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The integrable s4)-invariant spin-ladder model with a boundary defect is studied using the Bethe ansatz
method. The exact phase diagram for the ground state is given and the boundary quantum critical behavior is
discussed. It consists of a gapped phase in which the rungs of the ladder form singlet states and a gapless
Luttinger liquid phase. It is found that in the gapped phase the boundary bound state corresponds to an
unscreened local moment, while in the Luttinger liquid phase the local moment is screened at low temperatures
in analogy to the Kondo effect.

I. INTRODUCTION where an impurity may drive the system to a strong coupling
fixed point!” which corresponds to an open boundary condi-
Spin-ladder systems are an active field of research in cortion at the impurity site for low-energy excitations. There-
densed matter physics experimentally realized in some quagiore, the boundary impurity is of particular interest in quasi-
one-dimensional materialsThe simplest example is the one-dimensional systems. Typical examples are the spin
two-leg isotropic spin-1/2 ladder that has a gapped grounghain with boundary magnetic field$!® or equivalently
state. Generalizations of ladders to more legs and couplingg/o-dimensional classical statistical systems with boundary
beyond nearest-neighbor exchanges show a remarkably ridiglds;**° and a quantum impurity coupled to a one-
behavior and can interpolate among a variety of sysfeths. dimensional strongly correlated electron host:
For instance, a dimerized phase driven by biquadratic inter- In this paper we study the open(diinvariant spin ladder
actions was predicted in Ref. 2 and then demonstrated in With a boundary defect. Boundary effects can arise, for ex-
generalized spin-ladder modeby constructing the exact ample, if (i) the transverse coupling at the boundary is dif-
ground state and studying elementary excitations. Recently, fgrent from that in the bulk or ifii) the rung-rung coupling
modulation structure induced by frustration was reported in &t the boundary is different from that in the bulk. We will
two-leg spin ladder. Quantum phase transitions from a consider the following two model Hamiltonians:
gapped phase to a gapless phase were theoretically predictgghdel |,
and experimentally studied in the Heisenberg ladder system
Cu,(CsH1,N,),Cl, in the presence of a magnetic fiéld. .. Lo L.
Solutions of integrable models provide a useful starting H=7 > (1+ Oj ojr ) (17740 + ZJE T 7]
point for the understanding of more general correlated many- 1= =2
body systems. A few integrable spin-ladder models have re- ..
cently been proposed?® For instance the integrable (- +gdor T, 1)
invariant spin laddér represents a special case of the
Nersesyan-Tsvelik modéIThis model was recently general- Model II,
ized to the multileg caséand hole doping of the ladder was
also studied? In general some four-spin interaction terms
must be included in integrable modétequired by the inte-
grability), which could be either related to spin-phonon me-
diated interactions or in the hole-doped phase they could be - - - -
generated by the Coulomb repulsion between the holes mov- + ZU(1+ 01-02)(1+ 71 73), @
ing in the spin correlated backgrouAdhe importance of a R .
biguadratic interaction for properties of CuPlaquettes was whereo; and7; are Pauli matrices acting on the sjtef the
pointed out in Ref. 13 and its effect on excitations in a spinupper leg and lower leg, respectively, addepresents the
ladder was studied in Ref. 3. Some experiments indeed rd@ransverse rung coupling constant in the bulk, wiilés the
vealed that such multispin interactions are realized in soliccoupling at the boundary rungl denotes the rung-rung cou-
films of *He absorbed on graphité,in a two-dimensional pling strength between the first and second rungs. Without
Wigner solid of electrons formed in a Si inversion laygim  the boundary defecté.e., J’=J, U=1), the model is ex-
bee solid ®He 1® and in heavy fermion systems. actly solvable with periodic boundary conditiohi Sec. Il
Impurities always play a relevant role in low-dimensional we show that model | is integrable for arbitraly, obtain the
systems. This is especially the case in Luttinger liquidscorresponding Bethe ansatz solution, and discuss the physi-
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cal consequences of the boundary bound state. In Sec. Il the i\ 2N i
exact solution of model Il is presented for arbitrdsty Con- AN— 35 N—57 My oy
; . 2 2 Nj—rn =i
clusions follow in Sec. IV. [ =— i -
I I =% 14 )\j—r)\|+|
)\j + E )\j + E n
Il. SOLUTION OF MODEL I
A. Bethe ansatz formulation My Nj— T gt IE
The quantum states of a single rung o€, ). It is X ,
convenient to define =1, :
] Mo 2
0)= =1, 1)=11.1) !
\/E ) 1)) M, o Tug—i My Mg ”"_E
r=+ Bia Mo Tugtl s j=1 i
D=1, 13)=11,1), Ka=Thit 3
1 i
M3 Mg rV(g_ B}
2 == il + ] ] 3 2
)= 1D+ 3 Tl |
5=1 |
Mo I’V5+ E
which satisfy the orthogonality relatiofw|8)=0. For sim-
plicity we have omitted the rung indgxand obviously, the .
first state denotes a singlet rung and the latter three the triplet " M, Vs—Ti !
states. We introduce the Hubbard operators 3 ys—rv,—i B 2 7o “ 2 ®
r=+ y#o Vo~ IV, T r=x a=1 i’
X*P=|a)(Bl, @.p=0123, @) Vo THaT 3
and rewrite Hamiltoniarfl) as where the parametey is determined byl andJ’ via
1+
N—-1 3 N 0 0 J-J —1= 7]’ (9)
H=2> > X™xPr-33 XP-3'X) 1-7
j=1 a,8=0 j=2
and M1:N1+N2+N3, M2:N2+N3 and M3:N3. Here
1 1 \j, mq, andvs represent the rapidities of the flavor waves.
+ Z‘](N_ D+ Z‘] ' ®)  The energy spectrum of the Hamiltoniéh) is given by

