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Spin modes in polarized 3He clusters
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The transverse-spin modes in clusters of3He are considered. These excitations correspond to a gapless
Goldstone mode which comes along due to the broken symmetry in the spin space, and can exhibit themselves
in polarized 3He. These modes can be interpreted as weakly damped fluctuations of the transverse spin
components, which propagate through3He. The dispersion law of such spin waves is calculated by means of
a semiclassical variational method and compared with the results obtained on the basis of the Fermi-liquid
theory. The finite sizes of the clusters lead to quantization of the spectra and result in a series of excited states.
The number of long-living excited states is strongly affected by the Landau damping. The orthogonality
relations and energy-weighted sum rule are formulated. The collective spin modes forl 50 and several cluster
sizes are computed.
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I. INTRODUCTION

A system of interacting fermions may exhibit a great v
riety of collective Bose excitations. These collective mod
occur as a result of the interaction between fermions and
absent in a perfect noninteracting gas. The interaction pla
very important role when calculating spectra or formulati
the existence criteria of weakly damped excitations. The s
ation is quite different in the case of systems with a brok
symmetry, as, for instance, spin polarized Fermi syste
which exhibit a gapless Goldstone mode as a result of
broken symmetry. A collective magnetic excitation exists
any interacting Fermi system independently of the actual
teraction between the particles. The propagation of spin fl
tuations in spin polarized Fermi systems has been discu
in Refs. 1–4.

The problem addressed here is how the actual size
finite system influences the collective magnetic modes wh
are known to exist in extended systems. We focus on
transverse spin excitations in small portions or droplets
polarized3He matter. There might be many branches of c
lective Bose excitations due to the spin degrees of freed
To be specific we only consider transverse spin modes w
have pure collective origin and will only occur in larg
enough drops. In the limitN→` they coincide with the spin
waves in polarized liquid3He ~bulk!. These magnetic collec
tive excitations are calculated on the basis of a semiclass
variational method which takes into account the finite size
the cluster and the associated boundary conditions, leadin
the quantization of the spectrum and which is not restric
to a small polarization condition. The orthogonality relatio
and the energy-weighted sum rule are formulated and a
to predict the strength of the several modes associated w
prescribed transition operator. We compute the collec
spin modes of3He clusters for several polarizations an
cluster sizes, both in the presence and in the absence o
polarizing magnetic field.
PRB 620163-1829/2000/62~6!/3968~11!/$15.00
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II. FERMI-LIQUID APPROACH

Before we study the propagation of spin fluctuations
finite systems, using the semiclassical variational method
veloped in Refs. 5 and 6, we will give a short presentation
the Fermi-liquid approach and calculate the magnon sp
trum in infinite matter. Dynamics and collective properties
an infinite Fermi fluid at the zero temperature can be
scribed in terms of the collisionless quasiclassical transp
equation7 for the density matrix~distribution function! in
spin spacen̂:

] tn̂1
1

2
@]pê•¹n̂1¹n̂•]pê #2

1

2
@¹ê•]pn̂1]pn̂•¹ê#

1 i @ ê,n̂#50. ~1!

Hereê is the self-consistent single-particle excitation ener
For small perturbations of the density matrixdn̂, the self-
consistent energy can be expressed as a linear function
dn̂:

dês~p!5Trs8(
p8

f̂ ss8~p,p8!dn̂s8~p8!, ~2!

wheres labels different spin states. The functionf̂ describes
the interaction between two quasiparticles (3He-3He) and is
the main quantitative feature of the Fermi-liquid theory.
an isotropic polarized Fermi fluid the interaction functio
takes the form

f̂ ss8~p,p8!5c~p,p8! Î Î 81z~p,p8!ŝ•ŝ8. ~3!

Only the term with the functionz in Eq. ~3! contributes to
the spectrum of transverse modes.

Both n̂ and ê are, indeed, linear functions of the sp
operator, i.e., of the Pauli matricesŝ i , i 51,2,3. In equilib-
rium the density matrixn̂ is diagonal in the spin space:
3968 ©2000 The American Physical Society
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n̂(0)~p!5
n11n2

2
Î 1

n12n2

2
ŝ3 , ~4!

where Î is the unity matrix, andn1 and n2 are the Fermi
distribution functions for particles with spin up and sp
down, respectively:

n15u~m12e1!, n25u~m22e2!. ~5!

Here,m1 andm2 are the Fermi energies for the spin-up a
spin-down components. The single-particle energy spec
e1 ande2 determine the self-consistent energyê (0) in equi-
librium:

ê (0)~p!5
e11e2

2
Î 1

e12e2

2
ŝ35a~p! Î 1b~p!ŝ3 . ~6!

The number of exceeding spin up~or spin down!, i.e., the
effective degree of polarizationa, is normally small,uau
!1. ~Moreover, the standard Fermi-liquid theory does n
hold to describe the transverse spin modes in a strongly
larized system,8 uau<1. Formally carrying out such a calcu
lation would require integrating over the Fermi sea, which
in an obvious contradiction with thecornerstoneof the
Fermi-liquid approach.! We will, therefore, consider

a!1. ~7!

