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Open su„4…-invariant spin ladder with boundary defects
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The integrable su~4!-invariant spin-ladder model with a boundary defect is studied using the Bethe ansatz
method. The exact phase diagram for the ground state is given and the boundary quantum critical behavior is
discussed. It consists of a gapped phase in which the rungs of the ladder form singlet states and a gapless
Luttinger liquid phase. It is found that in the gapped phase the boundary bound state corresponds to an
unscreened local moment, while in the Luttinger liquid phase the local moment is screened at low temperatures
in analogy to the Kondo effect.
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I. INTRODUCTION

Spin-ladder systems are an active field of research in c
densed matter physics experimentally realized in some qu
one-dimensional materials.1 The simplest example is th
two-leg isotropic spin-1/2 ladder that has a gapped gro
state. Generalizations of ladders to more legs and coupl
beyond nearest-neighbor exchanges show a remarkably
behavior and can interpolate among a variety of systems2–4

For instance, a dimerized phase driven by biquadratic in
actions was predicted in Ref. 2 and then demonstrated
generalized spin-ladder model3 by constructing the exac
ground state and studying elementary excitations. Recent
modulation structure induced by frustration was reported
two-leg spin ladder.5 Quantum phase transitions from
gapped phase to a gapless phase were theoretically pred
and experimentally studied in the Heisenberg ladder sys
Cu2(C5H12N2)2Cl4 in the presence of a magnetic field.6

Solutions of integrable models provide a useful start
point for the understanding of more general correlated ma
body systems. A few integrable spin-ladder models have
cently been proposed.7–10 For instance the integrable su~4!-
invariant spin ladder7 represents a special case of t
Nersesyan-Tsvelik model.2 This model was recently genera
ized to the multileg case11 and hole doping of the ladder wa
also studied.12 In general some four-spin interaction term
must be included in integrable models~required by the inte-
grability!, which could be either related to spin-phonon m
diated interactions or in the hole-doped phase they could
generated by the Coulomb repulsion between the holes m
ing in the spin correlated background.2 The importance of a
biquadratic interaction for properties of CuO2 plaquettes was
pointed out in Ref. 13 and its effect on excitations in a s
ladder was studied in Ref. 3. Some experiments indeed
vealed that such multispin interactions are realized in s
films of 3He absorbed on graphite,14 in a two-dimensional
Wigner solid of electrons formed in a Si inversion layer,15 in
bcc solid 3He,16 and in heavy fermion systems.

Impurities always play a relevant role in low-dimension
systems. This is especially the case in Luttinger liqui
PRB 620163-1829/2000/62~6!/3845~7!/$15.00
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where an impurity may drive the system to a strong coupl
fixed point,17 which corresponds to an open boundary con
tion at the impurity site for low-energy excitations. Ther
fore, the boundary impurity is of particular interest in qua
one-dimensional systems. Typical examples are the s
chain with boundary magnetic fields,18,19 or equivalently
two-dimensional classical statistical systems with bound
fields,19,20 and a quantum impurity coupled to a on
dimensional strongly correlated electron host.21,22

In this paper we study the open su~4!-invariant spin ladder
with a boundary defect. Boundary effects can arise, for
ample, if ~i! the transverse coupling at the boundary is d
ferent from that in the bulk or if~ii ! the rung-rung coupling
at the boundary is different from that in the bulk. We w
consider the following two model Hamiltonians:

