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Supersymmetric spin operators
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We develop a supersymmetric representation of spin operators which unifies the Schwinger and Abrikosov
representations of SU(N) spin operators, allowing a second-quantized treatment of representations of the
SU(N) group with both symmetric and antisymmetric character. By applying this to the SU(N) Kondo model,
we show that it is possible to develop a controlled treatment of both magnetism and the Kondo effect within
a single large-N expansion.
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I. MOTIVATION FOR A NEW SPIN REPRESENTATION

Recent experiments on quantum phase transitions
heavy fermion materials have led to a debate about h
magnetism condenses out of the metallic state at abso
zero. Certain heavy fermion materials can can be tuned
tween the magnetic and the paramagnetic state through
use of pressure1,2 or chemical doping.3,4 The quantum critical
point which separates these two phases is of great cu
interest, in part because materials in its vicinity may beco
fundamentally new kinds of metal.5–7 Heavy fermion mate-
rials contain a dense lattice of magnetic moments; conv
tional wisdom assumes that the spins of the local mome
are magnetically screened and of no importance to the m
netic quantum critical point.8–10 Recent neutron data contra
dict this viewpoint, by showing that the spin correlations
the quantum critical point are critical in time, but local on
atomic scale,4,11–13 suggesting that unscreened local m
ments emerge from the metallic state at the quantum crit
point.

If it is indeed true that the magnetic quantum critic
points involve local moment physics, then a new theoret
approach is required. Traditionally, heavy fermion physics
modeled using a Kondo lattice Hamiltonian,14 describing the
interaction between a bath of conduction electrons and
array of local moments. One of the well-developed theor
cal methods for approaching this model is the largeN
expansion,15–19 where the idea is to use a generalization
the quantum-mechanical spin operators, in which the un
lying spin rotation group is generalized from SU~2! to
SU(N). The utility of this method derives from the fact th
in the limit N→`, it provides an essentially exact, analyt
treatment of the Kondo lattice problem. Unfortunately, t
way this procedure is carried out at present, magnetic in
actions are suppressed as a 1/N2 correction, beyond the ho
rizon for a controlled computation. In this paper, we sh
how we can overcome this shortcoming by the use of a
persymmetric spin representation for local moments.

The theoretical description of interacting local mome
poses a fundamental problem: the Pauli spin operatorS does
not satisfy Wick’s decomposition theorem, which preem
its use in a Feynman diagram approach. The traditional
lution is to represent the spin in terms of either bosons
fermions. In the ‘‘Schwinger boson’’ approach,20,21 the spin
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operator is represented in terms of anN-component boson
ba @Fig. 1~b!#; in the alternative ‘‘Abrikosov pseudofer
mion’’ representation,22 the spin is represented by a
N-component fermion,f a , in Fig. 1~a!.

Here,G[(G1, . . . ,GM) represents theM5(N221)/2 in-
dependent SU(N) generators. By combining 2S ‘‘Schwinger
bosons’’ together, one generates asymmetricrepresentation
of SU(N), denoted by a horizontal Young tableau with 2S
boxes @Fig. 1~b!#. Conversely, in the pseudofermion a
proach,Q<N spin fermions are combined to generate
antisymmetricrepresentation of SU(N), denoted by a col-
umn Young tableau withQ boxes@Fig. 1~a!#.

Most cases of physical interest correspond to an elem
tary spin or a single box in the Young tableau. Unfort
nately, to develop a controlled Feynman diagram expans
we are obliged to consider a large number of such box
letting N→` keeping eitherq5Q/N or m52S/N fixed. In
the process of lettingN→`, some essential physics is los
Symmetric representations are ideal for treating magneti
where the ordered moment involves a highly symmetric c
densation of spin bosons, but they lose all information ab
the Fermi liquid fixed point. Antisymmetric representatio
capture the development of the Kondo effect and heavy
mion bands, but magnetism is suppressed.

Various authors have tried to develop alternative rep
sentations of the spin operator24 and in this context one in-
teresting idea is to use supersymmetry to simultaneously
press the bosonic and fermionic character of lo
moments.25–27

FIG. 1. Young tableaux~Ref. 23! for ~a! antisymmetric and~b!
symmetric representations generated by the Abrikosov fermion
Schwinger boson representations, respectively.
3852 ©2000 The American Physical Society
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II. SUPER SPINS

We now examine a class of spin representations wh
preserve both symmetric and antisymmetric correlatio
Consider the spin operator that is a sum ofnf fermions and
nb bosons, given by
no

on

n

o

ta
h
s.

S5Sf1Sb . ~1!

By combiningQ5nf1nb bosons and fermions together, w
generate ‘‘L-shaped’’ representations of SU(N). For each
choice ofnf andnb , we generate two irreducible represe
tations. For example, we can combine one fermion and
bosons as follows:
Ca-

ates
For SU~2!, these correspond to a spin-1
2 and a spin-32 repre-

sentation. To uniquely parametrize anirreducible represen-
tation, we need to fix the CazimirS2[SaSaSa . Consider an
L-shaped representation of SU(N) of width w and heighth:

If the generators of the fundamental representation are
malized according to Tr@GaGb#5dab, then the expression
for the Cazimir of an arbitrary irreducible representati
is28,29

S25
Q~N22Q!

N
1 (

j 51,h
mj~mj1122 j !, ~2!

wheremj is the number of boxes in thej th row from the top
andQ is the total number of boxes. For an L-shaped You
tableau, (m1 ,m2 , . . . ,mh)5(w,1,1, . . . ,1), sothat

S25
Q~N22Q!

N
1w~w21!2h~h21!. ~3!

If we substituteQ5w1h21 andY5h2w, we then obtain

S25Q~N2Y2Q/N!. ~4!

In this way, each irreducible L-shaped representation
SU(N) is uniquely defined by the two quantities~Q, Y!,
whereY can assume the values

Y52Q11,2Q13, . . . ,Q21. ~5!

For example, ifQ53, there are three irreducible represen
tions:
r-

g

f

-

We now seek to cast bothQ and Y in an operator lan-
guage. In terms of the boson and fermion operators, the
zimir can be written

Ŝ25~Ŝf1Ŝb!2. ~6!

If we expand this expression~Appendix A! by using the
completeness relation

NGab
a Gdg

a 5Ndagdbd2dabddg , ~7!

we are able to express the Cazimir in operator form:

Ŝ25Q̂S N2Ŷ2
Q̂

N
D , ~8!

where now

Q̂5nf1nb ~9!

fixes the number of boxes and

~10!

is the operator measuring the asymmetryh2w of the repre-
sentation. Here we have introduced the operators

u†5 f b
†bb , u5ba

† f a . ~11!

If we wish to study a spin system described by the~Q, Y!
representation, then we must restrict our attention to st
uc& in the Hilbert space which satisfy
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Q̂uc&5Quc&,
~12!