Keeping the linear ina term one can easily obtain

n11n2'n05u~m02e0!, ~8!

n12n2'
4

3

]n0

]e0
eFa, eF5

pF
2

2m*
, ~9!

where the Fermi momentum,pF5(3p2r0)1/3, has been in-
troduced. Herer0 is the density of particles,m* is the 3He
effective mass, and the index ‘‘0’’ refers to the character
tics of the unpolarized system, i.e., wherea50. On the
Fermi surface~with radius pF) the interaction function
f̂ ss8(p,p8) depends only on the angleg between vectorsp
and p8 as upu5up8u5pF . It is convenient to define the di
mensionless interaction functiong0 f̂ , whereg0 is the density
of states on the Fermi surface, and expand it in a series o
Legendre polynomialsPn(cosg) as usual, namely,

pFm*

p2 z~g!5 (
n50

`

ZnPn~cosg!, ~10!

pFm*

p2 c~g!5 (
n50

`

FnPn~cosg!. ~11!

Combining Eqs. ~2!–~11! one can calculate the spin
dependent term in the self-consistent energy of a quasip
cle in equilibrium@see Eq.~6!#:

b~p!5
V int

2
, V int5

4

3
aeFZ0 . ~12!

A small deviation ofn̂ from its equilibrium value~4! is a
linear function ofŝ as well, and will be sought in the form
a,

t
o-

s

-
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ti-

dn̂~p!5n̂~p!2n̂(0)~p!5n~p! Î 1 (
k51

2

lk~p!ŝk . ~13!

The extra terms in the self–consistent energy due to the fl
tuations of the density matrix can be calculated from E
~2!, ~3!, and~13! and read

ê2 ê (0)5dê~p!5 Î(
p8

c~p,p8!n~p8!

1(
i 51

2

ŝ i(
p8

z~p,p8!l i~p8!. ~14!

Now we have a complete set of equations in order to ca
late the spectra of magnons. When substituting Eqs.~4!–~14!
in the linearized transport Eq.~1! we get two equations for
l1 andl2, which describe the dynamics of the off-diagon
components of the density matrix, i.e., the transverse s
modes in which we are interested. Instead ofl1 andl2 it is
more convenient to use circular variables:l65l16 il2. In
the case of a weakly polarized system,uau!1, it is natural to
seek a solution in the form

l65
]n0

]e0
h6~u,w!, ~15!

whereu andw are the polar angle and azimuth in momentu
space, i.e., on the Fermi sphere. We will be seeking the
genvalues of the transport equation for the Fourier com
nents: h6}exp(ik•r2 ivt). After some manipulations o
Eqs.~4!–~15!, we get

~v1V int2k•v!h1~u,w!

2S k•v1
V int

Z0
D E Z~u,w,u8,w8!h1~u8,w8!

do8

4p
50.

~16!

Here v5pFn(u,w)/m* and n is a unit vector on the Ferm
sphere. The equation~and solution! for h2 can be obtained
from Eq. ~16! simply by replacingv→2v andk→2k.

Expanding the quantitiesv andn in a power series of the
small wave vector,kv/uV intu!1, ~similar to the procedure
used in Refs. 7 and 8! one obtains the following dispersio
law:

v5
k2

2M
, M5m* a

Z02 1
3 Z1

~11Z0!~11 1
3 Z1!

. ~17!

Here, the quantityM can be considered as the effective ma
of the new elementary excitation, the magnon. These col
tive modes correspond to fluctuations of the transverse c
ponents of the spin. Spectrum~17! are the spin waves in a
magnetized Fermi liquid obtained in Ref. 8.

Microscopically a collective mode of the Fermi-liqui
type can be interpreted as a bound state of a particle a
hole in the Fermi sea. If the collective excitation moves t
fast, it turns out to be unstable with respect to decay int
particle-hole pair. The threshold, above which the Land
damping comes into effect and kills the spin waves, can e
ily be seen from Eq.~16!. The collective modes will survive
if the condition
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v1V int2k•v.0, ~18!

is satisfied. In the long-wavelength limit where the frequen
v is given by Eq.~17!, this criterion reduces approximate
to: kv<uV intu.

III. COLLECTIVE EXCITATIONS:
VARIATIONAL APPROACH

In this section we apply the semiclassical variation
method developed in Refs. 5 and 6 to the propagation of s
fluctuations in finite systems such as droplets of3He matter.
For an infinite system, the variational method is equivalen
the collisionless Landau-Boltzmann transport equation,
~1!. For a finite system, it leads also to appropriate bound
conditions.

A cluster of 3He is described by a spin-dependent matr
valued distribution function, depending not only on the m
mentum but also on the position,

n̂5n̂~p,r ,t !.