and the total number ofr rungs can be expressed Hs,
=E]-N=1Xj““. In this way we have reduced model | to an
su4)-invariant spin chain with an effective splitting or,
equivalently, to an d)-invariantt-J modef3?*with a finite
chemical potential and a boundary potential. Both the effec-
tive chemical potential and the boundary field’ lift the
su4) symmetry of the Hamiltonian. The Hamiltoni&b) can
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B. Ground-state properties

be diagonalized via either the algebraic Bethe ai&&tZ*or

For the periodic boundary conditions all the rapidities are

the coordinate Bethe ansatzAs the pseudovacuum, we real in the ground state. Fdr=4 the system has a quantum

choose the state in which all rungs are in a singlet,

|Q)=[0,)®[0,)® - - - ®|0y).

The Bethe wave functions can be constructed as

_ . . a0 aMlo
)= > Vg (B X X0,

Jmrom

whereV is an amplitude, the sum ovgr, runs from 1 toN,
and the sum over,, from 1 to 3. The elimination of the
“unwanted” terms fromH|W¥) yields the standard nested

Bethe ansatz equatiofiBAE):

critical point” WhenJ>4, the ground state is the pseudo-
vacuum|Q), i.e., all rungs are in the singlet state. Rbr
<4, on the other hand, there is a continuum of excitations
given by a Luttinger liquid of in general three components.
The boundary defect may change the phase diagram close
to the end point of the ladder. In particular, imaginary solu-
tions of the BAE arising from the boundary scattering matrix
[first factor on the right-hand side of the first set of E@]
correspond to wave functions that fall off exponentially from
the boundary. In facth =i#/2 is always a solution of the
BAE in the thermodynamic limitN—« for >0 and »
#1[n=1 is a singular point of Eq9), which corresponds
to J' = x]. This imaginary mode represents the boundary
bound state corresponding to a triplet rung. A careful analy-
sis of the energy carried by the imaginary mode yields that
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the boundary bound state is not always stdblecupied in J-h
the ground state. We limit ourselves to the situation of anti-

ferromagnetic couplingd>0). From Eq.(10) we have that S
the energy of the imaginary mode is 4 IBS

4
1- 72 .
The boundary bound state is stableejf<0. Otherwise the 0 1 n
imaginary mode represents an excited state. We have to dis- (@)

tinguish the case§>4 from J<4. (i) For J>4, there is a
critical line given by

4 h-J
77(: = 1 - 3! (12)

which separates the spin singlet rung ground state 0
<. and »>1) from the spin triplet ground statep{<»

