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The transverse-spin modes in clusters®fe are considered. These excitations correspond to a gapless
Goldstone mode which comes along due to the broken symmetry in the spin space, and can exhibit themselves
in polarized ®He. These modes can be interpreted as weakly damped fluctuations of the transverse spin
components, which propagate throu$fe. The dispersion law of such spin waves is calculated by means of
a semiclassical variational method and compared with the results obtained on the basis of the Fermi-liquid
theory. The finite sizes of the clusters lead to quantization of the spectra and result in a series of excited states.
The number of long-living excited states is strongly affected by the Landau damping. The orthogonality
relations and energy-weighted sum rule are formulated. The collective spin modesOfand several cluster
sizes are computed.

I. INTRODUCTION Il. FERMI-LIQUID APPROACH

A svst fint ting fermi hibit t Before we study the propagation of spin fluctuations in
_ A system ot interacting fermions may exnibit a great va-g ;o systems, using the semiclassical variational method de-
riety of collective Bose excitations. These collective mOdealeloped in Refs. 5 and 6, we will give a short presentation of
occur as a result of the interaction between fermions and e Fermi-liquid approaéh and calculate the magnon spec-
absent in a perfect noninteracting gas. The interaction plays @m in infinite matter. Dynamics and collective properties of

very important role when calculating spectra or formulatingan infinite Fermi fluid at the zero temperature can be de-
the existence criteria of weakly damped excitations. The situscribed in terms of the collisionless quasiclassical transport
ation is quite different in the case of systems with a brokenequatiorf for the density matrix(distribution function in
symmetry, as, for instance, spin polarized Fermi system§pin spacen:
which exhibit a gapless Goldstone mode as a result of the
broken symmetry. A collective magnetic excitation exists in .1 .. o1 . A
any interacting Fermi system independently of the actual in- 9N+ 5[dpe-Vn+Vn-dpe]—5[Ve-dpn+dpn-Ve]
teraction between the particles. The propagation of spin fluc-
tuations in spin polarized Fermi systems has been discussed +i[2,ﬁ]:0. (1)
in Refs. 1-4. ~

The problem addressed here is how the actual size of Heree is the self-consistent single-particle excitation energy.
finite system influences the collective magnetic modes whictFor small perturbations of the density mat@n, the self-
are known to exist in extended systems. We focus on theonsistent energy can be expressed as a linear functional of
transverse spin excitations in small portions or droplets ofsn:
polarized®He matter. There might be many branches of col-
lective Bose excitations due to the spin degrees of freedom.
To be specific we only consider transverse spin modes which
have pure collective origin and will only occur in large ~
enough drops. In the limil— o they coincide with the spin Whereo labels different spin states. The functibulescribes
waves in polarized liquidHe (bulk). These magnetic collec- the interaction between two quasiparticlési¢-"He) and is
tive excitations are calculated on the basis of a semiclassicil€ main quantitative feature of the Fermi-liquid theory. In
variational method which takes into account the finite size oD iSotropic polarized Fermi fluid the interaction function
the cluster and the associated boundary conditions, leading fgkes the form
the quantization of the spectrum and which is not restricted - IR I
to a small polarization condition. The orthogonality relations foo(P.P")=(p.p")IN"+{(p,p" )0 0. 3
and thg energy-weighted sum rule are formulated_ and al.lovbnly the term with the functiord in Eq. (3) contributes to
to pre@ct the strgngth of the several modes associated Wllthtﬂe spectrum of transverse modes.
prescribed transition operator. We compute the collective ~ - . . . .
spin modes of®He clusters for several polarizations and Both n and e are, indeed, Imgar functions of the spin
cluster sizes, both in the presence and in the absence of t@erator, i.e., of the Pauli matrices, i=1,2,3. In equilib-
polarizing magnetic field. rium the density matrin is diagonal in the spin space:

8€,(P)=Try 2 fop(p,p) o0, (p), @)
p!
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~ 0) n,+n_. n.,—n_. - . N 2 -
NP =5+ —5—0s, (4) an(p)=n(p)~np)=u(p)i + 2 M(p)ar. (13

—>

wherel is the unity matrix, anch, andn_ are the Fermi The extra terms in the self—consistent energy due to the fluc-
distribution functions for particles with spin up and spin tuations of the density matrix can be calculated from Egs.
down, respectively: (2), (3), and(13) and read

N,=0(u,—€,), N =0(p_—€_). 5

e—e=5e(p)=12 y(p.p)v(p)
Here,u . andu_ are the Fermi energies for the spin-up and p’

spin-down components. The single-particle energy spectra, 2
€., ande_ determine the self-consistent enerdf in equi- +21 ai > L{(p.p Ni(p). (14
librium: = P’

Now we have a complete set of equations in order to calcu-
late the spectra of magnons. When substituting Es-(14)

in the linearized transport Eq1l) we get two equations for
N1 andX\,, which describe the dynamics of the off-diagonal
components of the density matrix, i.e., the transverse spin
modes in which we are interested. Instead\pfand X, it is
more convenient to use circular variablas:=X\;*i\,. In