In analogy with Eq.~4!, the equilibrium distribution function
reads

n̂5S n1 0

0 n2
D 5

Î 1ŝ3

2
n11

Î 2ŝ3

2
n25n0Î 1n3ŝ3 ,

~19!

with n15u(m12e1), n25u(m22e2), n05 1
2 (n11n2),

n35 1
2 (n12n2), wheree15e1(p,r ,t), e25e2(p,r ,t), are

the equilibrium self-consistent one-body~effective! Hamilto-
nians, which are position, momentum and time depend
respectively, for particles with spin up~1! and spin down
(2). The interaction function is a local one of the form

f̂ ss8~p,r ,p8,r 8!5 f̂ ss8~p,p8!d~r2r 8!, ~20!

where f̂ ss8(p,p8) has the general form defined in Eq.~3!. In
the present approach, we will consider

c~p,p8!5a1c~p2p8!2, z~p,p8!5b1d~p2p8!2,
~21!

where the coupling constantsa,b,c,d will be chosen so tha
the Landau parametersF0 ,F1 ,Z0 ,Z1 derived from
experiment,7–10 are reproduced. The equilibrium sel
consistent hamiltonian~6! with interaction~20! and ~21! is
given by

ê~1!5
p2

2m
Î ~1!2bHŝ3~1!1Tr2E dG2d~r12r2!

3@c~p1 ,p2! Î ~2! Î ~1!1z~p1 ,p2!ŝ~2!•ŝ~1!#n̂~2!

5S p2

2m*
1ar01ct0D Î 1@~p2d1b!r32bH1dt3#ŝ3 ,

~22!
y

l
in

o
q.
ry

-
-

t,

where H is the external magnetic field, dG2

5dr2
3dp2

3/(2p)3, m is the mass of the3He atom,b is the
magnetic moment of3He, @2b52.03783104 (G s)21# and

r052E d3p

~2p!3 n05
pF1

3 1pF2
3

6p2
,

r352E d3p

~2p!3 n35
pF1

3 2pF2
3

6p2
,

t05
~pF1

5 1pF2
5 !

10p2
, t35

pF1
5 2pF2

5

10p2
,

1

2m*
5

1

2m
1cr0 .

The Fermi momenta for particles with spin up and sp
down, respectively,pF1(r ,t) andpF2(r ,t), are constant in-
side the cluster and vanish outside. Taking into account
sumption~7!, which in terms ofpF1 andpF2 is given by

a5
pF1

3 2pF2
3

pF1
3 1pF2

3
!1,

we have, up to first order in the polarizationa, r35ar0 ,
t35apF

2r0 , y35apF
4r0 , t05pF

5/(5p2) with r0

5pF
3/(3p2). Here and in the sequel we will usepF andeF ,

respectively, for the Fermi momentum and Fermi energy
the unpolarized cluster. We stress, however, thata!1 is not
a necessary assumption in the present formalism.

We fix the parameters of the model in the following wa

F05
m* pF

p2 ~a12cpF
2 !59.28,

~23!

F152
m* pF

p2 ~2cpF
2 !55.39,

Z05
m* pF

p2 ~b12dpF
2 !520.696,

~24!

Z152
m* pF

p2 ~2dpF
2 !520.54,

with pF51.553103 eV/c, m* /m52.80.
In terms of the Landau parameters the spin-depend

term in the self-consistent energy of a quasiparticle in eq
librium e3, at the Fermi surface, reads

e35
V int

2
2bH, V int5

4

3
aeFZ0 ,

in accordance with Eq.~12!.
In order to proceed, it is convenient to introduce the se

classical limit of the commutator, which we denote b
@•,•#SC. Let D,L be operators in the spin space and letf ,g
be either operators in configuration space or their Wig
transforms, depending on the context. We define
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@ f D,gL#SC5
i

2
~DL1LD!$ f ,g%1 f g@D,L#. ~25!

In the right-hand side,f ,g are functions ofr ,p. In the left-
hand side, they are operators. By$•,•%, we denote the Pois
son bracket.

The self-consistency condition, which may be expres
as

@ ê,n̂#SC50, ~26!

with n̂ defined by Eq.~19! and ê by Eq. ~22!, clearly holds.
Indeed, we have

@ ê,n̂#SC5$e1 ,n1%
Î 1ŝ3

2
1$e2 ,n2%

Î 2ŝ3

2
50. ~27!

In Ref. 5 an action principle was established for the c
lisionless Boltzmann transport equation. Let us consider
set of all trial distribution functionsn̂(p,r ) related by a ca-
nonical transformation to a fixed distribution functio
n̂f(p,r ). If, for all times t, the time-dependent distributio
function n̂(p,r ,t) belongs to this set a generating opera
F̂(p,r ,t) may be found such that

]n̂

]t
1 i @ n̂,F̂#SC50. ~28!

The action principle may now be written as

dS5dE L dt50, ~29!

where

L5Tr E dGn̂~p,r ,t !F̂~p,r ,t !2E@ n̂#, ~30!

with E@ n̂# the energy functional

E@ n̂#5Tr E dG
p2

2m
n̂~p,r ,t !

1
1

2
Tr Tr8E dGdG8 f̂ ss8~p,r ,p8,r 8!n̂~p,r ,t !

3n̂~p8,r 8,t !.

In the present study we will only consider small fluctu
tions of the distribution function and it will be enough
consider the second-order Lagrangian on the infintesi
generator of the flucutations. In the sequel, we denote bŜ
the generator of spin fluctuations of the distribution functio
We focus ontransversemodes which are associated with
generator of the form
d

-
e

r

al

.

