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Commensurate and incommensurate correlations in Haldane-gap antiferromagnets

Gábor Fáth and Andra´s Sütő
Research Institute for Solid State Physics, P.O. Box 49, H-1525 Budapest, Hungary

~Received 27 January 2000!

We analyze the onset of incommensurabilities around the VBS point of theS51 bilinear-biquadratic model.
We propose a simple effective field theory which is capable of reproducing all known properties of the
commensurate-incommensurate transition at the disorder pointuVBS . Moreover, the theory predicts another
special pointudisp, distinct from the VBS point, where the Haldane gap behaves singularly. The ground state
energy density is an analytic function of the model parameters everywhere, thus we do not have phase
transitions in the conventional sense.
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I. INTRODUCTION

The S51 bilinear-biquadratic chain

H5(
i

@cosuSiSi 111 sinu~SiSi 11!2# ~1!

is one of the prototype models for the physics of Halda
gap1 antiferromagnets. Its zero temperature phase diag
has been the subject of intensive studies in recent year2–7

By now it is well established that the energy gap~Haldane
gap! persists in a wide range2p/4,u,p/4 around the con-
ventional Heisenberg pointu50. The model is gapless at th
special points8 u56p/4 beyond which other phases wit
qualitatively different physical properties appear. Althou
the gap and the hidden~string! order9 characterizing the
Haldane-gap systems persist for the whole Haldane ph
2p/4,u,p/4, one can divide this interval into~at least!
two, somewhat different subphases.4,5 These subphases a
separated by the so called valence-bond-solid~VBS! point10

uVBS5tan211/3'0.1024p where the ground state propertie
can be obtained exactly. The two subphases differ in
form of the long distance asymptotics of the two-point c
relation function̂ Si

zSi 1n
z &. In the ‘‘commensurate’’ Haldane

phase~C phase! for 2p/4,u,uVBS the leading behavior is
expected to be

^Si
zSi 1n

z &;~21!n
e2n/j

n1/2
for n→`, ~2!

while in the ‘‘incommensurate’’ Haldane phase~IC phase!
for uVBS,u,p/4 this was predicted to take the form

^Si
zSi 1n

z &;
e2n/j

n1/2
cos~qn1f! for n→`, ~3!

where q5q(u)P(p,2p/3) is a u-dependent incommensu
rate wave number,f is a phase shift, andj5j(u) is the
correlation length. At the ‘‘C-IC transition point’’~also
called the ‘‘disorder point’’! uCIC5uVBS the correlation
function is known rigorously and it is purely exponenti
without any algebraic prefactor

^Si
zSi 1n

z &5
4

3
~2 !ne2n/j2

2

3
dn0 , ~4!
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with j(uVBS)51/ln 3'0.9102. Correlation functions of som
other operators can also be studied rigorously at the V
point.7 In particular,^(Sz) i

2(Sz) i 1n
2 & has a similar purely ex-

ponential decay withj51/ln 3 atu5uVBS.
The commensurate-incommensurate~C-IC! transition of

the spin-1 chain bears much similarity to C-IC transitio
found in other models, e.g., in the anisotropic 2D Isi
model on the triangular lattice at finite temperature, wher
can be analyzed rigorously using the exact solution.11 Other,
higher dimensional, not exactly solvable models with dis
der points were investigated using an RPA approach to
susceptibility in Ref. 12. In general, C-IC transitions can
divided into two categories~two kinds!. In this classification
scheme the transition at the VBS point of theS51 chain is a
C-IC transition of thefirst kind, with the property that the
incommensurate wavenumberq in the IC regime is param-
eter dependent. For C-IC transitions of the first kind the c
relation length is predicted to behave on the C and IC si
of the disorder pointuCIC as

dj

du U
C

52`,
dj

duU
IC

5finite ~5!

with j(uCIC)Þ0 at the transition point. The characterist
wave number is expected to vary on the IC side as

q~u!2q~uCIC!;uu2uCICu1/2. ~6!

Moreover, the RPA theory12 also predicts the change of th
asymptotic form of the correlation functions at the disord
point: the algebraic prefactor isn2(D21)/2 in D dimensions
except at the disorder point whereD→D8, D8,D should be
taken, reflecting a ‘‘dimensional reduction.’’ In our caseD
511152, D851 as is seen in Eqs.~2!–~4!. These genera
features of the C-IC transitions of the first kind have be
tested numerically for the spin-1 chain, and except for so
observed deviation from the predicted form in Eq.~3!
slightly aboveuVBS, all were justified.5 Note that around the
VBS point finite size corrections are very small, thus t
numerical results~exact diagonalization and DMRG! are ex-
tremely precise.

