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We develop a supersymmetric representation of spin operators which unifies the Schwinger and Abrikosov
representations of SM) spin operators, allowing a second-quantized treatment of representations of the
SU(N) group with both symmetric and antisymmetric character. By applying this to th&lSKiondo model,
we show that it is possible to develop a controlled treatment of both magnetism and the Kondo effect within
a single largeN expansion.

I. MOTIVATION FOR A NEW SPIN REPRESENTATION operator is represented in terms of BMrcomponent boson
b, [Fig. 4b)]; in the alternative “Abrikosov pseudofer-
Recent experiments on quantum phase transitions imion” representatiod’ the spin is represented by an
heavy fermion materials have led to a debate about how-component fermionf,,, in Fig. 1(a).
magnetism condenses out of the metallic state at absolute Here,I'=(I'%, ... I'M) represents thi = (N?—1)/2 in-
zero. Certain heavy fermion materials can can be tuned balependent SU{) generators. By combining®“Schwinger
tween the magnetic and the paramagnetic state through thmsons” together, one generatesyanmetricrepresentation
use of pressure or chemical doping:* The quantum critical of SU(N), denoted by a horizontal Young tableau wit8 2
point which separates these two phases is of great currebbxes [Fig. 1(b)]. Conversely, in the pseudofermion ap-
interest, in part because materials in its vicinity may becomegroach, Q<N spin fermions are combined to generate an
fundamentally new kinds of metat/ Heavy fermion mate- antisymmetricrepresentation of SU), denoted by a col-
rials contain a dense lattice of magnetic moments; convenamn Young tableau witlQ boxes[Fig. 1(a)].
tional wisdom assumes that the spins of the local moments Most cases of physical interest correspond to an elemen-
are magnetically screened and of no importance to the magary spin or a single box in the Young tableau. Unfortu-
netic quantum critical poirft-'° Recent neutron data contra- nately, to develop a controlled Feynman diagram expansion,
dict this viewpoint, by showing that the spin correlations atwe are obliged to consider a large number of such boxes,
the quantum critical point are critical in time, but local on anletting N—c keeping eitheig=Q/N or m=2S/N fixed. In
atomic scalé;**~*3 suggesting that unscreened local mo-the process of lettingl— o, some essential physics is lost.
ments emerge from the metallic state at the quantum criticabymmetric representations are ideal for treating magnetism,
point. where the ordered moment involves a highly symmetric con-
If it is indeed true that the magnetic quantum critical densation of spin bosons, but they lose all information about
points involve local moment physics, then a new theoreticathe Fermi liquid fixed point. Antisymmetric representations
approach is required. Traditionally, heavy fermion physics iscapture the development of the Kondo effect and heavy fer-
modeled using a Kondo lattice Hamiltoni&hdescribing the  mion bands, but magnetism is suppressed.
interaction between a bath of conduction electrons and an Various authors have tried to develop alternative repre-
array of local moments. One of the well-developed theoretisentations of the spin operatdand in this context one in-
cal methods for approaching this model is the lakye- teresting idea is to use supersymmetry to simultaneously ex-
expansiort>~*? where the idea is to use a generalization ofpress the bosonic and fermionic character of local
the quantum-mechanical spin operators, in which the undefmoment£®-27
lying spin rotation group is generalized from &) to
SU(N). The utility of this method derives from the fact that
in the limit N—oo, it provides an essentially exact, analytic
treatment of the Kondo lattice problem. Unfortunately, the T
way this procedure is carried out at present, magnetic inter- | | — I l
actions are suppressed as A2torrection, beyond the ho- Q
rizon for a controlled computation. In this paper, we show 28
how we can overcome this shortcoming by the use of a su- 1
persymmetric spin representation for local moments.
The theoretical description of interacting local moments 85— fi il Sy = bt Tusbs
poses a fundamental problem: the Pauli spin opelatoes iy i) siy 1= 38
not satisfy Wick’s decomposition theorem, which preempts
its use in a Feynman diagram approach. The traditional so- FIG. 1. Young tableautRef. 23 for (a) antisymmetric andb)
lution is to represent the spin in terms of either bosons osymmetric representations generated by the Abrikosov fermion and
fermions. In the “Schwinger boson” approaéh?*the spin  Schwinger boson representations, respectively.

(a) Antisymmetric (b) Symmetric
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Il. SUPER SPINS S=5+S,. (1)

W . | f spi tati hi By combiningQ=n;+n, bosons and fermions together, we
e now examine a class of spin representations whiclys o -0 “| shaped” representations of $U)( For each

preserve both symmetric and antisymmetric correlationsepgice ofn, andn,,, we generate two irreducible represen-
Consider the spin operator that is a summeffermions and  tations. For example, we can combine one fermion and two

n, bosons, given by bosons as follows:
|
f ® |b|b| = b |b & f |b|b
f
448':1/2 » “S=3/2»

For SU?2), these correspond to a spjrand a sping repre-
sentation. To uniquely parametrize areducible represen- Y = 2 0 -2
tation, we need to fix the Cazim#=3.,S,S,. Consider an

L-shaped representation of SN of width w and heighth:
w
h | We now seek to cast bot andY in an operator lan-
— guage. In terms of the boson and fermion operators, the Ca-
l - zimir can be written
o $=5+%)7 )

If the generators of the fundamental representation are nor-
malized according to TE2I'®]= 6", then the expression If we expand this expressiofAppendix A by using the
for the Cazimir of an arbitrary irreducible representationcompleteness relation

i528.29
a a _
NG5, =NSaySp5— 8apbsy, (7

Sz:Q(N;— Q) £ m(m+1-2)), @ we are able to express the Cazimir in operator form:
j=1h o
éz:Q(N—jﬂ— 9) ®)
wherem; is the number of boxes in thieh row from the top N/’
andQ is the total number of boxes. For an L-shaped Youn
tableau, (n;,m,, ... my)=(w,1,1...,1), sothat Swhere now
Q=n¢+ny ()
, QIN?-Q) .
S :T+W(W_ 1)—h(h—-1). 3 fixes the number of boxes and
If we substituteQ=w-+h—1 andY=h—w, we then obtain i—'P—
V=n;—n,+—[6,6
F=Q(N-Y—QIN). @ Yt pled] (10