Ŷuc&5Yuc&.

Curiously, although this constrains the total number
bosons and fermions, the differencenb2nf is only partially
constrained, reflecting the fact that bosons and fermions
interconvert without altering the representation.

When we represent spins in terms of bosons and fermi
each box in the Young tableau is associated with a ferm
or boson, where fermions occupy the column, bosons
row. The corner of the tableau can contain either a boso
a fermion. The operatoru† converts the corner box from
boson into a fermion, whileu converts it back again. Thes
operators are the generators of a ‘‘supergroup’’ SU~1u1!,30

with the algebra
io
try

he

te

in
, r
a

f

an

s,
n
e

or

$u†,u%5Q. ~13!

The spin operator commutes with these generators,

@Sb1Sf ,u#5@Sb1Sf ,u†#50, ~14!

so that the representation is supersymmetric.Q and Y also
commute withu and u†, and these are the Cazimirs of th
group. From Eq.~13!, we see that operatorsPb5(1/Q)uu†

and Pf5(1/Q)u†u satisfy Pb1Pf51: they are the projec-
tion operators which, respectively, project out states w
‘‘bosons’’ or ‘‘fermions’’ in the corner of the Young tableau
In this way, we see thatP5Pb2Pf is 11 or 21, depending
on whether the state has a boson or fermion in the corne
the representation. For example, the representation give
(Q,Y)5(3,0) can be written in two ways:
s.
the
usly

on-
e,
n-

is
on.

pro-
ions
The invariance of the representation under the boson-ferm
transformation is a manifestation of the supersymme
When a boson is converted into a fermion, the change
nf2nb is compensated by the change inP, so thatY is
invariant.

We can alternatively write the constraints in terms of t
height ĥ5(Q̂1Ŷ11)/2 and widthŵ5(Q̂2Ŷ11)/2 of the
tableau:

~15!

For the fundamental representation, described by the sta

~16!

nf* 52S51. Independent of the way we represent the sp
some bosonic and fermionic character is always present
flecting the fact that a spin can give rise to a ‘‘bosonic’’ loc
n
.

in

,
e-
l

moment or it can produce ‘‘fermionic’’ singlet bound state
Traditionally, one of the above constraints is dropped: in
approach now adopted, both constraints are simultaneo
applied.

There are two ways in which we can use the new c
straint. We can work within a ‘‘grand-canonical’’ ensembl
whereQ̂ is fixed, butŶ is associated with a chemical pote
tial,

H85H1zY. ~17!

By tuningz from negative to positive values, the ensemble
driven from an antisymmetric to a symmetric representati
In fact, since the CazimirS25Q̂@N2Ŷ2(Q̂/N)# is linearly
related toŶ, a finite value ofz is physically equivalent to the
introduction of Hund’s interaction into the Hamiltonian.

H85H2
1

Q
zS2, ~18!

where a constant termz(N2Q/N) has been omitted. The
supersymmetric spin representation thus enables us to
gressively increase the strength of the magnetic interact
by tuning the spin representation.
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Alternatively, we may work with a definite representatio
whereŶ5Y. The partition function for this model is

Z@Q0 ,Y#5Tr@PQ0 ,Ye2bH#, ~19!

wherePQ0 ,Y projects out the states with definiteQ̂5Q0 and

Ŷ5Y. By specifying these two constraints, we are still wor
ing in an ensemble where the individual number of fermio
or bosons are not separately constrained, and in this way
are able to develop a supersymmetric field theory. We
implement these two constraints by carrying out a Fou
transform over the chemical potentialsl and z associated
with Q̂ and Ŷ, respectively,

Z@Q0 ,Y#5E dl dz

~2p iT !2 Tr@e2b@H1l~Q̂2Q0!1z~Ŷ2Y!##,

~20!

where bothz5l01 ix and l5l01 iy are integrated along
an imaginary axis,x,yP@0,2pT#.

III. APPLICATION TO THE UNDERSCREENED
KONDO MODEL

A. Formulation of Lagrangian

To illustrate the approach, we develop it for the sing
impurity Kondo model, given by

~21!

Here, H0 describes the conduction electron sea,HK is the
interaction between the conduction electron spin density,
the local moment, whereca

†5ns
21/2Skcka

† , creates an elec
tron at the site of the local moment~ns5no. of sites!. HQ
andHY impose the constraints.@Note the way in whichHY

has been written: by multiplying the operatorŶ by Q̂, we
cast it in a form which is unchanged upon normal ord
ing: Q̂Ŷ5..Q̂Y:. By writing it in this way, we can immedi-
ately translate the fields to their coherent state representa
Inside a path integral, whereQ5Q0 is imposed, we are then
able to replace (1/Q0)QŶ→Y.#

To date, the one-channel Kondo model has been stu
in the large-N approach for completely symmetric24 and
completely antisymmetric17 representations ofS. For the lat-
ter, the local moment is quenched to form a local Fer
liquid; for symmetric representations the spinS is only par-
tially screened by the Kondo effect to form a spinS2 1

2 . By
tuning the representation from the one limit to the other,
are able to examine how the local Fermi liquid interacts w
the emergent local moment as the local moment grows.
fully symmetric representations, it is known that the resid
Fermi liquid decouples from the partially screen
moment.31 One of the surprising discoveries of this study
that in intermediate representations, the heavy Fermi liq
and the partially screened moment can become antiferrom
netically coupled and the strong-coupling fixed point b
comes unstable. We shall see that in this simple mode
,
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two-stage Kondo effect then takes place; richer con
quences are likely in a lattice model.

Our first step is to write the constrained partition functi
as a path integral,

Z5E D@c, f ,b,l,z#e2*0
b

@L01HK1Lsusy2~lQ01zY!#dt,

~22!

where c and f denote Grassman fields,b, l, and z are
c-number fields, and we have divided the action into th
terms:

L05(
ks

cks
† ~]t1ek!cks ,

HK52
J

N (
a,b

@ f a
†cacb

† f b1ba
†cacb

†bb#, ~23!

Lsusy5(
s

@ f s
†]t f s1bs

†]tbs#1HQ1HY .

The first term describes the conduction electrons, in the s
ond term we have rewritten the local spin in terms of sla
fields, and the third term contains the machinery of the
persymmetric representation. We use a single notation
the field operators and thec-number fields that represen
them inside the path integral.

Our next step is to formulate the Lagrangian in a fo
that clearly exhibits the supersymmetry. We shall begin
castingLsusy in a form which is gauge-invariant under time
dependent superrotations. It is convenient to combine
slave fields into a single spinor,

Cs5S f s

bs
D , Cs

†5~ f s
† ,bs

† !. ~24!

