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Incommensurate structures studied by a modified density-matrix renormalization-group method
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A modified density-matrix renormalization-grodPMRG) method is introduced and applied to classical
two-dimensional models: the anisotropic triangular nearest-neighbor Ising model and the anisotropic triangular
next-nearest-neighbor Ising model. Phase diagrams of both models have complex structures and exhibit in-
commensurate phases. It was found that the incommensurate phase completely separates the disordered phase
from one of the commensurate phases, i.e., the nonexistence of the Lifshitz point is conjectured in phase
diagrams of both models with the DMRG method. It is shown that the DMRG method is also an effective-field
approximation, but in spite of that it yields the correct value of the domain wall density critical exponent.

[. INTRODUCTION topics: 2D C-IC phase transitidd, 2D quantum ANNNI
model® ANNNI model in d>2 dimensions; and by ana-

In 1992 Whité invented the density-matrix lyzing the 1D sine-Gordon modé&lwhere the authors found
renormalization-group(DMRG) technique in real space no Lifshitz point.
which has been mostly used for diagonalization of one- We develop a modified DMRG method which can be ap-
dimensional(1D) quantum chain spin Hamiltonians. Three plied to more complicated systems, namely, to the ANNNI
years later Nishinoapplied this numerical technique to clas- and ATNNI models. Both models are characterized by non-
sical spin 2D models. The DMRG method is based on renorsymmetric transfer matrices. The way how to use the DMRG
malization of the transfer matrix. It is a variational methodin that case is described in this paper. We show the modifi-
that maximizes the partition function using a limited numbercation of the DMRG for treating nonsymmetric transfer ma-
of degrees of freedom and the variational state is written as fix in the ATNNI model, and discussed it in light of other
product of local matrices. approaches to the nonsymmetric transfer matrices or non-

A similar method (cluster transfer matrix methodor  Hermitian quantum Hamiltonian€:?°In particular, the exis-
classical spin models was developed by one of us, where th@nce or nonexistence of the Lifshitz point in the ATNNI
variational state is written as a product of local functiéfis. model will be studied and its phase diagrams will be con-
In this paper we shall compare the results of both methodsstrycted.

The DMRG technique proceeds in two steps. In the first  This paper is organized as follows. in Sec. Il we compare
one, the infinite system methdtiSM) pushes both ends of two different applications of the DMRG technique. In Sec.
the system from each other and enlarges the system by tw@ we describe the ATNNI and ANNNI models. Section IV
sites at each iteration. In the second one, the finite systeontains the modified DMRG algorithm for the ATNNI
method(FSM), in which the system has fixed size, improves model. In Sec. V we present our results and in Sec. VI the
the values of calculated physical quantities by several leftesults will be summarized and discussed.
and right movegsweeps yielding very accurate results.

DMRG has been used for many various quantum models.

It provides_re_sults with remarkable_accuracy for If'irger SYS~ ||, THE DMRG TECHNIQUE FOR 2D SPIN SYSTEMS

tems than it is possible to study using standard diagonaliza-

tion methods. The 2D classical systems treated by the For special values of interaction constants both ATNNI

DMRG method exceeds the classical Monte Carlo approacand ANNNI models can be reduced to the Ising model. In

in accuracy, speed, and size of the syst@rmsspite of this, this case we can compare our approximate DMRG calcula-
too few works have been still done for 2D classical spintions with the exact results for infinite 2D models.

models by the DMRG techniqfe:® A further DMRG im- Exact results can be relatively easily obtained for 1D

provement of the classical systems is based on Baxter’s comodels, e.g., strips of finite width. They provide a good op-

ner transfer matriX,the CTMRG® and its generalization to portunity for testing our methods, as well.