In this way, each irreducible L-shaped representation of

SU(N) is uniquely defined by the two quantiti€®, V), is the pperator measuring the asymmeétryw of the repre-
whereY can assume the values sentation. Here we have introduced the operators

t_¢t _pt
Y=-Q+1,-Q+3,...0Q0-1. (5) 07=Tgbg,  0=Dbafa. (3
If we wish to study a spin system described by g V)
For example, ifQ= 3, there are three irreducible representa-representation, then we must restrict our attention to states
tions: | in the Hilbert space which satisfy
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Qly)=Qly), {6".6,=Q. (13)
j}| D =Y| ). (12) The spin operator commutes with these generators,
Curiously, although this constrains the total number of [S,+S,0]=[S,+S,60"]=0, (14

bosons and fermions, the differeneg—n; is only partially

constrained, reflecting the fact that bosons and fermions casp that the representation is supersymmet@cand ) also

interconvert without altering the representation. commute withd and 8", and these are the Cazimirs of this
When we represent spins in terms of bosons and fermiongjroup. From Eq(13), we see that operato3®=(1/Q) 4"

each box in the Young tableau is associated with a fermiomnd P'=(1/Q) 879 satisfy P,+P;=1: they are the projec-

or boson, where fermions occupy the column, bosons th&éion operators which, respectively, project out states with

row. The corner of the tableau can contain either a boson dtbosons” or “fermions” in the corner of the Young tableau.

a fermion. The operatof’ converts the corner box from a In this way, we see tha®=Py,— P; is +1 or —1, depending

boson into a fermion, whil& converts it back again. These on whether the state has a boson or fermion in the corner of

operators are the generators of a “supergroup”(BU,>°  the representation. For example, the representation given by

with the algebra (Q,Y)=(3,0) can be written in two ways:
ot
b |b f b
f 4 f

P=1 P=-1
nf—nb:—-l nf—nbz
Y =0 Y =
eg LI —blf0) B (F1£1)10)

The invariance of the representation under the boson-fermiomoment or it can produce “fermionic” singlet bound states.

transformation is a manifestation of the supersymmetryTraditionally, one of the above constraints is dropped: in the

When a boson is converted into a fermion, the change impproach now adopted, both constraints are simultaneously

n{—n, is compensated by the change i so that) is  applied.

invariant. There are two ways in which we can use the new con-
We can alternatively write the constraints in terms of thestraint. We can work within a “grand-canonical” ensemble,

heighth=(Q+Y+1)/2 and widthiv=(Q— Y+ 1)/2 of the whereQ is fixed, but) is associated with a chemical poten-
tableau: tial,

H' =H+ ). 17

By tuning ¢ from negative to positive values, the ensemble is
driven from an antisymmetric to a symmetric representation.
In fact, since the Cazimig?=Q[N—Y—(Q/N)] is linearly

) ) (15 related to, a finite value of is physically equivalent to the
For the fundamental representation, described by the statejntroduction of Hund’s interaction into the Hamiltonian.

n
QSsznb—I-é@Ta l

~
LI

-4—]_—-»

4 , _i )
lo) = f110) = b} |0) 1 19 H'=H- ¢S, (18)

where a constant terni(N—Q/N) has been omitted. The
nf =2S=1. Independent of the way we represent the spinsupersymmetric spin representation thus enables us to pro-
some bosonic and fermionic character is always present, rgressively increase the strength of the magnetic interactions
flecting the fact that a spin can give rise to a “bosonic” local by tuning the spin representation.
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Alternatively, we may work with a definite representation, two-stage Kondo effect then takes place; richer conse-

where)=Y. The partition function for this model is quences are likely in a lattice model. N .
Ouir first step is to write the constrained partition function
Z[Qo,Y]=Tr PQO,Ye*BH], (199  as a path integral,
WherePQon projects out the states with definiz=Q, and 7= j ,D[C,f1b,)\1g]e—fg[ﬁ(ﬁHK+£SUSyf()\QO+{Y)]d7,

Y=Y. By specifying these two constraints, we are still work-
- g : (22

ing in an ensemble where the individual number of fermions ]

or bosons are not separately constrained, and in this way wehere ¢ and f denote Grassman field®, A, and { are

are able to develop a supersymmetric field theory. We ca@-number fields, and we have divided the action into three
implement these two constraints by carrying out a Fourieterms:

transform over the chemical potentialsand { associated

with Q and), respectively, Lo=2 ¢} (9,+ €)Cke
ko
d\dg - -
Z[Q01Y]:f > T e AHTMQ- QW) J
(27iT) He=— NE [flcaChf g+ blc.chbgal, (23)

(20 ap

where both{=\y+ix and\=\y+iy are integrated along

an imaginary axisx,y €[0,27T]. Lous= 2 [f10.f,4+b1a,b,]+Ho+Hy.

I1l. APPLICATION TO THE UNDERSCREENED The first term describes the conduction electrons, in the sec-
KONDO MODEL ond term we have rewritten the local spin in terms of slave

fields, and the third term contains the machinery of the su-
persymmetric representation. We use a single notation for
To illustrate the approach, we develop it for the single-the field operators and thenumber fields that represent

A. Formulation of Lagrangian

impurity Kondo model, given by them inside the path integral.
Our next step is to formulate the Lagrangian in a form
Ho Hg Hy Hy that clearly exhibits the supersymmetry. We shall begin by

—— | p——

7 ~ "¢ castingLg,syin a form which is gauge-invariant under time-
H=2, eclacrat—cilopcp-S+N0+—03. (21)  dependent superrotations. It is convenient to combine the
koa N Qo slave fields into a single spinor,

Here, Hy describes the conduction electron skl is the ‘I’o:(b(;)* \P:rr:(f:rr'b:rr)- (24)
interaction between the conduction electron spin density, and . . .
the local moment, where! =n_ ¥25,c | creates an elec- USINg this notation,

tron at the site of the local momefris=no. of site$. Hg 2¢

andHy impose the constraint§Note the way in whictHy Lows= 2 W AN+{73]V,— o) 6'0, (25

has been written: by multiplying the operatdrby Q, we 7 °

cast it in a form which is unchanged upon normal order-where 73 is @ Pauli matrix. Since the starting Hamiltonian
ing: Oy=0y:. By writing it in this way, we can immedi- and each of the constraints commutes with the supergenera-
ately translate the fields to their coherent state representatiofps: the full Lagrangian is invarianiAppendix B under
Inside a path integral, whe@=Q, is imposed, we are then UMe-independent superrotatiotis,—g¥,, where

able to replace (Qy)QY—.] =y 7
To date, the one-channel Kondo model has been studied g= _ \/—_ (26)
in the largeN approach for completely symmetfcand - 1=n7

completely antisymmetrﬁ representations . For the lat-  is an element of the supergroup Ql1). The quantitiesy

ter, the local moment is quenched to form a local Fermiand 7 are conjugate Grassman numbers. If we make this
liquid; for symmetric representations the si8nis only par-  transformation time-dependent, the derivative terms become
tially screened by the Kondo effect to form a sf@r 3. By