Using this notation,

Lsusy5(
s

Cs
†@]t1l1zt3#Cs2

2z

Q0
u†u, ~25!

where t3 is a Pauli matrix. Since the starting Hamiltonia
and each of the constraints commutes with the supergen
tors, the full Lagrangian is invariant~Appendix B! under
time-independent superrotationsCs→gCs , where

g5FA12hh̄ h

2h̄ A12h̄h
G ~26!

is an element of the supergroup SU~1u1!. The quantitiesh
and h̄ are conjugate Grassman numbers. If we make
transformation time-dependent, the derivative terms beco

Cs
†]tCs→Cs

†@]t1~g†]tg!#Cs . ~27!

Expanding the second term, we obtain

(
s

Cs
†~g†]tg!Cs5u†]th1h̄]tu1Q0h̄]th, ~28!

where we have replaced(
s

Cs
†Cs→Q0 inside the path in-

tegral. SinceZ is unchanged by this change of basis, we c
integrate over allg(t),
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Z5E D@h̄,h#E D@c, f ,b,l,z#

3e2*0
b

@L1u†]th1h̄]tu1Q0h̄]th#dt

5E D@c, f ,b,l,z#expH 2E
0

bS L2
1

Q0
u†]tu DdtJ .

~29!

By absorbing the additional term into a redefined

Lsusy* 5(
s

Cs
†@]t1l1zt3#Cs2

1

Q0
u†~]t12z!u,

~30!

the Lagrangian becomes invariant under time-dependen
perrotations. The first term inLsusy* describes the level split
ting between the bosonic and fermionic components of
spin. The second term describes a residual interaction
tween the spin and heavy electron fluid. We can factor
this term, to obtain

~31!

The first term tells us that the fielda represents adynamical
fermion with the commutation algebra$a,a†%51/Q0 . This
spinless particle mediates the interaction between the
and the heavy electron fluid;HI defines the vertex for the
decay processf s
bs1a. Notice that since the Schwinge
bosons are neutral, thea fermion is a spinless, singly
charged excitation. To represent this exchange process
denote the propagator for thea fermion by the Feynman
diagram

~32!

The vertices which interconvert the heavy electron and s
bosons will be denoted by

~33!
u-

e
e-
e

in

we

in

where the ‘‘i’’ is required to give the correct amplitude fo
the exchange of the gauge fermion and

~34!

represent the propagators for spin bosons and thef electrons.
The mediated bare interaction between the spins and
heavyf electrons is then

~35!

It is a rather unique feature of this kind of approach that
spin interactions are carried by fermions rather than boso
Our final form forLsusy* can now be compactly written

Lsusy* 5(
s

Cs
†S ]t1l1F z ]”a

]”̄a† 2zG D Cs1Q0a†]”a,

~36!

where we have defined (]t12z)[]”, (2]t12z)[]”̄.
As our next step, we factorize the Kondo interaction te

HK ,

HK→HK* 5(
s

@~cs
†V̄f s1V fs

†cs!1~cs
†f̄bs1fbs

†cs!#

1
N

J
~V̄V1f̄f!, ~37!

whereV is a complexc-number field andf is its fermionic
partner. If we now introduce

V5FV
f G , V†5~V̄,f̄ !, ~38!

then the transformed Lagrangian takes the formL5L0

1Lsusy* 1HK* , where

L05(
ks

cks
† ~]t1ck!cks ,

HK5(
s

@Cs
†Vcs1cs

†V†Cs#1
N

J
V†V, ~39!

Lsusy* 5(
s

Cs
†S ]t1l1F z ]”a

]”̄a† 2zG D Cs1Qsa†]”a.

Let us briefly examine the gauge invariance of this Lagra
ian. If

h5gei ~uQ1uzt3! ~40!

is a general SU~1u1! matrix, whereg takes the form~26!,
then under the gauge transformationCs→hCs , V→hV, L0

andHK are invariant, butLsusy* becomes
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Lsusy* →(
s

Cs
†h†S ]t1l1F z ]”a

]”̄a† 2zG D hCs1Q0a† ]”a.

~41!

When we expand the first term~Appendix B!, we find that

Lsusy* @l,z,a,a†#→Lsusy* @l8,z8,a8,a†8#, ~42!

where l85l1 i u̇Q , z85z1 i u̇z , and a85(a1h)e22iuz,
so L is invariant under the gauge transformation,

Cs→hCs , V→hV,

l→l2 i u̇Q , z→z2 i u̇z , ~43!

a→e2iuza2h, a†→e22iuza†2h̄.

This gauge invariance leads to bosonic and fermionic z
modes. To eliminate them, we must carry out a gauge-fix
procedure. We can always parametrizeV in the form

V5hFV0

0 G5gFV0ei ~uQ1uz!

0 G , ~44!

or written out explicitly,

S V
f D5V0eiu fSA12hh̄

2h̄ D , ~45!

whereu f5uQ1uz and V05AV̄V1f̄f is real. This trans-
formation uniquely specifies bothh̄52(V0 /V)f and the
phase factor andeiu f5V/uVu, but does not specifyub5uQ
2uz . We shall adopt a gauge choice whereub50. By ap-
plying the gauge transformation~43!, we can absorb the fer
mionic fluctuations inV into a redefinition of the fields. The
gauge-fixed hybridization is now

HK* 5V0(
s

@cs
† f s1 f s

†cs#1
NV0

2

J
. ~46!

With our gauge choiceub50, the variablel f(t)5l1z

1 i u̇ f becomesdynamical, but the variablelb5l2z1 i u̇b
5l2z remains a time-independent integration variable.
this gauge-fixed form of the Hamiltonian, the interaction b
tween the Fermi and spin fluids is entirely contained with
Lsusy* , and it is here where we should look if we are to obta
new physics.

In the existing large-N approach to the Kondo mode
magnetic interactions are a 1/N2 correction to the mean-field
theory, an order of accuracy that is beyond current theor
cal approaches. A supersymmetric approach enhances
magnetic interactions by a factor ofN2, bringing them
within the realm of Gaussian fluctuations about a n
large-N mean-field theory. To carry out concrete calcu
tions, we expand around a large-N saddle point of the path
integral obtained by takingN→`, maintainingQ/N5q and
Y/N fixed. By allowing the number of bosonsnb5Nñb to
become large, the Bose field is able to condense and fo
magnetic moment:

^bs&5AMzs;O~AN!, ~47!
ro
g

n
-

ti-
the

-

a

wherezs is a unit spinor. The magnetic interaction betwe
spins at different sites is given by Ruderman-Kittel-Kasuy
Yosida ~RKKY ! diagrams~Fig. 2!. The factors ofAN asso-
ciated with the Bose condensate produce an intersite m
netic interaction of order O(1): a factor of N2

enhancement. These magnetic corrections appear as pa
the Gaussian fluctuations of thea fermion, and by calculat-
ing them we are able to carry out a controlled treatment
magnetism and the Kondo effect.