Model I,

H5
1

4 (
j 51

N21

~11sW j•sW j 11!~11tW j•tW j 11!1
1

4
J(

j 52

N

sW j•tW j

1
1

4
J8sW 1•tW1 , ~1!

Model II,

H5
1

4 (
j 52

N21

~11sW j•sW j 11!~11tW j•tW j 11!1
1

4
J(

j 51

N

sW j•tW j

1
1

4
U~11sW 1•sW 2!~11tW1•tW2!, ~2!

wheresW j andtW j are Pauli matrices acting on the sitej of the
upper leg and lower leg, respectively, andJ represents the
transverse rung coupling constant in the bulk, whileJ8 is the
coupling at the boundary rung.U denotes the rung-rung cou
pling strength between the first and second rungs. With
the boundary defects~i.e., J85J, U51), the model is ex-
actly solvable with periodic boundary conditions.7 In Sec. II
we show that model I is integrable for arbitraryJ8, obtain the
corresponding Bethe ansatz solution, and discuss the ph
3845 ©2000 The American Physical Society
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3846 PRB 62YUPENG WANG AND P. SCHLOTTMANN
cal consequences of the boundary bound state. In Sec. II
exact solution of model II is presented for arbitraryU. Con-
clusions follow in Sec. IV.

II. SOLUTION OF MODEL I

A. Bethe ansatz formulation

The quantum states of a single rung areus j
z ,t j

z&. It is
convenient to define

u0&5
1

A2
~ u↑,↓&2u↓,↑&),

u1&5u↑,↑&, u3&5u↓,↓&,

u2&5
1

A2
~ u↑,↓&1u↓,↑&), ~3!

which satisfy the orthogonality relation̂aub&50. For sim-
plicity we have omitted the rung indexj and obviously, the
first state denotes a singlet rung and the latter three the tr
states. We introduce the Hubbard operators

Xab5ua&^bu, a,b50,1,2,3, ~4!

and rewrite Hamiltonian~1! as

H5 (
j 51

N21

(
a,b50

3

Xj
abXj 11

ba 2J(
j 52

N

Xj
002J8X1

00

1
1

4
J~N21!1

1

4
J8, ~5!

and the total number ofa rungs can be expressed asNa

5( j 51
N Xj

aa . In this way we have reduced model I to a
su~4!-invariant spin chain with an effective splitting o
equivalently, to an su~4!-invariantt-J model23,24with a finite
chemical potential and a boundary potential. Both the eff
tive chemical potentialJ and the boundary fieldJ8 lift the
su~4! symmetry of the Hamiltonian. The Hamiltonian~5! can
be diagonalized via either the algebraic Bethe ansatz18,20,21or
the coordinate Bethe ansatz.25 As the pseudovacuum, w
choose the state in which all rungs are in a singlet,

uV&[u01& ^ u02& ^ •••^ u0N&. ~6!

The Bethe wave functions can be constructed as

uC&5 (
$ j m ,am%

Ca1 , . . . ,aM1
~ j 1 , . . . ,j M1

!Xj 1

a10
•••X

j M1

aM1
0
uV&,

~7!

whereC is an amplitude, the sum overj m runs from 1 toN,
and the sum overam from 1 to 3. The elimination of the
‘‘unwanted’’ terms fromHuC& yields the standard neste
Bethe ansatz equations~BAE!:
he

let

-

S l j2
i

2

l j1
i

2

D 2N

52

l j2
i

2
h

l j1
i

2
h
)
r 56

)
lÞ j

M1 l j2rl l2 i

l j2rl l1 i

3 )
a51

M2 l j2rma1
i

2

l j2rma2
i

2

,

)
r 56

)
bÞa

M2 ma2rmb2 i

ma2rmb1 i
5 )

r 56
)
j 51

M1 ma2rl j2
i

2

ma2rl j1
i

2

3 )
d51

M3 ma2rnd2
i

2

ma2rnd1
i

2

,

)
r 56

)
gÞd

M3 nd2rng2 i

nd2rng1 i
5 )

r 56
)
a51

M2 nd2rma2
i

2

nd2rma1
i

2

, ~8!

where the parameterh is determined byJ andJ8 via

J2J8215
11h

12h
, ~9!

and M15N11N21N3 , M25N21N3 and M35N3. Here
l j , ma , andnd represent the rapidities of the flavor wave
The energy spectrum of the Hamiltonian~1! is given by

E52(
j 51

M1 S 1

l j
21

1

4

2JD 2
3

4
JN2

3

4
~J82J!1N21.

