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Incommensurate structures studied by a modified density-matrix renormalization-group method

A. Gendiar and A. Sˇurda
Institute of Physics, Slovak Academy of Sciences, Du´bravskácesta 9, SK-842 28 Bratislava, Slovak Republic

~Received 7 December 1999; revised manuscript received 8 February 2000!

A modified density-matrix renormalization-group~DMRG! method is introduced and applied to classical
two-dimensional models: the anisotropic triangular nearest-neighbor Ising model and the anisotropic triangular
next-nearest-neighbor Ising model. Phase diagrams of both models have complex structures and exhibit in-
commensurate phases. It was found that the incommensurate phase completely separates the disordered phase
from one of the commensurate phases, i.e., the nonexistence of the Lifshitz point is conjectured in phase
diagrams of both models with the DMRG method. It is shown that the DMRG method is also an effective-field
approximation, but in spite of that it yields the correct value of the domain wall density critical exponent.
e
ne
e

s-
o

od
e

as

t
.
d
rs
f
tw
te
es
le

el
ys
liz
th
ac

in

co

d
-

an
m
l

rio

p-
NI
on-

G
ifi-
a-
r
on-

I
n-

are
c.

I
the

NI
In

ula-

D
p-

od,
e-
ate

u-
eld
and
the
for

h

I. INTRODUCTION

In 1992 White1 invented the density-matrix
renormalization-group~DMRG! technique in real spac
which has been mostly used for diagonalization of o
dimensional~1D! quantum chain spin Hamiltonians. Thre
years later Nishino2 applied this numerical technique to cla
sical spin 2D models. The DMRG method is based on ren
malization of the transfer matrix. It is a variational meth
that maximizes the partition function using a limited numb
of degrees of freedom and the variational state is written
product of local matrices.3

A similar method ~cluster transfer matrix method! for
classical spin models was developed by one of us, where
variational state is written as a product of local functions4,5

In this paper we shall compare the results of both metho
The DMRG technique proceeds in two steps. In the fi

one, the infinite system method~ISM! pushes both ends o
the system from each other and enlarges the system by
sites at each iteration. In the second one, the finite sys
method~FSM!, in which the system has fixed size, improv
the values of calculated physical quantities by several
and right moves~sweeps! yielding very accurate results.1

DMRG has been used for many various quantum mod
It provides results with remarkable accuracy for larger s
tems than it is possible to study using standard diagona
tion methods. The 2D classical systems treated by
DMRG method exceeds the classical Monte Carlo appro
in accuracy, speed, and size of the systems.6 In spite of this,
too few works have been still done for 2D classical sp
models by the DMRG technique.2,7,8 A further DMRG im-
provement of the classical systems is based on Baxter’s
ner transfer matrix,9 the CTMRG,10 and its generalization to
any dimension.11

The aim of this paper is to investigate two classical mo
els that exhibit incommensurate~IC! phases, namely, the an
isotropic next-nearest-neighbor Ising~ANNNI ! model4 and
the anisotropic triangular nearest-neighbor Ising~ATNNI !
model.12 The incommensurate phases were studied by m
various theoretical approaches. The free fermion approxi
tion revealed IC phase in 2D classical ANNNI mode13

~also12 in the ATNNI model!, 2D incommensurate crystals.14

Incommensurate structures has been discussed in va
PRB 620163-1829/2000/62~6!/3960~8!/$15.00
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topics: 2D C-IC phase transition,15 2D quantum ANNNI
model,16 ANNNI model in d.2 dimensions,17 and by ana-
lyzing the 1D sine-Gordon model18 where the authors found
no Lifshitz point.