Ŝ5S1ŝ11S2ŝ2 , ~31!

whereS1 andS2 arec-number varitional functions ofr , p,
and t. If the cluster on its ground state has total spinS and
three-componentmS5S, this generator gives rise to excita
tions with quantum numbersS8, mS85S61.

The dynamics of small amplitude fluctuations is det
mined by the second-order Lagrangian:

L (2)5
i

2
TrE dGn̂@] tŜ,Ŝ#SC1

1

2
TrE dG@Ŝ,ê #SC@Ŝ,n̂#SC

2
1

2
Tr1 Tr2E dG1dG2@Ŝ,n̂#SC~1!

3@Ŝ,n̂#SC~2!z~p1 ,p2!ŝ~1!•ŝ~2!d~r12r2!, ~32!

where ê(r ,p,t) was defined in Eq.~22!. The fluctuation of
the distribution function is

dn̂5 i @Ŝ,n̂#SC. ~33!

Its time evolution is determined by the Lagrangian~32!.

IV. DISPERSION RELATIONS

In order to proceed and obtain the equations of motion
the clusters, we need to make an ansatz for the varitio
functionsSk(p,r ,t), k51,2, introduced in Eq.~31!. The sim-
plest ansatz,5 since each one of the functions should have
time-even component, which describes the dynamical beh
ior of the system, and a time-odd part, which describes
static behavior of the system, is

Sk~p,r ,t !5fk~r ,t !1p•ck~r ,t !, k51,2. ~34!

This approximation preserves the Goldstone mode and
the effect of replacing the Landau damped modes by a
crete set of modes. The Lagrangian which determines
time evolution of the fieldsf j ,cj is derived from Eq.~32!
and reduces to

L (2)5E d3r

3H r0

2
~]aḟ1c1a1]aḟ2c2a2]af1ċ1a2]af2ċ2a!

1r3~f2ḟ12f1ḟ2!

1
t3

3
~c2•c1̇2c1•ċ2!2E~f1 ,f2 ,c1 ,c2!J , ~35!

where the energy densityE is given by
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E~f1 ,f2 ,c1 ,c2!5r0S 1

2m*
2dr0D @~¹f1!21~¹f2!2#1

t0

6m* ~]ac1b]ac1b1]ac1b]bc1a1]ac2b]ac2b

1]ac2b]bc2a!

12S t3

3m*
1bHr02

2

3
dr0t3D ~c1•¹f22c2•¹f1!1S t0

6m*
1

b

2
r0

21
5d

3
r0t0D ~36!

3@~¹•c1!21~¹•c2!2#2
2

3 S br3t31dr3y31
5

3
dt3

22bHt3D ~c1•c11c2•c2!

12bHr3~f1
21f2

2!1S t3

m
1bHr01br0r31dr0t31

5

3
dr3t0D¹•~f1c22f2c1!. ~37!
th
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The Euler-Lagrange equations read

2r3ḟ22r0¹•c1̇52
dE

df1
, ~38!

2r3ḟ11r0¹•c2̇5
dE

df2
, ~39!

2t3

3
c1̇1r0¹ḟ252

dE
dc1

, ~40!

2t3

3
c2̇2r0¹ḟ15

dE
dc2

. ~41!

In Appendix A we discuss these equations in terms of
more familiar equations for the time evolution of the tran
tion density and transition current density, which arise in
Fermi-liquid approach. Equations~38! and ~39! correspond
to Eq. ~A3! the continuity equation for the density, and Eq
~40! and ~41! are the equations of motion for the dens
current~A6!.

The boundary conditions atr 5R ~the cluster radius! are
also derived from the Lagrangian and read

r•@r0ċ112r0c1¹f11~c42bHr0!c2#50, ~42!

r•@r0ċ212r0c1¹f22~c42bHr0!c1#50, ~43!

xaF S 2t3

3m*
1c41bHr0Df11c3¹•c2G

1xb

t0

3m* ~]acb1]bc2a!50, ~44!

xaF2S 2t3

3m*
1c41bHr0Df21c3¹•c1G

1xb

t0

3m* ~]ac1b1]bc1a!50. ~45!

Notice thatc1 ,f2 behave as coordinates andc2 ,f1 as mo-
menta, or vice versa. The first two boundary equations c
respond, in the Fermi-liquid approach, to Eqs.~A4! and~A5!
e
-
e

.

r-

given in Appendix A, and the last two equations correspo
to Eqs.~A9! and ~A10!. We have introduced the quantities

c15S 1

2m*
2dr0D5

1

2m* S 11
Z1

3 D , ~46!

c25S br3t31dr3y31
5

3
dt3

2D5
2

3
a2eFr0PF

2 S Z02
Z1

3 D ,

~47!

c35S t0

m*
1br0

21
10

3
dr0t0D5

4

5
eFr0S 3

2
1

5

6
Z0D ,

~48!

c452
t3

3m*
1br0r31

7

3
dr0t31

5

3
dr3t0

5
2

3
eFr3S 211Z02

2

3
Z1D . ~49!

Now, we summarize the determination of the norm
modes. In a first step we disregard the boundary conditi
and determine a complete set of local solutions of the Eu
Lagrange equations. In a second step we construct, with
help of the boundary conditions, the correct linear combi
tions of the local solutions associated with a given freque
v. The Euler-Lagrange equations admit two types of so
tions for the variational scalar and vector funtionsf i andci ,
namely, irrotational and solenoidal solutions.