~10!

B. Ground-state properties

For the periodic boundary conditions all the rapidities a
real in the ground state. ForJ54 the system has a quantu
critical point.7 When J.4, the ground state is the pseud
vacuum uV&, i.e., all rungs are in the singlet state. ForJ
,4, on the other hand, there is a continuum of excitatio
given by a Luttinger liquid of in general three component

The boundary defect may change the phase diagram c
to the end point of the ladder. In particular, imaginary so
tions of the BAE arising from the boundary scattering mat
@first factor on the right-hand side of the first set of Eqs.~8!#
correspond to wave functions that fall off exponentially fro
the boundary. In fact,l5 ih/2 is always a solution of the
BAE in the thermodynamic limitN→` for h.0 and h
Þ1 @h51 is a singular point of Eq.~9!, which corresponds
to J856`]. This imaginary mode represents the bounda
bound state corresponding to a triplet rung. A careful ana
sis of the energy carried by the imaginary mode yields t
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the boundary bound state is not always stable~occupied! in
the ground state. We limit ourselves to the situation of a
ferromagnetic coupling (J.0). From Eq.~10! we have that
the energy of the imaginary mode is

eb5J2
4

12h2
. ~11!

The boundary bound state is stable ifeb,0. Otherwise the
imaginary mode represents an excited state. We have to
tinguish the casesJ.4 from J,4. ~i! For J.4, there is a
critical line given by

hc5A12
4

J
, ~12!

which separates the spin singlet rung ground state (0,h
,hc and h.1) from the spin triplet ground state (hc,h
,1) at the boundary of the ladder. For 0,h,hc and h
.1 we haveeb.0, while for hc,h,1eb is negative and
the boundary bound state is filled.~ii ! For 0,J,4 the bulk
corresponds to a three-component Luttinger liquid with r
l, m, andn modes. Here the boundary bound state is sta
in the whole parameter region 0,h,1, but it is empty if
h.1. The boundary triplet state for 0,h,1 is coupled to
the continuum giving rise to a Kondo-like screening.

Consider now the response of the system to an exte
magnetic fieldh. The magnetic field couples to the ladder v
the Zeeman effect, i.e. the Hamiltonian has an extra te
2h( j 51

N (Xj
112Xj

33). The critical line J54 separating the
gapped and gapless regions is now shifted toJ2h54. The
bound-state energy is also reduced byh. Hence, forJ2h
.4, the critical line Eq. ~12! is now given by hc

5A124/(J2h). The threefold degeneracy of the tripl
rung state at the boundary is lifted by the field, so that
arbitrarily small field induces a finite magnetization61 ~de-
pending on the direction of the field! due to the stabilization
of the bound state. Therefore, the boundary quantum ph
transition ath5hc is of first order and the susceptibility i
divergent atT50, following a Curie law.

To summarize, the boundary phase diagram forJ.h is
shown in Fig. 1~a! and consists of seven regions. ForJ2h
.4 the bulk is gapped and we have argued that forh,0
there is no bound state and the rungs all form singlets.
0,h,hc the bound state is not stable and all rungs are
singlet states. Forhc,h,1 there is a triplet state at th
boundary~the triplet wave function falls off exponentiall
into the bulk of the ladder!, and finally forh.1 the bound
state is again unstable. ForJ2h,4 the bulk is a Luttinger
liquid, without a bound state forh,0, with a stable bound
state for 0,h,1, and with an unstable bound state forh
.1. Below we show that a Kondo-like screening occurs
0,h,1.