B. Mean-field theory

To illustrate this kind of calculation, we develop the m
chinery for the single-impurity model. Although there are
intersite magnetic interactions, the machinery of the sup
symmetry is needed to compute the magnetic interaction
tween the partially screened local moment and the Fe
liquid in the single-impurity model. The techniques that w
now illustrate can be generalized to the lattice.

Our first step is to formally integrate out the conducti
~c! and the slave fields (f ,b),

Z5E D@a,V,l,z#e2Seff,

~48!

e2Seff5E D@c, f ,b#e2*0
b

~L01Lsusy* 1HK!dt.

Since the second integral is bilinear in the fields, it can
carried out to yield

Seff@a,l,z#52STr ln@]t1l1zt31SI #

1E
0

b

@Q0a†]”a2lQ02zY#dt ~49!

and

SI [SI ~t2t8!5V0~t!V0~t8!FGe~t2t8! 0

0 0G
1d~t2t8!F 0 ]”a~t!

]”̄a†~t! 0 G ~50!

FIG. 2. Magnetic interaction between two spins at sitei and j
within the current approach.~Note that whenV0.0, the f fermion
can propagate from site to site.! The factor (AN)4 associated with
the Bose condensate enhances the magnetic interaction by a f
of N2, so that it appears as the first in a series of RPA diagra
associated with the Gaussian fluctuations of thea fermion.
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is the self-energy correction induced by the coupling of thf
electrons to the conduction electrons~first term! and the mix-
ing between thef and b fields induced by thea fermion
~second term!, where

G0~t2t8!5 (
ivn ,k

1

ivn2ek
e2 ivn~t2t8! ~51!

is the local conduction electron propagator.STr@ # denotes
the ‘‘supertrace,’’ defined as the difference between the
mionic and the bosonic trace:

STrFF a

b BG5Tr@F#2Tr@B#. ~52!

Our procedure is then to expand the effective action to q
dratic order around the saddle point, wherel, z, and V(t)
5V0 are static, anda50,

Seff@V,l,z,a#5SMF1O~dL2!, ~53!

wheredL denotes the fluctuations.SMF5bFMF determines
the leadingO(N) mean-field contribution to the free energ
By carrying out the Gaussian integral over the fluctuations
n
s

in

,

r-

a-

n

dL, we can then determine theO(1) correction to the mean
field theory and the magnetic interactions within t
medium.

We begin by computing the saddle point, described by
the mean-field Hamiltonian

Hmft5(
ks

ekcks
† cks1V0(

s
@cs

† f s1 f s
†cs#

1~l2z!nb1~l1z!nf2lQ0 , ~54!

whereV0 andl are to be determined self-consistently. Th
mean-field theory describes a Kondo resonance formed
tween the conduction electrons and the antisymmetric pa
the spin. The residual symmetric part of the spin is u
quenched and described by a sharp bosonic level at en
lb5l2z. For the moment, we shall work in the ensemb
of definite z, examining how the mean field evolves as w
increasez to favor representations that are increasingly sy
metric. If we definel f5l1z, lb5l2z, then in the pres-
ence of the finite hybridization, the Green’s functions for t
slave fields are now given by
~55!
e

whereD5pV0
2r is the hybridization width of the conductio

electron andr is the conduction electron density of state
The mean-field free energy is then given by

Fmft5NT(
n

$ ln@2Gb
21~ inn!#2 ln@2Gf

21~ ivn!#%eivn01

1N
V0

2

J
2lNq . ~56!

The first term is just the free energy of a free boson. Carry
out the frequency sum on the second term~Appendix C!, we
obtain

Fmft

N
5F f~j!1Fb~lb!1

V0
2

J
2lq, ~57!

where

F f~z!522T Re lnF GS z1D

2p iT D
GS z

2p iT
1

1

2D G1D/2,

~58!
Fb~z!5T ln~12e2bz!,

are the fermionic and bosonic contributions to the energyD
is the conduction-band half-width, andj5l f1 iD. If we dif-
ferentiate this result with respect toD andl, we obtain
.

g

p

N S ]F

]D
1 i

]F

]l D5cS j

2p iT
1

1

2D2 lnS D

2p iT D
1

1

Jr
2 ip~q2ñb!

5cS j

2p iT
1

1

2D2 ln S TKeip~q2ñb!

2p iT D 50,

~59!

wherec(z)5]z ln G(z) is the digamma function,ñb5nb /N
5@exp(lb /T)21#21, and TK5D exp@21/Jr0# is the Kondo
temperature. At zero temperature we may replacec(z)
→ ln z, so theT50 mean-field equations are then

j5TKeip~q2ñb!. ~60!

If the Bose field condenses, thenlb50, so l5z, l f
52z, andj52z1 iD. In this case, we can solve for the siz
of the unquenched moment,M5Nm5Nñb , and the widthD
of the Abrikosov-Suhl resonance with which it coexists:

m5q2
1

p
cos21S 2z

TK
D ~z.zc!,

~61!
D5A~TK!22~2z!2,

where
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zc5~TK/2!cos~pq! ~62!

corresponds to a critical value of Hund’s interaction beyo
which the local moment develops an unscreened compon
There are three regions:

m5H q, 2z/TK.1

12
1

p
cos21S 2z

TK
D , 1.2z/TK.cos~pq!

0, cos~pq!.2z/TK.

~63!

corresponding to an unscreened, partially screened, and
screened local moment. Figure 3 shows the mean-field p
diagram.

Next, let us consider the residual interactions between
unquenched local moment and the Fermi liquid. The c
straint termjY generates the residual interaction

HI52
2z

Q0
(
s,s8

~ f s
†bs!~bs8

† f s8! ~64!

between the heavy-f electron and the unscreened mome
Conventional wisdom, based on the spin-S Kondo model,
supposes that such residual interactions are always ferrom
netic. Forz.0, this is indeed the case, and the fixed po
described by the mean-field theory is thus stable. By c
trast, if z,0, then the residual interaction isantiferromag-
netic. The presence of such terms is unexpected. We s
see that for the impurity, this leads to a two-stage Kon
effect. In the single-impurity model, the conditionz,0 cor-
responds to the requirement thatnf* .N/2, in other words,
the requirement that the antisymmetric component of
spin representation is more than half-filled.

FIG. 3. Top: magnetization of partially screened local mom
as a function ofz. Bottom: Phase diagram for the supersymmet
impurity Kondo model, showing how the representation of the lo
moment evolves asz is increased. Shaded area indicates und
screened region. Forz,0, the underscreened region involves
two-stage Kondo effect.
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C. Calculation of the magnetization using Gaussian
fluctuations

One way to examine the consequences of this resid
coupling on the single-ion Kondo effect is to compute t
field-dependent magnetization of the ground state. The ap
cation of a field provides a controlled way of examining t
crossovers associated with screening processes. To com
the magnetization, we need to introduce a magnetic field
calculate the field-dependent ground-state energy, includ
the effect of the Gaussian fluctuations around the mean-fi
theory. For SU(N), there areN21 ways of introducing the
magnetic field. We shall use the form

HB52B(
s

ms~nf s1nbs!, ~65!

wherem1521, m251. With this choice, the field splits of
two bosonic and two fermionic states from the otherN
22) levels.