The solenoidal solutions~such that¹•c15f15¹•c2
5f250) may be expressed in terms of the quantitiesG1
5¹3c1 and G25¹3c2. Then, G65G16 iG2 obey the
equations

7 i Ġ65
2

t3
~c22bHt3!G61

t0

2m* t3
¹2G6 .

Making use of¹2Gi52k2Gi we obtain

v56F2bH1
3

5

k2

2m* a
2

4

3
aeFS Z02

1

3
Z1D G . ~50!
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For k50 we get the energy of homogeneous spin waves
infinite matter in the presence of a uniform magnetic field,1,11

associated with the componentsŝ1 and ŝ2 of the spin po-
larization.

In order to describe the irrotational normal modes~such
that¹3c15¹3c250) it is convenient to define the scala
functionsFi5¹•ci , i P$1,2% and to make the local ansa
f15f1n cosvnt, c25c2n cosvnt, f25f2n sinvnt, c15c1n
3sinvnt. In terms off65f16f2 and F65F26F1, the
local equations of motion become

~6vn12bH!~2r3f6n1r0F7n!

522c1S r0k2f6n1
2t3

3
F7nD , ~51!

~6vn12bH!S 2t3

3
F7n1r0k2f6nD

52
4t3

3
c1k2f6n1S 4

3
c22c3k2DF7n . ~52!

Notice thatF1n is coupled tof2n and F2n is coupled to
f1n . Assumingf1n52f2n and F1n5F2n , the functions
f2 ,F1 are associated with the modes excited by an oper
of the form @see Eqs.~31! and ~34!#

Ŝ5S2ŝ2eivt1S1ŝ1e2 ivt, ~53!

with S15(S2)* and

S25
1

2
~f12 ip•c1!.

The operatorsŝ2 andŝ1 excite states with oposite frequen
cies. The corresponding dispersion relation is

k2S r0Vn2
4t3

3
c1D 2

52~r3Vn2r0c1k2!

3S 2t3

3
Vn1

4

3
c22c3k2D , ~54!

with Vn5vn22bH.
Assumingf1n5f2n andF1n52F2n , another solution is

obtained. This corresponds to

Ŝ5~S2!* ŝ2e2 ivt1~S1!* ŝ1eivt. ~55!

The dispersion relation in this case is equivalent to chang
vn into 2vn in Eq. ~54!.

For smallk andbH50 one of the roots behaves like

vn56dk2,
~56!

d52S r0

r3
c11

2t3
2c1

2

3r3c2
D 52

~11Z1/3!~11Z0!

2m* a~Z02Z1/3!
.

This is the Goldstone mode obtained already in Eq.~17!
using the Fermi-liquid approach. The present variational
proach gives the same long-wave behavior as the traditi
Fermi-liquid approach.
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V. ORTHOGONALITY RELATIONS AND SUM RULE

When writing, for the normal modes,f1n(r ,t)
5f1n(r )cosvnt, c2n(r ,t)5c2n(r )cosvnt, f2n(r ,t)5f2n(r )
3sinvnt, c1n(r ,t)5c1n(r )sinvnt, the modes may be nor
malized so that the following orthonormality relations hol

E d3r Fr0~]af1nc1ma2]af2mc2na!12r3~f1nf2m!

2
2

3
t3~c2n•c1m!G56dmn

vn

uvnu
. ~57!

Arbitrary fields ~initial conditions!
f2(r ),c1(r ),f1(r ),c2(r ) may be expanded in norma
modes. If we consider att50, f1(r )5c2(r )50 we have

f2~r !5(
n

Cnf2n~r !, c1~r !5(
n

Cnc1n~r !,

05(
n

Cnf1n~r !, 05(
n

Cnc2n~r !,

where

Cn56E d3r Fr0~]af1nc1a2]af2c2na!12r3~f1nf2!

22
t3

3
c2n•c1G . ~58!

The sign1 holds for modes with positive norm. The sig
2 holds for modes with negative norm. Similarly,

f1~r !5(
n

Dnf1n~r !, c2~r !5(
n

Dnc2n~r !,

05(
n

Dnf2n~r !, 05(
n

Dnc1n~r !,

where

Dn56E d3r S 2r0~]af2nc2a2]af1c1na!12r3~f2nf1!

22
t3

3
c1n•c2D . ~59!

The following sum rule is satisfied,

(
n(1)

vnCn
252E~0,f2 ,c1,0!. ~60!

The sum extends over modes with positive norm. The qu
tities Cn

2 andvnCn
2 should be regarded as the transition pro

ability and the transition strength, respectively.

VI. DROPLET SOLUTIONS

The droplet solutions correspond to the correct line
combinations of the local solutions associated with a giv
frequencyv, which verify the boundary conditions. In Ap
pendix B we present the solution of the equations involv
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f152f2 andc15c2. The solution of the equations involv
ing f15f2 and c152c2 follows analogous steps. In th
next section we present the results obtained for a partic
excitation operator.

