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We analyze the onset of incommensurabilities around the VBS point @-tte bilinear-biquadratic model.

We propose a simple effective field theory which

is capable of reproducing all known properties of the

commensurate-incommensurate transition at the disorder pgit Moreover, the theory predicts another
special pointfysp, distinct from the VBS point, where the Haldane gap behaves singularly. The ground state
energy density is an analytic function of the model parameters everywhere, thus we do not have phase

transitions in the conventional sense.

I. INTRODUCTION

The S=1 bilinear-biquadratic chain

H=Z [COSOSS 11+ SiNO(SS+1)%] (1)

is one of the prototype models for the physics of Haldan

gap antiferromagnets. Its zero temperature phase diagra

has been the subject of intensive studies in recent years.
By now it is well established that the energy g@aldane
gap persists in a wide range 7/4< < /4 around the con-
ventional Heisenberg poit=0. The model is gapless at the
special points 6=+ /4 beyond which other phases with

qualitatively different physical properties appear. Although

the gap and the hiddefstring ordef characterizing the

with £(6ygs) =1/In 3=0.9102. Correlation functions of some
other operators can also be studied rigorously at the VBS
point. In particular,((S?)?(S9)2, ) has a similar purely ex-
ponential decay wittE=1/In 3 at 8= 6\ps.

The commensurate-incommensur&®IC) transition of
the spin-1 chain bears much similarity to C-IC transitions
found in other models, e.g., in the anisotropic 2D Ising

€nodel on the triangular lattice at finite temperature, where it
Tan be analyzed rigorously using the exact solutioBther,

higher dimensional, not exactly solvable models with disor-
der points were investigated using an RPA approach to the
susceptibility in Ref. 12. In general, C-IC transitions can be
divided into two categorie@wo kinds. In this classification
scheme the transition at the VBS point of the 1 chain is a
C-IC transition of thefirst kind, with the property that the
incommensurate wavenumbetrin the IC regime is param-

Haldane-gap systems persist for the whole Haldane phasger gependent. For C-IC transitions of the first kind the cor-

—wl4< 0<wl4, one can divide this interval inttat least
two, somewhat different subphasesThese subphases are
separated by the so called valence-bond-s@fi@S) point®

6yss=tan 11/3~0.10247 where the ground state properties
can be obtained exactly. The two subphases differ in the
form of the long distance asymptotics of the two-point cor-

relation function(S'S, ,,). In the “commensurate” Haldane
phase(C phase for — 7/4< 0< O\gs the leading behavior is
expected to be

e—n/gf

)

(SIS )y~ (=1D)" T for n—oo,
while in the “incommensurate” Haldane phaskC phase

for Oyps< 6< /4 this was predicted to take the form

—-n/¢
<S|ZSZ+n>NFCOE{qn+ ¢) for n—o, ()
where q=q(0) e (7,27/3) is a 6-dependent incommensu-
rate wave numberg is a phase shift, andg=¢(0) is the
correlation length. At the “C-IC transition point’(also
called the “disorder point}) 6cc=6ygs the correlation
function is known rigorously and it is purely exponential
without any algebraic prefactor
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relation length is predicted to behave on the C and IC sides
of the disorder pointc c as

dé

a0 =finite

IC

= — 00
C

g ©)

with §(6cic)#0 at the transition point. The characteristic
wave number is expected to vary on the IC side as

a(0) —d(Ocic)~ | 0— Ocic M2 (6)

Moreover, the RPA theofy also predicts the change of the
asymptotic form of the correlation functions at the disorder
point: the algebraic prefactor is (°~Y’2 in D dimensions
except at the disorder point whebe—~D’, D' <D should be
taken, reflecting a “dimensional reduction.” In our caBe
=1+1=2,D’'=1 as is seen in Eq$2)—(4). These general
features of the C-IC transitions of the first kind have been
tested numerically for the spin-1 chain, and except for some
observed deviation from the predicted form in E)
slightly abovef,gs, all were justifiec® Note that around the
VBS point finite size corrections are very small, thus the
numerical result¢exact diagonalization and DMRGre ex-
tremely precise.