any dimensiort! The DMRG technique as a numerical real-space method,

The aim of this paper is to investigate two classical mod-is in fact always applied to finite systems. However, in de-
els that exhibit incommensuratkC) phases, namely, the an- pendence on the size of the system, it can yield approximate
isotropic next-nearest-neighbor IsiftgNNNI) modef and  descriptions of 1D or 2D infinite systems.
the anisotropic triangular nearest-neighbor ISi#gTNNI) In the case of relatively narrow strips the DMRG calcu-
model!? The incommensurate phases were studied by manlations are consistent with the exact calculations. They yield
various theoretical approaches. The free fermion approximea zero-order parameter and reproduces well the largest and
tion revealed IC phase in 2D classical ANNNI mddel the second largest eigenvalues of the transfer matrix of the
(alsd?in the ATNNI mode), 2D incommensurate crystdi$. system. Comparison of the exact and approximate values for
Incommensurate structures has been discussed in variol@ng and ATNNI models on a semi-infinite strip of width
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TABLE |. Largest eigenvaluek; and the second largest eigenvaluesof the transfer matrices calcu-
lated with the DMRG technique for the Ising model with periodic boundary conditions. The dimension of the
transfer matrixN depends on the size of the block-spin varialiteRef. 2. The last line of the table contains
the eigenvalues of the transfer matrix obtained by the exact diagonalization method.

Ising model with periodic boundary conditions
Ordered phase Disordered phase

T=2.1 T=2.4
N A Ao A Ao
400 7.003316 7% 1¢° 6.918 036 4x 10° 1.763 794 94x 1¢° 1.547 703 K 10°
1600 7.039903 43 10° 6.974 229 2x 10° 1.767 024 61x 1¢° 1.576 984 & 10°
3600 7.039918 36 10° 6.974 259 5x 1(° 1.767 043 24x 1¢° 1.577 140 & 10°
6400 7.040011 44 10° 6.974 313 3x 1¢° 1.767 105 92x 1¢° 1.577173 & 10°
10000 7.040 011 46 10° 6.974 313 5x 1¢° 1.767 105 93x 10° 1577174 X 10°
65536 7.040 011 65 10° 6.974 314 6x 10° 1.767 105 98x 10° 1577179 X 10°

L=16 with periodic boundary conditions for various ap- The second method for determination of the critical tem-
proximations are given in Tables | and Il. We see that theperature is provided by DMRG calculations on 2D systems,
first two eigenvalues of the superblock transfer matrices inwhich is large in both directions. Here, below the critical
the DMRG method are very close to the exact values despit@mperature a spontaneous symmetry breaking occurs, i.e.,
small sizes of superblock matricedlX N) that are much the order parameter acquires nonzero values and tends to
less than the size of the exaimatrix (65536« 65536) The  Z€ro at the critical point. The DMRG method behaves in a

calculations for the ATNNI model were performed at a mod-mean-field-like manner. Now the critical temperatiigecan
erate magnetic fielt = 2. At higher magnetic fields we fre- be determined directly and therefore no finite-size scaling is

quently encountered problems with complex conjugate ecessary. Its accuracy improves with the size of the super-

pairs of two largest transfer matrix eigenvalues in the DMRG .IOCk transfer matrix as followsi) T.=2.275 forN=1024,

calculations. Consequent symmetrizing of the density matri ")F-I;Crzlg\'igrz(j%g: ?)?%%Srll))x?r-ﬁa:tizdﬁe?ﬁefcgc’\lcjrzla?:fg)?. the
(presented in Ref. 21did not improve the calculations. ’

An 1D model at t wre d t disol second method is worse than of the first one, but it converges
n model at nonzero temperature does not Aisplay any,qier g the exact value. For the ATNNI and ANNNI models
phase transitions. Nevertheless, the value of the critical temy the phases with broken symmetry, the method explicitly
perature for the corresponding 2D mgdel_ can be found fron@]ives the structure of a commensurate as well as an incom-
finite-size scalindFSS considerations? This approach rep- one rate phase. In contrast to the FSS method, it is also

resents the first of two methods we shall use for determinaéppncab'e for the high magnetic field region in the ATNNI

gon. of(}r}e critical temperature. Its Vlaléje for_t_hef.ls.mg m,Odel%model and we were able to investigate nearly the whole
erived from comparing two rescaled semi-infinite strips of aca diagram of the model.

width L=12 and 14 with periodic boundary conditions, are
the following.