We develop a modified DMRG method which can be a
plied to more complicated systems, namely, to the ANN
and ATNNI models. Both models are characterized by n
symmetric transfer matrices. The way how to use the DMR
in that case is described in this paper. We show the mod
cation of the DMRG for treating nonsymmetric transfer m
trix in the ATNNI model, and discussed it in light of othe
approaches to the nonsymmetric transfer matrices or n
Hermitian quantum Hamiltonians.19,20 In particular, the exis-
tence or nonexistence of the Lifshitz point in the ATNN
model will be studied and its phase diagrams will be co
structed.

This paper is organized as follows. in Sec. II we comp
two different applications of the DMRG technique. In Se
III we describe the ATNNI and ANNNI models. Section IV
contains the modified DMRG algorithm for the ATNN
model. In Sec. V we present our results and in Sec. VI
results will be summarized and discussed.

II. THE DMRG TECHNIQUE FOR 2D SPIN SYSTEMS

For special values of interaction constants both ATN
and ANNNI models can be reduced to the Ising model.
this case we can compare our approximate DMRG calc
tions with the exact results for infinite 2D models.

Exact results can be relatively easily obtained for 1
models, e.g., strips of finite width. They provide a good o
portunity for testing our methods, as well.

The DMRG technique as a numerical real-space meth
is in fact always applied to finite systems. However, in d
pendence on the size of the system, it can yield approxim
descriptions of 1D or 2D infinite systems.

In the case of relatively narrow strips the DMRG calc
lations are consistent with the exact calculations. They yi
a zero-order parameter and reproduces well the largest
the second largest eigenvalues of the transfer matrix of
system. Comparison of the exact and approximate values
Ising and ATNNI models on a semi-infinite strip of widt
3960 ©2000 The American Physical Society
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TABLE I. Largest eigenvaluesl1 and the second largest eigenvaluesl2 of the transfer matrices calcu
lated with the DMRG technique for the Ising model with periodic boundary conditions. The dimension
transfer matrixN depends on the size of the block-spin variable~in Ref. 2!. The last line of the table contain
the eigenvalues of the transfer matrix obtained by the exact diagonalization method.

Ising model with periodic boundary conditions
Ordered phase Disordered phase

T52.1 T52.4
N l1 l2 l1 l2

400 7.003 316 793106 6.918 036 43106 1.763 794 943106 1.547 703 43106

1600 7.039 903 433106 6.974 229 23106 1.767 024 613106 1.576 984 43106

3600 7.039 918 363106 6.974 259 53106 1.767 043 243106 1.577 140 63106

6400 7.040 011 443106 6.974 313 33106 1.767 105 923106 1.577 173 63106

10 000 7.040 011 463106 6.974 313 53106 1.767 105 933106 1.577 174 03106

65 536 7.040 011 653106 6.974 314 63106 1.767 105 983106 1.577 179 93106
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L516 with periodic boundary conditions for various a
proximations are given in Tables I and II. We see that
first two eigenvalues of the superblock transfer matrices
the DMRG method are very close to the exact values des
small sizes of superblock matrices (N3N) that are much
less than the size of the exactT matrix (65536365536) The
calculations for the ATNNI model were performed at a mo
erate magnetic fieldH52. At higher magnetic fields we fre
quently encountered problems with complex conjuga
pairs of two largest transfer matrix eigenvalues in the DMR
calculations. Consequent symmetrizing of the density ma
~presented in Ref. 21! did not improve the calculations.

An 1D model at nonzero temperature does not display
phase transitions. Nevertheless, the value of the critical t
perature for the corresponding 2D model can be found fr
finite-size scaling~FSS! considerations.22 This approach rep-
resents the first of two methods we shall use for determ
tion of the critical temperature. Its value for the Ising mod
derived from comparing two rescaled semi-infinite strips
width L512 and 14 with periodic boundary conditions, a
the following.