Within the IC subphase some other special points can be
defined. The first one i9s;~0.12107, where the second
derivative of the magnon dispersion lat 7= vanishes, and
the dispersion becomes quartic. When the chain is subject to
a uniform magnetic field the magnetization-vs-field curve
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Although we do not have a rigorous microscopic justifi-

2-component cation all results we possess are consistent with the assump-
Luttinger liquid

tion that the elementary excitations are essentially free
bosons in the IC regime, too. Thus the aim of the present
paper is to extend the free boson description to the whole
Haldane phase, and give a general theory which is capable of
accounting for the C-IC transition in simple terms. In the
lack of a detailed microscopic formulation, however, this
theory, at present, is only phenomenological.

1-component
Luttinger liquid

gap / magnetic field

IC - Haldane

Il. EFFECTIVE THEORY—CONTINUUM VERSION
C - Haldane

A continuum field theory to describe Heisenberg antifer-
romagnetic chainsd=0) with integerS was developed by
0 Haldane! This is the nonlinear- model (NLo-M)—without
topological terms—which can be derived in the la&jemit,
FIG. 1. Schematic phase diagram showing the neighborhood dhut whose implications are believed to hold 1 too.
the C-IC transition with the special points. The critical magneticThe NLoM is defined by the Lagrangiéﬁ
field, where the Haldane gap collapses, equals the value of the

energy gap.

1 . -
()~ v(dyh)?

L‘:E 5 : (7)

has an anomalous, non-square-root-like singularity at this
point™® For 6> 6y, the second derivative &t= 1 is nega-
tive and the gap takes its minimum value for a momentu
different fromk= .5 In this region a strong enough field
causes the Haldane gap to collapse intbwva-component
Luttinger liquid (LL) phase instead of a conventional one-
component LL phas¥ The next special point iS8pax "
~0.123r where the Haldane gap takes its maximum value. H= >
Note that this point has less physical relevance, since it
strongly depends on the actual definition of the Hamiltonianiyhere the momentum canonically conjugateftturns out to
a #-dependent rescaling of the model can easily change itgg
location. Finally one can define the Lifsitz poir, s
~0.1314m, where the incommensurability manifests itself in . 1
the structure factor. This is different from the disordered (X, t)=—
point in massive models due to the finite linewidth of the gu
peaks: Figure 1 shows these special points. The spin operato8, can be expressed in termséfandl as
In both the C and IC Haldane phases the energy spectrum
consists of a discrete triplet branch of “magnons” separated S ()=(=1)"Sd(x, 1)+ SxT (X 1), (10)
by finite gaps from the singlet ground state, and also from a
continuum of higher lying “multimagnon” excitations in a wherex,=néx, x being the lattice constariisually set to
wide momentum range. This one-magnon branch is clearlynity), andS=1 in the present case. At the mean field level
discernible around the edges of the Brillouin zdoe=7.  the NLoM can be well approximated by a massive, essen-
However, it merges into the continuum and vanishes due ttially free vector-boson theory
magnon scattering processes in an extended range akound
=0. The energy spectrum, especially in the Heisenberg point
and the VBS point was studied numerically by many
authors”*>~1’ All concluded that the magnon-magnon inter- R R
actions are rather weak, and bound states do not play a ro®w without any constraint on thg field. The boson field)
at low energies. Many properties of the system, from ground\/al’ies smoothly on the scale of the lattice constant in the
state correlation functiond*®to the onset of magnetization commensurate regiméhe pure Heisenberg model, which
in uniform field$>1%?%can be extremely well approximated the theory applies for, is in the C phasend thus higher
using a massive relativistic free boson theory. Such an apderivatives, neglected in E¢L1), are indeed small. The La-
proximate theory can be derived directly from the nonlineargrangian gives rise to a relativistic dispersion(k)
o model (NLoM) description of the spin chain at the = Jm?+v%k?/2m which takes its minimum ak=0. [Note
Heisenberg point! or from the Majorana fermion represen- the factor (- 1)" introduced in Eq(10) shifting all momenta
tation of the integrable Takhtajan-Babujian model in the vi-by .]
cinity of 6= — /4.2 However, all these microscopic theo-  The NLoM summarized above gives a good description
ries utilize thea priori assumption that the important low- of the low-energy behavior of th8=1 Heisenberg chain,
energy fluctuations are at momerka0 and 7, and thus but is unable to describe the C-IC transition in the bilinear-
they cannot account for the C-IC transition, nor can they givebiquadratic chain. The key feature missing is that in the vi-
any reliable description of the IC regime. cinity of our special points the shape of the magnon disper-