tuning the representation from the one limit to the other, we VoW, —Vild.+(9'9,0)]¥,. (27)

are able to examine how the local Fermi liquid interacts WithExpanding the second term, we obtain

the emergent local moment as the local moment grows. For

fully symmetric representations, it is known that the residual toot + _ _

Fermi liquid decouples from the partially screened ; Vo(9'9:9)V,=0"0:7+ 7590+ Qond 7, (28)
moment? One of the surprising discoveries of this study is
that in intermediate representations, the heavy Fermi quuin
and the partially screened moment can become antiferromag-
netically coupled and the strong-coupling fixed point be-tegral. SinceZ is unchanged by this change of basis, we can
comes unstable. We shall see that in this simple model, mtegrate over alg(7),

here we have replacel, ‘I’Z\I’U—)QO inside the path in-
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- where the ‘I is required to give the correct amplitude for
:J' D[?)ﬂ?]f D[c,f,b,\,{] the exchange of the gauge fermion and
Xeffg[£+ 0T 0, m+70,0+Qund,mldr NN = Gb(il/n) = (il/n - )\b)—l
------- o = Gyiwn) = (twn — Af) 7!
jD[C,f,b)\{]eXp[ f c——a*a 0)d ] (i) = (wn = Ay) a

(29 represent the propagators for spin bosons and éhectrons.
The mediated bare interaction between the spins and the
By absorbing the additional term into a redefined heavyf electrons is then

* T 1 T
Lsusy:E l[fa[,97+)\+§7-3]\1107 60 (‘97+2§)0a
a 0
(30)

the Lagrangian becomes invariant under time-dependent su-
perrotations. The first term uj‘,sus describes the level split- |t is a rather unique feature of this kind of approach that the
ting between the bosonic and fermionic components of thgpin interactions are carried by fermions rather than bosons.
spin. The second term describes a residual interaction be&ur final form forggusycan now be compactly written

tween the spin and heavy electron fluid. We can factorize
this term, to obtain da

’C:usyzz \Pjr
1 o - {
——60%9,+20)6 (36)
Qo

¥, +Qpa'da

4
I N+|—
da’

where we have defined(+2{)=d, (—d,+ 2§)EE

(942 / 3 )
—Qoa'(0,+2{)a As our next step, we factorize the Kondo interaction term

Hy HK ,
+2 [flbo(d. 420 a+ (9. +20)bLf,]. He—HE=> [(cIVE, +Vilc,)+(clgb,+¢blc,)]
ag (31) > g g g o
The first term tells us that the field represents dynamical i E(VV+$¢) 37)

fermion with the commutation algebfar,a}=1/Q,. This
spinless particle mediates the interaction between the spin
and the heavy electron fluidd, defines the vertex for the whereV is a complexc-number field and is its fermionic
decay proces$,—b,+ a. Notice that since the Schwinger partner. If we now introduce

bosons are neutral, the fermion is a spinless, singly

e . \Y; S
charged excitation. To represent this exchange process, we V= |, V'=(V,¢), (38
denote the propagator for the fermion by the Feynman ¢
diagram then the transformed Lagrangian takes the fofhe £,

+ Lyt Hk » Where

TOO0O0000 = [@,(iwn = 20170 @2

_ +
ﬁo—kz Cko( 771 Ci) Cr s
ag

The vertices which interconvert the heavy electron and spin

i N
bosons will be denoted by He=3 [Wive, +chViw, ]+ jVTV, (39
g | 2 ; da .
W Lia=2 VI o, +N+]|— Y _+Q,a' da
susy ~ o o’aT —§ Q
,’; Let us briefly examine the gauge invariance of this Lagrang-
o = (0, + 2¢) = i(2¢ — twn), ian. If
®
hzgei(HQ“’éTS) (40)
o ¥, is a general SW|1) matrix, whereg takes the form(26),
/ then under the gauge transformatibn—hv ., V—hV, L,

(33)  andH are invariant, but’g,, becomes
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{ da N N
L 2 \Iff,h*(a,ﬂw R hW +Qqa’ da.
T o - , .
(41) L= g
When we expand the first terfdppendix B, we find that
, 1N N
LaqgNLaa = LNl a' ], (42
where ' =\+ifq, {'={+i6,, and a'=(a+n)e 2%, ~ =
so L is invariant under the gauge transformation,
N
V,—h¥v, ., V—h), 2 4
A/N)(IN)=0()
A—=N—ibg, {—={-i6;, (43 FIG. 2. Magnetic interaction between two spins at sitend
" " . within the current approactiNote that wherv(>0, thef fermion
a—e?a— 7, a'—e 20%qT— 7. can propagate from site to sitéThe factor (/N)* associated with

) ) ) ) o the Bose condensate enhances the magnetic interaction by a factor
This gauge invariance leads to bosonic and fermionic zergf N2, so that it appears as the first in a series of RPA diagrams
modes. To eliminate them, we must carry out a gauge-fixingissociated with the Gaussian fluctuations of ahfermion.

procedure. We can always parametrizén the form _ o o ]
wherez, is a unit spinor. The magnetic interaction between

Vo Voe' Pt o) spins at different sites is given by Ruderman-Kittel-Kasuya-
v=h ol- 0 ' (44) Yosida (RKKY) diagrams(Fig. 2). The factors ofyN asso-
ciated with the Bose condensate produce an intersite mag-
or written out explicitly, netic interaction of order O(1): a factor of N2
enhancement. These magnetic corrections appear as part of
(V — af< vi- 777) (45) the Gaussian fluctuations of tlefermion, and by calculat-
¢ -n ) ing them we are able to carry out a controlled treatment of
. magnetism and the Kondo effect.
where 6;= 0o+ 6, and Vo= \VVV+ ¢¢ is real. This trans- J
formation uniquely specifies botlh=—(Vy/V)¢ and the B. Mean-field theory

phase factor ane'?=V/|V|, but does not specify,= o
—0,. We shall adopt a gauge choice whelg=0. By ap-
plying the gauge transformatidd3), we can absorb the fer-
mionic fluctuations inV into a redefinition of the fields. The
gauge-fixed hybridization is now

To illustrate this kind of calculation, we develop the ma-
chinery for the single-impurity model. Although there are no
intersite magnetic interactions, the machinery of the super-
symmetry is needed to compute the magnetic interaction be-
tween the partially screened local moment and the Fermi
NV% liquid in the single-impurity model. The techniques that we
—_ (46)  now illustrate can be generalized to the lattice.