~i! Tc52.269 87 from the exact eigenvalues of the trans
matrices of the sizeN54096 and N516 384, ~ii ! Tc
52.270 08 from the eigenvalues of the DMRG superblo
transfer matrices of the sizeN51024, comparing with the
exact critical temperature of the 2D Ising modelTc
52.269 18•••.23
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The second method for determination of the critical te
perature is provided by DMRG calculations on 2D system
which is large in both directions. Here, below the critic
temperature a spontaneous symmetry breaking occurs,
the order parameter acquires nonzero values and tend
zero at the critical point. The DMRG method behaves in
mean-field-like manner. Now the critical temperatureTc can
be determined directly and therefore no finite-size scaling
necessary. Its accuracy improves with the size of the su
block transfer matrix as follows:~i! Tc52.275 forN51024,
~ii ! Tc52.272 forN53600,~iii ! Tc52.2692 forN519 600.

For lower orders of approximation, the accuracy of t
second method is worse than of the first one, but it conver
faster to the exact value. For the ATNNI and ANNNI mode
in the phases with broken symmetry, the method explic
gives the structure of a commensurate as well as an inc
mensurate phase. In contrast to the FSS method, it is
applicable for the high magnetic field region in the ATNN
model and we were able to investigate nearly the wh
phase diagram of the model.

III. ATNNI AND ANNNI MODELS

A. The ATNNI model

We consider the two-dimensional classical Ising mo
with antiferromagnetic interactions between nearest ne
bors on a triangular lattice~the ATNNI model!. Its Hamil-
tonian is as follows:
d
zation
TABLE II. The two largest eigenvaluesl1 andl2 of the transfer matrix for the ATNNI model calculate
by the DMRG technique for periodic boundary conditions. Data obtained by the exact diagonali
method are shown in the last line.

ATNNI model with periodic boundary conditions
Commensurate phase Disordered phase

T50.9, H52.0 T51.2, H52.0
N l1 l2 l1 l2

400 3.872431012 2.489831011 5.89403109 1.02673109

1600 4.081831012 3.737831012 6.92743109 4.58603109

3600 4.050331012 3.701331012 6.92353109 4.56973109

6400 4.056031012 3.703331012 6.93303109 4.51203109

10 000 4.055631012 3.699631012 6.93283109 4.48923109

65 536 4.053031012 3.688431012 6.93123109 4.43683109
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FIG. 1. ~a! Triangular lattice
of the ATNNI model. The incom-
mensurate structure appears alo

the direction 3ˆ ~dashed lines!. ~b!
For more convenient calculation
the triangular lattice was trans
formed to a rectangular one. Th
transfer matrices are located be
tween neighboring horizonta

lines. Now directions 1ˆ and 2̂cor-
respond to each other in both~a!
and ~b!.
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s is i 1 d̂1as is i 13̂D 2H(
i

s i ~1!

with J.0, 0,a,1, and the directions 1ˆ , 2̂, 3̂ wheres i
561, as depicted in Fig. 1~a!.

The partition function Z5($s%e
2bH, where b

5(kBT)21, can be written as a product of two types of Bo
zmann weights. Each Boltzmann weightWB(s1s2us18s28) is
composed of four spins which interact among themselve
seen in Fig. 2.

The model is exactly solvable for the external magne
field H50. At nonzero temperature@Tc'1.55 for a50.4
~Ref. 12!#, it exhibits the second order phase transitio
Throughout this paper all numerical calculations are p
formed at the fixeda50.4, J51 and the dimensionles
temperatureT/J and dimensionless ratioH/T are used in
order to compare our results with those obtained in~Ref. 12!.

The numerical calculations are based on a diagonaliza
of two transfer matrices~in the next section, we will offer a
more detailed description of their construction!. For this pur-
pose we used the rectangular lattice depicted Fig. 1~b! which
is related to the initial triangular lattice of the ATNNI mod
as seen in Fig. 1~a!. We identify direction 3ˆ with the inter-
action aJ ~Fig. 1!. In this direction, the incommensura
modulation should appear. We will use the row-to-row tra
fer matrices.12

B. The ANNNI model

The ANNNI model is defined on the 2D triangular lattic
with the nearest-neighbor ferromagnetic interactionsJ1,0
for all three directions and a next-nearest-neighbor antife
magnetic interactionJ2.0 in one of three directions only
~See Fig. 3!. Its Hamiltonian can be written as

FIG. 2. Two kinds of Boltzmann weights differing from eac
other by orientation of diagonal interactions.
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J1s is i 1 d̂1J2s is i 14̂D . ~2!