€. te_. €,—

~ €_ . ~ ~
€(p)= —5—I+—5—os=a(p)l+b(p)os. (6)

—>

The number of exceeding spin ypr spin down, i.e., the
effective degree of polarizatio, is normally small,|«|
<1. (Moreover, the standard Fermi-liquid theory does not
hold to describe the transverse spin modes in a strongly PAhe case of a weakly polarized systee|<1, it is natural to
larized systenf,|a|<1. Formally carrying out such a calcu- seek a solution in the form T

lation would require integrating over the Fermi sea, which is

in an obvious contradiction with theornerstoneof the ang
Fermi-liquid approach.We will, therefore, consider MZﬁnt(ﬂ,QD). (19
0
a<l (7)  whered and¢ are the polar angle and azimuth in momentum

space, i.e., on the Fermi sphere. We will be seeking the ei-
genvalues of the transport equation for the Fourier compo-
nents: n.o<expik-r—iwt). After some manipulations of

Keeping the linear ine term one can easily obtain

+n_~ny= —€o), 8
n+ n nO 0(/"“0 60) ( ) Eq5(4)—(15), we get
4 9ng p? (0+Qjni—k-V)n,(0,9)
NN~ 3 5o O & g ©) ,

int

Q fz ror ’ rd =0
ZO (0190!9190 )7]-%—(0190 )E_ .

k-v+

where the Fermi momentunpg= (372po)*°, has been in-
troduced. Herg, is the density of particlesn* is the 3He
effective mass, and the index “0” refers to the characteris- (16)
tics of the unpolarized system, i.e., wheie=0. On the Herev=pgn(6,¢)/m* andn is a unit vector on the Fermi
Fermi surface(with radius pg) the interaction function sphere. The equatiofand solution for z»_ can be obtained
f,.(p,p') depends only on the angte between vectorp  from Eq.(16) simply by replacingn— — o andk— —Kk.
andp’ as|p|=|p’|=pe. It is convenient to define the di- Expanding the quantitie® and v in a power series of the
mensionless interaction functianf, wheregg is the density ~ Small wave vectorkv/|Qin[<1, (similar to the procedure
of states on the Fermi surface, and expand it in a series of tHésed in Refs. 7 and)8ne obtains the following dispersion

Legendre polynomial®,(cosy) as usual, namely, law:
o k2 Zo— 17
Pem* — w=-—, M=m*a S 17
2 {(0= 2, ZyPy(cosy), (10 oM (120 (1% 120

Here, the quantityyl can be considered as the effective mass
of the new elementary excitation, the magnon. These collec-
tive modes correspond to fluctuations of the transverse com-
ponents of the spin. Spectruth?7) are the spin waves in a
Combining Egs. (2)—(11) one can calculate the spin- magnetized Fermi liquid obtained in Ref. 8.

dependent term in the self-consistent energy of a quasiparti- \icroscopically a collective mode of the Fermi-liquid

B U= 3, FuPy(cosy). an

cle in equilibrium[see Eq(6)]: type can be interpreted as a bound state of a particle and a
hole in the Fermi sea. If the collective excitation moves too
b(p) = Qint 0. :‘_10[6 7 (12) fast, it turns out to be unstable with respect to decay into a
2’ it g3 TERo particle-hole pair. The threshold, above which the Landau

o . ) o ) damping comes into effect and kills the spin waves, can eas-
A small deV|at|or1 ofn from its equilibrium value(4) is a jly be seen from Eq(16). The collective modes will survive
linear function ofa as well, and will be sought in the form: if the condition
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0+ Qi —k-v>0, (18 where 'H is the external magnetic field,dI',
=dr3dp3/(2m)3, mis the mass of théHe atom,s is the

is satisfied. In the long-wavelength limit where the frequencymagnetic moment ofHe, [23=2.0378<10* (Gs) '] and
w is given by Eq.(17), this criterion reduces approximately

to: kv =<|Qjnyl.
o Zf d®p  pii+pi-
pPo= 3No= ,
lll. COLLECTIVE EXCITATIONS: (2m) 67
VARIATIONAL APPROACH
In this section we apply the semiclassical variational ~ d®  pii-pi-
method developed in Refs. 5 and 6 to the propagation of spin p3=2 3N3= 2
. Cor (2m) 6
fluctuations in finite systems such as droplets’de matter.
For an infinite system, the variational method is equivalent to
the collisionless Landau-Boltzmann transport equation, Eg. (PR, +pz_) P2, —P2_ 1 1
(1). For a finite system, it leads also to appropriate boundaryTozTﬂz, T3= 10,2 ' 2mF ~om +Cpo-
conditions.