(i) T.=2.269 87 from the exact eigenvalues of the transfer
matrices of the sizeN=4096 and N=16384, (i) T, A. The ATNNI model
=2.27008 from the eigenvalues of the DMRG superblock We consider the two-dimensional classical Ising model
transfer matrices of the sizZzd=1024, comparing with the with antiferromagnetic interactions between nearest neigh-
exact critical temperature of the 2D Ising mod&l,  bors on a triangular latticéhe ATNNI mode). Its Hamil-
=2.26918...% tonian is as follows:

IlI. ATNNI AND ANNNI MODELS

TABLE II. The two largest eigenvalues,; and\, of the transfer matrix for the ATNNI model calculated
by the DMRG technique for periodic boundary conditions. Data obtained by the exact diagonalization
method are shown in the last line.

ATNNI model with periodic boundary conditions
Commensurate phase Disordered phase

T=0.9, H=2.0 T=12, H=2.0

N A Ao N Ao

400 3.8724 101 2.4898x 10 5.8940< 10° 1.0267 10°
1600 4.081& 10 3.7378<10% 6.9274x 10° 4.5860< 10°
3600 4.050% 10*? 3.7013< 10%? 6.9235¢ 10° 4.5697x 10°
6400 4.0566« 10+ 3.7033< 10%? 6.9330x 10° 45120 10°
10 000 4.0556 102 3.6996x 10'? 6.9328x 10° 4.4892x 10°
65536 4.053& 102 3.6884x 102 6.9312x 10° 4.4368< 10°
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FIG. 1. (a) Triangular lattice
of the ATNNI model. The incom-
mensurate structure appears along
the direction 3(dashed lines (b)
For more convenient calculation
the triangular lattice was trans-
formed to a rectangular one. The
transfer matrices are located be-
tween neighboring horizontal
lines. Now directions Zand 2cor-
respond to each other in both)
and (b).

H=2 3 2 oiostacions|-HY o (D) H=2 | 2 doioi.5+ 3050045 (2
! 6=1,2 ! ! 6=1,2,3

with J>0, 0<a<1, and the directions 12, 3 whereg;

==+1, as depicted in Fig.(a).

" : B The ANNNI model is usually defined on the square lattice
The partiton function Z=3,,e ", where B

B o1 - where the next-nearest-neighbor interactions are, in fact,
=(kgT) ", can be written as a product of two types ,Of Bolt- equal to zero and the third-nearest-neighbor ones are nonzero
zmann weights. Each Boltzmann weighg(o105|0103) is  gnqg antiferromagnetic. Thus, the ANNNI model on the trian-
composed of four spins which interact among themselves g5y |attice is the genuine anisotropic next-nearest-neighbor

Se%énnfggde?'is exactly solvable for the external magneticimeraCtion model with nonzero next-nearest-neighbor inter-
) actions and vanishing third-nearest-neighbor ones. A frustra-
field H=0. At nonzero temperaturgl .~ 1.55 for «a=0.4 9 9

: o .. tion of the ANNNI model appears due to the competing in-
(Ref. 12], it e.Xh'b'tS the second_ order pha_se tranSItlon'teractions. The ANNNI model was mostly studied on the
Throughout this paper all numerical calculations are per

. . a i . square lattic# but it shown in Ref. 4 that the properties of
formed at the fixede=0.4, J=1 and the dimensioniess y,o ANNNI model on the triangular lattices remain essen-
temperatureT/J and dimensionless ratibl/T are used in

