle number. The result~2.19! is to be
compared with that provided by Eq.~2.3!

m5
1

NE drAr~r !F2
\2

2m
¹21VH~r !1Usub~r !GAr~r !.

~2.20!

Both expressions,~2.19! and~2.20!, give the chemical poten
tial at a fixed particle number. The difference between th
forms lies in the fact that the latter one is exclusively writt
in terms of solutions of Eq.~1.4! determined at the selecte
N, whereas Eq.~2.19! also requires information about solu
tions at particle numbers lying in the vicinity ofN. Hence,
Eq. ~2.19! may be used to control the overall sel
consistency, likewise Eqs.~2.13! and ~2.15!. On the other
hand, upon equating Eqs.~2.19! and ~2.20!, one gets the
self-consistent ‘‘closure’’ relation

E dr S 2
dAr~r !

dN
2

Ar~r !

N D F2
\2

2m
¹21VH~r !

1Usub~r !GAr~r !50, ~2.21!
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which may also be obtained by generalizing the identity

05E dr S dr~r !

dN D215E dr S dr~r !

dN
2

r~r !

N D
5E drAr~r !S 2

dAr~r !

dN
2

Ar~r !

N D . ~2.22!

III. THE CASE OF PLANAR SYMMETRY

The relations derived in the preceding section will be a
plied to examine the self-consistency of solutions obtain
for planar films of liquid 4He at zero absolute temperatur
In the case of this symmetry, any one-body quantity becom
a one-dimensional function,f (r )5 f (z), depending only
upon thez coordinate, which is the position of the atom
with respect to a fixedx-y plane determined by the substrat
Accordingly, the square root of the one-body density is
termined by the one-dimensional version of the EL-equat
~1.4!

F2
\2

2m

d2

dz2
1VH~z!1Usub~z!GAr~z!5mAr~z!.

~3.1!

For planar geometry, instead of solving this equation fo
fixed value ofN given by Eq.~1.3!, one imposes the con
straint on the particle number per unit areaA denoted fre-
quently as coverage

nc5
N

A
5E

0

`

dzr~z!. ~3.2!

Notice that here the liquid4He only occupies thez.0 half-
space. In turn, the energy per particle becomes

e5
Egs

N
5

1

nc
F \2

2mE
0

`

dzS dAr~z!

dz D 2

1E
0

`

dzr~z!ec~z!

1E
0

`

dzr~z!Usub~z!G , ~3.3!

where the correlation energy per particleec(z) depends on
the approach adopted forEc(r ,r 8).

In practice, Eq.~3.1! is solved for fixed coverages and
subsequently, the energy per particle is evaluated by u
the obtained solutions. This procedure yields the equatio
statee as a function ofnc , which must satisfy the basic law
of thermodynamics. As known, atT50 K the variation of
the ground-state energy of a single-component system oN
particles, which presents flat interfaces of areaA, is given
by32–35

dEgs5sAdA1mdN, ~3.4!

wheresA is the surface tension~notice that in this case th
pressure is zero!. The formal thermodynamic definitions o
sA andm lead to the following expressions in terms of th
energy per particlee,

sA5S ]Egs

]A D
N

5S ]~Egs/N!

]~A/N! D
N

52nc
2 de

dnc
, ~3.5!
-
d

es

.
-
n

a

ng
of

and

m5S ]Egs

]N D
A

5S ]~Egs/A!

]~N/A! D
A

5e1nc

de

dnc
. ~3.6!

These equations lead to the well-known relation that may
also derived starting from Eqs.~3.1! and ~3.3!

sA5nc~e2m!5
Egs2mN

A
5

V

A
. ~3.7!

Here V is the thermodynamic grand potential atT50 K.
Within the framework of this formulation, a necessary co
dition for ensuring the stability of a system is to require
positive areal isothermal compressibilityks . As pointed out
in Refs. 33 and 34, atT50 K this condition may be ex-
pressed in the following way:

1

ks
5AS ]sA

]A D
N

5
A

N S ]sA

]~A/N! D
N

52nc

dsA

dnc
.0. ~3.8!

It may be rewritten in terms of the incompressibility, whic
has the dimension of an energy and is related to the th
sound velocityc3 ~cf. the second cite of Ref. 4!

1

ncks
52

dsA

dnc
5nc

dm

dnc
5mc3

2.0. ~3.9!