__4
81 e

S1

(1 1) LL1 LL2 LL3

é'b:J_

<1) at the boundary of the ladder. FokK)< 7. and » LUt L2

>1 we havee,>0, while for ».<n<le, is negative and

the boundary bound state is fille@.) For 0<J<4 the bulk

corresponds to a three-component Luttinger liquid with real 0

\, u, andr modes. Here the boundary bound state is stable (b)

in the whole parameter region<Op<<1, but it is empty if FIG. 1. Boundary phase diagram of the two-leg4gtinvariant
7»>1. The boundary triplet state for<0n<1 is coupled to spin ladder with different transverse coupling at the first rung
the continuum giving rise to a Kondo-like screening. (model )) for (@) J—h>0 and(b) h—J>0. The interaction strength

Consider now the response of the system to an externgl the first rung is parametrized by defined in Eq.(9). Quantum
magnetic fielch. The magnetic field couples to the ladder via critical behavior with mean-field exponents is obtained along the

the Zeeman effect, i.e. the Hamiltonian has an extra ternfine J—h=4. Several phases are possible at the boundarg.dih
_ hEJN l(xl_ll_ Xlss) The critical lineJ=4 separating the rungs are in a singlet state and there is no boundary bound state. In

S1 the ground state consists of singlet rungs but there is an empty

i . -~ boundary bound state. TB&iplet bound staterefers to a phase in
bound-state energy is also reduced IbyHence, forJ—h which the boundary bound-state is stable, i.e., there is a boundary

>4, the critical line Eg.(12) is now given by e triplet state with wave function falling off exponentially into the
=v1-4/(J—h). The threefold degeneracy of the triplet pyy |1, (12 and LL3 refer to a Luttinger liquid with no bound-
rung state at the boundary is lifted by the field, so that anyry pound state, with a stable boundary bound staiglet state,
arbitrarily small field induces a finite magnetizatiorl (de-  and with an unstable boundary bound state, respectivelfb)lwe
pending on the direction of the figldiue to the stabilization assumed that—J is sufficiently small so that the ladder is not spin
of the bound state. Therefore, the boundary quantum phasglarized.
transition aty= 7, is of first order and the susceptibility is )
divergent afT =0, following a Curie law. 'I_'he thermodynamics of the boundar_y defect can also be
To summarize, the boundary phase diagramJorh is derlved26f£(;m the BAE, Eq.(E_S), following the standard
shown in Fig. 1a) and consists of seven regions. Fbt h method:>“" The therquynamlc I_3AE allow us to study th(_e
>4 the bulk is gapped and we have argued that§et0 boundary quantum critical behavior. The .boundgry dgfect in-
there is no bound state and the rungs all form singlets. Fofluces az“ghost spin’zn. However, unlike in s(2)-invariant
0< <7, the bound state is not stable and all rungs are ifmodels?” the ghost spin does not lead to an anomalous rem-
singlet states. Fom.<7<1 there is a triplet state at the Nant entropy because the (4u symmetry in the present
boundary(the triplet wave function falls off exponentially Model is already lifted by the finité.
into the bulk of the ladder and finally for >1 the bound
state is again unstable. Fdr-h<4 the bulk is a Luttinger
liquid, without a bound state fop<<0, with a stable bound Along the quantum critical lind=4, the boundary defect
state for 6< #<1, and with an unstable bound state fpr can show critical behavior as the bulk dde#/e now con-
>1. Below we show that a Kondo-like screening occurs forsider the case>1. In zero magnetic field, the ground state
o< p<l. of the bulk consists only of singlet rungs. In a weak magnetic
It is also interesting to study the situation for-J>0.  field some triplet rungs witt8?’=1 appear in the ground
The bulk is then always a Luttinger liquid and only four state, whileN, and Nj still remain equal to zero, since the
cases for the boundary bound state have to be distinguisheshergy of the statf2) is unchanged and that of the st&B
[see Fig. 1)]. We assume here th&t—J is sufficiently is increasedl{>0). We denote witlp(\) the distribution of
small so that the spin ladder is not spin polarizedn#0 real A modes, including the boundary-defect contribution.
there is no bound state, forOn<1 the bound state is filled From the BAE, Eq(12), we obtain
with a predominantly spin-up triplet statéhe Kondo screen- R 1
ing is quenched by the magnetic figlfor 1< »< 7, there is / N "N— _
an empty bound state, and fgr> 7. the bound state is again PO+ f Ad)\ (A=A )p(A)=a1(N) 2N 2N,
stable(with magnetic field quenched Kondo screening (13

gapped and gapless regions is now shifted tch=4. The

C. The quantum critical line J=4
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where a,(\)=n/27[ A%+ (n/2)?] and A%2=1/(4—h)—1/4.
For h<1, we haveA~\h/4 and Eq.(13) can be solved by
iteration,

_(2 1 )( 27
O P A b=y

with the ground-state energy given by

+oe (149

E= ! d\| 4 ! h 3 N
A2+
4
3
—Z(J’—J)+N—1. (15

Combining Eqs(14) and(15) we obtain the susceptibility of
the system

J’E (2 1 1 1
X=———(———)(—h1’2—— +0(h'?).