A cluster of *He is described by a spin-dependent matrix-The Fermi momenta for particles with spin up and spin
valued distribution function, depending not only on the mo-down, respectivelypg ., (r,t) andpg_(r,t), are constant in-
mentum but also on the position, side the cluster and vanish outside. Taking into account as-

sumption(7), which in terms ofpg, andpg_ is given by

n=n(p,r,t).
p§+_ pE,
In analogy with Eq(4), the equilibrium distribution function =<1,

o
3 3
reads PE+ T PR
we have, up to first order in the polarizatien ps;= apy,
o L T3=apPfpy,  va=aPgpo,  To=Ppp/(57?)  with pg
5 n_=ngl +nzos, = pﬁ/(3772). Here and in the sequel we will upg andeg,
respectively, for the Fermi momentum and Fermi energy of

o, -0
= n,+
2 +

(19 the unpolarized cluster. We stress, however, th&tl is not
with n, =60(u, —€.), n_=60(u_—€_), No=%(n,+n_), anecessary assumption in the present formalism.
ny=1(n,—n_), wheree, =€, (p.r,t), e_.=e_(p,r.t), are We fix the parameters of the model in the following way:
the equilibrium self-consistent one-bogsffective Hamilto-
nians, which are position, momentum and time dependent, m* pe 5
respectively, for particles with spin up+) and spin down Fo=—72—(a+2cpF)=9.28,

(—). The interaction function is a local one of the form 23)
- A m* Pr 2
foor (PP F)=T,0 (PP )S(r—r1"), (20) F1=——>—(2cpr)=5.39,
where?‘w,(p,p’) has the general form defined in E). In
. . m*
the present approach, we will consider Zo= WEF (b+2dp2) = — 0.696,
y(p.p)=a+c(p—p")%  L(p,p)=b+d(p—p")?, (24)
(21 m* pg 5
Z,=————(2dpg)=—0.54,
where the coupling constangsb,c,d will be chosen so that m
the Landau10 parametersFo,F1,Z9,Z; derived from  ith p.=1.55x10° eV/c, m*/m=2.80.
expe_rlment7,‘ are reproduced. The equilibrium self- |y terms of the Landau parameters the spin-dependent
consistent hamiltonia6) with interaction(20) and (21) i term in the self-consistent energy of a quasiparticle in equi-
given by librium €5, at the Fermi surface, reads
2
~ _ P . ~ Qint 4
6(1)—2_|(1)_,3H0'3(1)+T"2 dl'yo(ry—ry) €3~ —BH, Qin=75aery,
m 2 3
X[$(p1,p) (2T (1)+E(p1.p) 0(2)- a(1)In(2)  Inaccordance with Eq12).

In order to proceed, it is convenient to introduce the semi-
. . classical limit of the commutator, which we denote by
I +[(p?d+b)ps— BH+d75]o3,  [.,.]sc. LetA,A be operators in the spin space andflgf
be either operators in configuration space or their Wigner
(220  transforms, depending on the context. We define

p2
=| —+ ap0+ C’TO
2m*
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[fA,gA]SC=i§(AA+AA){f,g}+fg[A,A]. (25 §=8101+ S0, 3D

whereS; andS, are c-number varitional functions of, p,
andt. If the cluster on its ground state has total spirand
three-componeniny =3, this generator gives rise to excita-
éions with quantum numbeis’, my, =2 +1.

The dynamics of small amplitude fluctuations is deter-
mined by the second-order Lagrangian:

In the right-hand sidef,g are functions ofr,p. In the left-
hand side, they are operators. By -}, we denote the Pois-
son bracket.

The self-consistency condition, which may be expresse
as

[€,n]sc=0, (26) : L
A A L(2)=§TrJ dFﬁ[&té,é]Sc+§TrJ dI'[S,elsd Sinlsc
with n defined by Eq(19) and e by Eq.(22), clearly holds.

Indeed, we have

1 A
—ETr1 Trzf dI',dl,[S,n]s(1)

.. 1+0; -0
[Evn]SC:{E+1n+}T+{E*1n*} 2 =0. (27)

X[S,n]sd(2)(p1.p2) o(1)- 0(2) 8(ry—T5), (32)

. 'In Ref. 5 an action principle was gstabllshed for the COI_where E(r,p,t) was defined in Eq(22). The fluctuation of
lisionless Boltzmann transport equation. Let us consider th

] S A ?he distribution function is
set of all trial distribution function®i(p,r) related by a ca-
nonical transformation to a fixed distribution function

ni(p,r). If, for all timest, the time-dependent distribution
function ﬁ(p,r,t) belongs to this set a generating operator

sn=i[Sn]sc. (33

F(p,r,t) may be found such that

an ..
E+|[”,F]SC:0. (28)
The action principle may now be written as
6S= 5f L dt=0, (29
where
L=Trf drn(p,r,t)F(p,r,t)—E[n], (30

with E[n] the energy functional
2

E[ﬁ]=Trf dr Zp—mﬁ(p,r,t)

1 R -
+§TrTr’f dardr'f,,.(p,r,p’.,r'yn(p,r,t)

xn(p’,r',t).