whered(x,t) is a vector field with unit lengtp?=1, v is a
honuniversal constaittelocity) setting the energy scale, and
g=2/Sis the coupling constant. The associated Hamiltonian

, ®

., 1 -
g|2+ 6((9)((1))2

i

|- ©)

L= %(amZ)Z—v(ax&)Z—mchZ. (1D
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sion changes drastically, and the minimunkat7 (k=0 in <Sﬁ(t)sé(0)>=g§5(—)”G¢(xn ,t)+g|2G|(Xn b, (19
the momentum-shifted boson languagmlits. Obviously, )
such an effect can never be obtained from a relativistic fieldVith
theory such as Eq11) and we need to consider a nonrela-

f— z z
tivistic model. The simplest continuum Lagrangian with this Gy(x,)=(4"x,1)$%0.0), (19
property is G(x,H)=(1%(x,)1%(0,0)). (16)
L=(0,d)?—a(dyd)>—b(d2¢)?—m?¢2. (120  These are the quantities we will now calculate.

The Euler-Lagrange equation associated with our La-

At this level a, b, andm are §-dependent phenomenological grangian gives a generalized Klein-Gordon equation for each
parameters. For stabilitly is supposed to be positive, aad componente=x,y,z of qz

is assumed to change sign at the special péjpy,. [Note

that in the relativistic case=0, anda is in factv?, wherev 2% —ad2p*+bdip®+mP =0, (17

is the “speed of light.” Formally takinga<<0, which we will

consider in the sequel, implies an imaginary This only

means, however, that one should redefine the phyéicel- 1

si)particles to live around the two new minima of the disper- Gy(w,k)= . (18)

sion. In fact, one should introduce two new particles, now ¢ w?’—ak’—bk*—m’+ie

with v =real, for the two minima. This immediately leads to

a two-particle(two-band description which was analyzed in

detail in Ref. 14 for the massless cashove the critical (k)= JmZ+ akZ+ bK, (19

magnetic field and was shown to result a two-component

(two-band Luttinger liquid there. Here we shortcut these which reduces to the relativistic dispersion of Ref. 18 when

complications by simply assuming that the two particles aréb=0.

two chiral componentsk<0 andk>0) of the same boson The generalized theory can be quantized identically to the

with a<0.] relativistic Klein-Gordon theory® The field ¢, a=x,y,z,
Since our phenomenological model is not derived directlyhas the following mode expansion

from the microscopic Hamiltonian in E@l) the connection

between the boson field and the original spin variables is not " dk

known rigorously. In princi|olé§n can be expanded in powers XY= J Jamw(k)

of the fieIdJS and its derivatives, and any term permitted by g ot

the symmetries of the model can appear. Being guided by thwhere K-X=wt—kx, and the normalization igdj .d,, ]

NLoM description at the Heisenberg point, in the following = dg.d(k—K’). Using the mode expansion the equal time

we will assume that the first two ternfinear and quadratic expressionss,(x) andG,(x) can be easily reduced to Fou-

whose Green'’s function is

This defines the nonrelativistic dispersion

[die**+diTe %], (20

in &) are rier transform&®
> - - - dk eikx
Si()=0g(—1)"d(Xn, ) + a1 (Xn,) +O(|B[*), (13 G¢(x)=fﬂm,
where g, and g, are unknown constants. Note that the , K
term, defined by Eq9), is the most relevant two-boson term )= lf %w(k/)eik’xj' % e }52()()
which is even under parity and odd under time reversal as it ! 2) 4x A7 w(k) 2 '
should be. Although, we cannot exclude the possibility that (21

up to O(¢?) some other terms with higher derivatives alsoNote that the integral determinir@,, also appears as a mul-
appear, such extra derivatives, due to the finite mass gapplicative factor inG; .