J Our first step is to formally integrate out the conduction
(c) and the slave fieldsf(b),

Hy=VoX, [clf,+flc,]+

With our gauge choiced,=0, the variable\{(7)=A+¢

+i6; becomesdynamical but the variablen,=A—{+i6, s
=\—{ remains a time-independent integration variable. In Z:f Dla,V,\,f]e ™,
this gauge-fixed form of the Hamiltonian, the interaction be- (49)

tween the Fermi and spin fluids is entirely contained within
Lgusy and it is here where we should look if we are to obtain
new physics.

In the existing largeN approach to the Kondo model,
magnetic interactions are aN¥ correction to the mean-field
theory, an order of accuracy that is beyond current theoreti- S @, N, 1= —STrIn[d,+ N+ {73+ 3]
cal approaches. A supersymmetric approach enhances the
magnetic interactions by a factor df?, bringing them
within the realm of Gaussian fluctuations about a new
largeN mean-field theory. To carry out concrete calcula-
tions, we expand around a lar@fesaddle point of the path and

e*Seff: f D[C, f , b]e*fg(COJr,C:user HK)dT.

Since the second integral is bilinear in the fields, it can be
carried out to yield

+f:[Qoawa—>\Q0—gY]dr (49)

integral obtained by takinil— o, maintainingQ/N=q and Gu7—7') 0
Y/N fixed. By allowing the number of bosomg,=Nnj to S=3(7—7")=Vo(7)Vo(7') ¢ }
become large, the Bose field is able to condense and form a 0 0
magnetic moment: 0 da(7)
+8(r—1")| — 50
<b0>: \/MZO'NO( \/N)v (47) ( ) JaT(T) 0 ( )
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is the self-energy correction induced by the coupling offthe A, we can then determine tl@&(1) correction to the mean-

electrons to the conduction electraffisst term) and the mix-  field theory and the magnetic interactions within the

ing between the and b fields induced by thex fermion  medium.

(second termy where We begin by computing the saddle point, described by the
the mean-field Hamiltonian

1 - ,
G = _ e*lwn(rfr ) 51
olT—7") iwzn:,klwn—fk (51) T T T
: : = + +
is the local conduction electron propagatSiTr[ ] denotes Himt % €kCkoCho VO; [CofotToCol

the “supertrace,” defined as the difference between the fer-

mionic and the bosonic trace: +FA=np+ (A + )Nt —AQy, (54)
F a whereV, and\ are to be determined self-consistently. This
STr B B =T F]=TB]. (52) mean-field theory describes a Kondo resonance formed be-

] ] ] tween the conduction electrons and the antisymmetric part of
Our procedure is then to expand the effective action to quage gpin. The residual symmetric part of the spin is un-

dratic order around the saddle point, where, andV(7)  quenched and described by a sharp bosonic level at energy
=V are static, andr=0, Ap=\—{. For the moment, we shall work in the ensemble
_ 2 of definite £, examining how the mean field evolves as we
Ser V:A, £, @] = Sur+ O(OA%), (53 increase’ to favor representations that are increasingly sym-
where 6A denotes the fluctuation§yr= BFyr determines metric. If we define;=\+ ¢, N\p=N—¢, then in the pres-
the leadingO(N) mean-field contribution to the free energy. ence of the finite hybridization, the Green’s functions for the
By carrying out the Gaussian integral over the fluctuations irslave fields are now given by

NNV = Gy(ivy) = (s — Ap) ™

------- & = Giwn) = (fwn — Ap + iAsign(w,)) ™
(55

electron andp is the conduction electron density of states. EJF' ol " UNomT + 5 ST

whereA = 7V3p is the hybridization width of the conduction 7 ( IF aF) ( £ 1) ( D )
— w —In
The mean-field free energy is then given by

1
+ ——im(q—T"y)

Fro=NT>, {In[—Gp *(ivy)]—In[— G; L(i wy) e Jp
n ~
g 1 TKeiW(q_nb)
2 = - 4| = - 0 | =
+N&—)\Nq (56) w(Zﬂ'iT_l— 2 In( 27T 0,
. .

(59)
The first term is just the free energy of a free boson. Carrying , i o
out the frequency sum on the second téfppendix O, we ~ Where#(2)=4,InT'(z) is the digamma functio,=n,/N
obtain =[exp,/T)—1]%, and Ty =D exd —1/p,] is the Kondo

temperature. At zero temperature we may replade)
2

Fmit Vo —Inz, so theT=0 mean-field equations are then
N = PO+ Py + TG, (57) )
E=Tye ™A M), (60)
where
If the Bose field condenses, theq,=0, soA=¢, A;
z+D =2, andé=2¢+iA. In this case, we can solve for the size
2T of the unquenched momemt,= Nm=NT,, and the widtm
®1(z)=—2TReln ﬁ +D/2, of the Abrikosov-Suhl resonance with which it coexists:
2wiT 2

2¢
T_K) (§>§c):

1
(58 m=q— —cos !
®(2)=TIn(1—e 57, ™

are the fermionic and bosonic contributions to the enelyy, A=(T)?=(20)
is the conduction-band half-width, age= N ;+iA. If we dif- K '

ferentiate this result with respect toand\, we obtain where

(61)
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C. Calculation of the magnetization using Gaussian
4 fluctuations

One way to examine the consequences of this residual
coupling on the single-ion Kondo effect is to compute the
field-dependent magnetization of the ground state. The appli-
cation of a field provides a controlled way of examining the
crossovers associated with screening processes. To compute
the magnetization, we need to introduce a magnetic field and
H:ED calculate the field-dependent ground-state energy, including
the effect of the Gaussian fluctuations around the mean-field
theory. For SUN), there areN—1 ways of introducing the
magnetic field. We shall use the form

Hg=—B2 My(Nie+Np,), (65)

0

FL
wherem; = —1, m,=1. With this choice, the field splits off
0 ‘ two bosonic and two fermionic states from the othét (
B 5 0 1 —2) levels.
YTk

The mean-field free energy in a field is then given by

FIG. 3. Top: magnetization of partially screened local moment
as a function of. Bottom: Phase diagram for the supersymmetric NVS
impurity Kondo model, showing how the representation of the local F [ B]= E [P(&,)+DPp(Npy) ]+ 5 AQo— Y,
moment evolves ag is increased. Shaded area indicates under- v
screened region. Fof<0, the underscreened region involves a (66)

two-stage Kondo effect.
whereé,=&—Bm,, \,,=\,—Bm,. To calculate the mag-

_ netization, we must differentiate the free energy with respect
to=(Twl2)cod mq) (62) to B. (Since the Free energy is stationary with respect to
corresponds to a critical value of Hund’s interaction beyondchanges ir\ and¢, we do not have to worry about how these
which the local moment develops an unscreened componerfields change with respect ) The magnetization is then
There are three regions:
M=ny +(np—ny)

1 27 P A “
m={ 1- —cos?! il 1>2¢ITy>cogmq) (63) A A
T K =25+— '[anl(—)—tan1 —”
0, cog7q)>20/Tk. m By B—Ay (67)

corresponding to an unscreened, partially screened, and ful
screened local moment. Figure 3 shows the mean-field pha
diagram.