. . tially unchanged. A Boltzmann weight is composed of six
order to compare our results with those obtainetRaf. 12. . ) . g
. . : . SPiNSWg(o10,03|o10503) or graphically in Fig. 4.
The numerical calculations are based on a diagonalization . ; ,
of two transfer matricesin the next section, we will offer a The phase diagram of the ANNNI modébill be dis-
. cussed in Sec. Vconsists of four regions: a ferromagnetic

m(gg\?gﬁii% ?ﬁsizg:;)nn Sra;[rha':ti?: %njguii?g(?%&h\';h?gﬁ phase with nonzero total magnetization, a commensurate
b 9 b ' hase(2) with periodically alternating spin signs {- + +

is related to the initial triangular lattice of the ATNNI model : .
——++——-..), aparamagnetic phase, and an incommen-

as seen in Fig. (B). We identify direction 3with the inter-  grate phase located between the commensurate and para-
action aJ (Fig. 1). In this direction, the incommensurate magnetic phases.

modulation should appear. We will use the row-to-row trans-
fer matrices-?

B. The ANNNI model

The ANNNI model is defined on the 2D triangular lattice
with the nearest-neighbor ferromagnetic interactidns0
for all three directions and a next-nearest-neighbor antiferro-
magnetic interactiord,>0 in one of three directions only.
(See Fig. 3. Its Hamiltonian can be written as

) 2

B
FIG. 3. The 2D ANNNI model on the triangular lattice. Direc-

Y L Y R Y L Y R
G, ©Op O, O oo e
tions 1, 2, and 3characterize the ferromagnetic interactihn The

FIG. 2. Two kinds of Boltzmann weights differing from each next-nearest-neighbor antiferromagnetic interacfiptdashed ling
other by orientation of diagonal interactions. acts in the direction 4n which the incommensurate phase appears.
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o] o o % % 9% % S T T _
- N2 -
.. TL(z; { WB(ZJJ TR(z)
01 G G Oy 0, T3 9 &, g, ¥ @2
FIG. 4. The six-spin Boltzmann weights of the ANNNI model 7,” { WB(I)J T, _
differing from each other by orientation of the diagonal interactions. Y=Y
In the DMRG calculation the Boltzmann weight defined on the £ o, Oy &
eight-spin cluster was used. It is composed of two overlapping six-
spin Boltzmann weights. FIG. 5. ,, ¥, are the right and left eigenvectors that corre-
spond to the largest eigenvalue of the superblock transfer
matrice§TM = TWIWDITA) and 7@ = IT@IWRITA)  respec-
tively. VectorsV, and\I_fz are used for the calculation of the den-
IV. MODIFICATION OF THE DMRG ALGORITHM sity matrix in each DMRG iteration.

The DMRG algorithm for quantum models introduced by
White' was modified and applied for 2D classical lattice
models by Nishind. Since the ATNNI and ANNNI models The number of superblock transfer matrices should be
on the triangular lattice lead to nonsymmetric transfer matri€qual to 2(at leas}, since there are the two different Boltz-
ces and incommensurate phases, Nishino’s approach hasmann weights in the model. For the DMRG with spontane-
be modified further. We shall pursue the second approacfus symmetry breaking and spatially modulated structures,
discussed in Sec. Il—the DMRG method applied to verythey may be different for each plaquette of the lattice. The
wide strips where the spontaneous symmetry breaking odglensity matrices can be constructed either from the eigenvec-
Curs. tors of the superblock transfer matrices or from functions