At this point, one can make a connection to Eq.~2.16! de-
rived in the preceding section. So, quantityc3 may be calcu-
lated from the variation of the Hartree mean field

mc3
25nc

dm

dnc
5E

0

`

dzr~z!
dVH~z!

dnc
. ~3.10!

In order to study the energetics of planar films, it is use
to expand the energy per particle as a polynomial in pow
of the inverse of coverage33–35

e5
Egs

N
5e`1 (

k51

`
ak

nc
k
. ~3.11!

Here e(nc→`)5e` can be identified with the saturatio
equilibrium value for a three-dimensional uniform4He eB
527.15 K.36

The chemical potential derived by using Eqs.~3.11! and
~3.6! becomes

m5e`2 (
k52

`

~k21!
ak

nc
k
, ~3.12!

being independent ofa1. A further simplification can be
achieved by taking into account that for thick enough sla
only the van der Waals tail of the substrate-adsorbate po
tial,

Usub
tail~z!.2

Ctail

z3
, ~3.13!

is relevant for the growth of the system. As stated by Che
and Cole,37 in the large coverage regime, the chemical p
tential varies to first-order approximation as 1/nc

3
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m.e`2r0
3 G

nc
3

, ~3.14!

wherer050.021 836 Å23 is the equilibrium bulk density.36

This result implies that the coefficienta2 should be zero.
According to the simplest version of the Frenkel-Halsay-H
~FHH! model @see, e.g., Eq.~5! in Ref. 37, which has been
derived by neglecting effects due to retardation of the v
der Waals force#, G is directly determined by the strength o
the long-range tail of the interaction between4He and the
substrate

G.GFHH5DCtail[Ctail2Ctail
He , ~3.15!

with Ctail
He .120 K Å3 being theC coefficient of a hypo-

thetical 4He substrate. So the chemical potential of E
~3.12! may be rewritten as

m5e`22
gc

nc
3

2 (
k54

`

~k21!
ak

nc
k
, ~3.16!

where the main contribution due to the van der Waals
was explicitly separated, and the coefficienta3 was renamed

gc[a3 . ~3.17!

The derivation of the surface tension by applying E
~3.5! to the expansion~3.11! leads to

sA5s`
(tot)13

gc

nc
2

1 (
k54

`

k
ak

nc
k21

, ~3.18!

where, as above, it was seta250, and the coefficienta1 was
identified with the total surface tension in the limit of infini
width

a15 lim
nc→`

sA5s`
(tot) . ~3.19!

The incompressibility may be expressed as

1

ncks
56

gc

nc
3

1 (
k54

`

k~k21!
ak

nc
k
.0. ~3.20!

Perhaps it is worthwhile to stress that the incompressibilit
independent of the quantitiese` ands` ; it depends on how
the chemical potential and the surface tension reach th
asymptotic values.

After taking into account the above-mentioned facts,
energy per particle may be written as

e5e`1
s`

(tot)

nc
1

gc

nc
3

1 (
k54

`
ak

nc
k
. ~3.21!

Notice that this expansion is a generalization of Eq.~25!
reported in Ref. 34.

IV. RESULTS FOR 4He ADSORBED ONTO A K
SUBSTRATE

In this section, we describe the study of liquid4He films
adsorbed on planar surfaces of K at zero absolute temp
ture. Both substrate-adsorbate potentials given by Eqs.~1.6!
l

n

.

il

.

s

se

e

ra-

and~1.7! and displayed in Fig. 1 were examined. In order
facilitate a comparison, the well depths and the coefficie
of the long-range tail of these potentials are listed in Tab
together with the parameters of the ‘‘3-9’’ potential for
substrate of Na. The values quoted in Table I indicate t
the depthDvdW of the CCZ interaction lies in the middle o
theD values for K and Na@see also Eq.~1.6!#. Furthermore,
the long-range coefficientCvdW is about 30% larger thanC3
for K and it is very close toC3 for Na. In summary, the new
adsorption potential for K is more similar to the ‘‘3-9’’ po
tential for Na than to that corresponding to K. The quantit
of interest for the analysis of the films were determined
solving the Hartree-like equation~3.1!. The results reported
in the present work have been calculated by using two
ferent approaches for the Hartree mean-field potentialVH(z),
namely, those given by the OP- and OT-NLDF formalism
The corresponding expressions forVH(z) are provided
elsewhere.4,35,38The overall consistency of the solutions h
been checked by verifying that numerical results satisfy
variational relations derived in Sec. II.