The mean-field free energy in a field is then given by

Fmft@B#5(
s

@F f~js!1Fb~lbs!#1
NV0

2

J
2lQ02zY,

~66!

wherejs5j2Bms , lbs5lb2Bms . To calculate the mag-
netization, we must differentiate the free energy with resp
to B. ~Since the Free energy is stationary with respect
changes inl andz, we do not have to worry about how thes
fields change with respect toB.! The magnetization is then

~67!

The first term is the residual unquenched moment, the s
ond term represents the spin-polarization of the Kondo s
glet. Technically, we should lump this term with the oth
O(1) corrections that we need to calculate from the Gau
ian fluctuations. The mean field only reliably predicts t
terms of orderN, and thus to this order,

M52S1O~1!. ~68!

To calculate theO(1) term, we need to include the zero
point corrections to the ground-state energy.

There are two types of Gaussian fluctuation around me
field theory: bosonic fluctuations inV, l, and z, plus the
fluctuations of thea field. Fluctuations inV and l f5l1z
are associated with the interactions in the Fermi liqu
These terms renormalizemf(B) and produce an orde
O(1/N) correction to the magnetization. Fluctuations inlb
5l2z renormalize the entropy of the free moment, and
not produce any correction to the unscreened moment.
only O(1) corrections to the magnetization are those ass
ated with the fermionic fluctuations. The Lagrangian f

t

l
r-



3860 PRB 62P. COLEMAN, C. PÉPIN, AND A. M. TSVELIK
these fluctuations is given by

~69!

In a field, the number one boson condenses, so thatlb150. To fulfill the constraint on the Fermi fields,nf* 5const, we require
that l f5lb112z1B is field-independent, which implies that in a field 2z52z02B.

When we expand the effective actionSeff to Gaussian order in thea field, we obtain the correction

Sa52E d1 d2 a†~1!D21~122!a~2!, ~70!

where

2D21~122!5Q0~]t12z!2~]t12z!2^Tu~1!u†~2!&

5Q0~]t12z!2~]t12z!2T( Gf s~122!Gbs~221! ~71!

is the inverse propagator for thea fermion. Written out both diagrammatically and in the frequency domain, this is

~72!
tu

ing
ro-

cing

he
and
where

F~v!5
T

N (
sn

Gf s~v1n!G0s~n!. ~73!

It proves convenient to factorizeD21(v) as follows:

D21~v!5Q0~v22z!P~v!, ~74!

where

P~v!511
v22z

q
F~v!. ~75!

A detailed calculation ofP(v) at zero temperature~Appen-
dix D! yields

P~v2 id!5P0~v1B2 id!, ~76!

where

P0~v!5Af~v!FD2
v22z0

pq S ln
TK

v
1 ipñbD G ~77!

is the zero-field expression forP(v) and Af(v)5Im Gf(v
2id) is the zero-fieldf-spectral function.

Now the free energy associated with the Gaussian fluc
tions in a is given by
a-

Fa52T(
n

$ ln@2D21~ ivn!#2 ln@Q0~2z2 ivn!#%eivn01

52T(
n

n

ln@P~ ivn!#eivn01
, ~78!

where we subtract the free energy of the auxiliarya field in
the absence of interactions to avoid overcounting. Carry
this sum out by contour integration, and taking the ze
temperature limit, the zero-point energy is

Ea52E
2D

0 dv

p
Im ln@P0~v1B2 id!#, ~79!

where we have inserted the field dependence by repla
P(v)→P0(v1B). Differentiating this with respect to the
applied magnetic field, the screening contribution to t
magnetization due to the interaction between the spin
Fermi fluid is given by

Ma52
]Ea

]B

5E
2D

0 dv

p
]v Im ln@P0~v1B2 id!#

5F 1

p
Im ln@P0~v1B2 id!#G

2D

0

. ~80!
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The lower limit of this sum gives a contributio
2(1/p)Im ln$2D@ln(D/TK)2ip(11ñb)#%521. The final re-
sult for the fluctuation contribution to the magnetization
then

Ma~B!5211
1

p
Im lnFD1

2z02B

pq
lnS TKeipñb

B D G .
~81!

To obtain the total magnetization, we must add this to
result Mmft52S1mf(B) obtained from the mean-field
theory. The total magnetization, evaluated to orderO(1), is
then

~82!

where

mf~B!5
1

p H arctanF2z01B

D G2arctanF2z02B

D G J . ~83!

We can check this result by completely removing the f
mionic contribution. In the limitD→0,2z0→TK , M1(B)
and M2(B) develop discontinuities which precisely canc
to yield

M ~B!52S2
1

p
H arctanFN lnFTK

B G
2Sp

G1
p

2
J , ~84!

which is the residual magnetization of the spin-S Kondo
model ~see Fig. 4!.

FIG. 4. Showing the field-dependent magnetization for a Kon
model with z0.0. In this case, the Kondo effect is a single-sta
process. Inset shows the corrections to the magnetization de
from the residual interaction between the heavy fermion and s
fluid. These corrections are positive~ferromagnetic! at low tem-
peratures and remain small at all temperatures
e

-

,

Let us now restore a finiteD. The first termM1(B) rep-
resents the screening of the local moment by the Kondo
fect. M1(B) has the limiting values

M1~B!5H 2S21 ~B!TK!,

2S ~B@TK!.
~85!

The second termM2(B) derives from the screening effec
produced by the residual interaction between the Fermi
uid and the magnetic moment. Forz0.0, this can be rewrit-
ten

M2~B!5
1

p
arctanF 2Sp

QDp

2z02B
1N lnFTK

B G G . ~86!

At low fields, this contribution is small and positive, corr
sponding to an irrelevant residual ferromagnetic interacti
At 2z05B, this contribution passes continuously throu
zero, due to a change of sign in the residual interaction.
still higher fields, this correction remains small, and asym
totes to zero.

By contrast, ifz0,0, in this case the residual interactio
with the Fermi fluid isantiferromagnetic. Since 2z02B is
always negative, we can now write

M2~B!52
1

2
1

1

p
arctanF QDp

B22z0
1N lnF B

TK
G

2pS
G . ~87!