The DMRG method replaces the exact row-to-row trans-obtained by an iterative proceduﬂn'ej:l'lf(= JT0OW, . start-
fer matrix of a strip, which is a product of plaquette Boltz- ing from ¥, given by suitable boundary conditions. For a
mann weights, by a set of much smaller superblock transfehomogeneous structure and lajge functionW; is identi-
matrices for every plaquette. The superblock transfer matrixal to the eigenvector of the superblotk
consists of the Boltzmann weighiWg of the plaquettei All the commensurate structures have the period 2 for the
multiplied by left and right transfer matricegblockg  ATNNI model in the direction of the strip. Therefore, we use
'T_, 'Tg which replace all the remaining plaquette Boltz- two superblock transfer matrices™=TMWHTY and
mann weights of the exact transfer matrix to the left and rightr® =TWE) T shown in Fig. 5. They are dependent on
from the plaquette. The left and right transfer matrices arehe position of the plaquette in the horizontal directiper-
indexed by left and right spins g=*1 of the plaquette, pendicular to the strip Similarly, as a result of the iteration
respectively, and by block-spin variablgs-1,... m. The  procedure we obtain two different functionis; for j large
number of spin components determines the order of the enough. Let us denote thi¢; as an eigenvector of the matrix
approximation. For a modulated phas&_ and 'Tg differ ~ T()T() for j even and thel', as another eigenvector of the
for each plaguette. In the FSM, they are calculated selfmatrix productT™®T®) for j odd. These both combined ma-
consistently from the transfer matrices corresponding to thérices are already symmetric and their right and left eigen-
neighboring plaquettes. The left block *T, is obtained yectors W and W, respectively, are identical.
from 'T_ Wj after a reduction of its matrix size to the origi- Writing down the spin variables explicitly, the right
nal value in a proper way. The right blo¢k1 TR is similarly eigenvectors are given by the equation
calculated from'WgTg. A calculation of the left and right
transfer matrices is performed iteratively in the course of a
number of sweeps across the strip.

The reduction of the size of the transfer matrices is based 020 ; T(& o] opéRléLoLoRER YV 1(é 0 0RER)
on density matrices that are constructed from the left and LILTRER
right [or in Figs. 1b) and 5 rather upper and lowegigen- =\ (& o] oRER), 3

vectors of the superblock matrtixThe procedure described
above for homogeneous phases and symmetric transfer ma,
trices is thoroughly explained in Ref. 2. For the ATNNI and where
ANNNI models the method should be slightly modified be-
cause the transfer matrices are not symmetric and the struc-
ture is modulated in both directions, in one of them, incom-
mensurately. It is convenient to choose the strip

T(fi_’fflr_ra"F,e ;?’Q|§L0-L0'R§R)

perpendicularly to the direction of the incommensurate = E , Tl o opérl €l o] oRéR)
modulation with commensurate structure along the strip, i.e., §L0LoRER
the strip is orientated in the vertical direction of the lattice
(1) | A
shown in Fig. 1b). It is seen that there are two different XTH(E o oRérl éLoLTRER) (4)

row-to-row nonsymmetric transfer matrices in the strip. One
transfer matrix is constructed from the Boltzmann weightThe eigenvectors at the odd rows, follow directly from
W) and the other one from th&/?) [Figs. 1(b) and 5. v,
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\PZZT(l)"Pl. (5) E.:’an
. o,

The optimum size reduction of the matriX, 'Wjs is per- o , \ o
formed by multiplying both sides by rectangular matrices & ’L L Z ’L L
consisting of several eigenvectors of a density matrix that S O ip® ‘
corresponds to its largest eigenvaltésThe density matrix S T £ " Se O—0O
at a rowj is constructed from the left and right eigenvectors £ o £E oo é o, o o'
W, ,V; (Ref. 5 of transfer matrices with their left and right A ‘OL:
spins, respectively, lying on the row. For modulated com- £

L

mensurate structures of a peripdthe successive functions

W, are not the eigenvect.ors of one transfer matrix but of a F|G. 6. Schematically written Eq10) which is used for com-
product ofp transfer matrices. As for the ATNNI model we puting the new left renormalized transfer matfik” ™" from the
have two different kinds of rows and different left and right old oneT{®.

transfer matrices in superblocks, we need four different den-

sity matrices. The left density matrices have the following 4 Of. Discarding half eigenvectors in the matri®@sand

forms: O that correspond to the smallest eigenvalugs the matri-
L b b — o cesO and Q can be used as the reduction matrices in the
pN(E | ot)= 2 Vi otoréR) V(& ol oReR), calculation of *1T(N"W yig
Ucfc
R°R
(6) i+1-|-(L1)new( f,EeWO"EeW‘ gEeWO'EeW)
(2)p ¢ra __rajgrb __1b
P& o E|E e e i ;L
= 2 QUEME ) TIE alléLo)