Its time evolution is determined by the Lagrangi@&?).

IV. DISPERSION RELATIONS

In order to proceed and obtain the equations of motion for
the clusters, we need to make an ansatz for the varitional
functionsS,(p,r,t), k=1,2, introduced in Eq(31). The sim-
plest ansat2,since each one of the functions should have a
time-even component, which describes the dynamical behav-
ior of the system, and a time-odd part, which describes the
static behavior of the system, is

Sl((p!r!t):¢k(rvt)+p'wk(r!t)i k:112- (34)

This approximation preserves the Goldstone mode and has
the effect of replacing the Landau damped modes by a dis-
crete set of modes. The Lagrangian which determines the
time evolution of the fieldsp; ,¢; is derived from Eq(32)

and reduces to

L(2)=f d3r

X %(19a¢11ﬁ1a+ DaboPra— aP1¥1a— a2t

In the present study we will only consider small fluctua-
tions of the distribution function and it will be enough to
consider the second-order Lagrangian on the infintesimal

generator of the flucutations. In the sequel, we denot& by

the generator of spin fluctuations of the distribution function.
We focus ontransversemodes which are associated with a
generator of the form

+pa(hapr— h1s)

2 I )~ E by b D) | (39

where the energy densityis given by
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1
5(¢1a¢21l/’1-1/’2)zpo(m - dpo) [(V 0%+ (V$2)21+ o (dathrpdathag+ duthspdpthnat dutbopdatheg

+ aa'vleBaﬁlrllZa)
73 2 To b 2 5d
+2 SW+BHPO—§deT3 (- Vo=t Vi) + GW+§P0+ 3 PoTo (36)
2 2 2 S 5
X[(V-4n)°+ (V- i) ]_§ bP37'3+dP3U3+§d7'3_,3H73 (- Y+ o)
5
+2BHps( i+ $3)+ %+BHPo+bP0P3+dPoTs+ §dP370)V'(¢1¢’2_¢2¢’1)- (37)

The Euler-Lagrange equations read given in Appendix A, and the last two equations correspond

to Egs.(A9) and (A10). We have introduced the quantities

) - o6&
2 —poV- i =— —, 38
p3b2—poV-¥n S5 (38) ) L_d 1 1+é .
5 C1= 2m* Po _Zm* 3/ ( )
2padrtpoV - Y= S0 (39
b2 5 ,) 2 ) Z;
02: bp3’T3+ dp3U3+ §d7’3 = §a’2€|:p0PF ZO_ ? y
2Tt poV o= — 40 (47)
?lﬁl poV h2= 5_%, (40)
To 10 4 3 5
275- . 1) = — T =_ 4z
—31112—P0V</>1=—- (41) Ca=| +bpg+ 3 dPoTo> 5 €FPo| 5 T 620 :
3 oY, (48)
In Appendix A we discuss these equations in terms of the
more familiar equations for the time evolution of the transi- T3 7 5
tion density and transition current density, which arise in the Ca= 7 3% +bpopz+ §dpo7'3+§dp37'o
Fermi-liquid approach. Equation88) and (39) correspond
to Eqg. (A3) the continuity equation for the density, and Eqgs. 2 2
(40) and (41) are the equations of motion for the density 3 €FP3 —1+Zo- §Zl : (49)

current(A6).
The boundary conditions at=R (the cluster radiusare
also derived from the Lagrangian and read

r-[pota+2poCiV b1+ (Ca— BHpo)#]=0, (42
r-[potat2poCiV o= (Ca— BHpo) 1 1=0, (43
27'3
Xq W+C4+3HP0 h1+C3V- by
70
+Xﬁm(aadlﬁ+ﬁﬁl//2a)zoa (44)
27'3
Xo| — W“‘%"’ﬁHPo Pt C3V-ify
70
+X33W(3a¢1ﬁ+(93¢1a):0- (45)

Notice thatis, , ¢, behave as coordinates agig, ¢, as mo-
menta, or vice versa. The first two boundary equations cor-

respond, in the Fermi-liquid approach, to EGs4) and(A5)

Now, we summarize the determination of the normal
modes. In a first step we disregard the boundary conditions
and determine a complete set of local solutions of the Euler-
Lagrange equations. In a second step we construct, with the
help of the boundary conditions, the correct linear combina-
tions of the local solutions associated with a given frequency
. The Euler-Lagrange equations admit two types of solu-
tions for the variational scalar and vector funtiahsand ,
namely, irrotational and solenoidal solutions.