The integrodifferential problem~3.1! has been solved fo
a large range of coverages up tonc50.40 Å22 in steps of
dnc50.01 Å22. This maximum coverage coincides with th

FIG. 1. Substrate-adsorbate potentialsUsub(z) as a function of
the distancez from the surface. The dashed and solid curves a
respectively, the standard two parameter ‘‘3-9’’ potential and
most recent CCZ potential, both generated by a substrate of K.
comparison, the adsorption ‘‘3-9’’ potential for a substrate of Na
represented by a dot-dashed curve. Two extreme examples o
obtained density profilesr(z) for nc50.30 Å22 are also plotted.
The dashed curve shows the OP-NLDF results for the 3-9 poten
while the continuous curve corresponds to the OT-NLDF calcu
tion with the CCZ potential.

TABLE I. Comparison of the representative parameters of
4He-K adsorption potentials.

Substrate zmin (Å) a Depth ~K! Ctail (K Å3)
3–9 CCZ D b DvdW

c C3
b CvdW

c

K 4.42 4.48 6.26 8.11 812.0 1044.5
Na 4.09 10.4 1070.0

aQuantityzmin is the coordinate at which the potentials attain th
minimum values.

bThese values correspond to the ‘‘3-9’’ potential.
cThese values correspond to the CCZ potential of Ref. 29.
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3992 PRB 62LESZEK SZYBISZ
size of the biggest films calculated by Clements, Krotsche
and Tymczak39 in a recent analysis of the energetics of4He
adsorbed on alkali-metal substrates of Cs, Na, and Li
order to getr(z) andm, Eq. ~3.1! has been discretized in
box of size 0,z<zL535 Å, which insures that for the larg
est system the neglectedAr(z) were smaller than
1025 Å23/2. Four solutions were determined for every co
erage, i.e., one for each combination of the adsorption po
tials Usub(z) and the NLDF formalisms mentioned abov
Two sets of the one-body densities obtained fornc
50.30 Å22 are shown in Fig. 1. They correspond to t
OP-NLDF results for the ‘‘3-9’’ potential and the OT-NLDF
values for the CCZ potential, these data exhibit the larg
difference among the four profiles evaluated for this cov
age. Having determinedr(z) and the optimal Hartree mean
field potentialVH(z), we evaluated the energy per particlee.

Figure 2 shows the results fore as a function ofn
51/nc . It becomes clear from this figure that the behavior
the solutions obtained for the ‘‘3-9’’ potential is significant
different from that exhibited by results corresponding to
CCZ potential. The values of the former series ofe decrease
monotonically toward the valueeB for increasingnc ~i.e., for
n51/nc→0) showing a well-defined positive slope, whi
the results for the latter potential cross the valueeB at finite
coverages and attain the asymptotic value from below.
the other hand, the energy values calculated with the
NLDF formalism lie systematically above the OT-NLDF r
sults for both potentials.

The obtained values ofm are plotted as a function ofn
51/nc in Fig. 3. From this drawing it becomes clear that, f
all the investigated cases, very large films always satisfy
stability condition~3.9! written in terms ofn

nc

dm

dnc
52n

dm

dn
.0, ~4.1!

suggesting a possible wetting of the potassium surface.
minimum coveragenc

min that verifies this condition depend

FIG. 2. Energy per particlee5Egs/N as a function of the in-
verse of coveragen51/nc . The symbols representing data calc
lated by using the different approaches outlined in the text are
plicitly indicated. The full square is the bulk saturation valueeB

527.15 K. The continuous curves show the fits to Eq.~4.6! in-
cluding up to fifth-order terms. The dashed curves show the fit o
data to a sixth-order polynomial as explained in the text.
k,

n

n-

st
-

f

e

n
P-

e

he

on the choice ofUsub(z) and the adopted NLDF approach
Furthermore, Fig. 3 indicates that, for each substra
adsorbate potential, the OP- and OT-NLDF results me
into one another at smalln ~i.e., at large coveragesnc
*0.30 Å22). This feature is due to the fact that for thic
films, the behavior ofm is mainly determined bygc , which
in turn depends on the van der Waals tail of theUsub(z). The
size of this contribution can be estimated by using E
~3.14! and ~3.15!

m.e`2r0
3

Ctail2Ctail
He

nc
3

. ~4.2!