We discuss briefly the different modes obtained. Beyo
the expected Goldstone mode, associated with the limk
→0 in Eq. ~54!, other modes arise. The replacement of
continuum of Landau damped modes by a discrete se
modes was a consequence of the polynomial structure
posed on the generators. The boundary condition mixes
modes, so that, in the presence of the boundary, undam
modes may have an admixture of modes which are dam
in the absence of the boundary. Landau damping is not a
of instability but the result of an interference effect which
quenched by the boundary.12 The actual normal modes ar
linear combinations of local modes associated with the sa
valuev of the frequency. The coefficients in the linear com
bination and the allowed values forv are determined by the
boundary equations.

In the present problem, the energy spectrum has pos
and negative energies. In situations most frequently met
finds positive random-phase approximation~RPA! energies
with positive norm and negative RPA energies with negat
norm. Now we find in addition some positive RPA energ
with negative norm and negative RPA energies with posit
norm.13 Although this feature is unusual in RPA calculation
it is not necessarily the sign of an instability. Analogo
phenomena occur in other spin systems. This interesting
cumstance is a consequence of the fact that the energy o
cluster increases with the polarization. In fact, the se
consistent Eq.~26! will define the minimum energy of the
system for a given polarizationE(a). For a zero magnetic
field we haveE(a),E(a8) if a,a8. It happens, as alread
said, that the excitations generated by Eq.~31! belong to
states with a different polarization of the initial state.

From a formal point of view, the presence of negativevn
values is permitted by the identity

(
n

~En2Ei !u^fnuDuf i&u25
1

2
u^f i u†D,@H,D#‡uf i&u,

whereEn andufn& are, respectively, the eigenvalues and
eigenvectors ofH. The identity holds even ifuf i& is not the
groundstate ofH. In this case, the energy differencesEn
2Ei are not necessarily positive.

In the rest of this section we present a simplified appro
which considers the cluster as a spherical droplet. On
basis of the Goldstone mode for extended3He matter,3,6 a
mode with energy given by

E1521.9•a21N22/3K, ~61!

is expected.6,13 The minus sign in Eq.~61! reflects the fact
that a state witha5” 0 and zero magnetic field is not a sta
of minimum energy. This is the first level of a band wi
angular momentuml 50, whose successive members cor
spond to increasing numbers of radial nodes. In fact, le
consider a spherical droplet of3He. The boundary condition
for the macroscopic spinS i , i 51,2,3,
ar
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S i5Tr(
p

ŝ i n̂~p!,

reduce to the criterion that there should be no spin distri
tion outside the surface of the droplet. The equation of m
tion for the circular component,S15S11 iS2,

i ] tS152
1

2M
¹2S1 , M5

m* auZ02Z1/3u
~11Z1/3!~11Z0!

,

coincides, in fact, with the Schro¨dinger equation for a par
ticle with massM. The solutions describing standing sp
waves in a spherical droplet correspond to the eigenfunct
of the stationary states, which have the usual form

S1~r ,u,f!5A jl~kr !Ylm~u,f!, k252ME.

Here, the spherical coordinatesr ,u,f are used,A is the nor-
malization factor, andE denotes the energy of the stationa
states. The eigenvaluesE are determined by the boundar
conditions,j l(kR)50, whereR is the radius of the droplet
In other words, the energy spectrum of the spin excitation
quantized and may be described in terms of two quan
numbersl andnl :

E~nl ,l !5Enl5
1

2MR2 zln
2 ,

where zln are the zeros of the Bessel function,j l(zln)50,
and the indexnl labels the zeros ofj l at a givenl. In the
above expression~61! E1 is just E10.

As discussed in Sec. II the collective mode will not b
killed by Landau damping if condition~50! is satisfied. In the
long-wavelength limit where the frequencyv is given by Eq.
~56!, this criterion reduces approximately to:kv<uV intu,
which is equivalent to the following condition:

zlnv
R

<
4

3
uaZ0ueF .

One can easily conclude that the transverse spin mode (nl ,l )
exists if the following inequality is fulfilled:

2

3zln
pFRuaZ0u.1.

For R5r 0N1/3, r 052.44 Å andzln5z015p, we get

N>
3p2

2uaZ0u3 '
44

uau3 . ~62!

VII. RESULTS AND CONCLUSIONS

In this section we give some numerical results obtain
for the energy spectrum with the excitation operatorD(r )
5r 2Y00, and discuss the behavior of the energy levels w
N, the number of particles in the cluster. In Table I, t
eigenfrequencies forl 50 and a50.01 and the respective
fraction of the energy weighted sum rule defined as

f n5
vnuCnu2

(nvnuCnu2
,
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TABLE I. Eigenfrequencies of thel 50 modes fora50.01 in the absence/presence of the polarizing fi
H. The transition strengths refer to the excitation operatorD(r )5r 2Y00.