would not modify the long distance asymptotics<§)§n>. Since the asymptotic behavior is determined®y, we
Equation (13) shows that in the C phase where spin-spinstart our analysis with this. The evaluation of the Fourier
correlations are antiferromagnetit varies smoothly, and transform starts with locating the zeros @otk) in the com-
higher order derivatives in the Langrangian have minor roleplex plane. The four zeros are given by

Around the C-ClI transition point, and in the IC-phase, how- )

.. = . . 1 1/
ever, this is no longer the case: spicks up incommensu- k=+|=—(—a=Ja?—4m?b) (22)
ration, ¢(x) must do so, as well. It no longer varies 2b
smoothly, and higher derivatives in the Lagrangian cannot bgng depend on the single paramefewia a, b, andm. Since
neglected. This is the effect which we try to take into con-oyr phenomenological model is not derived directly from the
sideration by theb term in Eq.(12). _ ~ microscopic one, we have to make several assumptions about
The asymptotic behavior of the correlation function ihe g dependence of, b, andm. We will assume that this
(S'S;n) is determined by the one-boson term; the two-dependence is smoothnalytica), m(6) andb(6) are non-

boson term and in general any multiboson terms only constinegative whereaa decreases with increasirggand changes
tute minute corrections which decay at least twice as rapidlysign atfysp. We introduce the discriminant

Thus, up to the two-boson term in E¢L3) the spin-spin
correlation function has the behavior D(6#)=a’—4m?b, (23
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point v_, and it is legitimat& to expand the integrand
by | 9=0, around this point. Fofx|>|D|~ Y this yields

—v_|x

Gy(x)= 5 [Ix|~"2+0(|x|"¥%]. (29

[277_0_ \/5]1/2
Together with Eq.(13), we find the expected asymptotic
(a) (c) form Eq. (2) of the spin-spin correlation function with a cor-
v relation lengthé=1/v _ which is continuous ab= 6.

v [ u+iv 0> 0ygs: HereD becomes negative and has four com-
- A plex zerosk;=*uxiv (j=1,...,4)with

1/2 1/2

m a

2\/6 4b

FIG. 2. Roots ofw(K) in the complexk plain. (@) 8< 6ygs, (b) | We write w in the form
0= 6ygs, (c) 6>6\gs. Branch cuts are chosen according to the

4
conventions described in the text. w(k)= \/611:[1 (k— kj)llz (30)

which is hence an analytic function @& and we suppose o )
that it is positive for6< 6ygs, vanishes at the VBS point, We see that it is single-valued on the complex plane with a
and it is negative fromygs to 6= /4 where it vanishes Cut between—u—iv andu—iv and another cut between
again. As we show below, under the above hypotheses the U+iv andu+iv [see Fig. Zo)]. Fork real we get back the
phenomenological model provides the expected asymptoti@“gma' positive function. The integration can be carried out
behavior of the correlation function in all parts of the along a contour which starts atu+ic, goes vertically
Haldane phase. down to—u+iv, passes below the upper cut and goes ver-

6= 6ygs: At this pointa>0 andD=0. The expression tically to u+io. Next, we replace the integral below the cut
under the square-root in(k) is a complete square, thus Py an integral going above the cut and in the opposite sense,
becomes quadratic ikand has two purely imaginary zeros, @and this latter by the sum of the two integrals along the
+i\2m?/a= *i/a/2b [see Fig. 2b)]. The contour of inte- vertical ha}lf lines. The;e are complex conjugate to each
gration can be closed in the upper half plane and the result &ther, so finally we obtain

0<6 6>6 u= (29

v=

m+a
2\/5 4b

1 ‘ 1
e BN, 24  Gy(X)=—7p

2 \2a b

Because of the purely exponential decay, this indeed corre- ef|x|tCOS{u|x|_(P(t)]dt
sponds tof= 6yps.