(16)
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Similar arguments indeed yield a positive boundary sus-
ceptibility for »<0. As discussed before, in the region 0
<y<1, a stable boundary bound-state occurs and a small
field already induces a finite magnetization.

With a simple scaling approach we find that the low-
temperature specific heat and the magnetic susceptibility of
the boundary defect at the lifk=4 behaves as

SC(T)~TY2 Sy (T)~T %2 (17

Such a result can also be predicted by a simple spin-wave
theory with a dispersion relatioa(k)~k? or alternatively
exactly via the low-temperature expansion of the thermody-
namic BAE?®?° The boundary critical exponents in Egs.
(16) and(17) are exactly the same as for the blk.

D. Kondo effect in the gapless phase

In the gapless phase,<QJ1<4, the system is a three-
component Luttinger liquid. In the sense of the4ut-J
model, the triplet rungs are considered spin-1 hard-core
bosons. The\ rapidities represent the charge sector, while
the u and v rapidities parametrize the spin degrees of free-
dom, which have 9@) invariance.

As discussed abovgsee Fig. 1a)] a stable boundary

The susceptibility diverges with the square root of the fieldhound state only exists at low temperatures for #<1.

as a consequence of the van Hove singularity of the empty The boundary bound state corresponds to a local moment
band. The boundary bound state removes one degree of fre@ith spin 1. The boundary coupling’ does not break the
dom from the bulk, so that its contribution to the suscepti-su3) invariance of the hard-core bosons and the boundary
bility is negative. This result is not surprising, since in thislocal moment is spin compensated in analogy to the Kondo
caseJ’ is much larger thard. Consequently the boundary effect.

rung is in a tight singlet and hence insensitive to the field, so To show this we explicitly consider the imaginary mode

that the whole susceptibility is reduced.

i 7/2 in the BAE, which then become

i 2N [ 7 [
Ni—— Ni——7n N—i|l——| N—i|1+— _ N =Tt =
75 j 7 Aj j > M 1)\j_”\|_i M, MM 5
i B | ) ) N\ r== 1#] )\j_”\|+i a=1 i’
)\J+§ )\J+ n )\j+| 1—— 7\j+| 1+E )\j_r,u/a_g
i i i
w— (1 R T O N 7
Mo fa—T g H 2( 7) Mﬁlﬂ 75 lrxﬁ[s K 5
r== B#a Mo~ Tuptl _r:r I j=1 i 521 i’
Ma+_(1+r77) /*La_r)\j+_ Iu’a_rvﬁ—i__
2 2
i
M3 Vs IV, —i Mo Vs~ THa™ 5
— = (18
r=+ y#6 Vs~ IV, Tl =% a=1 I
V,;—r,u,a—l—i

For largeN the solutions of the BAE, Eq18), are strings of

arbitrary length for all three sets of rapidities. We introducepg,n(A)JF%: Amnpl,m()\):% Bmnp2m(N) +an(N),

the usual densities ok, w, v strings pyn(N), pan(u),
pan(v), and their respective hole densitig},(\), p3,(x),

pgyn(v). In the thermodynamic limit these densities satisfy

the following integral equation®

pg,n()\) + % Amnp2,m()\) = % an(Pl,m()\) + p3,m()\)):
(19
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sinh(nxg)sinh(n+1)Xq

h
+ = — = —
Paa(M) %Am"pam()\) % Brnp2m(X), 72n= T3 ginhxo sini2xg) L (2D

where we neglected the boundary driving terms which are of Although the boundary bound state has also some charge
orderN™'. Here fluctuations(triplet-singlet rung admixtune these do not af-
_ fect the dynamics of the spitweak coupling of spin and
Amn=[m+n]+2[m+n=2]+. .. +2[|m—n[+2] charge sectojsWe can then limit ourselves to the spin de-
_ grees of freedom of the bound state. Its contribution to the
+[|m—n]], ;
free energy is