The ANNNI model is usually defined on the square latti
where the next-nearest-neighbor interactions are, in f
equal to zero and the third-nearest-neighbor ones are non
and antiferromagnetic. Thus, the ANNNI model on the tria
gular lattice is the genuine anisotropic next-nearest-neigh
interaction model with nonzero next-nearest-neighbor in
actions and vanishing third-nearest-neighbor ones. A frus
tion of the ANNNI model appears due to the competing
teractions. The ANNNI model was mostly studied on t
square lattice24 but it shown in Ref. 4 that the properties o
the ANNNI model on the triangular lattices remain esse
tially unchanged. A Boltzmann weight is composed of s
spinsWB(s1s2s3us18s28s38) or graphically in Fig. 4.

The phase diagram of the ANNNI model~will be dis-
cussed in Sec. V! consists of four regions: a ferromagnet
phase with nonzero total magnetization, a commensu
phase^2& with periodically alternating spin signs (•••11
221122•••), a paramagnetic phase, and an incomm
surate phase located between the commensurate and
magnetic phases.

FIG. 3. The 2D ANNNI model on the triangular lattice. Direc

tions 1̂, 2̂, and 3̂characterize the ferromagnetic interactionJ1. The
next-nearest-neighbor antiferromagnetic interactionJ2 ~dashed line!

acts in the direction 4ˆ in which the incommensurate phase appea
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IV. MODIFICATION OF THE DMRG ALGORITHM

The DMRG algorithm for quantum models introduced
White1 was modified and applied for 2D classical latti
models by Nishino.2 Since the ATNNI and ANNNI models
on the triangular lattice lead to nonsymmetric transfer ma
ces and incommensurate phases, Nishino’s approach h
be modified further. We shall pursue the second appro
discussed in Sec. II—the DMRG method applied to ve
wide strips where the spontaneous symmetry breaking
curs.

The DMRG method replaces the exact row-to-row tra
fer matrix of a strip, which is a product of plaquette Bolt
mann weights, by a set of much smaller superblock tran
matrices for every plaquette. The superblock transfer ma
consists of the Boltzmann weightiWB of the plaquettei
multiplied by left and right transfer matrices~blocks!
iTL , iTR which replace all the remaining plaquette Bolt
mann weights of the exact transfer matrix to the left and ri
from the plaquette. The left and right transfer matrices
indexed by left and right spinssL,R561 of the plaquette,
respectively, and by block-spin variablesj51, . . . ,m. The
number of spin componentsm determines the order of th
approximation. For a modulated phase,iTL and iTR differ
for each plaquette. In the FSM, they are calculated s
consistently from the transfer matrices corresponding to
neighboring plaquettes. The left blocki 11TL is obtained
from iTL

i WB after a reduction of its matrix size to the orig
nal value in a proper way. The right blocki 21TR is similarly
calculated fromiWB

i TR . A calculation of the left and right
transfer matrices is performed iteratively in the course o
number of sweeps across the strip.

The reduction of the size of the transfer matrices is ba
on density matrices that are constructed from the left
right @or in Figs. 1~b! and 5 rather upper and lower# eigen-
vectors of the superblock matrix.1 The procedure describe
above for homogeneous phases and symmetric transfer
trices is thoroughly explained in Ref. 2. For the ATNNI an
ANNNI models the method should be slightly modified b
cause the transfer matrices are not symmetric and the s
ture is modulated in both directions, in one of them, inco
mensurately. It is convenient to choose the st
perpendicularly to the direction of the incommensur
modulation with commensurate structure along the strip,
the strip is orientated in the vertical direction of the latti
shown in Fig. 1~b!. It is seen that there are two differen
row-to-row nonsymmetric transfer matrices in the strip. O
transfer matrix is constructed from the Boltzmann weig
WB

(1) and the other one from theWB
(2) @Figs. 1~b! and 5#.