The solenoidal solutiongsuch thatV- ¢, =¢,=V- i
=¢,=0) may be expressed in terms of the quantit®s
=VXyn and G,=V X yp. Then, G.=G;*=iG, obey the
equations

70
*
2m T3

.2
IiGi=T—(cz—,8H7-3)Gi+ V3G, .
3

Making use ofV?G;= —k°G; we obtain

3 k¥ 4

1
w==x 2ﬂH+§m—§a’6F(Zo— 521)} (50
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For k=0 we get the energy of homogeneous spin waves in V. ORTHOGONALITY RELATIONS AND SUM RULE
infinite matter in the presence of a uniform magnetic fieltl, When writing, for the normal modes,dy.(r.)

associated with the components ando_ of the spin po- = 1 (r)COSWL, Por (T 1) = thor(F) COSWL, BT 1) = on(T)

larization. X sinwgt, Pn(rt)=y,(r)sinw,t, the modes may be nor-

In order to describe the irrotational normal modesch  5ji7e4 so that the following orthonormality relations hold:
thatVX ¢, =V X ¢,=0) it is convenient to define the scalar

functionsF;=V- ¢, i €{1,2} and to make the local ansatz s
¢1:¢ln COSwnt, l/lzzlﬂ'Zn COSwnt, ¢)2:¢2n Sinwnt, 1/11: lﬂln J' d°r Po(aa¢ln¢1ma_aa¢2m¢2na)+zp3(¢1n¢2m)

Xsinw.t. In terms of g =1+, and F.=F,*F4, the

local equations of motion become 2 wp
- §T3( o I | == 5mnm- (57)
(Zont+2BH)(2p3¢-nt poF=n) "
or Arbitrary fields (initial conditiong
:—201(P0k2¢>+n+ _3|:+n)' (51) (1), 1 (1), d1(r) , ¢(r) may be expanded in normal
a 3 modes. If we consider @t=0, ¢4(r)=y»(r)=0 we have
2T
(iwn+2,8H)(?3F;n+pok2¢in) $o()=2 Codan(r), (1) =2 Cota(r),
_ 41 4 2
=7 3 Gk dunt|3Com Ok P (52 0=3 Cobso(r), 0=3 Cotln(r),

Notice thatF ., is coupled to¢_, andF_, is coupled to  \ypere
¢ . Assuming ¢,,=— ¢,, and Fy,=F,,, the functions

¢_ ,F, are associated with the modes excited by an operator 3
of the form[see Eqs(31) and(34)] Ch= if d*r| po(daP1ntia— daP2tbona) T 2p3(P1neh2)
S=S o €“'+S,0,e ', 53 73
o 59 — 254 wl}. (58)

with S, =(S_)* and
The sign+ holds for modes with positive norm. The sign

1 _ _ . . -
5—=§(¢1—|p' ). holds for modes with negative norm. Similarly,
The operatorgr_ ando . excite states with oposite frequen- $1(r)= ; Dnop1n(r), io(r)= ; Dn¢hon(r),
cies. The corresponding dispersion relation is
475 |2 0=2>D r, 0= D r
kz(Pan_ ?Cl) ZZ(PSQn_poclkz) ; n¢2n( ), ; n‘pln( )v
27, 4 , where
X Tﬂn‘F §CZ_C3k y (54)
D= if d3r( = po(daPontVoa— aP1¥ina) +2p3(2nb1)
with Q= w,—28H.
Assuminge¢,= ¢, andF,,= —F,,, another solution is T3
obtained. This corresponds to —2§¢1n~ ¢2>. (59
S=(S.)*o_e "'+ (S,)* o, (55) The following sum rule is satisfied,
The dispersion relation in this case is equivalent to changing
w, INto — w, in Eq. (54). n;) wnC2=2E(0,¢5,4,0). (60)

For smallk and 8H=0 one of the roots behaves like
The sum extends over modes with positive norm. The quan-
tities Cﬁ andwnCﬁ should be regarded as the transition prob-

(56)  ability and the transition strength, respectively.

w,=* 6k,

s (po ) 2¢§c§> (1+2Z4/3)(1+Z,)
= — —C = — .
p3 L 3psc, 2m* a(Zy—Z41/3) VI. DROPLET SOLUTIONS

This is the Goldstone mode obtained already in EL) The droplet solutions correspond to the correct linear
using the Fermi-liquid approach. The present variational apeombinations of the local solutions associated with a given
proach gives the same long-wave behavior as the traditiondtequencyw, which verify the boundary conditions. In Ap-