min{m,n} o
- _ 1
Bn= 3, [m+n-21+1], ) f N _77)
and[n] is the integral operator with kerna},(A) andag(\)
is the 6-function. +a )\_,_ ) Inl 1+ 24
The free-energy functional is given by " 27 [ 7]2"] @9
or, equivalently,
F/Nzg fd)\{er,npr,n()\)_T[Pr,n()\) 1 2
) A Fos= bs_f 2, Z Jd)\Gq()\+irn/2)In[1+ Ng+1,10»
+pr,n()\)]|n[Pr,n()\)+Pr,n()\)]+TPr,n(7\)|n pr,n()\) - (25)
h h
FToeaM)Inpra(M)}, (20 WherngS the ground-state energy of the local moment and
where €;,=—2may(\)+n(J—h), e;,=€e3,=nh. Mini- , /
mizing Eq.(20) with respect to the densities and taking into G (\)= sinm(1-a/3)]

3031 ~ cosh2mN/3)+cog m(1—q/3)]"

Substituting Eq(23) into Eq. (25) we readily obtain that the
In(1+ 7, 1) +2 A’S In(1+ 77;%), r.s=12,3 residual entropy of the magnetic moment is exactly zero,
’ which means that the boundary bound state is fully screened
(21)  py the Kondo effect. These results are analogous to those of
with A" = A8, <= Bumr(Sr ss1+ 6 o-1), 7 nzp? e ns a Coqblin-Schrieffer impurity embedded into the same

account the relation€l9), we obtai

32
and 7o, = 7,7=0. An equivalent set of integral equations is host.
In 7 n=G*[IN(1+ 7, s 1) +IN(L+ 7, - 1)] ll. SOLUTION OF MODEL I
—G*[In(1+ 7 Y ) +In(1+ 7741, To show that model Il is integrable we rewrite the Hamil-
rean roan tonian (2) as
2 _
In 1= = = G(\) &, 1+ G*In(L+ 7, ) H=Ho*H,
N—1
_*
G*[In(1+ 7,1 ) +In(L+ 7,2 )], HOZJ_ZZ Pjj+1+UPyy,
. Inp, J=h . Inmyy  Inmpg, h
lim ~ = T lim ~ = [im ’ =?52x0, N 1
noe N e M e N Hi=—J32, X+ ZNJ, (26)
(22 =1 4
where * denotes convolution an@(\)=[2 coshgM)]™>.  whereP;;=(1+0y-o;)(1+ 7;- 7;)/4 is the permutation op-
The equilibrium free energy is erator between rung and rungj. Obviously,[Hq,H;]=0,
which means that they can be diagonalized simultaneously.
FIN=-TS [n]In(1+ 77 1) We define the Lax operators
- in/-
Sj(M=N—iPy;, (27)

At low T the exchangd gives rise to a Fermi surface for which satisfy the Yang-Baxter relatictis
the charges, which are only significantly populated in the

interval |\| <A =/1/J—1/4, but are unoccupied fox|>A. Sij (M= 1) Sik(N) Sik() = Sik() Sk (M) Sjj (A — ).
The low-energy spin excitations, on the other hand, take (28)

place at very large rapiditi€éor h=0 the spin Fermi surface
is ate). Hence, at lowT the charge and spin sectors are well
separated and only weakly coupled. Assuming complete de- 1 (N)=Sy,(M)Sy_1,(0) - - Sy (N) Sy (A —i€)Sy,(\
coupling of the spin and charge sectors, a solution of Eq.  ~ 7 7 ! ! 7

(22) can be easily obtained for large +ic)S,,(N) -+ - Sy_1AN)Sn(N) (29

As shown in Refs. 18 and 22, the monodromy matrix
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satisfies the reflection Yang-Baxter equation related tot(\) as
S (A=) T, (NS (N + ) T (1)
. _ dt(\)
- T’(/‘L)STT,()\+M)TT()\)STT'()\ M)v (30) HO:—(—l)N+l— , (32)
8(1-c?) dh 1o

wherec is an arbitrary constant andland 7' are indices of
the four-dimensional auxiliary space. From E80) we have