FIG. 4. The six-spin Boltzmann weights of the ANNNI mod
differing from each other by orientation of the diagonal interactio
In the DMRG calculation the Boltzmann weight defined on t
eight-spin cluster was used. It is composed of two overlapping
spin Boltzmann weights.
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The number of superblock transfer matrices should
equal to 2~at least!, since there are the two different Boltz
mann weights in the model. For the DMRG with spontan
ous symmetry breaking and spatially modulated structu
they may be different for each plaquette of the lattice. T
density matrices can be constructed either from the eigen
tors of the superblock transfer matrices or from functio
obtained by an iterative procedureC j5)k51

j T(k)C init start-
ing from C init given by suitable boundary conditions. For
homogeneous structure and largej the functionC j is identi-
cal to the eigenvector of the superblockT.

All the commensurate structures have the period 2 for
ATNNI model in the direction of the strip. Therefore, we u
two superblock transfer matricesT(1)5TL

(1)WB
(1)TR

(1) and
T(2)5TL

(2)WB
(2)TR

(2) shown in Fig. 5. They are dependent o
the position of the plaquette in the horizontal direction~per-
pendicular to the strip!. Similarly, as a result of the iteration
procedure we obtain two different functionsC j for j large
enough. Let us denote theC1 as an eigenvector of the matri
T(2)T(1) for j even and theC2 as another eigenvector of th
matrix productT(1)T(2) for j odd. These both combined ma
trices are already symmetric and their right and left eig
vectors,C andC̄, respectively, are identical.

Writing down the spin variables explicitly, the righ
eigenvectors are given by the equation

(
jLsLsRjR

T~jL9sL9sR9jR9 ujLsLsRjR!C1~jLsLsRjR!

5lC1~jL9sL9sR9jR9 !, ~3!

where

T~jL9sL9sR9jR9 ujLsLsRjR!

5 (
jL8sL8sR8 jR8

T(2)~jL9sL9sR9jR9 ujL8sL8sR8jR8 !

3T(1)~jL8sL8sR8jR8 ujLsLsRjR!. ~4!

The eigenvectors at the odd rowsC2 follow directly from
C1

.

-

FIG. 5. C1 , C̄1 are the right and left eigenvectors that corr
spond to the largest eigenvalue of the superblock tran
matricesiT(1)5 iTL

(1) iWB
(1) iTR

(1) , and iT(2)5 iTL
(2) iWB

(2) iTR
(2) , respec-

tively. VectorsC2 andC̄2 are used for the calculation of the den
sity matrix in each DMRG iteration.
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C25T(1)C1 . ~5!

The optimum size reduction of the matrixiTL
iWB is per-

formed by multiplying both sides by rectangular matric
consisting of several eigenvectors of a density matrix t
corresponds to its largest eigenvalues.1,2 The density matrix
at a rowj is constructed from the left and right eigenvecto
C j ,C̄ j ~Ref. 5! of transfer matrices with their left and righ
spins, respectively, lying on the row. For modulated co
mensurate structures of a periodp, the successive function
C j are not the eigenvectors of one transfer matrix but o
product ofp transfer matrices. As for the ATNNI model w
have two different kinds of rows and different left and rig
transfer matrices in superblocks, we need four different d
sity matrices. The left density matrices have the followi
forms:

rL
(1)~jL

asL
aujL

bsL
b!5 (

sR
c jR

c
C1~jL

asL
asR

c jR
c !C̄1~jL

bsL
bsR

c jR
c !,

~6!

rL
(2)~j8L

as8L
auj8L

bs8L
b!