Fermi-liquid approach. pendix B we present the solution of the equations involving
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¢1= — ¢ andy = ifs,. The solution of the equations involv-

ing ¢1= ¢, and i = — i, follows analogous steps. In the
next section we present the results obtained for a particular
excitation operator. reduce to the criterion that there should be no spin distribu-
We discuss briefly the different modes obtained. Beyondion outside the surface of the droplet. The equation of mo-
the expected Goldstone mode, associated with the kmit tion for the circular component, , =23 +i%,,
—0 in Eq. (54), other modes arise. The replacement of the
continuum of Landau damped modes by a discrete set of
modes was a consequence of the polynomial structure im-
posed on the generators. The boundary condition mixes the . | . . - .
modes, so that, in the presence of the boundary, undamp&?'nc'd.es' in fact, with the SCMmger e.qyatlon for_a par-
modes may have an admixture of modes which are dampetb‘:Ie W'_th massM. The solutions describing sta}ndlng Spin
in the absence of the boundary. Landau damping is not a Sigwaves ina spherical drople’g correspond to the eigenfunctions
of instability but the resultjrgf an interference effect which is ©f the stationary states, which have the usual form
guenched by the boundary.The actual normal modes are o o
linear combinations of local modes associated with the same 2.(r,0,¢)=Aji(kr)Yin(0,¢), k*=2ME.
valuew of the frequency. The coefficients in the linear com-Here, the spherical coordinates, ¢ are usedA is the nor-
bination and the allowed values far are determined by the malization factor, andE denotes the energy of the stationary
boundary equations. states. The eigenvaluds are determined by the boundary
In the present problem, the energy spectrum has positiveonditions,j;(kR) =0, whereR is the radius of the droplet.
and negative energies. In situations most frequently met ong other words, the energy spectrum of the spin excitation is
finds positive random-phase approximati@®®PA) energies quantized and may be described in terms of two quantum
with positive norm and negative RPA energies with negativehumbers andn; :
norm. Now we find in addition some positive RPA energies
with negative norm and negative RPA energies with positive )
norm®*® Although this feature is unusual in RPA calculations, E(n,1)= Em:mzzln )
it is not necessarily the sign of an instability. Analogous
phenomena occur in other spin systems. This interesting ciwhere z,, are the zeros of the Bessel functign(z,,)=0,
cumstance is a consequence of the fact that the energy of tlaad the indexn, labels the zeros of, at a givenl. In the
cluster increases with the polarization. In fact, the self-above expressio(61) E; is justE;g.
consistent Eq(26) will define the minimum energy of the As discussed in Sec. Il the collective mode will not be
system for a given polarizatioE(«). For a zero magnetic killed by Landau damping if conditiof50) is satisfied. In the
field we haveE(a)<E(a') if a<a'. It happens, as already long-wavelength limit where the frequeneyis given by Eq.
said, that the excitations generated by E8fl) belong to  (56), this criterion reduces approximately t&v<|Q;,/,

3 =Tr>, ain(p),
P

m* a|ZO—le3|
(1+2,/3)(1+Z)

03, = V2, M=
Iat + 2M +

states with a different polarization of the initial state. which is equivalent to the following condition:
From a formal point of view, the presence of negatiye
values is permitted by the identity zpv 4
R = § | a’Zol €F.
1 . .
e NEE= . One can easily conclude that the transverse spin modé) (
; (En=E[{¢nID] )] 2|<¢'|[D’[H’D]]|¢'>|’ exists if the following inequality is fulfilled:

wherek, and|¢,) are, respectively, the eigenvalues and the ipFRI aZ|>1.
eigenvectors of. The identity holds even if¢;) is not the 3z
groundstate ofH. In this case, the energy differencés

. > ForR=roN3 ry=2.44 A andz,=zy=, we get
—E; are not necessarily positive. 0 0 L g

In the rest of this section we present a simplified approach 372 44
which considers the cluster as a spherical droplet. On the szmwg. (62
basis of the Goldstone mode for extendéde matter® a @zo @

mode with energy given by
VII. RESULTS AND CONCLUSIONS

Ei=—1.9a N K, (62) In this section we give some numerical results obtained
for the energy spectrum with the excitation operabdr)

is expected:™® The minus sign in Eq(61) reflects the fact =r?Yoo, and discuss the behavior of the energy levels with
that a state withv# 0 and zero magnetic field is not a state N, the number of particles in the cluster. In Table I, the
of minimum energy. This is the first level of a band with eigenfrequencies for=0 and «=0.01 and the respective
angular momenturh=0, whose successive members corre-fraction of the energy weighted sum rule defined as
spond to increasing numbers of radial nodes. In fact, let us 5
consider a spherical droplet 8He. The boundary conditions = @n|Cy
for the macroscopic spil;, i=1,2,3, NS L0n|Chl?
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TABLE I. Eigenfrequencies of the=0 modes fore=0.01 in the absence/presence of the polarizing field
H. The transition strengths refer to the excitation oper&ar) =r2Y,,.