_ provided thatJ = 1/(1—c?). Hence H, and Hamiltonian(2)
[tV H(m)]=0 (31) are integrable in the sense of the algebraic Bethe ansatz.
with t(\)=tr T (\). Thereforet(\) serves as the generat- Following the standard procedure we readily obtain the BAE
ing functional of a variety of conserved quantitiddg is  of model I,

i\ 2D 1 1 [
Ni— = Njtilct—| AN—ijc— < Nji—rp,+—
b2 ) : < 2) M1\ —pn —i M2 MM
i B 1 . 1 r==+ |;&j )\]_r)\|+| a=1 | '
)\j+5 Aj—ifct -] Ntijc—— Nj=Tpe— 7
\ i i
M Ma_rMB_I My Mg r ] 2 M3 Mq rV§ 2
(S fra Mo TR+l =% o1 i 5= i’
Mo I')\J-‘r E My I‘V5+ E
i
M3 vy IV, —i Mz V5= THa™ 5
—_— = _ (33
r== y#s VoIV, t1 =% 4=1 I
Vs~ g+
2
|
with the energy eigenvalues given by which separates the region of an occup(gt@dble and empty
(unstable bound state. Hence, whel» J, the ground state
My 1 3 is a spin singlet, while for £J<J, and 1/2<c<1 the
E=- Zl 79| ~zINtUFN-2. (34  boundary bound state is stable in the ground state.
= )\1.2+ 2 In summary, the physical properties of the two models are

very similar. The main difference can be understood in terms
of the number of “ghost spin” solutionghumber of bound
state solutionsof the BAE 2% which correspond to images of
the real local moment. In the Kondo regime fbrx4 there

: 8 : g are two “ghost spins,”c+1/2 andc— 1/2, in the spin sector
considerc>0 becauser ¢ yields the same&)) the imaginary ¢ the second model, while there is only one in model I. This
mode\,=i(c—1/2) is a solution of the BAE, EQ33), in  ¢an pe read off from the impurity factors in the BAE’s Egs.

the thermodynamic limiN— < for c>1/2. This bound state (g) and(33). Since the effects of the ghost spin contributions
again corresponds to a triplet boundary bound state, i.e., itgre additive, the physics in both situations is very similar.
wave function falls off exponentially with the distance from

The Hamiltonian(32) is only Hermitian if the parameter
is either real or imaginary. For imaginacy U<1, and the
first rung is weakly coupled to the bulk. For realwe can

the boundary. The energy of the bound stateis J—1/(c IV. CONCLUSIONS
—c?), which can be stable only ,<0, i.e., in the region .
1/2<c<1. This corresponds t&J>1 for which the first We studied two models for boundary defects of the open

rung is strongly coupled to the bulk. For- 1, i.e.U<0, the  two-leg sud)-invariant spin ladder. In model | the transverse
bound state has positive energy and is empty. The first run§0UPling at the boundary rung is different from the bulk,

is then ferromagnetically coupled to the ladder. while in model Il the coupling of the first rung to the ladder

As in the case of model |, there is a critical line far IS different from the rung-rung coupling in the bulk. The two
>4 given by models under consideration are integrable and we obtained
the exact solution by means of Bethe's ansatz. Depending on
1 the model parameters three situations may arise in the ther-

Je , (35)  modynamic limit:(i) there is no imaginary mode solution of

_(c—cz) the BAE and hence the states of the first rung are part of the
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continuum of the bulk(ii) an imaginary boundary mode ex- all other cases the boundary rung is in its singlet state. For
ists, but corresponds to a positive eneggy i.e. the state is J<4, on the other hand, a stable boundary bound state car-
empty, and(iii) an imaginary boundary mode with negative ries a Kondo compensatdédcreened by the spin degrees of
energy exists. In cas@) the boundary bound state does notfreedom in the Luttinger liquidmagnetic moment of spin-1,
affect the ground-state properties, but does contribute to thiee., ultimately the ground state is a singlet. An unstable
finite T thermodynamics. The situatidiii ) is the most inter- bound state just removes one degree of freedom from the
esting one, since a spin-1 boundary bound state is filled ihuttinger liquid. Both models considered here display simi-
the ground state. The boundary phase diagram of model | iar properties at the boundary.

shown in Figs. (&) and ib).

The sy4)-invariant two-leg ladder has a critical line at
=4. For J>4 all the rungs of the bulk are in the singlet
state, while forJ<4 the system is a Luttinger liquid of in
general three components. Rbr 4 a stable boundary bound
state carries a magnetic momefttiplet state with wave
function that falls off exponentially into the bylkwhile in
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