ﬁfpe first term is the residual unquenched moment, the sec-

ond term represents the spin-polarization of the Kondo sin-
Next, let us consider the residual interactions between th Iei. Techn|<t:_ally, tvr\]/etshould Ing thl's Tetrmfwnh t:]hec(;)ther

unquenched local moment and the Fermi liquid. The con- (1) corrections that we need to calculate from the Gauss-

: . . ; fluctuations. The mean field only reliably predicts the
straint term enerates the residual interaction lan .
£V g terms of ordem, and thus to this order,

2
H|=—Q—i2 (F7by) (0], fy0) (64) M=2S+0(1). (68)
between the heavi/electron and the unscreened moment.To calculate theD(1) term, we need to include the zero-
Conventional wisdom, based on the s@rikondo model, point corrections to the ground-state energy.

supposes that such residual interactions are always ferromag- There are two types of Gaussian fluctuation around mean-
netic. For{>0, this is indeed the case, and the fixed pointfield theory: bosonic fluctuations iW, A, and ¢, plus the
described by the mean-field theory is thus stable. By confluctuations of thex field. Fluctuations inv and\¢=\+¢
trast, if {<0, then the residual interaction @ntiferromag- are associated with the interactions in the Fermi liquid.
netic The presence of such terms is unexpected. We shalthese terms renormalizen;(B) and produce an order
see that for the impurity, this leads to a two-stage KondoO(1/N) correction to the magnetization. Fluctuationsig
effect. In the single-impurity model, the conditigr<0 cor- =\ —¢ renormalize the entropy of the free moment, and do
responds to the requirement that >N/2, in other words, not produce any correction to the unscreened moment. The
the requirement that the antisymmetric component of thenly O(1) corrections to the magnetization are those associ-
spin representation is more than half-filled. ated with the fermionic fluctuations. The Lagrangian for
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these fluctuations is given by
L,=00a"(d.+2)«
Hy
b oo, 200+ a3, 420b1,] (€9

In a field, the number one boson condenses, soxthat 0. To fulfill the constraint on the Fermi fieldsf = const, we require
that\;=\p;+2¢+ B is field-independent, which implies that in a field 22{,— B.
When we expand the effective acti®y to Gaussian order in the field, we obtain the correction

sa:—f d1d2a"(1)D " Y(1-2)a(2), (70)

where

—D Y(1-2)=Qq(9,+20)—(9,+20)*TH(1)6%(2))

=Qo(9,+20) = (8,+20)?T2, Gin(1—2)Gp,(2—1) (70)

is the inverse propagator for thefermion. Written out both diagrammatically and in the frequency domain, this is

where

T
O(w)= 52 Grolw+1)Go(v). (73)
It proves convenient to factoriZé ~*(w) as follows:

D™ H(@)=Qo(w—2{)P(w), (74

where

w—2¢,

Plw)=1+ D (w). (75)

A detailed calculation oP(w) at zero temperaturéAppen-
dix D) yields

P(w—i8)=Py(w+B—id), (76)
where
Po(@)=Af(w)| A— “’;zg" ( In%ﬂw’ﬁb) 77)

is the zero-field expression fd?(w) and A¢(w)=1m G¢(w
—i0) is the zero-field-spectral function.

Now the free energy associated with the Gaussian fluctua-

tions in « is given by

— N[i(2¢ — w))*®(w) (72)

Fo=—TX {IN[—D Yiwy)]-IN[Qe(2L—iwy)]}e“n®”

=—T> In[P(iw,)]e“°", (78)

where we subtract the free energy of the auxiliarfield in

the absence of interactions to avoid overcounting. Carrying
this sum out by contour integration, and taking the zero-
temperature limit, the zero-point energy is

B 0 dw ]
Ea——fﬁD7lmIn[P0(w+B—|5)], (79

where we have inserted the field dependence by replacing
P(w)—Py(w+B). Differentiating this with respect to the
applied magnetic field, the screening contribution to the
magnetization due to the interaction between the spin and
Fermi fluid is given by

IE,
“ 9B

0 dw )
=f —3d, IMIN[Py(w+B—i6)]
-D T

1 0
:[—Imln[PO(erB—ib‘)] . (80)
m -D
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FIG. 4. Showing the field-dependent magnetization for a Kondo ~FIG- 5. Field-dependent magnetization for a Kondo model with
model with £,>0. In this case, the Kondo effect is a single-stage ¢ <0- In this case, the Kondo effect is a two-stage process. The
process. Inset shows the corrections to the magnetization derivetP!Tections to the magnetization derived from the residual antifer-
from the residual interaction between the heavy fermion and spifi®™agnetic interaction between the heavy fermion and spin fluid.

fluid. These corrections are positivéerromagnetit at low tem- These interactions grow te'1 at low temperatures, corresponding
peratures and remain small at all temperatures to a second screening process at the renormalized Kondo tempera-

ture TX .
The lower limit of this sum gives a contribution

— (1/m)Im In{=D[In(D/TQ) —im(1+Fi)}=—1. The final re- Let us now restqre a finitd. The first termM 1(B) rep-
sult for the fluctuation contribution to the magnetization isfesents the screening (.)f. the local moment by the Kondo ef-
then fect. M4(B) has the limiting values
1 Zgo_B TKeiﬂ'ﬁb M (B)_ 25-1 (B<TK)1 (85)
Ma(B):—1+;ImIn A+ pore In( B ) . 1 2S (B>Ty).