H=0 H="H,
N w_ f W f w_ f W, fn
(K) (X100) (K)  (x100) (K) (X100)  (K)  (X100)
10 -0.0018 -0.56 51077 3x10°%
0.096 48.40 0.085 51.37 0.103 43.70 0.078 55.23
0.276 0.20 0.282 0.39 0.283 0.09 0.275 0.57
10° -0.0018 -—2.70 1x10°° 0.03
0.048 47.44 0.037 54.27 0.055 36.94 0.031 61.06
0.127 0.11 0.134 0.49 0.135 >x0°* 0.127 0.89
10° —0.0020 -—14.34 3x 1074 3.02
0.026 46.44 0.015  66.20 0.033 24.65 0.010 64.46
0.059 2x10°*  0.069 0.53 0.066 0.36 0.062 1.00
10’ —0.0029 -121.90 0.003 36.74
0.017 52.16 0.007 163.78 0.022 17.84 0.011  36.00
0.018 0.96 0.057 0.14 0.029 2.12 0.050 0.18
0.5x10®8  —0.0018 —36.74 0.0053 58.08
0.00015 6.56 0.012 73.26 0.0075 10.97 0.013 17.48
0.013 32.78 0.055 0.06 0.021 2.91 0.048 0.05
10° 0.0057 71.14
0.0066 0.03 0.014 13.5
0.013 4.27 0.048 0.02
10° 0.0060 55.40

0.0066 10.98 0.016 5.85
0.0070 17.80 0.047 0.001

with C, defined in Eq.(58), are displayed for increasing N>10" this mode carries the largest fraction of the total
particle numbers, both in the absence and in the presence sfrength. On the contrary, the energy of the other modes
the polarizing field8Hy= 5 era(1+Z,). The modes excited decrease with an increase of the particle number until they
by the operatoresr. are designated bw. and given in reach a saturating value. The only exception is the lowest
separate columns. energy state excited by, . This state for small clusters
We will first analyze the results obtained in the absence otarries the largest fraction of the total strength and its energy
the magnetic field. If the number of particles is large enoughdecreases with. As the cluster increases it loses strength to
an appreciable amount of the total strength is concentrated; and its energy will increase slightly witk until reaching
on the negative energy level,. The absolute value of the a saturating value.
energy of this mode increases slowly until a maximum value We find that the bulk Goldstone mod61) is in agree-
~0.003 K is attained foN~ 10" particles and starts decreas- ment with the negative energy modes. In Table Il we give,
ing only for larger clusters. BetweeN=2x10" and N for different polarizations and for clusters with a number of
=2x10° it behaves approximately witN 121 For larger  particles defined by the lower limit of E¢62), the energy
clusters at least two competing negative energy modes exigt;(N) [Eq. (61)] and the lowest negative mode obtained by
and this kind of analysis is not possible anymore. The energihe variational method. We see that they agree very well. In
of all the other modes decrease with an increasing size of themall drops, the Goldstone mode is not at all easily excited.
cluster. Notice that the results with no magnetic field dis-As the size of the cluster increases, new modes suddenly
played in Table | correspond to particle numbers below oremerge in the negative energy half plane, one by one, carry-
equal to the lower limit given by Eq62). ing, at first, little strength. The new mode soon starts remov-
We consider now the results with the equilibrium mag-ing strength from the remaining modes. When it approxi-
netic field turned on. The mode corresponding to the negamately crosses the smooth cuig(N), most of the strength
tive energy modew, carries almost no strength for small of the negative energy modes is concentrated in it or nearby.
clusters. As the particle number increases, its energy inThis is the Goldstone mode. It is important to notice that the
creases until a saturation value0.006 K, is reached. For negative energy mode carries the signature of finite-size ef-
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TABLE Il. For a given polarizationr and for clusters with a  sions with Lucilia Brito and Marta Brajczewska are also ac-
number of particles defined by the lower limit of E(62), the  knowledged. This work has been partially supported by

energyE, [Eq. (61)] and the lowest negative mode obtained by the Project No.PRAXIS/2/2.1/FIS/451/94.
variational methodo,,.

Y N E.(K) wo(K) APPENDIX A
0.1 4.4¢10 —0.0184 —0.0192 In this Appendix a connection is presented between our
0.075 1.0 10P ~0.0138 ~0.0144 variational approach and the more familiar fluid-dynamical
0.05 3.5¢10° ~0.0092 ~0.0096 formalism**
0.025 2.810° —0.0046 —0.0048 The transition densityn is given by
0.01 4.4<10 —0.00184 —0.00192
0.0075 1.x 16 —0.00138 —0.00144 d3p
0.005 3.5¢10° —0.00092 —0.00096 Sn= 2] —3i [S,n]sc
(27h)

fects in the cluster. Only for large enough clusters will it =—01(2p302—poV - ¢n) + 02(2p31+ poV - 1),
behave approximately d$~ 2! for a fixed polarization. In . .
particular forae=0.01 the energy of this mode increases until = 0Ny 01+ 6Ny07 (A1)
N=10" and only for larger clusters will the energy start de-
creasing. and the transition current by

It may also be noticed that the energy spectrum scales
with N~ Varying « andN in such a way tharN*?is 3
kept fixed, the energy multiplied b and the strength f(r,t)=2f (Vpedn+nV ,5€)
distribution do not change noticeably. (2wh)®