5 (
s8R

c j8R
c

C2~j8L
as8L

as8R
c j8R

c !C̄2~j8L
bs8L

bs8R
c j8R

c !. ~7!

In the expressions for the right ones, the summation is p
formed over the left spins. The functionsC j and C̄ j are
identical that is why the density matrices in Eqs.~6! and~7!
are symmetric. Here we should emphasize that the r
blocksTR are not mirror reflections of the left blocksTL as
they were in the standard approach.1

The choice of the density matrices according to Eqs.~6!
and ~7! corresponds to the requirement of the best appro
mation of density matrices at each row in further calcu
tions. In this case the density matrices might be gener
nonsymmetric. In 1D calculations with nonsymmetr
Hamiltonians19,20 the density matrices were also chosen
symmetric but different for each side of the Hamiltonian
the same, but taken as an average of the left and right o
This choice is closer to the original White’s approach wh
the goal is to find the best possible approximation for the
and right eigenvectors of the Hamiltonian~transfer matrix!.
For two-dimensional models with nonzero temperature
calculation is aimed at thermal averages of physical qua
ties, for which good values of density matrix are decisi
Thus, our approach with potentially nonsymmetric trans
matrices we reckon as the best one.

By diagonalization of the left symmetric density matr
one obtains a matrix of orthonormal eigenvectorsOL :

QL~kujs!rL
(1)~jsuj8s8!OL~j8s8u l !5vkdkl , ~8!

whereQL is transposedOL and the eigenvaluesvk satisfies
the relation

(
k

vk51. ~9!

Analogously, we repeat this procedure for the density m
tricesrL

(2) andrR
(2) in order to obtain matricesQL8 , OL8 , QR8 ,
t

-
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andOR8 . Discarding half eigenvectors in the matricesQ and
O that correspond to the smallest eigenvaluesvk , the matri-
ces O and Q can be used as the reduction matrices in
calculation of i 11TL

(1)new via

i 11TL
(1)new~j8L

news8L
newujL

newsL
new!

5 (
jLjL8sLsL8

iQL8~j8L
newujL8sL8 ! iTL

(1)~jL8sL8 ujLsL!

3 iWB
(1)~sL8s8L

newusLsL
new! iOL~jLsLujL

new!. ~10!

Generalization for the right block is straightforward. Th
graphical representation of Eq.~10! is in Fig. 6. Notice that
at this step~Fig. 6! the reduction matrixOL is obtained by
diagonalization of the density matrixrL

(1) whereas the matrix
QL8 yields from the diagonalization of the density matr

rL
(2) . Knowing the functionsC1 , C2 , C̄1, andC̄2 various

physical quantities can be found, e.g., site magnetiza
used in further calculations

^sL&5 (
jLsLsRjR

C1~jLsLsRjR!sLC̄1~jLsLsRjR!.

~11!

The superblock transfer matrix needs to be sligh
changed for the ANNNI model. The left and right bloc
transfer matrices have two spins more. The Boltzma
weight is defined on a plaquette of six spins. We have c
structed the superblock transfer matrixT from the two block
transfer matrices and the two overlapped Boltzmann we
~Fig. 4! as follows:

T~jLs1s2s3s4jRujL8s18s28s38s48jR8 !

5TL~jLs1s2ujL8s18s28!WB
(1)~s1s2s3us18s28s38!

3WB
(2)~s2s3s4us28s38s48!TR~s3s4jRus38s48jR8 !.

~12!