< ,
6<6yps: In this regiona>0 andD>0. We may sup- v 2= v AU+ (t—v) 2]V 4uP+ (t+v)2 Y4
poseb>0; the case whebh=0 can be obtained by continu-

Gy(x)=

ity. We get four purely imaginary zerasiv .. ,where (3D
where
1 1/2
U= %(ai\/ﬁ) (29 1 t—v t+v
o(t)= =| arctan— +arctan——|. (32
Now 2 2u 2u

Now G ,(x) changes sign periodically, and we can identify
w(k)=b(k2+v2) (k2 + 2 )12 (260 7—u with the wave numbeq of the incommensurate oscil-

is single-valued in the complex plane with two cuts, onel@tion. At the VBS pointu=0, and as it is shown by Eq.
between—iv, and—iv_ and another one betweén_ and (29), the assumed analyticity of, a andb assures that it has

iv. [see Fig. 2a)]. (We use the convention that?has a cut & square.-root-type singularity above the yBS point in accor-
along the negative real axisThe contour of integration can dance with Eq(6). The I,argel-x%asymptou_cs 0iG4(x) can
be closed in the upper half-plane and drawn onto the uppe?€ Obtained by Watson's lemizor by a direct expansion

¢ givi ~
cut, giving e "M cogu|x| — (1/2)arctariv/u) ]

1 vy e_t‘x‘ G¢(X): —mD 1/4
s o sy 0
0= bl [(2—v2) (2 —12)]¥2 @ (2m) ( b
This function is positive for alk, so with the factor £ 1)" X[|x|~ Y2+ 0(]x|~%3)]. (33
introduced in Eq(13) we obtain the expected antiferromag-
netic modulation. Agx| goes to infinity, the main contribu- Formulas(31) and(33) apply for anyd betweend,zs and

tion to the integral is coming from the vicinity of the end =/4, including 65, Which is a symmetry point of the domain
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of incommensurate oscillationsu€v). As 6 approaches where w?(ig/9x) is a shorthand for m?—ag?/9x?
/4, D goes to zero and the zeros @{k) tend to the real +bg* dx* in the present case. With this

axis. Thus,v goes to zero and the correlation length di-
verges. This is what we expect at the boundary of the
Haldane phas&=w/4 where the gap disappears. At this
special point the ground state has a tripled perioditftim-
plying u(6= ml4)=2m/3.

G|(x):G¢(x)w2<i%)G¢(x), (39

where we have neglected the singular, delta-function term of

' . o Eqg. (21). This term can be evaluated directly for large
For any fixed xG4(x) depends analytically o@ inside . ; ; X .
the whole Haldane phase. This can be seen from the origin}ﬁ]qwmlg thezisyrggtotlcéo;r; B, |rl1)tth_e different regimes.
form Eq.(21) of G4(x) by inserting the original, nonfactor- sing Eqs.(24), (28), and(33) we obtain

ized expression Eq19) for w(k). A proof can be found in (o 20.x
Ref. 25. The argument makes use of the continuity of the if 0<6yas,
integrand ink real, its(supposeganalyticity for any fixedk X

as a function ofé in suitable complex domains, and the
uniform convergence of the integral f@r in any of these
domains. It is interesting to examine another kind of asymp-

Gi(x)~4q 0 if 6=06yps,

—2vX

totics, valid in a close neighborhood 6fgs, when|D|/a? 2 [C1+CaCoq2ux+a)] if 6> byes,
<1. In this case Eq27) reduces to the form . (39)
e VDX 9 g D _ where the constants;,c,, anda can be expressed straight-
Gy(x)~ W ;fo Cos %MS'”“ da forwardly witha,b, andm. It is intere;ting to remark.th&
is exactly zero for anik>0 at the disorder point, i.e., the
e V@Ix| D two-boson processes do not contribute to the equal time cor-
= —|O< —x| (34 relation function there. This can be easily verified by calcu-
V8a 8ab lating w?(i/9X)G 4(x) using Eq.(24) and the fact thaD