H50 H5H0

N v2 f n v1 f n v2 f n v1 f n

~K! (3100) ~K! (3100) ~K! (3100) ~K! (3100)

104 20.0018 20.56 531027 331023

0.096 48.40 0.085 51.37 0.103 43.70 0.078 55.23
0.276 0.20 0.282 0.39 0.283 0.09 0.275 0.57

105 20.0018 22.70 131025 0.03
0.048 47.44 0.037 54.27 0.055 36.94 0.031 61.06
0.127 0.11 0.134 0.49 0.135 231024 0.127 0.89

106 20.0020 214.34 331024 3.02
0.026 46.44 0.015 66.20 0.033 24.65 0.010 64.46
0.059 231024 0.069 0.53 0.066 0.36 0.062 1.00

107 20.0029 2121.90 0.003 36.74
0.017 52.16 0.007 163.78 0.022 17.84 0.011 36.0
0.018 0.96 0.057 0.14 0.029 2.12 0.050 0.18

0.53108 20.0018 236.74 0.0053 58.08
0.00015 6.56 0.012 73.26 0.0075 10.97 0.013 17.4
0.013 32.78 0.055 0.06 0.021 2.91 0.048 0.05

108 0.0057 71.14
0.0066 0.03 0.014 13.5
0.013 4.27 0.048 0.02

109 0.0060 55.40
0.0066 10.98 0.016 5.85
0.0070 17.80 0.047 0.001
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with Cn defined in Eq.~58!, are displayed for increasin
particle numbers, both in the absence and in the presenc
the polarizing fieldbH05 2

3 eFa(11Z0). The modes excited
by the operatoress6 are designated byv6 and given in
separate columns.

We will first analyze the results obtained in the absence
the magnetic field. If the number of particles is large enou
an appreciable amount of the total strength is concentr
on the negative energy levelv0. The absolute value of the
energy of this mode increases slowly until a maximum va
;0.003 K is attained forN;107 particles and starts decrea
ing only for larger clusters. BetweenN523107 and N
523108 it behaves approximately withN211/21. For larger
clusters at least two competing negative energy modes e
and this kind of analysis is not possible anymore. The ene
of all the other modes decrease with an increasing size o
cluster. Notice that the results with no magnetic field d
played in Table I correspond to particle numbers below
equal to the lower limit given by Eq.~62!.

We consider now the results with the equilibrium ma
netic field turned on. The mode corresponding to the ne
tive energy modev08 carries almost no strength for sma
clusters. As the particle number increases, its energy
creases until a saturation value,;0.006 K, is reached. Fo
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n-

N.107 this mode carries the largest fraction of the to
strength. On the contrary, the energy of the other mo
decrease with an increase of the particle number until t
reach a saturating value. The only exception is the low
energy state excited bys1 . This state for small clusters
carries the largest fraction of the total strength and its ene
decreases withN. As the cluster increases it loses strength
v08 and its energy will increase slightly withN until reaching
a saturating value.

We find that the bulk Goldstone mode~61! is in agree-
ment with the negative energy modes. In Table II we gi
for different polarizations and for clusters with a number
particles defined by the lower limit of Eq.~62!, the energy
E1(N) @Eq. ~61!# and the lowest negative mode obtained
the variational method. We see that they agree very well
small drops, the Goldstone mode is not at all easily excit
As the size of the cluster increases, new modes sudd
emerge in the negative energy half plane, one by one, ca
ing, at first, little strength. The new mode soon starts rem
ing strength from the remaining modes. When it appro
mately crosses the smooth curveE1(N), most of the strength
of the negative energy modes is concentrated in it or nea
This is the Goldstone mode. It is important to notice that
negative energy mode carries the signature of finite-size
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fects in the cluster. Only for large enough clusters will
behave approximately asN211/21 for a fixed polarization. In
particular fora50.01 the energy of this mode increases un
N5107 and only for larger clusters will the energy start d
creasing.

It may also be noticed that the energy spectrum sc
with a21N21/3. Varyinga andN in such a way thataN1/3 is
kept fixed, the energy multiplied byN1/3 and the strength
distribution do not change noticeably.

In the present work we have calculated the energy of
transverse spin-wave modes and respective fractions o
energy weighted sum rule for clusters of3He of different
sizes. It was verified that the mode corresponding to
Goldstone mode will only carry a non-negligible fraction
the total strength for large enough clusters. It was shown
as far as the dependence of the energy onN was concerned
the behavior of the so-called Goldstone mode is differ
from the other modes. It was also found that the ene
multiplied by N1/3 and the strength distribution scale wi
aN1/3.

The modes obtained for a finite system are essentially
different from the modes of the bulk, but they are coupl
behave and show up in a different way. For instance, as
size shrinks some modes gradually disappear. For o
modes the energy gradually increase.

In Ref. 14, spin transverse modes in droplets of3He, with
a radius;0.5–0.7 mm, have been detected at a finite te
perature (;12–10 mK) and large polarization~four times
the equilibrium polarization!. We do not expect, however
that finite-size effects may be detected in so large droplets
the present calculation finite-size effects are observed
droplets with polarizationa50.01 if N,107 which corre-
sponds toR;500 Å. For larger polarizations we expect th
limit to be even smaller since our results scale withaN1/3. In
a future work finite temperature, larger polarizations a
modes with different angular momentum will be consider
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APPENDIX A

In this Appendix a connection is presented between
variational approach and the more familiar fluid-dynamic
formalism.11

The transition densitydn̂ is given by

dn̂52E d3p

~2p\!3
i @Ŝ,n̂#SC

52ŝ1~2r3f22r0¹•c1!1ŝ2~2r3f11r0¹•c2!,

5dn1ŝ11dn2ŝ2 ~A1!

and the transition current by

ĵ ~r ,t !52E d3p

~2p\!3
~¹pêdn̂1n̂¹pdê !