V. RESULTS

Properties of the ANNNI model on the triangular lattic
were calculated recently4 by the cluster transfer matrix
method.27 The results were consistent with numerous cal

FIG. 6. Schematically written Eq.~10! which is used for com-
puting the new left renormalized transfer matrixTL

(1)new from the
old oneTL

(1) .
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FIG. 7. ~a! The phase diagram of the ANNNI model obtained by the DMRG method for relatively small superblock transfer-matr
(N5400). After the superblock transfer-matrix size is increased, the IC region becomes narrower and the para-IC phase transit
shifted to lower temperatures;~b! phase diagram from the cluster transfer matrix method in Ref. 4.
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lations of the ANNNI model on the square lattice. To com
pare performance of the DMRG method for incommensur
~IC! structures with other methods we calculated the ph
diagram of the ANNNI model shown in Fig. 7~a!. The re-
sulting diagram is in accordance with previous calculatio4

@Fig. 7~b!#. We have confirmed general opinion that there
no Lifshitz point on the ferromagnetic and paramagne
phase transition line.

The region of the IC structure comes out from the DMR
rather wide, however, we have used a low-order approxi
tion (N5400). For higher-order approximations the IC
phase region becomes narrower.

In addition to the critical temperature and the free ene
also the critical exponents of Ising and ANNNI model we
calculated. As expected, DMRG, as an effective-field
proximation, yields classical values for all the critical exp
nents of the Ising model. Nevertheless, the critical expon
of the domain wall density atC-IC phase transition obtaine
from our DMRG approach has a nonclassical value 0.5
60.003 close to the Pokrovsky-Talapov value 1/2,25 which
is assumed to be exact. Standard mean-field approxima
give a logarithmic singularity at the critical line.26 We ex-
plain this by a correct treatment of narrow-domain-wall m
andering near the phase transition line by our large clust
The resulting mean domain walls are straight, but, due to
summation over all spin values of the clusters, the wall m
andering is involved in the calculation. The DMRG meth
reproduces the results of the domain wall theory well thou
no domain walls are explicitly introduced in it.

The phase diagram of the ATNNI model~in Fig. 8! con-
sists of four regions~two different commensurate phase
incommensurate and disordered phase!. Characteristic spin
structures of both commensurate^I & and ^II & phases of the
triangular lattice@Fig. 1~a!# are shown in the insets of th
same phase diagram.

The phaseŝI & and^II & consists of two and three differen
sublattices with a constant magnetization, respectively. In
IC phase, the magnetization of each sublattice is periodic
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modulated and the sublattices become equivalent to e
other. That is why we only plot the magnetization of one
the sublattices in some of the following Figs. 9 and 10!.

The phase diagram was derived from calculation of m
netization. The DMRG method with spontaneous symme
breaking yields directly the space modulation of the mag
tization which enables us to identify the phase unambi
ously. In practical calculations, it is enough to observe
behavior of the largest eigenvalues of the superblock ma
The period of their spatial modulation is the same as
period of the structure.

FIG. 8. The entire phase diagram of the ATNNI model is co
structed by the DMRG technique. The incommensurate phase
pears in narrow region located between the disordered phase
the commensurate phase^II & for 2.4,H,4.8. The ATNNI model
is highly degenerated forH52.4. The ATNNI model is highly de-
generated forH52.4.
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FIG. 9. ~a! The width of the incommensurate phase measured in units of temperature vs external magnetic fieldH. With increasing field
H the distance between the disordered and commensurate phases^II & becomes shorter.~b! Measured magnetization per each third spin s
using Eq.~11! inside the incommensurate phase as a function of the spin position on the lattice forH52.5 andT50.5256.
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The incommensurate structure is floating, i.e., it is n
fixed to the underlying lattice. In our calculation with spo
taneous symmetry breaking, one of the infinitely many po
tions of the incommensurate wave is chosen at the begin
of the calculation and it remains fixed during the whole fu
ther calculation.

We have found the incommensurate structure practic
along the whole border between the commensurate^II &
phase and the disordered phase. However, in two region
calculations were inconclusive.