Figure 3 shows the results provided by this simple appro
mation whenCtail takes the valuesC3 andCvdW quoted in
Table I. Notice that at medium coverages, the OT-NLD
data exhibit oscillations as a function ofn.

Let us now describe the verification of the relations
quired by Eqs.~2.13! and~2.15!. We shall focus the attention
on the consistency of solutions obtained for different cov
ages because wetting is related to the third-sound veloc
which in turn depends on the behavior ofm as a function of
nc . The variation of the chemical potential may be evalua
by using the simplified version of Eq.~2.13! written for pla-
nar symmetry, i.e.,

dm5

E
0

`

dzAr~z!@Ar~z!1dAr~z!#dVH~z!

E
0

`

dzAr~z!@Ar~z!1dAr~z!#

. ~4.3!

x-

ll
FIG. 3. Chemical potential as a function of the inverse of co

eragen51/nc . The solid curves showm evaluated with Eq.~3.12!
by keeping up to fifth-order terms and using the parameters liste
Table II. The dash-dotted curve is the FHH approximation given
Eq. ~4.2!. ~a! Results obtained for the ‘‘3-9’’ adsorption potentia
~b! Same as~a! for the CCZ adsorption potential. In addition, th
dashed curves show the results obtained with the sixth-order p
nomial. The vertical arrows indicate the OT-NLDF values ofm for
nc50.15 and 0.35 Å22 used to calculatedm for the example dis-
cussed in the text.
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It is worthwhile to emphasize the power of this equation
testing the consistency of solutions obtained for very diff
ent coverages. Let us illustrate this feature showing the
havior of the results provided by OT-NLDF calculations
the case of the CCZ potential fornci50.15 Å22 and nc f
50.35 Å22. The difference between the values ofm yielded
by Eq. ~3.1! is dm50.411 K @cf. Fig. 3~b!#. Figure 4~a!
shows the variation of the Hartree mean-field potential
this pair of coverages as a function ofz. It is instructive to
follow the convergence of the ratio~4.3! introducing the
limit of integrationzM

dm5 lim
zM→`

E
0

zM
dzAr~z!@Ar~z!1dAr~z!#dVH~z!

E
0

zM
dzAr~z!@Ar~z!1dAr~z!#

.

~4.4!

Figure 4~b! indicates the evolution of Eq.~4.4! for increasing
values ofzM . In the adopted notation, the horizontal lin
labeled bym(.35)2m(.15) stands for the difference of va
ues obtained atnc f50.35 Å22 andnci50.15 Å22. So, the
convergence exhibited by the ratio of integrals is quite go
the limiting value is safely attained before the box sizezL is
reached. Notice, that in spite of the large coverage dif
ence,dnc50.20 Å22, the agreement between the value p
vided by Eq.~4.3! and that obtained from the two indepe
dent solutions of Eq.~3.1! is excellent.

We shall now report a careful analysis of the numeri
results for the most controversial case corresponding to
NLDF calculations for the ‘‘3-9’’ adsorption potentia
Looking at Fig. 3~a!, one can guess that there is a minimu
at aboutnc.0.22 Å22. So, since we are primarily intereste
in checking the stability of the films, in the following line
we shall focus the attention on coverages bigger than

FIG. 4. ~a! Variation of the Hartree mean-field potential as
function of distancez from the substrate. The full circles stand fo
data corresponding to the pair of coveragesnci50.15 Å22 and
nc f50.35 Å22, which were calculated within the OT-NLDF for
malism for the CCZ potential. The continuous curves are the o
body densitiesr(z) given in arbitrary units, the symbols~1! and~2!
indicate, respectively, the profiles corresponding to the smaller
larger films. ~b! Evolution of the change of chemical potentia
evaluated with Eq.~4.4! for increasingzM .
r
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e-

r

,

r-
-

l
P-
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value. Figure 5 shows the results for pairs whose cover
difference increases linearly according to the relationdnc

5nc20.25 Å22 with nc50.26, 0.27, 0.28, 0.29, and 0.3
Å22. This drawing indicates that for everydnc , there are
well-defined positive and negative contributions localized
the surface region. On the balance of these contributions
pends whether a film is stable or not. The data shown in F
5 can be used to check two different properties of the che
cal potential. On the one hand, one can evaluatedm corre-
sponding to two different coverages by using Eq.~4.3!. On
the other hand, one can determine the slopedm/dnc by cal-
culating the integral of Eq.~2.15!.