— ¢ §/(r o
= 2 W&o o RERVAE O RER. (D) .

o'B'R X'WE (ol o’ [ o o™ OL(£Lo1 | €1, (10)
In the expressions for the right ones, the summation is per-

formed over the left spins. The functiong; and \E are
identical that is why the density matrices in E¢®). and(7)

are symmetric. Here we should emphasize that the right. L : (1) ;
blocks T are not mirror reflections of the left blocks as lagonalization of the density matrp{ whereas the matrix

they were in the standard approdch. Q| yields from the diagonalization of the density matrix

The choice of the density matrices according to Egs. L. Knowing the functions¥;, W,, ¥y, and¥, various
and (7) corresponds to the requirement of the best approxiphysical quantities can be found, e.g., site magnetization
mation of density matrices at each row in further calcula-used in further calculations
tions. In this case the density matrices might be generally
nonsymmetric. In 1D calculations with nonsymmetric —

Hamiltoniand®2° the density matrices were also chosen as <UL>:§ UEU ; Vi(éLoLorér) oL W 1(§ oL 0RER).
symmetric but different for each side of the Hamiltonian or HERR (12)

the same, but taken as an average of the left and right ones.

This choice is closer to the original White’s approach where o superblock transfer matrix needs to be slightly
the goal is to find the best possible approximation for the leﬁthanged for the ANNNI model. The left and right block
and right eigenvectors of the Hamiltoniamansfer matrix.  ¢ansfer matrices have two spins more. The Boltzmann
For two-dimensional models with nonzero temperature th‘i’/veight is defined on a plaguette of six spins. We have con-
calculation is aimed at thermal averages of physical quantigyycted the superblock transfer matfisrom the two block

ties, for which good values of density matrix are decisive.yansfer matrices and the two overlapped Boltzmann weight
Thus, our approach with potentially honsymmetric transfer(Fig_ 4) as follows:

matrices we reckon as the best one.
By diagonalization of the left symmetric density matrix
one obtains a matrix of orthonormal eigenvectors:

QUK o) pM(EalE o )OL(E'd' ) =w b, (8

whereQ, is transpose®, and the eigenvalues, satisfies
the relation (12

Generalization for the right block is straightforward. The
graphical representation of EQLO) is in Fig. 6. Notice that
t this step(Fig. 6) the reduction matriXO, is obtained by

T(§L01020'3(74§R| fﬁﬁigégéaﬁfﬁ)
1
=T (£L0109| &l o o) WS (010,05| o) ohos)

2
XWE090304| 0h0s0 ) Tr(030 46| 050 4ER).-

> w=1. (9) V. RESULTS
k

Properties of the ANNNI model on the triangular lattice
Analogously, we repeat this procedure for the density mawere calculated recenflyby the cluster transfer matrix
tricesp(® andp{? in order to obtain matrice®, , O/, Qk,  method®’ The results were consistent with numerous calcu-
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ATNNI model on the triangular lattice

™,

paramagn.

Paramagnetic phase

™,
Y

ﬁ/o Incommensurate
1
5 phase

0.2 0.6 1 1.4

Commensurate phase (b) =-J, ./J 2

0d L =
0 0.5 1 1.5 2

(a) -JN,

FIG. 7. (a) The phase diagram of the ANNNI model obtained by the DMRG method for relatively small superblock transfer-matrix size

(N=400). After the superblock transfer-matrix size is increased, the IC region becomes narrower and the para-IC phase transition line is

shifted to lower temperaturef) phase diagram from the cluster transfer matrix method in Ref. 4.