For small fields,M2(B)→21, so that this term constitute
an additional screening contribution to the magnetizatio
For small negativez, we can approximate this expression b

M2~B!52
1

2
2

1

p
arctanF 1N lnFTK*

B G
2pS

G , ~88!

where

FIG. 5. Field-dependent magnetization for a Kondo model w
z,0. In this case, the Kondo effect is a two-stage process.
corrections to the magnetization derived from the residual anti
romagnetic interaction between the heavy fermion and spin fl
These interactions grow to21 at low temperatures, correspondin
to a second screening process at the renormalized Kondo tem
ture TK* .
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TK* 5TKe2pqD/2z05TKe2pq cot$p@ ñf* 21/2#% ~nf* . 1
2 !,

~89!

which corresponds to a second screening process, gove
by the second-stage Kondo temperatureTK* ~Fig. 5!.

An alternative way to derive the same result is to consi
how the Schwinger boson field condenses in an applied fi
The constraint associated with the bosonic part of the sp
written ~16!

2S5nb1
1

Q
u†u. ~90!
za
he
ic
ed

r
d.
is

In zero field, the Fermi fluid is unpolarized, and the magn
tization is given by the condensed part of the Schwin
Bose field. Suppose we apply a small field that condenses
b1 component, so that

bs5AMds11dbs , ~91!

then the constraint can be rewritten as
physical
ion in the
of these
t energy
2S5M1(
s

^dbs
†dbs&1

1

Q
^u†u& ~92!

or

M52S2(
s

^dbs
†dbs&2

1

Q
^u†u&. ~93!

Diagrammatically, these two contributions to moment reduction are given by

~94!

Of course, only the combination of the two terms is gauge-invariant, but by fixing the gauge, we can assign them each
meaning. The first corresponds to fluctuations in the direction of the local moment. The second represents the reduct
amplitude of the moment derived from the interconversion of spins into heavy fermions. We can compute the sum
diagrams by noting that they are generated by differentiating the RPA diagrams contributing to the fermionic zero-poin
with respect to the frequency:

~95!
cess
to

r-
cal

e
the
by
so that

(
s

^dbs
†dbs&1

1

Q
^u†u&52T (

v5 ivn

]

]v
ln@P~v!#52Ma ,

~96!

which enables us to identify the reduction in the magneti
tion with the fluctuations in direction and magnitude of t
local moment. In this way, we see that the fluctuations wh
screen the moment are given by

(
s

^dbs
†dbs&1

1

Q
^u†u&5H 1 ~nf* ,N/2!,

2 ~nf* .N/2!,
~97!
-

h

depending on whether a one- or two-stage screening pro
takes place. Although these results are only calculated
leading order in the large-N expansion, we expect the appea
ance of integer values for the screening is exact for a lo
moment.

IV. STRONG-COUPLING PICTURE OF THE TWO-STAGE
KONDO EFFECT

To gain a complimentary insight into the two-stag
Kondo effect, it is useful to examine this phenomenon in
strong-coupling limit. Imagine a local moment, described
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an L-shaped representation of SU(N), denoted by the Young
tableau

~98!
lly
h
in
-
in
a
th

,

th
t
n

In the ground state of the strong-coupling Hamiltonian

HK5
J

N
c0a

† Gabc0b•S, ~99!

electrons form a singlet with the fermionic part of the sp
creating a partially screened moment, denoted by a Yo
tableau with a completely filled first row.
~100!
e-
tic,
e
t is
ion

e-

of

t
curs,
where in this example we have takenN58. Since the first
column of the tableau is a singlet~with N boxes!, it can be
removed from the tableau, leaving behind a partia
screened spinS2 1

2 , described by a row Young tableau wit
2S21 boxes. If we now couple the electron at the orig
with electrons at site ‘‘1’’ via a small hopping matrix ele
mentt!J, then the virtual charge fluctuations of electrons
and out of the singlet at the origin will lead to a residu
coupling between the partially screened moment and
electrons at the neighboring site ‘‘1,’’

H ~1!5
J*

N
S* •c1a

† Gabc1b , ~101!

whereJ* ;t2/J. In the SU~2! Kondo model, only electrons
parallel to the residual momentS* can hop onto the origin
which gives rise to a ferromagnetic couplingJ* ,0. In the
SU(N) case, electrons can hop provided they are not in
same spin state as electrons at the origin. The sign of
couplingJ* depends on the number of conduction electro
nc5n2nf* , bound at the origin. If thenc5N21, electrons
l
e

e
he
s

hopping onto the origin will have to be parallel to the r
sidual spin, so in this case the coupling is ferromagne
J* ,0. By contrast, ifnc!N, there are many ways for th
electron to hop onto the origin with a spin component tha
different to the residual moment, so the residual interact
will be antiferromagnetic,J* .0. By carrying out a large-N
calculation in the strong-coupling limit or by making a d
tailed strong-coupling calculation for SU(N), we are able to
confirm that forN.2, J* changes sign when the number
bound-conduction electrons is less thanN/2, and in the
large-N limit, it is given by32

J* 52
t2

J~12ñf* !ñf*
F 1

2 2ñf*

12ñf* 1ñb
G , ~102!

whereñf* 5nf* /N and ñb52S/N.
When nf* .N/2, 4J* .0, the strong-coupling fixed poin

becomes unstable, and a second-stage Kondo effect oc
binding a furtherN21 electron at site ‘‘1’’ to form a state
denoted by the tableau
~103!
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corresponding to a residual spinS** 5S21, M52S22.
This final configuration is stable, because an electron at
‘‘2’’ can only hop onto site ‘‘1’’ if it is parallel to the un-
quenched moment.

We see that our supersymmetric approach permits u
examine the consequences of this two-stage Kondo ef
starting from weak coupling. Translated into the wea
coupling language, the two vertical columns of the You
tableau will correspond to two separate screening clouds
very different radii,

l 5
vF

TK
and l * 5

vF

TK*
, ~104!

respectively. It is remarkable that a pointlike complex imp
rity can give rise to two separate length scales in this wa

V. DISCUSSION

In this paper we have developed a spin representation
interpolates between the Schwinger boson and Abriko
pseudofermion representations, and which exhibits the p
erty of supersymmetry. As an exploratory exercise, we h
applied the method to a class of single-impurity Kondo mo
els, where we have been able to examine how local mom
behavior emerges as the strength of Hund’s interactions
tween the spins is systematically increased. Suppose we
sider a spin representation withQ boxes and examine how
the ground state evolves as we progressively increase
moment fromS5 1

2 to S5Q/2. One of the surprising discov
eries is that there are in fact two routes by which the m
netic moment emerges from the Fermi liquid~Fig. 6!, as
follows.

~i! One-stage Kondo effect, whereQ,N/2. Once the spin
Sexceeds one-half, a partially screened moment is gener
The low-temperature fixed point is described by the coex
ence of a Fermi liquid and a moment of spinS* 5S21/2,

FIG. 6. Two scenarios for the emergence of magnetism as
size ofS is progressively increased.~a! Single stage Kondo effect
where for S.