(81)  The second ternM,(B) derives from the screening effect

To obtain the total magnetization, we must add this to théProduced by the residual interaction between the Fermi lig-
result M, «=2S+m(B) obtained from the mean-field uid and the magnetic moment. F&y>0, this can be rewrit-
ten

theory. The total magnetization, evaluated to or@¢d), is

then 1 2Sm
M, (B) = —
1 M, (B) 7Tarcta OAn T (86)

M(B)=[2$-1+mf(B)] %—_B+Nln§

MiiB) At low fields, this contribution is small and positive, corre-

’ . sponding to an irrelevant residual ferromagnetic interaction.
1 2{o—B [Tge'™® 1 = i ibuti i

- Iminl A+ o Il =X +ol=|, At 2{,=B, this contrlbutlo_n passes contmuo_usly th_rough

T g B N, zero, due to a change of sign in the residual interaction. At

still higher fields, this correction remains small, and asymp-
(82)  totes to zero.
By contrast, if{;<<O, in this case the residual interaction
with the Fermi fluid isantiferromagnetic Since Z,—B is
204+ B always negative, we can now write

B)= | arct “arctan 22|l (a3
my(B) = —1 arctan— arctan——| . (83 QA

We can check this result by completely removing the fer- My(B)=— E + iarcta . (87
mionic contribution. In the limitA—0,2{,— Tk, M1(B) ™
and M,(B) develop discontinuities which precisely cancel, For small fields,M,(B)— —1, so that this term constitutes
to yield an additional screening contribution to the magnetization.
For small negative, we can approximate this expression by

where

T
NIn—K

&

+Z , (84) 1 +NIn

2Sm 2 1
M3(B)= - 5~ —arcta) ——=—|, (89)

M(B)=2S— — | arcta
a

which is the residual magnetization of the s@rKondo
model (see Fig. 4. where



3862 P. COLEMAN, C. P]PIN, AND A. M. TSVELIK PRB 62

Th=Tee m48/2o— T, g~ cot{n[Rf — 1/2]} (n¥>1), I_n zero f_ield,_ the Fermi fluid is unpolarized, and the magne-
(89) tization is given by the condensed part of the Schwinger

) ) Bose field. Suppose we apply a small field that condenses the
which corresponds to a second screening process, governs(lj component, so that

by the second-stage Kondo temperattfe (Fig. 5).
An alternative way to derive the same result is to consider
how the Schwinger boson field condenses in an applied field.
The constraint associated with the bosonic part of the spin is L
written (16) b,=\M8,,+ b, , (92)

1
_ ~ ot
2S=np+ Q 6°0. (90) then the constraint can be rewritten as

2S=M+ >, (sblsb )+ éw* 6) (92)

or

M=2S—>, (sblsb,)— éw* 6). (93

Diagrammatically, these two contributions to moment reduction are given by

5(8bL3br) + 5(0'0) =

(94

Of course, only the combination of the two terms is gauge-invariant, but by fixing the gauge, we can assign them each physical
meaning. The first corresponds to fluctuations in the direction of the local moment. The second represents the reduction in the
amplitude of the moment derived from the interconversion of spins into heavy fermions. We can compute the sum of these
diagrams by noting that they are generated by differentiating the RPA diagrams contributing to the fermionic zero-point energy
with respect to the frequency:
et

01w, (@5

so that
depending on whether a one- or two-stage screening process

> (sblsb,)+ £(6*6>=—T > im[p(w)]:_Ma, takes place. Although these results are only calculated to
o 7 Q 0=Tw, @ leading order in the largblexpansion, we expect the appear-
(96)  ance of integer values for the screening is exact for a local
moment.

which enables us to identify the reduction in the magnetiza-

tion with the fluctuations in direction and magnitude of the
local moment. In this way, we see that the fluctuations which'V- STRONG-COUPLING PICTURE OF THE TWO-STAGE

screen the moment are given by KONDO EFFECT

1 (n*<N/2), To gain a (_:omplimentary ir!sight_ into the two-stage
97) Kondo effect, it is useful to examine this phenomenon in the

1
> (sblsb,)+ = (6T6)=
o < ) Q< ) 2 (nf>N/2), strong-coupling limit. Imagine a local moment, described by
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an L-shaped representation of 3U)( denoted by the Young In the ground state of the strong-coupling Hamiltonian
tableau

~— 25— J
Hg= N CgaFaBCOB' S, (99
T LT
S = n*t
b electrons form a singlet with the fermionic part of the spin
l - creating a partially screened moment, denoted by a Young
L (98)  tableau with a completely filled first row.
|
[ [ 1] 25 —1
S*= (I, +8)= N = [(TT1] (100
Co]
ICo |
ol

where in this example we have takdh=8. Since the first hopping onto the origin will have to be parallel to the re-
column of the tableau is a singléwith N boxes, it can be  sidual spin, so in this case the coupling is ferromagnetic,
removed from the tableau, leaving behind a partiallyJ* <0. By contrast, ifn;<N, there are many ways for the
screened spis— 3, described by a row Young tableau with electron to hop onto the origin with a spin component that is
2S—1 boxes. If we now couple the electron at the origindifferent to the residual moment, so the residual interaction
with electrons at site “1” via a small hopping matrix ele- will be antiferromagneticJ* >0. By carrying out a largéd
mentt<J, then the virtual charge fluctuations of electrons incalculation in the strong-coupling limit or by making a de-
and out of the singlet at the origin will lead to a residual tailed strong-coupling calculation for SN, we are able to
coupling between the partially screened moment and theonfirm that forN>2, J* changes sign when the number of
electrons at the neighboring site “1,” bound-conduction electrons is less th&2, and in the
largeN limit, it is given by*
*

J ~
H(l):WS*'CIaFaﬁclﬁr (101 o 2 g
T | 1T+

whereJ* ~t2/J. In the SU2) Kondo model, only electrons
parallel to the residual mome®&* can hop onto the origin,
which gives rise to a ferromagnetic couplidg<O0. In the ~ whereTif =nf/N andfi,=2S/N.

SU(N) case, electrons can hop provided they are not in the Whennf >N/2, 43* >0, the strong-coupling fixed point
same spin state as electrons at the origin. The sign of theecomes unstable, and a second-stage Kondo effect occurs,
couplingJ* depends on the number of conduction electronsinding a furtherN— 1 electron at site “1” to form a state
n.=n—nf, bound at the origin. If th@.=N—1, electrons denoted by the tableau

T -
(6] -~
§* = (T +T +8)= NV {2 = 1T
CgCa (103
% &
Col Cy
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(a) Q<N/2  One stage Kondo with a slowly vanishing ferromagnetic coupling between the
. two degrees of freedom.
FL : Under-screened S =S-1/2 (i) Two-stage Kondo effect, whei®@>N/2. At interme-
diate scales, the moment quenches to a §is S— 3, but
25 1 2 3 Q2 Q1 Q the residual coupling to the conduction sea is now antiferro-
T — oo —— magnetic, and a second-state quenching occurs to a spin
S** =S—1. When the starting spin iS=1, a new singlet
: phase is formed, with one additional fermionic bound state.
() Q>N2 : : (We Iapel 'this phgse PLin Eig. 6, but do not know at this
: : stage if this state is a Fermi liquid.
s**= S-1: s*= S-1/2 We would now like to discuss the future extension of this
0 1 s i3 02 01 O approach to a Kondo lattice. Two decades ago, Donfach
R argued that the properties of a Kondo lattice should depend
: - critically on the ratio of the Kondo temperature to the RKKY
Two-stage Kondo  : One stage Kondo