~i! The high degeneracy of the ground state atH52.4 and
T,0.4 ~Ref. 12! has also caused highly degenerate larg
eigenvalues of the superblock transfer matrix, and
method did not converge to any periodic structure for m
netic fields between 2.40 and 2.41 at low temperatures.

~ii ! The other region is located at the high-magnetic-fi
endH'4.8 andT,0.1 of the phase diagram. Here, the i
commensurate phase is extremely narrow@Fig. 9~a!# and it
has a very large period@Fig. 10~b!#. Moreover, due to the
proximity of the second-order phase transition line, the c
vergence is very slow.
t
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We have started the calculations with the ISM where
superblock transfer matrix is constructed from left and rig
transfer matrices of theprevious iteration step. After a large
number of iterations were performed, we obtained a fi
result for commensurate structures including the disorde
phase. For the incommensurate structure it is necessar
perform afterwards some sweeps of the FSM in order
improve results that smooth the magnetization profile of
spin wave. The IC structure appears already after the ap
cation of the ISM but the correct shape of the magnetizat
is acquired after the FSM, only.

The shape of period of the IC structure changes with m
netic fieldH and temperatureT. The period of the IC struc-
ture increases with the increasing magnetic field and decr
ing temperature. At low temperatures~close to the^II &-IC
phase transition line! the structure consists of wide domain
of the phasê II & separated by narrow domain walls. A
higher temperatures near to disorder-IC transition, the
main walls become wider, the period shorter and the str
ture acquires a sinusoidal-like shape.

Both phase transitions are continuous. Inverse period
on

FIG. 10. ~a! Magnetization vs position measured on the lattice inside the IC phase on each third site forH53.02 andT50.73. ~b! IC

phase obtained for the large magnetic fieldH54.6 was found for temperatures 0.166 158,T,0.166 162. The magnetization is measured
each site. All three spin waves are plotted.
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the structure and wave amplitude tend to zero at the^II &-IC
and disorder-IC phase transition lines, respectively. It sho
be noted that the notions of low and high temperatures m
be understood within an extremely narrow temperature in
val where the IC phase exists.

The effect of magnetic field on the IC phase is simi
~but inverse! to the temperature effects. Low magnetic fie
~near 2.4) enhances the high temperature effects, while
high magnetic field~near 4.8) the low temperature ones.

For the magnetic fieldH close to the value of 4.8, th
period is very long, that is why we were able to perform t
ISM only with an incorrect magnetization shape whi
would need a further improvement with the FSM@Fig.
10~b!#.

Our calculations converged to the stable periodic solut
at the most part of the commensurate^II &-disordered phase
borders. Here the IC phase has been found everywhere.
fact leads us to a conjecture~contrary to Ref. 12! that the
Lifshitz point does not exists in the ATNNI model.

VI. SUMMARY

The DMRG method has been used to investigate inco
mensurate structures in the 2D classical model. We fo
that it reproduces the previous results for the ANNNI mo
well. In the case of the ATNNI model it has shown mu
better performance in regions where the previous approa
~the cluster transfer matrix method27,28 nearH52.4 and the
ld
st
r-

r

he

n

his

-
d
l

es

free-fermion approximation12 for H.3) have failed. On the
basis of scaling properties of Monte Carlo calculations a
the exact diagonalization of finite strips, the authors of R
12 concluded that atH>3 the IC structure disappears and
higher fieldsH the direct phase transition between comme
surate^II & and disordered phases is continuous.

We have observed the IC phase everywhere between
disordered and commensurate^II & phases, i.e., we hav
found no Lifshitz point where the three phases meet: co
mensurate, incommensurate, and disordered. Neverthe
measured widths of the IC phase are extremely small at la
H and exponentially tend to zero atH54.8. As the width of
the IC phase gets narrower for the high-order approximati
we cannot completely exclude the scenario of Domany
Schaub.12 Our belief in correct description of incommens
rate phases by the DMRG technique is supported by the
production of the ANNNI phase diagram with generally e
pected features.
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