In the present work we have calculated the energy of the 1 7 2
transverse spin-wave modes and respective fractions of the =—|1+ — (}1( — =13+ poV ¢1)
energy weighted sum rule for clusters dfle of different m 3 3
sizes. It was verified that the mode corresponding to the 2
Goldstone mode will only carry a non-negligible fraction of +o, §Ts¢1+PoV ¢2)
the total strength for large enough clusters. It was shown that
as far as the dependence of the energNomas concerned, i1y, (A2)

the behavior of the so-called Goldstone mode is different
from the other modes. It was also found that the energ
mulltliglied by N¥® and the strength distribution scale with
aN">,

The modes obtained for a finite system are essentially not
different from the modes of the bulk, but they are coupled, . .
behave and show up in a different way. For instance, as the on+V-j —ZiJ
size shrinks some modes gradually disappear. For other
modes the energy gradually increase. N ] )

In Ref. 14, spin transverse modes in dropletSide, with The scalar boundary condition can be written in the form
a radius~0.5-0.7 mm, have been detected at a finite tem-
perature ~12—-10 mK) and large polarizatioffour times r-[pothy+ii+ poB(Ho—H) h]=0, (A4)
the equilibrium polarization We do not expect, however,
that finite-size effects may be detected in so large droplets. In )
the present calculation finite-size effects are observed for r-[pohr+jr—poB(Ho—H) s ]=0, (Ab)
droplets with polarizationrr=0.01 if N<10’ which corre-
sponds tdR~500 A. For larger polarizations we expect this where BHo= 2 era(1+Z,). When p; assumes the equilib-
limit to be even smaller since our results scale with'’>. In  rium value in the magnetic field
a future work finite temperature, larger polarizations and
modes with different angular momentum will be considered. N(0)

P3=1+—203Ho, N(0)=

)ft is easily seen that Eq$38) and (39) are precisely the
continuity equation corresponding to

3

(2:)3[/3%(&3,56]=o. (A3)

360
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P d3p A( . P A) one of the roots of Eq(42). Moreover,k; andk, are the
-+ j| on—€p+Ng——275
at  9x; (277)3J ap; € O&pj ¢ roots of Eq.(54), namely, ti: \/(fbt VE2—f,fo)/fa with
2 Z, dp .~ dd fa=2poC1Cs, fo=poC1(573Qn+5C2)+p3CsQnt3(poQn
ol 1F g)f—(ZW)Snonﬂf (2m)° —271301)2 f.=2p3Q0n(273Q0,+ %c,). We observe thak;,

Xj([ 8e,n]+[€,8n])=0. (A6)

The “spin-stress” tensofl, =11, oy +11,,05 is

k,,ks may be complex. The relations betwe¥n, X;, Yo,
and X, are

~ ~ 2 GF Zl
(Hu)ik:(Hg)ik""gPoE(l"'?) 1 , 4 X1,
K1l pon Tcl
2 -
X (7il/f1k+(7k¢1i_§v'l/f15ik)0'1
47
2 €p Zl 2 N Q __3C
tgpo |1t 3 (5i¢2k+3k¢2i_§v'¢z5ik)02 Potin™ 371
m Y2: Xz.
2T3 4 2
(A7) TQn_ §Cz+ C3k2
~0 2€|: Zl ~
(Ho_)ikzsw@k l+? (l+ZO)5n (A8)

Trivial algebraic manipulations lead to the following set

The boundary conditions in terms of the spin-stress tensasf equations which determine§,;, Y, X5, Y5, andYs,

take the simple form

ol (T, ) — | 14 22 o2 (=) 36, =0 : df,q
Ao m* 3/P2 et > [2P001XK+(Pan+C4+ﬂHPo)YK]rd_K
(A9) x=1 r
1 v +Ys5(pofdntCat BHpo)l (1 +1)f5=0,
XB (H(rz)aﬁ*—W 1+? pOB(H_HO)QSlﬁaB}:O'
(A10)
2
df, ot
APPENDIX B > {ZYK(r—l—f,d +Y5|r2 5'+[I(I+1)—2]f5,}
k=1 dr dl’2

In this Appendix we present the solution of the equations

involving ¢1=— ¢, and ¥», = 5. The solution of the equa- =0,

tions involving ¢,= ¢, and s = — i, follows analogous

steps. We describe the computation of the energy eigenval-

ues. Let 2 Ar, 270

. . + + = +|lc3—5— 2
h1= = o= Xq]i(Kar) Yo+ Xaj i (Kar) Yo, Zl (C4 Atteo 3 Cl)XKfKI c 3m*)YKV Fu
Pn= =Y 1V[]i(Kir) Y10l +Y2V[]i(Kar)Yio] +YsV N 279, i N 270'(I+1)Y d(f5|/f)_0

X(V 1)1 (Ksf) Yiol- 3m**gr2 | 3T T dr

Here,j,(kr) are the spherical Bessel functios,, (8, ¢) are
the spherical harmonicgs=\2m* 75[ Q,+ (2/73)C, ]/ 7 is

wheref, (r)=j,(k,r), n=1,2,5.
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