It is also interesting to study the situation forh2J.0.
The bulk is then always a Luttinger liquid and only fo
cases for the boundary bound state have to be distingui
@see Fig. 1~b!#. We assume here thath2J is sufficiently
small so that the spin ladder is not spin polarized. Ifh,0
there is no bound state, for 0,h,1 the bound state is filled
with a predominantly spin-up triplet state~the Kondo screen-
ing is quenched by the magnetic field!, for 1,h,hc there is
an empty bound state, and forh.hc the bound state is agai
stable~with magnetic field quenched Kondo screening!.
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The thermodynamics of the boundary defect can also
derived from the BAE, Eq.~8!, following the standard
method.26,27 The thermodynamic BAE allow us to study th
boundary quantum critical behavior. The boundary defect
duces a ‘‘ghost spin’’h. However, unlike in su~2!-invariant
models,22 the ghost spin does not lead to an anomalous re
nant entropy because the su~4! symmetry in the presen
model is already lifted by the finiteJ.

C. The quantum critical line JÄ4

Along the quantum critical lineJ54, the boundary defec
can show critical behavior as the bulk does.7 We now con-
sider the caseh.1. In zero magnetic field, the ground sta
of the bulk consists only of singlet rungs. In a weak magne
field some triplet rungs withSz51 appear in the ground
state, whileN2 and N3 still remain equal to zero, since th
energy of the stateu2& is unchanged and that of the stateu3&
is increased (h.0). We denote withr(l) the distribution of
real l modes, including the boundary-defect contributio
From the BAE, Eq.~12!, we obtain

r~l!1E
2L

L

dl8a2~l2l8!r~l8!5a1~l!2
1

2N
ah~l!,

~13!

FIG. 1. Boundary phase diagram of the two-leg su~4!-invariant
spin ladder with different transverse coupling at the first ru
~model I! for ~a! J2h.0 and~b! h2J.0. The interaction strength
at the first rung is parametrized byh defined in Eq.~9!. Quantum
critical behavior with mean-field exponents is obtained along
line J2h54. Several phases are possible at the boundary. InS all
rungs are in a singlet state and there is no boundary bound sta
S1 the ground state consists of singlet rungs but there is an em
boundary bound state. TBS~triplet bound state! refers to a phase in
which the boundary bound-state is stable, i.e., there is a boun
triplet state with wave function falling off exponentially into th
bulk. LL1, LL2 and LL3 refer to a Luttinger liquid with no bound
ary bound state, with a stable boundary bound state~triplet state!,
and with an unstable boundary bound state, respectively. In~b! we
assumed thath2J is sufficiently small so that the ladder is not sp
polarized.
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where an(l)5n/2p@l21(n/2)2# and L251/(42h)21/4.
For h!1, we haveL'Ah/4 and Eq.~13! can be solved by
iteration,

r~l!5S 2

p
2

1

phND S 12
2L

p D1•••, ~14!

with the ground-state energy given by

E5E
2L

L

dlS 42
1

l21
1

4

2hD r~l!2
3

4
JN

2
3

4
~J82J!1N21. ~15!

Combining Eqs.~14! and~15! we obtain the susceptibility o
the system

x52
]2E

]h2
5S 2

p
2

1

phND S 1

4
h21/22

1

3p D1O~h1/2!.

~16!

The susceptibility diverges with the square root of the fi
as a consequence of the van Hove singularity of the empl
band. The boundary bound state removes one degree of
dom from the bulk, so that its contribution to the suscep
bility is negative. This result is not surprising, since in th
caseJ8 is much larger thanJ. Consequently the boundar
rung is in a tight singlet and hence insensitive to the field,
that the whole susceptibility is reduced.
ce

fy
ee-
-

o

Similar arguments indeed yield a positive boundary s
ceptibility for h,0. As discussed before, in the region
,h,1, a stable boundary bound-state occurs and a sm
field already induces a finite magnetization.

With a simple scaling approach we find that the lo
temperature specific heat and the magnetic susceptibilit
the boundary defect at the lineJ54 behaves as

dC~T!;T1/2, dx~T!;T21/2. ~17!