1
2 , a partially quenched moment with spinS* 5S

5
1
2 . ~b! For Q.N/2, the initial emergence of a local moment

accompanied by a two-stage Kondo effect, where, providednf*
.N/2, the spin is screened fromS to S** 5S21.
ite

to
ct,
-

of

-
.

at
v
p-
e
-
nt
e-
n-

he

-

ed.
t-

with a slowly vanishing ferromagnetic coupling between t
two degrees of freedom.

~ii ! Two-stage Kondo effect, whereQ.N/2. At interme-
diate scales, the moment quenches to a spinS* 5S2 1

2 , but
the residual coupling to the conduction sea is now antifer
magnetic, and a second-state quenching occurs to a
S** 5S21. When the starting spin isS51, a new singlet
phase is formed, with one additional fermionic bound sta
~We label this phase FL* in Fig. 6, but do not know at this
stage if this state is a Fermi liquid.!

We would now like to discuss the future extension of th
approach to a Kondo lattice. Two decades ago, Doniac14

argued that the properties of a Kondo lattice should dep
critically on the ratio of the Kondo temperature to the RKK
interaction k5TK /JRKKY . Heuristically, the Kondo and
RKKY scales are related to the Kondo coupling const
according to

TK;De21/Jr, JRKKY;J2/D, ~105!

whereD is the conduction-band width. Doniach pointed o
that k grows with the size ofJ, arguing that for smallJ, the
system is expected to be antiferromagnetically ordered,
for large J, the magnetism melts to form a ‘‘heavy’’ Ferm
liquid. Unfortunately, our theoretical understanding is
present limited only to a discussion of energy scales,
little is known about the nature of the transition betwe
these two limiting cases.

Can we shed light on these issues by extending the su
symmetric approach to the lattice? The mean-field solut
will in general give rise to a heavy Fermi liquid which co
exists with a lattice of underscreened moments. The Fe
surface volumeVFS will depend on the sizeM of the under-
screened moments,

VFS

~2p!3 5~nc1nf* !/N5~nc1Q2M !/N. ~106!

At the mean-field level, these moments can point in any
rection, but once we include the effects of the Gaussian fl
tuations of thea fermions, two effects will take place.

~i! The local moments will be partially screened by t
Kondo effect with the heavy electron fluid.

~ii ! The fluctuation free energy will be sensitive to th
direction in which the spins condense.

Typically, we expect the fluctuation free energy will b
lowest in an antiferromagnetic spin configuration, where,
instance,

^bs~x!&5A2M @cos2~Q•x/2!ds11sin2~Q•x/2!ds2#.
~107!

This dependence on the relative orientation of the mome
defines a renormalized ‘‘RKKY’’ interactionJRKKY* . By tun-
ing J, we will be able to examine how the RKKY interactio
is renormalized by the Kondo effect and how the stagge
magnetization depends on the screening process,

M52S2m~J!,
~108!

m~J!5(
s

^dbs
†dbs&1

1

Q
^u†u&,

e
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wherem(J) is a continuous function ofJ. The critical value
whereM vanishes~at smallS! defines the point where th
magnetism is eradicated by the Kondo effect. In this way,
hope to be able to carry a model calculation of the ph
diagram first envisaged by Doniach.

An open question is whether this new approach can s
light on the nature of the quantum critical point separat
the magnetic and the paramagnetic phases of the Kondo
tice. Ultimately we are interested in the properties of
Kondo lattice of elementary spins corresponding to one
in Young’s tableau. This large-N approach can provide in
formation about the properties of a class of L-shaped re
sentations. If there is any universality associated with
emergence of magnetism at absolute zero, then perha
large-N approach will enable us to triangulate on the prop
ties of a real Kondo lattice~Fig. 7!.

One of the interesting aspects of the supersymmetric
proach is the appearance of fermionic ‘‘phase fluctuation
between the spin and the heavy electron fluid: it is th
fluctuations, described by the gauge fermiona, which medi-
ate the interaction between the magnetic condensate an
heavy electron fluid. In the case where the ‘‘mass’’ of th
excitation,z is positive, the gauge fermiona can be inte-
grated out of the problem, and the interaction between
magnetic and electron fluid could be treated as a point in
action. However, whenz is negative, thea fermion gives rise
to a new bound-state. Will the same phenomenon occu
the lattice? This could lead to the possibility of two differe
kinds of fixed point.

~i! A Millis Hertz fixed point,8,9 where the weak ferro-
magnetic interaction between the magnetic and electron fl
can be treated as a point vertex. In this situation, the tra
tion will be described by the interaction between a Gauss
magnetic fluid and a well-defined Fermi surface.

~ii ! A non-Fermi-liquid fixed point, where the dynamic
fermion mediating the magnetic interaction becomes an
tive participant in the physics. If the gauge fermion dev
oped gapless excitations, then the decay of heavy ferm
into unquenched spins, described by the process

f s
2
bs1a2, ~109!

would lead to a phase with a novel kind of spin-charge se
ration.

These points will be examined in greater detail in a futu
publication.

FIG. 7. Illustrating the idea that the properties of a class
L-shaped representations will enable us to triangulate on the p
erties of a small-N Kondo lattice.
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APPENDIX A: OPERATOR EXPRESSION
FOR THE CAZIMIR

In this section, we prove that the Cazimir

S25~b†Gb1 f †G f !2 ~A1!

can be written

S25QS N2Ŷ2
Q

ND . ~A2!

To show this relationship, we use the completeness re
Using the normalization

Tr@GaGb#5dab, ~A3!

this is

Gab
l Gcd

l 1
1

N
dabdcd5daddbc . ~A4!

By using this to expand

S25~b†Gb1 f †G f !2, ~A5!

we obtain

S252
1

N
Q21~ba

†bb1 f a
†f b!~bb

†ba1 f b
†f a!. ~A6!

We can expand each term in this expansion as follows:

ba
†bbbb

†ba1 f a
†f bf b

†f a5nb~nb1N21!2nf@nf2~N11!#

5nb
22nf

21NQ1~nf2nb!. ~A7!

Also

f a
†f bbb

†ba52bb
†f bf a

†ba1nb . ~A8!

Combining these results, we obtain

S252
1

N
Q21~nb

22nf
2!1~N11!Q22bb

†f bf a
†ba

52
1

N
Q21~N11!Q1QS nb2nf2

2

Q
uu†D

52
1

N
Q21NQ2QS nf2nb1

1

Q
@u,u†# D

5QS N2Ŷ2
Q

ND , ~A9!

where we have used the result 2uu†5@u,u†#1Q to carry
out the last step but one.
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APPENDIX B: SUPERSYMMETRY OF LAGRANGIAN

In this appendix, we examine the transformation of t
Lagrangian

Lsusy* 5(
s

Cs
†S ]t1l1F z ]”a

]”̄a† 2zG D Cs1Q0a†]”a

~B1!

under the transformationCs→hCs , where

h5eiuQFA12hh̄ h

2h̄ A12h̄h
G Feiuz 0

0 e2 iuz
G ~B2!

is a general member of the group SU~1u1!. Under this trans-
formation,

Lsusy* →Lsusy* 1(
s

Cs
†S ~h†]th!1h†F F z ]”a

]”̄a† 2zG ,hG D Cs .