< . . .
wherel, is the zeroth order Bessel function. We can arrive at_ 0 at the VBS point. HergS;S;) only contains theG,,

the same equation from E¢81), by changing the contour of term in full accordance Wlth the e?(act solution. For other
integration(integrating around the upper ¢uNow analytic-  Values of6, G, decays twice as rapidly &, . ,

ity at the VBS point is manifest, because in the expansion of It IS also of interest to see what predictions our simple
the hyperbolic cosine about zero only the even powerdf field theory gives _for the analytic properties of the grounc_j
appear. Equatio34) shows that the crossover to the decayState energy densny_ ano_l the gap. US'T‘Q the mode expansion
with the|x|~ 12 prefactor sets in at the characteristic distance” Ed- (20), the Hamiltonian can be written as

|x|~D ™12, which diverges at the VBS point. This explains A 1
the numerical difficultiesverifying the expected asymptotic H—J dko (k) dldk+ —I, (40)
behavior very close to the VBS point. —A 2

At the VBS point there is an infinite jump in the deriva-
tive of the correlation length, as predicted by E5). Indeed,
Eq. (25) yields

where A is an appropriate UV momentum cutoff, propor-
tional to the inverse of the lattice constant. From this the
ground state energy is
D’ 1A
- D12 _ (e )~ 12 :_f
4\2am (Oves—0) E 5 7Adkw(k). (42

bvBs

dé
de

fvgs—0
B9  The ground state energy depends analyticallyaon, andm

becaused’ (6ygs)<0. On the other hand, from E¢R9) whenever the zeros @f(k) are not on the real axis. Together
with the supposed analyticity af(6), etc., this means that

dé 1 /m a m? E(#) is also analytic inside the whole Haldane ph%fSA
46| fvesto™ ~ 2—\/5 °m + %a + =z ; (36) straightforward expansion arourgs yields
fves .
e . . . lim [E(6) —E(6vgs)]

which is finite. The singularity of the correlation length at Ao
fves is in no contradiction with the analyticity @ ,(x) at a . N
fixed x Indeed, the divergence of the derivative ®fwas ~ 8ma¥”? > 27°"(4n—4)! D
extracted from the single-exponential asymptotic form Eq. - \/fb &1 (2n—2)Inl(n—1)! g '
(28 which, again, is valid only for|x|>(v,—v_)"*
~D12 (42)

_ To see the role of the two-boson tei@) in the correla-  \yhich is convergent ifD|/a?<1. We notice that in general
tion functions, we can use the identitgfter proper regular-  £(g) can be expressed in a closed form in terms of elliptic

ization) integrals of the first and second kind.
dk - ¥ dk e ikx The energy gap of the model is by definition
— (ke **=p?|i— J’ (37

A7 x| ] 47 w(k)’ A=minw(K). (43)
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This is obviously analytic ac,c= 6ygs but has a singularity
at 0ysp, Where the minima of (k) move away fronk=0 as
the parametea=0 changes sign. While fop< 6, the
minimum _is taken atk=0, for 6> 6ys, it is taken at
k==*—al2b. The gapA and its derivatives with respect to
6 on the two sides obs, turn out to be, respectively,

A( adisp_ 0)=m, A( gdisp"' 0)=m,

COMMENSURATE AND INCOMMENSURATE . ..
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The condition that the expression under the square root in
(k) is a complete square is agdin(#) =0 with D defined
in Eq. (23). When this is satisfied the dispersion simplifies to

avps
wygs(K)=Mygs+ m_[l_ cogk)], (49
VBS
and 1lbygs(k) has poles instead of branch cu@ne pole
within the Brillouin zone— 7<Re(k)< = with 0<Im(k).]
Now the second and fourth derivativeskat 0 are[see Eq.