: _ interaction k=Tg/Jrkky - Heuristically, the Kondo and
FL. FL RKKY _scales are related to the Kondo coupling constant
: : according to

FIG. 6. Two scenarios for the emergence of magnetism as the Ty~De ™o, Jpiy~JI?D, (105
size of Sis progressively increaseh) Single stage Kondo effect,

where for S>1, a partially quenched moment with spsf =S whereD is the conduction-band width. Doniach pointed out

=3. (b) For Q>N/2, the initial emergence of a local moment is that « grows with the size o8, arguing that for small, the

accompanied by a two-stage Kondo effect, where, providtd system is expected to.be antlferromagnetu:‘:allly or(,jlered, put
>N/2, the spin is screened frofito S** =S— 1. for large J, the magnetism melts to form a “heavy” Fermi

liquid. Unfortunately, our theoretical understanding is at
corresponding to a residual spB* =S—1, M=2S5-2. present limited only to a discussion of energy scales, and
This final configuration is stable, because an electron at sith{tl® is known about the nature of the transition between
“2” can only hop onto site “1” if it is parallel to the un-  these two limiting cases. _ _
quenched moment. Can we shed light on these issues by extendmg the super-
We see that our supersymmetric approach permits us tg)_/m.metnc apprqach_to the lattice? The m(_ear!—fleld.solutlon
examine the consequences of this two-stage Kondo effectVill in general give rise to a heavy Fermi liquid which co-
starting from weak coupling. Translated into the weak-EXists with a lattice _of underscreened .moments. The Fermi
coupling language, the two vertical columns of the YoungSurface volume/gswill depend on the sizé/ of the under-
tableau will correspond to two separate screening clouds, gicreened moments,
very different radii, Y
B = (ne+n?)IN=(nc+Q—M)/N. (106
(= Vg (277)
=_|_— and |*:T—*, (104)

K K At the mean-field level, these moments can point in any di-
respectively. It is remarkable that a pointlike complex impu-rection, but once we include the effects of the Gaussian fluc-
rity can give rise to two separate length scales in this way.tuations of thex fermions, two effects will take place.

(i) The local moments will be partially screened by the
V. DISCUSSION Kondo effect with the heavy electron fluid.
(ii) The fluctuation free energy will be sensitive to the

In this paper we have developed a spin representation thalirection in which the spins condense.
interpolates between the Schwinger boson and Abrikosov Typically, we expect the fluctuation free energy will be
pseudofermion representations, and which exhibits the progewest in an antiferromagnetic spin configuration, where, for
erty of supersymmetry. As an exploratory exercise, we havinstance,
applied the method to a class of single-impurity Kondo mod-
els, where we have been able to examine how local moment (b (x))= \/m[cosz(Q-x/Z) 8,1+ SIP(Q-x/2)8,,].
behavior emerges as the strength of Hund’s interactions be- (107
tween the spins is systematically increased. Suppose we co
sider a spin representation with boxes and examine how
the ground state evolves as we progressively increase t
moment fromS=  to S=Q/2. One of the surprising discov-
eries is that there are in fact two routes by which the mag
netic moment emerges from the Fermi liquigig. 6), as

This dependence on the relative orientation of the moments
|,geefines arenormalized “RKKY” interactiodgyyy - By tun-

ing J, we will be able to examine how the RKKY interaction
is renormalized by the Kondo effect and how the staggered
magnetization depends on the screening process,

follows. M = 25— m(J)
(i) One-stage Kondo effect, whe@<N/2. Once the spin '
Sexceeds one-half, a partially screened moment is generated. (108
The low-temperature fixed point is described by the coexist- m(J)=2 <5b’r b))+ £<9T9>
ence of a Fermi liquid and a moment of s@#i=S—1/2, o 77 Q '
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Ej APPENDIX A: OPERATOR EXPRESSION
Y=2 FOR THE CAZIMIR
Y=4 In this section, we prove that the Cazimir
FIG. 7. lllustrating the idea that the properties of a class of P=(b'Tb+fTf)? (A1)
L-shaped representations will enable us to triangulate on the prop-
erties of a smalN Kondo lattice. can be written

wherem(J) is a continuous function a. The critical value 2 . Q
where M vanishes(at small S defines the point where the S=QIN=Y= N/
magnetism is eradicated by the Kondo effect. In this way, we

hope to be able to carry a model calculation of the phasd© show this relationship, we use the completeness result.

(A2)

diagram first envisaged by Doniach. Using the normalization
An open question is whether this new approach can shed arb b
light on the nature of the quantum critical point separating THIer?]= 6, (A3)

the magnetic and the paramagnetic phases of the Kondo Igf;s is
tice. Ultimately we are interested in the properties of a
Kondo lattice of elementary spins corresponding to one box 1
in Young’s tableau. This largh-approach can provide in- LA+ N Sabdca= daadbe- (A4)
formation about the properties of a class of L-shaped repre-
sentations. If there is any universality associated with thesy ysing this to expand
emergence of magnetism at absolute zero, then perhaps a
largeN approach will enable us to triangulate on the proper- P=(b'Tb+fTf)3 (A5)
ties of a real Kondo latticéFig. 7).
One of the interesting aspects of the supersymmetric ap¥e obtain
proach is the appearance of fermionic “phase fluctuations”
between the spin and the heavy electron fluid: it is these
fluctuations, described by the gauge fermigrwhich medi-
ate the interaction between the magnetic condensate and the o ]
heavy electron fluid. In the case where the “mass” of thisWe can expand each term in this expansion as follows:
excitation,  is positive, the gauge fermioar can be inte- bt e ot
grated out of the problem, and the interaction between the PaPoPpbat fafpfpfa=np(np+N—1)—ndni—(N+1)]
magnetic and electron fluid could be treated as a point inter- _ .2 .2 _
action. However, whed is negative, thex fermion gives rise =M= NiENQH(Ng—Np). (A7)
to a new bound-state. Will the same phenomenon occur in|sg
the lattice? This could lead to the possibility of two different
kinds of fixed point. flfbiba=—blfpfib,+ny. (A8)
(i) A Millis Hertz fixed point®® where the weak ferro-
magnetic interaction between the magnetic and electron flui€ombining these results, we obtain
can be treated as a point vertex. In this situation, the transi-
tion will be described by the interaction between a Gaussian
magnetic fluid and a well-defined Fermi surface.
(i) A non-Fermi-liquid fixed point, where the dynamical