~B3!

When we expand the correction, we obtain

(
s

Cs
†~h†]th!Cs5(

s
Cs

† S i u̇Q1 i u̇zt31h̄]th

1F e22iuz]th

2e2iuz]th̄
G DCs ,

~B4!

(
s

Cs
†h†F F z

2z
G ,hGCs

5(
s

Cs
†F 2zhe22iuz

2zh̄e2iuz
GCs1Q~2zh̄h!

~B5!

and

(
s

Cs
†h†F F ]”a

]”a† G ,hGcs

5(
s

Cs
†F h̄]”a1~]”̄a†!h ~e22iuz21!]”a

~e2iuz21!]”̄a† h̄]”a1~]”̄a†!h
GCs .

~B6!

Combining Eqs.~B4!, ~B5!, and~B6!, we obtain

Lsusy* →(
s

Cs
†S ]t1l81F z8 ]” 8a8

]”̄ 8a8† 2z8 G D Cs

1Q0a8†]” 8a8, ~B7!

where l85l1 i u̇Q , z85z1 i u̇z , a85e22iuz(a1h), and
a8†5e2iuz(a†1h̄). The primes on the gauged derivativ

denote]” 85(]12z8) and ]”̄ 85(2]12z8). The Lagrangian
is thus gauge invariant under the transformation

Cs→hCs , V→hV,
e
l→l2 i u̇Q , z→z2 i u̇z , ~B8!

a→e2iuza2h, a†→e22iuza†2h̄.

APPENDIX C: EVALUATION OF FERMIONIC
MEAN-FIELD FREE ENERGY

We wish to calculate

F f52NT(
n

ln@l f1 iDn2 ivn#eivn01
, ~C1!

whereDn52D sgnvn . We shall regulate this sum by calcu
lating

F f52NT(
n

~ ln@l f1 iDn2 ivn#2@l f→l f1D# !eivn01
,

~C2!

which we rewrite as

F f522NT Re(
n>0

~ ln@j1 ivn#2 ln@j1D1 ivn# !ein01

522NT Re(
n>0

S lnF j

2p iT
1

1

2
1nG

2 lnF j1D

2p iT
1

1

2
1nG Dein01

, ~C3!

wherej5l f1 iD. Next, using the result

(
n>0

~ ln@b1n#2 ln@a1n# !ein01
5 lnS G@a#

G@b# D1
ip

2
~b2a!,

~C4!

this becomes

F f

N
522T Re lnS GF j1D

2p iT
1

1

2G
GF j

2p iT
1

1

2G D 1
D

2
. ~C5!

APPENDIX D: CALCULATION OF P„v…

We begin by writing

P~v!511S v22z

q DF~v!, ~D1!

where

F~v!5
T

N (
sn

Gf s~v1n!Gbs~n!. ~D2!

To calculateF~v!, we replace the discrete Matsubara sum
a Contour integral, to obtain

F~v!5
1

N (
s

E dz

2p i
n~z!Gbs~z!Gf s~z1v!, ~D3!

where the integral runs counterclockwise around the pole
the Green’s functions. Using the spectral decomposition,
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Gf s~z!5E de

p
Af s~e!

1

z2e
, ~D4!

this becomes

F~v!52
1

N (
s

E de

p
@nbs1 f ~e!#

1

v2e1lbs
Af s~e!,

~D5!

wherenbs5n(lbs) is the Bose occupancy. Now

(
s

E de

p

nbs

v2e1lbs
Af s~e!

5(
s

nbs

v2~l f s2lbs!1 iDn

5
2S

v22z1 iDn
52SGf~v1B!, ~D6!

where we have replaced 2z→2z02B, andGf( ivn)5( ivn
22z01 iDn)21 is the f propagator in the absence of a fiel
so that

P~v!512
v1B22z0

q
@Gf~v1B!h̃b1I #, ~D7!

whereñb52S/N and

I 52
1

N (
s

E de

p
f ~e!

1

v2e1lbs
Af s~e!

5 2
1

N (
s

E de

p
f ~e1msB!

1

v2e1l0
Af~e!, ~D8!

whereAf(v)5Im Gf (v2id). Now sinceN22 of the levels
are unshifted, to leading order in the large-N expansion, we
can setms50 in this expression. Also, sincelb5B in a
magnetic field, we can writeI 5I (v1B), where, atT50,

I ~v!5E
2D

0

de
Af~e!

p

1

v2e
. ~D9!

Combining these results together, we can write

P~v,B!5P0~v1B!, ~D10!

where

P0~v!512
v22z0

q
@Gf~v!ñb1I ~v!# ~D11!

is the zero-field form ofP(v). Going on to evaluateI (v),
we obtain
I ~v!5E
2D

0

de
Af~e!

p

1

v2e

5E
2D

0 de

2p i S 1

e2j
2

1

e2j* D 1

v2e

52E
2D

0 de

2p i H S 1

e2j
2

1

e2v D 1

j2v
2@j→j* #J

5
1

2p i H 1

v2j
lnS j

v D2
1

v2j*
lnS j*

v D J , ~D12!

wherej5TKeipñf , so that

P0~v!512
~v22z0!

q F nb

v2z
1

1

2p i H 1

v2j
lnS j

v D
2

1

v2j*
lnS j*

v D J G . ~D13!

Now by writing j* ei2pñf , whereñf5nf* /N, we can put this
in the form

P0~v!512
~v22z0!

q F ñb1ñf

v2j
1

1

2p i
lnS j*

v D
3H 1

v2j
2

1

v2j* J G . ~D14!

Since ñb1ñf5q, there are cancellations between the fi
two terms which give

P0~v!5F S 2 iD

v2j D2
~v22z0!

pq
Af~v!lnS j*

v D G .
~D15!

Another useful way to rewrite this expression is

P0~v!5F S 2 iD

v2j D2
D

qp
ReS 1

v2j D lnS j*

v D G . ~D16!

To make contact with the bosonic Kondo model, it is use
to split the first term into a real and an imaginary part, so t

2 iD

v2j
5DAf~v!2 iD ReS 1

v2j D . ~D17!

One can then move the second term above into the lo
rithm, writing

2 iD

qp
ReS 1

v2j D lnS j*

v D2 iD ReS 1

v2j D
5

2 iD

qp
ReS 1

v2j D F ln
TK

v
1 ipñbG ~D18!

to obtain

P0~v2 id!5Af~v!FD2
v22z0

pq S ln
TK

v
1 ipñbD G .

~D19!
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