lations of the ANNNI model on the square lattice. To com-modulated and the sublattices become equivalent to each
pare performance of the DMRG method for incommensuratether. That is why we only plot the magnetization of one of
(IC) structures with other methods we calculated the phasthe sublattices in some of the following Figs. 9 and.10
diagram of the ANNNI model shown in Fig.(&. The re- The phase diagram was derived from calculation of mag-
sulting diagram is in accordance with previous calculations netization. The DMRG method with spontaneous symmetry
[Fig. 7(b)]. We have confirmed general opinion that there isbreaking yields directly the space modulation of the magne-
no Lifshitz point on the ferromagnetic and paramagnetictization which enables us to identify the phase unambigu-
phase transition line. ously. In practical calculations, it is enough to observe the

The region of the IC structure comes out from the DMRGbehavior of the largest eigenvalues of the superblock matrix.
rather wide, however, we have used a low-order approxima¥he period of their spatial modulation is the same as the
tion (N=400). For higher-order approximations the IC- period of the structure.
phase region becomes narrower.

In addition to the critical temperature and the free energy
also the critical exponents of Ising and ANNNI model were 2 . .
calculated. As expected, DMRG, as an effective-field ap-
proximation, yields classical values for all the critical expo-
nents of the Ising model. Nevertheless, the critical exponent
of the domain wall density aE-IC phase transition obtained 1.5
from our DMRG approach has a nonclassical value 0.502
+0.003 close to the Pokrovsky-Talapov value ¥2yhich
is assumed to be exact. Standard mean-field approximation
give a logarithmic singularity at the critical lirfé.We ex-
plain this by a correct treatment of narrow-domain-wall me-

ATNNI model on the triangular lattice

Disordered phase

iperature [T |

andering near the phase transition line by our large clustersS Commensurate phase <> Icommensurete phase

The resulting mean domain walls are straight, but, due to the

summation over all spin values of the clusters, the wall me- o5 | -
andering is involved in the calculation. The DMRG method o

reproduces the results of the domain wall theory well though S

no domain walls are explicitly introduced in it.
The phase diagram of the ATNNI modgh Fig. 8) con- 0 L —

sists of four regiongtwo different commensurate phases, 2 3 4 5

incommensurate and disordered phasgharacteristic spin External magnetic field [ H ]

structures of both commensurate and(ll) phases of the FIG. 8. The entire phase diagram of the ATNNI model is con-

triangular lattice[Fig. 1(a)] are shown in the insets of the structed by the DMRG technique. The incommensurate phase ap-

same phase diagram. pears in narrow region located between the disordered phase and
The phasesl) and(Il) consists of two and three different the commensurate phaé#) for 2.4<H<4.8. The ATNNI model

sublattices with a constant magnetization, respectively. In th& highly degenerated fdd =2.4. The ATNNI model is highly de-

IC phase, the magnetization of each sublattice is periodicallgenerated foH=2.4.

o
-
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Magnetization

per each 37 site £€=10 T=05256 H=25 —
10™ 3 T 3 1 T T T T
i o 3 08 4
"
: 0% b o - o6 |
F [0} o]
.§~ 10° L o | 0.4 -
8]
] 0.2 h
®
-
&~ 10 E E 0
§ 0.2
E 10° L i "
o j 04
10°¢ . | . | . | . | . | . ] -0.6 - S
24 2.8 3.2 3.6 4.0 4.4 4.8 08 ) ) ) ‘ ‘ ) ‘
Magnettc ‘ﬁeld [H] ’ 4] 50 100 150 200 250 300 350 400

(a) (b) Spin site

FIG. 9. (a) The width of the incommensurate phase measured in units of temperature vs external magnetidfigidincreasing field
H the distance between the disordered and commensurate ghasescomes shortetb) Measured magnetization per each third spin site
using Eq.(11) inside the incommensurate phase as a function of the spin position on the lattide=th6 andT=0.5256.