A"(Ogisp—0)=m",  A’(gspt0)=m’, (44)

(49)]
12
a Pw Ao 3D
A"(Oaisp=0)=m",  A"(bgispt 0)=m"— 7 — (k=0)=—, —(k=0)=——3——. (50)

abmy, el m ol m m
We see that there is a discontinuity in the second derivative/At the disorder point we find
This behavior of the effective theory seems consistent with
the numerical results shown in Fig. 9 of Ref. 5. (94—w(k=0)= _ avss7 (51)

ak* Myes

Ill. EFFECTIVE THEORY—LATTICE VERSION L .
which is nonzero. The correlation lengéts 1/Im(k) at the

The effective theory presented above is capable of providdisordered point is determined by the position of the pole,
ing a complete qualitative description of the C-IC transitioni.e., by the solution of the transcendental equation
of the spin-1 bilinear-biquadratic model in accordance with

the available numerical data. However, in order to give quan- ayps
titative predictions, too, the theory needs some refinement. 1+ — [1- cogk)]=0. (52)
VBS

We have seen earlier that our simple theory identifies the
disorder pointfc c with the point where the discrimina  Working the other way around, knowing that at the VBS
defined by Eq.(23) vanishes. It is easy to verify that the (C-IC) point £&ygs=1/In3, Eq. (52) gives ayps=3mMigs/2

second and fourth derivatives af(k) at k=0 are, respec-
tively,

Pw a o

0] 3D
W(kzo):a, W(kzo):_W’ (49)

. L . E
thus in the above theory the fourth derivative vanishes at the

disorder point. In contrast with this, Golinekit al® mea-

sured numerically the second and fourth derivatives at the

known disorder poin®,gs and found

Pw I
——(k=0)=0.97781), —4(k=O)=—1.2021).
ok

k2
(46)

and thus the dispersion

wygs™ Mygg . (53

5 3 K
> ECOS{)

With this expression the lattice Green'’s function defined in
g. (48) reads

—In[In3
e lnlns.

Gy(n)= (54)

4myps
which should be conferred to E@). The functional form of
the dispersion relation in E@53) is exactly the same as the
one appearing in theingle mode approximatioof the VBS
model®’ There, one derives an upper bound for the gap
Aygs=Mygs= \40/9, whereas here we should use the phe-

Note that the fourth derivative is only zero far inside the ICnomenological (numerical value A,gs=0.664314 in Eg.

regime, which seems inconsistent with the above theory.

(53). This, together with Eq(51) yields the value?*w/ok*

One step to improve the theory is to realize that the modek — 3mygg/2~ — 1.0, which is rather close to the numerical

is defined on a lattice, and thus the dispersigi) must be
a 2sr-periodic function ok (from now on the lattice constant

estimate in Eq(46).
The split of the double root in the vicinity of the disorder

is setox=1). This can be incorporated into the Lagrangianpoint can be analyzed similarly to the continuum theory. We

in Eqg. (12) by the standard replacemeiféd—[ ¢(n+ 6x)
— ¢(n)]/8x, leading to the substitutiok’—2[ 1— cosk)] in
the dispersion

w(k)=\m?+2a+6b—(2a+8b)cogk)+2b cog 2k).

(47)

The Green’s function now reads
G _jw dk 1 i 48
¢(n)_ 777@ (U(k)e ( )

do not go into details here, but emphasize that the critical
exponents characterizing the behavior&®) and q(6) at
Ovgs, and the type of the singularity of the gap @,
remain the same. Similarly, we find that the ground state
energy is analytic everywhere.