Figure 6 shows results of the weighted averages over
values ofdVH(z) calculated with Eq.~4.4! for the pairs of
coverages given in the previous paragraph. The converge
of these ratios of integrals was examined as a function ofzM

starting from the valuezM56.56 Å corresponding to the
completion of the first layer of liquid4He. This plot indi-
cates that after exhibiting an initial positive value, the qua
tity dm always strongly increases when the positivedVH(z)
contributions displayed in the inset of Fig. 5 are included
the integrals, subsequently,dm decreases dramatically whe
the negative contributions are included. However, in spite
the fact that the strength of the negative values ofdVH(z) is
larger than that of the positive ones, their total contribution
not enough to reverse the sign ofdm because the geometri
average of the involved one-body densitiesr(z) is small in
that region ofz. The solid horizontal lines displayed in Fig.
represent the differences between the chemical poten
yielded by the Hartree-like equation~3.1! for each one of the
two involved coverages. From this figure, it becomes cl
that data evaluated with Eq.~4.4! always converge to the
differencesdm given by solutions of Eq.~3.1!.

e-

d

FIG. 5. The variation of the Hartree mean-field potential o
tained within the OP-NLDF formalism for the ‘‘3-9’’ potential is
shown as a function of the distancez from the surface. The plotted
data correspond to pairs of coverages whose difference incre
linearly according todnc5nc20.25 Å22 with nc50.26, 0.27,
0.28, 0.29, and 0.30 Å22. The relevant positive contributions ar
magnified in the inset. The density profiles~displayed in arbitrary
units! for nc50.25 Å22 ~continuous curve! and nc50.30 Å22

~dashed curve! indicate clearly that values stemming from the su
face region yield the crucial contributions.
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We shall now examine the extent to which the numeri
results satisfy the requisite imposed by~2.15!. This require-
ment implies that at eachnc , the derivativedm/dnc must be
equal to the weighted average over the values
limdnc→0@dVH(z)/dnc#, i.e.,

dm

dnc
5

1

nc
E

0

`

dzr~z! lim
dnc→0

S dVH~z!

dnc
D . ~4.5!

We illustrate this part of the study describing the behavior
ratios of the variation of the Hartree mean-field potential
the variation of the coverage corresponding to the same p
of coverages considered in Fig. 5. Figure 7 sho
dVH(z)/dnc as a function of the positionz. These ratios were
used to determine the limit fordnc→0 at each value ofz.
The obtained results are also plotted in Fig. 7 together w
the density profiler(z) for the film of nc50.25 Å22 needed
for the evaluation of the average. The computation of
~4.5! yields dm/dnc50.315 K Å2. Since this value agree
with the derivative calculated directly with the data plotted
Fig. 3~a!, the necessary condition~4.5! is successfully veri-
fied.

In fact, we have calculated the local variationsdVH(z) for
all the pairs of considered coverages and verified the con
tency of the solutions. In summary, this test has been s
factorily applied to all the sets of data ofm displayed in Fig.
3 giving a strong support to the overall consistency of
solutions. Having checked this point, let us turn to the ana
sis of the data ofe as a function of 1/nc .

In a first step, each set ofe(nc) has been fitted to the
polynomial

e5e`1
s`

(tot)

nc
1

gc

nc
3

1
a4

nc
4

1
a5

nc
5

, ~4.6!