Such a result can also be predicted by a simple spin-w
theory with a dispersion relatione(k);k2 or alternatively
exactly via the low-temperature expansion of the thermo
namic BAE.28,29 The boundary critical exponents in Eq
~16! and ~17! are exactly the same as for the bulk.7

D. Kondo effect in the gapless phase

In the gapless phase, 0,J,4, the system is a three
component Luttinger liquid. In the sense of the su~4! t-J
model, the triplet rungs are considered spin-1 hard-c
bosons. Thel rapidities represent the charge sector, wh
the m andn rapidities parametrize the spin degrees of fre
dom, which have su~3! invariance.

As discussed above@see Fig. 1~a!# a stable boundary
bound state only exists at low temperatures for 0,h,1.
The boundary bound state corresponds to a local mom
with spin 1. The boundary couplingJ8 does not break the
su~3! invariance of the hard-core bosons and the bound
local moment is spin compensated in analogy to the Kon
effect.

To show this we explicitly consider the imaginary mod
ih/2 in the BAE, which then become
S l j2
i

2

l j1
i

2

D 2N

52

l j2
i

2
h

l j1
i

2
h

l j2 i S 12
h

2
D

l j1 i S 12
h

2
D

l j2 i S 11
h

2
D

l j1 i S 11
h

2
D )

r 56
)
lÞ j

M121
l j2rl l2 i

l j2rl l1 i
)
a51

M2
l j2rma1

i

2

l j2rma2
i

2

,

)
r 56

)
bÞa

M2 ma2rmb2 i

ma2rmb1 i
5 )

r 56

ma2
i

2
~11rh!

ma1
i

2
~11rh!

)
j 51

M121 ma2rl j2
i

2

ma2rl j1
i

2

)
d51

M3
ma2rnd2

i

2

ma2rnd1
i

2

,

)
r 56

)
gÞd

M3 nd2rng2 i

nd2rng1 i
5 )

r 56
)
a51

M2 nd2rma2
i

2

nd2rma1
i

2

. ~18!
For largeN the solutions of the BAE, Eq.~18!, are strings of
arbitrary length for all three sets of rapidities. We introdu
the usual densities ofl, m, n strings r1,n(l), r2,n(m),
r3,n(n), and their respective hole densitiesr1,n

h (l), r2,n
h (m),

r3,n
h (n). In the thermodynamic limit these densities satis

the following integral equations:30
r1,n
h ~l!1(

m
Amnr1,m~l!5(

m
Bmnr2,m~l!1an~l!,

r2,n
h ~l!1(

m
Amnr2,m~l!5(

m
Bmn„r1,m~l!1r3,m~l!…,

~19!
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r3,n
h ~l!1(

m
Amnr3,m~l!5(

m
Bmnr2,m~l!,

where we neglected the boundary driving terms which are
orderN21. Here

Amn5@m1n#12@m1n22#1•••12@ um2nu12#

1@ um2nu#,

Bmn5 (
l 51

min$m,n%

@m1n22l 11#,

and@n# is the integral operator with kernelan(l) anda0(l)
is thed-function.

The free-energy functional is given by

F/N5(
r ,n

E dl$e r ,nr r ,n~l!2T@r r ,n~l!

1r r ,n
h ~l!# ln@r r ,n~l!1r r ,n

h ~l!#1Tr r ,n~l!ln r r ,n~l!

1Tr r ,n
h ~l!ln r r ,n

h ~l!%, ~20!

where e1,n522pan(l)1n(J2h), e2,n5e3,n5nh. Mini-
mizing Eq.~20! with respect to the densities and taking in
account the relations~19!, we obtain30,31

ln~11h r ,n!5
e r ,n

T
1(

m,s
Amn

rs ln~11hs,m
21 !, r ,s51,2,3

~21!

with Amn
rs 5Amnd r ,s2Bmn(d r ,s111d r ,s21), h r ,n5r r ,n

h /r r ,n ,
andh0,n

215h4,n
21[0. An equivalent set of integral equations

ln h r ,n5G* @ ln~11h r ,n11!1 ln~11h r ,n21!#

2G* @ ln~11h r 11,n
21 !1 ln~11h r 21,n

21 !#,

ln h r ,152
2p

T
G~l!d r ,11G* ln~11h r ,2!