1
@ NQ2+(b;bb+ fifp)(bibatflfa).  (A6)

1
= - QP+ (N —nd)+ (N+1)Q—2b}ff b,

. . g . 1 2
T g e et e DTS =g (V1m0
oped gapless excitations, then the decay of heavy fermions
into unquenched spins, described by the process __ %QZJFNQ_Q( ne—ny+ %[‘9"9”)
f =b,+ta", (109
would lead to a phase with a novel kind of spin-charge sepa- :Q( N-J- %) , (A9)

ration.
These points will be examined in greater detail in a futurewhere we have used the resuld@=[6,6"]+Q to carry
publication. out the last step but one.
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APPENDIX B: SUPERSYMMETRY OF LAGRANGIAN

N—N—iby, (—{—ib,, (B8)
In this appendix, we examine the transformation of the vt A
Lagrangian a—ea—n, o' —e Va' —7.
. : da . APPENDIX C: EVALUATION OF FERMIONIC
‘Csusy:; Vol d, N+ Jat —¢ V¥ ,+Qoa'da MEAN-FIELD FREE ENERGY
(B1) We wish to calculate

under the transformatiow ,—hW¥ ., where o
Fi=—NT2, In[A;+iA,—iw,]e'“°, (C1)
n

0o V1T 7 Y e’% 0
h=ee -7 Vi—77|l O e % (B2) whereA = — A sgnw,. We shall regulate this sum by calcu-
lating
is a general member of the group @\{1). Under this trans-

formation, iA i |
ormation Fr=—NT> (IN[Ai+iAn—iw,]—[Aj—A¢+D])elon0”,
n

da
.

E;rusyéﬁgusy_l' E \PT;( (hTﬂrh) +h'

da’ —¢ which we rewrite as
(B3)
When we expand the correction, we obtain Fi=—2NT ReEO (IN[é+iTw,]—IN[ £+ DJriwn])eino+
n=
1 _ LY . —
> wihto,w,=> wlliog+io,r+70,7 __oNTReS [Inl== .
o o n=0 27T 2
+ ’ _ 7 &+D 1 ot
_62|€§(‘77_77 )‘“I,(rv _In 27TIT +§+n ean , (CS)
(B4) whereé=N;+1A. Next, using the result
{ - al\ inw
\I'ThTH },h}‘lfg In[b+n]—In[a+n])e"° =In(— +——(b—a),
2 v . 2, (In[b+n]—Infa-+n]) o]tz (0@
t 27 ne 2% _ . (4
=; vl 2 e W, +Q(2¢{5y)  this becomes
(B5) &b 1
d N oTRem| 2T 21D s
an W—— ein Ff—l E ( )
o 2miT 2
o o
APPENDIX D: CALCULATION OF P(w)
nda+(dat)y (e7¥%-1)da : "
_S oyt K T B We begin by writing
v 7l (e?%—1)dat mda+(da)y 20
w—
(B6) Plw)=1+ )fb(w), (DY
Combining Eqgs(B4), (B5), and(B6), we obtain where
* t , 4 o T
Lo 2 Vol 00N+ o | Y P(0)= 2 Grol@+#)Gy(1). (D2)
+Qoa'Td ', (B7)  To calculated(w), we replace the discrete Matsubara sum by

) ) . a Contour integral, to obtain
where N'=\+i6q, {'=(+i0;, a'=e ?%(a+7), and
a'T=e?%(a'+7). The primes on the gauged derivatives
denoted '=(d+2¢{") andd '=(—d+2¢{"). The Lagrangian
is thus gauge invariant under the transformation

1 d
2w)=3 3 [ o006 (26 (z+w), ©3)

where the integral runs counterclockwise around the poles in
V,—h¥v, ., V—h), the Green’s functions. Using the spectral decomposition,



PRB 62

de
Gio(2)= J —Arle) 5= (D4)
this becomes
. 12 f de ¢ A
(w)= N2 7[nbo+ (E)]w_ hes fo(€),
(DY)
whereny,=n(\y,) is the Bose occupancy. Now
2 j T w—e—H\ Af“(e)
_ Npo
_2 w_()\fa'_)\btr)—’_iAn
::Z;TEZETKEZZZS(i(w4-B), (D6)

where we have replaced2-2{,—B, andG¢(i w,)) = (iw,

—2¢y+iA,) " tis thef propagator in the absence of a field,

so that
P(w)=1—%[Gf(w+B)"ﬁb+l], (D7)
wheref,=2S/N and
=——E f— () = erne Aol
= ——2 f—f(e+m B) — Af(e) (D8)

whereA;(w)=1Im G; (w—i6). Now sinceN—2 of the levels
are unshifted, to leading order in the lafyeexpansion, we
can setm, =0 in this expression. Also, since,=B in a

magnetic field, we can write=1(w+B), where, atfT=0,

0 Ae) 1
l(w)= f de . (D9)
-D T w— €
Combining these results together, we can write
P(w,B)=Py(w+B), (D10
where
w—2{ ~
Po(w)=1~- [Gi(w)Tp+1(w)]  (D11)

is the zero-field form ofP(w). Going on to evaluaté(w),
we obtain
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0 A 1
|(w)=ﬁDde f(e)w_e
_JO de( 1 1 ) 1
T ) p2mi\e—¢& e—&)|w—¢
- 0 de ( 1 1 ) 1 .
__ffDﬁ e—§_ €e—w)é— —le—¢]

11 (¢ 1 &
“wloevls el olh o
whereé=T,e'™, so that
1 1 (f)
q w— §+ 2qi §In ®

1 (f*
—Wln ; ] .

Now by writing £* gl 27 wherefi;=nf/N, we can put this
in the form

E*

g

Po(w)=1— (w— 250)

(D13

(0—2{0)

Po(w)=1— q

T, +T¢ (
—In
w—§& 2

X (D14

1 1
w—& w—&|]
Sincef,+MN;=(q, there are cancellations between the first
two terms which give

—iA (w—2¢p) *
( l—é)_ o Af(w)'”%ﬂ'

(D15)

Po(w)=

Po(w)=

Another useful way to rewrite this expression is
—iA A
(D16)

P _q_wRe<w1§) (g_) |

To make contact with the bosonic Kondo model, it is useful
to split the first term into a real and an imaginary part, so that

—iA
w—¢&

One can then move the second term above into the loga-
rithm, writing

(D17)

—— —AA(w)—iA Re(wi_g .

P gl R
—¢ ' ¢
—|A
e( ) In—+|7-rnb (D18
to obtain
) —2{o
Po(w—i8)=Aq(w) A~ - (m;ﬂﬂnb)

(D19
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