The incommensurate structure is floating, i.e., it is not We have started the calculations with the ISM where the
fixed to the underlying lattice. In our calculation with spon- superblock transfer matrix is constructed from left and right
taneous symmetry breaking, one of the infinitely many positransfer matrices of thprevious iteration stepAfter a large
tions of the incommensurate wave is chosen at the beginningumber of iterations were performed, we obtained a final
of the calculation and it remains fixed during the whole fur-result for commensurate structures including the disordered
ther calculation. phase. For the incommensurate structure it is necessary to

We have found the incommensurate structure practicallperform afterwards some sweeps of the FSM in order to
along the whole border between the commensugdte  improve results that smooth the magnetization profile of the
phase and the disordered phase. However, in two regions ttspin wave. The IC structure appears already after the appli-
calculations were inconclusive. cation of the ISM but the correct shape of the magnetization

(i) The high degeneracy of the ground statélat2.4 and is acquired after the FSM, only.

T<0.4 (Ref. 12 has also caused highly degenerate largest The shape of period of the IC structure changes with mag-
eigenvalues of the superblock transfer matrix, and ounetic fieldH and temperatur@&. The period of the IC struc-
method did not converge to any periodic structure for mag{ure increases with the increasing magnetic field and decreas-
netic fields between 2.40 and 2.41 at low temperatures.  ing temperature. At low temperaturéslose to the(ll)-IC

(i) The other region is located at the high-magnetic-fieldphase transition linethe structure consists of wide domains
endH~4.8 andT<0.1 of the phase diagram. Here, the in- of the phase(ll) separated by narrow domain walls. At
commensurate phase is extremely narféig. 9a)] and it  higher temperatures near to disorder-IC transition, the do-
has a very large periofFig. 10b)]. Moreover, due to the main walls become wider, the period shorter and the struc-
proximity of the second-order phase transition line, the conture acquires a sinusoidal-like shape.

vergence is very slow. Both phase transitions are continuous. Inverse period of
xi=10  8th sweep
T=073 H=3.02 Incommensurate phase Incommesurate phase
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FIG. 10. (a) Magnetization vs position measured on the lattice inside the IC phase on each third $ite 3002 andT=0.73.(b) IC
phase obtained for the large magnetic fiele- 4.6 was found for temperatures 0.166 ¥5B<<0.166 162. The magnetization is measured on

each site. All three spin waves are plotted.
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the structure and wave amplitude tend to zero athelC  free-fermion approximatici for H>3) have failed. On the
and disorder-IC phase transition lines, respectively. It shouldbasis of scaling properties of Monte Carlo calculations and
be noted that the notions of low and high temperatures mughe exact diagonalization of finite strips, the authors of Ref.
be understood within an extremely narrow temperature interd2 concluded that &i=3 the IC structure disappears and at
val where the IC phase exists. higher fieldsH the direct phase transition between commen-
The effect of magnetic field on the IC phase is similarsurate(ll) and disordered phases is continuous.
(but inverse to the temperature effects. Low magnetic field We have observed the IC phase everywhere between the
(near 2.4) enhances the high temperature effects, while thdisordered and commensurafdl) phases, i.e., we have
high magnetic fieldnear 4.8) the low temperature ones.  found no Lifshitz point where the three phases meet: com-
For the magnetic fieldH close to the value of 4.8, the mensurate, incommensurate, and disordered. Nevertheless,
period is very long, that is why we were able to perform themeasured widths of the IC phase are extremely small at large
ISM only with an incorrect magnetization shape which H and exponentially tend to zero Ht=4.8. As the width of
would need a further improvement with the FSMWig. the IC phase gets narrower for the high-order approximations
10(b)]. we cannot completely exclude the scenario of Domany and
Our calculations converged to the stable periodic solutiorBchaub? Our belief in correct description of incommensu-
at the most part of the commensurdte)-disordered phase rate phases by the DMRG technique is supported by the re-
borders. Here the IC phase has been found everywhere. Thigoduction of the ANNNI phase diagram with generally ex-
fact leads us to a conjectufeontrary to Ref. 1pthat the pected features.
Lifshitz point does not exists in the ATNNI model.
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