2G* @ ln~11h r 11,1
21 !1 ln~11h r 21,1

21 !#,

lim
n→`

ln h1,n

n
5

J2h

T
, lim

n→`

ln h2,n

n
5 lim

n→`

ln h3,n

n
5

h

T
[2x0 ,

~22!

where * denotes convolution andG(l)5@2 cosh(pl)#21.
The equilibrium free energy is

F/N52T(
n

@n# ln~11h1,n
21!.

At low T the exchangeJ gives rise to a Fermi surface fo
the charges, which are only significantly populated in
interval ulu,L5A1/J21/4, but are unoccupied forulu.L.
The low-energy spin excitations, on the other hand, t
place at very large rapidities~for h50 the spin Fermi surface
is at`). Hence, at lowT the charge and spin sectors are w
separated and only weakly coupled. Assuming complete
coupling of the spin and charge sectors, a solution of
~22! can be easily obtained for largen,
f

e

e

l
e-
.

h2,n5h3,n5
sinh~nx0!sinh~n11!x0

sinhx0 sinh~2x0!
21. ~23!

Although the boundary bound state has also some ch
fluctuations~triplet-singlet rung admixture!, these do not af-
fect the dynamics of the spin~weak coupling of spin and
charge sectors!. We can then limit ourselves to the spin d
grees of freedom of the bound state. Its contribution to
free energy is

Fbs52
1

2
T(

n51

` E dlFanS l2
i

2
h D

1anS l1
i

2
h D G ln@11h2,n

21# ~24!

or, equivalently,

Fbs5Fbs
0 2

1

2
T (

r 56
(
q51

2 E dlGq~l1 ir h/2!ln@11hq11,1#,

~25!

whereFbs
0 the ground-state energy of the local moment a

Gq~l!5
sin@p~12q/3!#

cosh~2pl/3!1cos@p~12q/3!#
.

Substituting Eq.~23! into Eq. ~25! we readily obtain that the
residual entropy of the magnetic moment is exactly ze
which means that the boundary bound state is fully scree
by the Kondo effect. These results are analogous to thos
a Coqblin-Schrieffer impurity embedded into the sam
host.32

III. SOLUTION OF MODEL II

To show that model II is integrable we rewrite the Ham
tonian ~2! as

H5H01H1 ,

H05 (
j 52

N21

Pj j 111UP12,

H152J(
j 51

N

Xj
001

1

4
NJ, ~26!

where Pi j 5(11sW i•sW j )(11tW i•tW j )/4 is the permutation op-
erator between rungi and rungj. Obviously, @H0 ,H1#50,
which means that they can be diagonalized simultaneou
We define the Lax operators

Si j ~l![l2 iPi j , ~27!

which satisfy the Yang-Baxter relations33

Si j ~l2m!Sik~l!Sjk~m!5Sjk~m!Sik~l!Si j ~l2m!.
~28!

As shown in Refs. 18 and 22, the monodromy matrix

Tt~l![SNt~l!SN21t~l!•••S2t~l!S1t~l2 ic !S1t~l

1 ic !S2t~l!•••SN21t~l!SNt~l! ~29!
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satisfies the reflection Yang-Baxter equation

Stt8~l2m!Tt~l!Stt8~l1m!Tt8~m!