One can wonder about the possible consequences of keep-
ing higher order terms in the continuum Lagrangian @)
or in the improved lattice version. If the theory remains free
the only effect is to bring about additional branch cuts or
poles in 1b(k). If the higher order terms are small the ad-
ditional branching points are far ik space, and the C-IC
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transition remains intact. The long distance asymptotics ophase transition takes place @, thus this point is the
the correlation functions do not change. Since at the VBSndpoint of a phase transition line on the magnetic field vs
point the exact correlation function in E@}) only contains a  plain separating two Luttinger liquid type phases.
single exponential term, the free boson approximation does In a technical sense the C-IC transition is a consequence
not allow any higher order spatial derivatives in the effectiveof an accidental degeneracy of roots of the dispersion rela-
Lagrangian there. tion. We have shown in the free boson approach that this
Although the dispersiom,gs in Eq. (53) gives rise to the degeneracy causes the “dimensional reduction” of the cor-
exponential term in Eq(4), it misses thes,, o contribution. relation function, and makes it to be a pure exponential at the
This is, however, another artifact of the continuum approachYBS point. We also found that the two-magnon contribu-
which necessarily neglects some important short distance d&éions, and presumably any higher order, multimagnon contri-
tails. In fact, we should recall that in a quantum spin liquid butions too, vanish exactly at this point. We derived a for-
with short-range valence bond ground state the elementafjiula valid in the vicinity of the VBS point showing how the
excitations(bosong are physically triplet bonds livingpe- ~ Pure exponential decay emerges from the standard form with
tween lattice sites, rather than on the sites themselves. Adlgebraic prefactors. In particular we found that there is a
was argued in Ref. 1657 acting on the VBS ground state CrOSSOVer between a pure exponential decay and a decay

produces the linear combination of two states, one of whictfOntaining algebraic prefactors. The characteristic distance
containing a boson at siie- 1/2, the other a boson at site of this crossover tends to infinity as the VBS point is ap-

+1/2. Hence the one-boson term(@S;. ,) is in fact proached. » , , o
The spin-1 bilinear-biquadratic model studied in this pa-
(5515@:93)(—)n[G¢(n_1)+2G¢(”)+G¢(”+ 1)]. per is not the only model which produces a C-IC transition.

(55  Another example is the spin-1/2 chain with next-nearest-
neighbor interactiorithis can also be visualized as a two-leg
zig-zag ladder®® By now it is well established that the
Majumdar-Ghosh point of this model is a disorder point
where a C-IC transition of the first kind occurs. On the same
IV. SUMMARY AND DISCUSSION footing as described here, it seems possible to develop an

In summary, we proposed a simple effective field theorye_ffeCtive theory which supposes that the elementary excita-

to describe the commensurate-incommensurate transition NS (SPin-1/2 solitons in that capare essentially free par-

the Haldane phase of the spin-1 bilinear-biquadratic chaint.ides with a nonrelativistic dispersion. Care should, how-

The theory is capable of reproducing many features of thi€ver, be taken on the facts that solitons are always created in

transition previously seen in the numerical studies. MoreoveP@rs and that they are spin-1/2 particles. BesideShel/2
it also has some new predictions. The effective theory pregase, the appearance of disorder points has been demon-

dicts that the C-IC transition a,gs is not a phase transition Strated in othe6=1 frustrated Heisenberg chains oan-

in the conventional sense, since the ground state energy r8ther mteresttln_g quaspone-d:mtensm_r:_al iystebm where tad
mains an analytic function of the control parameterThe ~ COMMensurate-incommensurate transition nas been reporte

only singularity occurring is in the correlation length. We In & numerical in\{estigaté(f)an is the SU(2BU(2) symmetric
should emphasize, however, that the correlation function itc0UPIed spin-orbit modet. The elaboration and testing of

self remains analytic as a function @ffor any fixed dis- effective theories, similar to the one described in this paper,
tance, unlike in conventional phase transitions for these models could be a possible direction of future re-

There is another poindy, close to the disorder point search.
where another quantity becomes singular. This is the energy
gap(Haldane gapwhose second derivative produces a jump.

This singularity in the singlet-triplet gap becomes important We thank L. Balents and J.”§om for valuable discus-
when a high enough magnetic field is applied, producing a&ions. This work was financially supported by the Hungarian
crossing between these levels, and thus leading to the cobcientific Research Foundatid®TKA) under Grant Nos.
lapse of the gap. At the critical field, akis varied a real 30173, 30543, and F31949.

Using Eq.(54) this leads directly to Eq(4), including the
s-function piece, ifg5=mygs.
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