FIG. 6. Variation of the chemical potential given by the ratio
integrals~4.4! as a function of the limit of integrationzM for the
same pairs of coverages considered in Fig. 5. The solid horizo
lines represent differences between the corresponding chemica
tentials obtained directly from the solutions of Eq.~3.1! and plotted
in Fig. 3~a!. As in Fig. 5, the density profiles~displayed in arbitrary
units! for nc50.25 Å22 ~continuous curve! and nc50.30 Å22

~dashed curve! indicate clearly that values stemming from the su
face region yield the crucial contributions.
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where all the coefficients of terms up to fifth-degree were
free, while all the coefficientsak with k.5 were set at zero
In practice, this analysis has been extended to data cove
the range 0<n&11 Å2, where the valueeB527.15 K cor-
responding to bulk liquid at saturation36 was included in the
fits following the procedure discussed in Ref. 34. The e
tracted values ofe` , s`

(tot) , gc , a4, and a5 are listed in
Table II. As expected, all the results fore` are consistent
with eB . For both adsorption potentials, the extracted valu
of gc are somewhat smaller than the corresponding F
estimations indicating a retardation effect.37 Figure 2 shows
that fits of all the sets of energy data are quite good over
considered range of coverages.

The chemical potential evaluated by inputting the e
tracted parameters in Eq.~3.16! is displayed in Fig. 3. This
plot indicates that such estimations reproduce satisfacto
well the values ofm obtained from the solutions of Eq.~3.1!
up to n.9 Å2 ~i.e., small coverages of aboutnc
.0.11 Å22), except for the CCZ OT-NLDF case where th
agreement is good only up ton.7 Å2 (nc.0.15 Å22).
Notice that for very thick films~small values ofn) the fitting
curves merge into the lowest-order approximation given
Eq. ~4.2!. Table II also contains the valuesnc

min indicating the
coverages at which the initial negative slopesdm(nc)/dnc

are reversed. Sincenc
min>0.10 Å22, the stability of thin

films with nc.0.043 Å22 is ruled out in agreement with th
finding of Boninsegni and Cole.21

For the sake of completeness, we have performed a
ond fit of the energy data corresponding to the CCZ poten
including here all the values plotted in Fig. 2. In this cas
the term a6 /nc

6 was added to Eq.~4.6! and in the fitting
procedure two coefficients were taken fixed, namely,e`

5eB andgc5gCCZ
0 . The extracted values are also quoted

Table II. This extension improves, at small coverages,

tal
o-

FIG. 7. Ratio of the variation of the Hartree mean-field poten
to the variation of the coverage as a function ofz for the same pairs
of coverages considered in Fig. 5. Full circles joined by the so
curve indicate the limit of the ratio fordnc→0. The continuous
curve in the upper part stands for the density profiler(z) of the film
with coveragenc50.25 Å22 plotted in arbitrary units. The deriva
tive dm/dnc at nc50.25 Å22 evaluated according to Eq.~4.5! by
using the displayed values of limdnc→0@dVH(z)/dnc# is indicated
by the horizontal dashed line. The relevant positive contributio
anddm/dnc are magnified in the inset.
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TABLE II. Coefficients of the expansion for the energy per particlee for 4He adsorbed on a potassium substrate.

System Data source e` s`
(tot) gc3103 a43103 a53103 a63106 nc

min

~K! (K/Å4) (K/Å6) (K/Å8) (K/Å10) (K/Å12) (Å22)

Bulk 4He Experiment
eB 27.15a

4He-K Theory
Adsorption Formalism
Potential
‘‘3–9’’ b FHH c (g329

0 ) 3.60
OP-NLDF 27.153 0.1997 2.78 20.422 0.0167 0.22
OT-NLDF 27.151 0.1597 2.91 20.421 0.0164 0.17

CCZ d FHH c (gCCZ
0 ) 4.81

OP-NLDF 27.154 20.0129 4.46 20.512 0.0169 0.14
27.15e 20.0132 4.46e 20.545 0.0232 20.302

OT-NLDF 27.155 20.0561 4.48 20.501 0.0164 0.10
27.15e 20.0562 4.48e 20.539 0.0238 20.349

aBulk energy per particle quoted in Table II of Ref. 36 and used for fixing the parameters of both examined NLDF formalisms.
bStandard two-parameter adsorption potential.
cCoefficientgc estimated by using the FHH approach as explained in text.
dAdsorption potential proposed in Ref. 29.
eThese values were kept fixed.
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fits for e and the predictions form as can be seen in Figs.
and 3~b!, respectively. However, the oscillations ofm ob-
tained within the OT-NLDF approach~caused by the layere
structure of the films! cannot be described with the polyno
mial expression of the type~3.21!. This feature is also
present, although attenuated, in the case of the ‘‘3-9’’ pot
tial.