5Tt8~m!Stt8~l1m!Tt~l!Stt8~l2m!, ~30!

wherec is an arbitrary constant andt andt8 are indices of
the four-dimensional auxiliary space. From Eq.~30! we have

@ t~l!,t~m!#50 ~31!

with t(l)[tr tTt(l). Therefore,t(l) serves as the genera
ing functional of a variety of conserved quantities.H0 is
,
m

un
related tot(l) as

H05
i

8~12c2!
~21!N11

dt~l!

dl U
l50

, ~32!

provided thatU51/(12c2). Hence,H0 and Hamiltonian~2!
are integrable in the sense of the algebraic Bethe ans
Following the standard procedure we readily obtain the B
of model II,
S l j2
i

2

l j1
i

2

D 2(N21)
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2

~33!
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with the energy eigenvalues given by

E52(
j 51

M1 S 1

l j
21

1

4

2JD 2
3

4
JN1U1N22. ~34!

The Hamiltonian~32! is only Hermitian if the parameterc
is either real or imaginary. For imaginaryc, U,1, and the
first rung is weakly coupled to the bulk. For realc ~we can
considerc.0 because6c yields the sameU) the imaginary
modelb5 i (c21/2) is a solution of the BAE, Eq.~33!, in
the thermodynamic limitN→` for c.1/2. This bound state
again corresponds to a triplet boundary bound state, i.e.
wave function falls off exponentially with the distance fro
the boundary. The energy of the bound state iseb5J21/(c
2c2), which can be stable only ifeb,0, i.e., in the region
1/2,c,1. This corresponds toU.1 for which the first
rung is strongly coupled to the bulk. Forc.1, i.e.U,0, the
bound state has positive energy and is empty. The first r
is then ferromagnetically coupled to the ladder.

As in the case of model I, there is a critical line forJ
.4 given by

Jc5
1

~c2c2!
, ~35!
its

g

which separates the region of an occupied~stable! and empty
~unstable! bound state. Hence, whenJ.Jc the ground state
is a spin singlet, while for 4,J,Jc and 1/2,c,1 the
boundary bound state is stable in the ground state.

In summary, the physical properties of the two models
very similar. The main difference can be understood in ter
of the number of ‘‘ghost spin’’ solutions~number of bound
state solutions! of the BAE,22 which correspond to images o
the real local moment. In the Kondo regime forJ,4 there
are two ‘‘ghost spins,’’c11/2 andc21/2, in the spin sector
of the second model, while there is only one in model I. T
can be read off from the impurity factors in the BAE’s Eq
~8! and~33!. Since the effects of the ghost spin contributio
are additive, the physics in both situations is very similar

IV. CONCLUSIONS

We studied two models for boundary defects of the op
two-leg su~4!-invariant spin ladder. In model I the transver
coupling at the boundary rung is different from the bu
while in model II the coupling of the first rung to the ladd
is different from the rung-rung coupling in the bulk. The tw
models under consideration are integrable and we obta
the exact solution by means of Bethe’s ansatz. Depending
the model parameters three situations may arise in the t
modynamic limit:~i! there is no imaginary mode solution o
the BAE and hence the states of the first rung are part of
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continuum of the bulk,~ii ! an imaginary boundary mode ex
ists, but corresponds to a positive energyeb , i.e. the state is
empty, and~iii ! an imaginary boundary mode with negativ
energy exists. In case~ii ! the boundary bound state does n
affect the ground-state properties, but does contribute to
finite T thermodynamics. The situation~iii ! is the most inter-
esting one, since a spin-1 boundary bound state is filled
the ground state. The boundary phase diagram of mode
shown in Figs. 1~a! and 1~b!.

The su~4!-invariant two-leg ladder has a critical line atJ
54. For J.4 all the rungs of the bulk are in the singl
state, while forJ,4 the system is a Luttinger liquid of in
general three components. ForJ.4 a stable boundary boun
state carries a magnetic moment~triplet state with wave
function that falls off exponentially into the bulk!, while in
B

on
s.

s.
t
he

in
is

all other cases the boundary rung is in its singlet state.
J,4, on the other hand, a stable boundary bound state
ries a Kondo compensated~screened by the spin degrees
freedom in the Luttinger liquid! magnetic moment of spin-1
i.e., ultimately the ground state is a singlet. An unsta
bound state just removes one degree of freedom from
Luttinger liquid. Both models considered here display sim
lar properties at the boundary.
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