5
1

m* S 11
Z1

3 D F ŝ1S 2
2

3
t3c21r0¹f1D

1ŝ2S 2

3
t3c11r0¹f2D G

5 j1ŝ11 j2ŝ2 . ~A2!

It is easily seen that Eqs.~38! and ~39! are precisely the
continuity equation corresponding to

d ṅ̂1¹• ĵ22i E d3p

~2p!3
@bHŝ3 ,dn̂#50. ~A3!

The scalar boundary condition can be written in the form

r•@r0c1̇1 j11r0b~H02H!c2#50, ~A4!

r•@r0c2̇1 j22r0b~H02H!c1#50, ~A5!

wherebH05 2
3 eFa(11Z0). When r3 assumes the equilib

rium value in the magnetic field

r35
N~0!

11Z0
bH0 , N~0!5

3r0

2eF
,

the scalar boundary condition reduces to

r•~r0c1̇1 j1!50, r•~r0c2̇1 j2!50.

The local Eqs.~40! and~41! are the equations of motion fo
ĵ :
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] ĵ

]t
1

]

]xj
E d3p

~2p!3
ĵ S dn̂

]

]pj
ê01n0

]

]pj
dê D

1
2

m* S 11
Z1

3 D E d3p

~2p!3
n0¹dê1 i E d3p

~2p!3

3 ĵ ~@dê,n̂#1@ ê,dn̂# !50. ~A6!

The ‘‘spin-stress’’ tensorP̂s5Ps1
ŝ11Ps2

ŝ2 is

~P̂s! ik5~P̂s
0 ! ik1

2

5
r0

eF

m S 11
Z1

3 D
3S ] ic1k1]kc1i2

2

3
¹•c1d ikD ŝ1

1
2

5
r0

eF

m S 11
Z1

3 D S ] ic2k1]kc2i2
2

3
¹•c2d ikD ŝ2

~A7!

~P̂s
0 ! ik5

2eF

3m*
d ikS 11

Z1

3 D ~11Z0!dn̂. ~A8!

The boundary conditions in terms of the spin-stress ten
take the simple form

xbF ~Ps1
!ab2

1

m* S 11
Z1

3 D r0

2b

2
~H2H0!f2dabG50,

~A9!

xbF ~Ps2
!ab1

1

m* S 11
Z1

3 D r0b~H2H0!f1dabG50.

~A10!

APPENDIX B

In this Appendix we present the solution of the equatio
involving f152f2 andc15c2. The solution of the equa
tions involving f15f2 and c152c2 follows analogous
steps. We describe the computation of the energy eigen
ues. Let

f152f25X1 j l~k1r !Yl01X2 j l~k2r !Yl0 ,

c15c25Y1¹@ j l~k1r !Yl0#1Y2¹@ j l~k2r !Yl0#1Y5¹

3~¹3r !@ j l~k5r !Yl0#.

Here, j l(kr) are the spherical Bessel functions,Ylm(u,f) are

the spherical harmonics,k55A2m* t3@Vn1(2/t3)c2#/t0 is
N

or

s

al-

one of the roots of Eq.~42!. Moreover,k1 and k2 are the

roots of Eq.~54!, namely, k2

k15A( f b6Af b
22 f af c)/ f a, with

f a52r0c1c3 , f b5r0c1( 2
3 t3Vn1 4

3 c2)1r3c3Vn1 1
2 (r0Vn

2 4
3 t3c1)2, f c52r3Vn( 2

3 t3Vn1 4
3 c2). We observe thatk1 ,

k2 ,k5 may be complex. The relations betweenY1 , X1 , Y2,
andX2 are

Y15
2r3Vn22r0c1k1

2

k1
2S r0Vn2

4t3

3
c1D X1 ,

Y25

r0Vn2
4t3

3
c1

2t3

3
Vn2

4

3
c21c3k2

2

X2 .

Trivial algebraic manipulations lead to the following s
of equations which determinesX1 , Y1 , X2 , Y2, andY5,

(
k51

2

@2r0c1Xk1~r0Vn1c41bHr0!Yk#r
dfk l

dr

1Y5~r0Vn1c41bHr0!l ~ l 11! f 5l50,

(
k51

2 F2YkS r
dfk l

dr
2 f k l D G1Y5H r 2

d2f 5l

dr2
1@ l ~ l 11!22# f 5lJ

50,

(
k51

2 F S c41bHr01
4t3

3
c1DXk f k l1S c32

2t0

3m* DYk¹2f k l

1
2t0

3m*
Yk

d2f k l

dr2 G1
2t0

3m*
l ~ l 11!Y5

d~ f 5l /r !

dr
50,

where f nl(r )5 j l(knr ), n51,2,5.
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