Let us now center the attention on the wetting. It w
found that, in all the analyzed cases, the chemical poten
determined for films of large coverages satisfy the neces
condition for stability ~3.9!. However, according to Dzy
aloshinskii, Lifshitz, and Pitaevskii40 ~see discussion of Fig
12 therein!, for insuring a permanent complete wetting of t
investigated substrate, one must also examine the behavi
the grand potential per unit areasA given by Eq.~3.18!. The
‘‘true’’ stable state of the film corresponds to that for whic
sA is a minimum. In practice, when searching for wettin
one should compare the asymptotic value of the surf
grand potential

sA~nc→`!5
V~nc→`!

A
5s`

(tot) , ~4.7!

with sA(nc50)50 ~see Fig. 8 in the second cite of Ref. 4!.
The values ofs`

(tot) quoted in Table II indicate that the we
ting is guaranteed in the case of the CCZ potential, while
standard ‘‘3-9’’ interaction leads to metastable states.

V. CONCLUDING REMARKS

In the present work, we studied the stability of liquid4He
films adsorbed to planar surfaces of K. Two different p
posals for the interaction between4He atoms and the potas
sium surface have been examined. These are the stan
‘‘3-9’’ substrate-adsorbate potential and a more elabora
one developed by Chizmeshya, Cole, and Zaremba,29 both
-

s
al
ry

of

,
e

e

-

ard
d

versions are given in Sec. I. The calculations have been
formed within the framework of two different NLDF formal
isms, namely, those known as Orsay-Paris6 and
Orsay-Trento27 functionals. A special effort was devoted i
order to analyze the consistency of solutions correspond
to different coverages. For this purpose, variational relati
have been derived for the chemical potential, which is a c
cial quantity of this problem.

Let us now briefly summarize our investigation conce
ing the variational properties of the Hartree-like equati
~1.4!. We proved that if the ground-state energy of a man
body Bose system is written as a functional of the parti
distribution r(r ) according to Eq.~1.1! and consequently
Ar(r ) is determined by Eq.~1.4!, then the solutions for finite
systems must present variations satisfying the relation~2.13!.
We would like to stress the remarkable simplicity of th
latter equation, which expresses that the variation of
chemical potentialm for finite changes of the particle num
ber N is given by a sort of weighted average over the lo
variations of the Hartree mean-field potentialVH(r ). Besides
the intrinsic beauty of this compact form, it should be e
phasized that Eq.~2.13! may be used as a tool to control th
overall self-consistency of evaluated solutions. In particu
the results for the chemical potentialm, which is the least
stable quantity, can be tested. Furthermore, the limit for
finitesimal variations~2.15! yields that the derivative ofm
with respect toN may be written as a weighted average ov
the local derivativesdVH(r )/dN.

In light of the obtained results, we concluded that all t
numerical solutions determined in this study satisfy w
high accuracy the derived variational properties written
the planar geometry. In the case of this symmetry, the
rivative dm/dnc has physical importance because it is rela
to the stability of a Bose many-body system@cf., Eq. ~3.9!#.

An important result of this investigation is the findin
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that, for every combination of the examinedUsub(z) poten-
tials and utilized NLDF approaches, whennc grows continu-
ously from a certain minimum coverage tò then m ap-
proaches the asymptotic valuee`5eB527.15 K from
below ~see Fig. 3!. This behavior is in agreement with th
description of wetting given in the first cite of Ref. 4. Eve
for the weaker interaction, i.e., the ‘‘3-9’’ potential, th
present calculations for thick enough films yielded posit
values of the square of the third-sound velocity,mc3

2

5ncdm/dnc . However, the additional condition outlined i
Ref. 40 which in practice requires a negatives`

(tot) is not
satisfied by the results obtained with the ‘‘3-9’’ potentia
Therefore, the standard ‘‘3-9’’ adsorption potential used
the potassium substrate in Refs. 4 and 27 may only lea
metastable films. On the other hand, the stronger CCZ
J

r
to
o-

tential yieldss`
(tot),0 for both analyzed NLDF approache

In summary, on the basis of results provided by the m
elaborated adsorption potential we can state that the liq
4He wets the surface of K atT50 K. This feature is in
agreement with the experimental evidence.9,18

In addition, in all the examined cases, our results supp
the finding of Boninsegni and Cole21 that thin quasi-two-
dimensional films withnc.0.043 Å22 are unstable.
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