Within the IC subphase some other special points can
defined. The first one isudisp'0.1210p, where the second
derivative of the magnon dispersion atk5p vanishes, and
the dispersion becomes quartic. When the chain is subje
a uniform magnetic field the magnetization-vs-field cur
3778 ©2000 The American Physical Society
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PRB 62 3779COMMENSURATE AND INCOMMENSURATE . . .
has an anomalous, non-square-root-like singularity at
point.13 For u.udisp, the second derivative atk5p is nega-
tive and the gap takes its minimum value for a moment
different from k5p.6 In this region a strong enough fiel
causes the Haldane gap to collapse into atwo-component
Luttinger liquid ~LL ! phase instead of a conventional on
component LL phase.14 The next special point isumax
'0.123p where the Haldane gap takes its maximum val
Note that this point has less physical relevance, sinc
strongly depends on the actual definition of the Hamiltoni
a u-dependent rescaling of the model can easily change
location. Finally one can define the Lifsitz pointuLifs
'0.1314p, where the incommensurability manifests itself
the structure factor. This is different from the disorder
point in massive models due to the finite linewidth of t
peaks.5 Figure 1 shows these special points.

In both the C and IC Haldane phases the energy spec
consists of a discrete triplet branch of ‘‘magnons’’ separa
by finite gaps from the singlet ground state, and also from
continuum of higher lying ‘‘multimagnon’’ excitations in a
wide momentum range. This one-magnon branch is cle
discernible around the edges of the Brillouin zonek56p.
However, it merges into the continuum and vanishes du
magnon scattering processes in an extended range arouk
50. The energy spectrum, especially in the Heisenberg p
and the VBS point was studied numerically by ma
authors.7,15–17All concluded that the magnon-magnon inte
actions are rather weak, and bound states do not play a
at low energies. Many properties of the system, from grou
state correlation functions15,18 to the onset of magnetizatio
in uniform fields13,19,20can be extremely well approximate
using a massive relativistic free boson theory. Such an
proximate theory can be derived directly from the nonline
s model (NLsM) description of the spin chain at th
Heisenberg point,21 or from the Majorana fermion represen
tation of the integrable Takhtajan-Babujian model in the
cinity of u52p/4.22 However, all these microscopic theo
ries utilize thea priori assumption that the important low
energy fluctuations are at momentak50 and p, and thus
they cannot account for the C-IC transition, nor can they g
any reliable description of the IC regime.

FIG. 1. Schematic phase diagram showing the neighborhoo
the C-IC transition with the special points. The critical magne
field, where the Haldane gap collapses, equals the value of
energy gap.
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Although we do not have a rigorous microscopic justi
cation all results we possess are consistent with the assu
tion that the elementary excitations are essentially f
bosons in the IC regime, too. Thus the aim of the pres
paper is to extend the free boson description to the wh
Haldane phase, and give a general theory which is capab
accounting for the C-IC transition in simple terms. In th
lack of a detailed microscopic formulation, however, th
theory, at present, is only phenomenological.

II. EFFECTIVE THEORY—CONTINUUM VERSION

A continuum field theory to describe Heisenberg antif
romagnetic chains (u50) with integerS was developed by
Haldane.1 This is the nonlinears model (NLsM)—without
topological terms—which can be derived in the largeS limit,
but whose implications are believed to hold forS51 too.
The NLsM is defined by the Lagrangian21

L5
1

2g F1

v
~] tfW !22v~]xfW !2G , ~7!

wherefW (x,t) is a vector field with unit lengthfW 251, v is a
nonuniversal constant~velocity! setting the energy scale, an
g52/S is the coupling constant. The associated Hamilton
is

H5
v
2 Fg lW21

1

g
~]xfW !2G , ~8!

where the momentum canonically conjugate tofW turns out to
be

lW~x,t ![
1

gvFfW 3
]fW

]t
G ~x,t !. ~9!

The spin operatorSW n can be expressed in terms offW and lW as

SW n~ t !5~21!nSfW ~xn ,t !1dx lW~xn ,t !, ~10!

wherexn5ndx, dx being the lattice constant~usually set to
unity!, andS51 in the present case. At the mean field lev
the NLsM can be well approximated by a massive, ess
tially free vector-boson theory

L5
1

v
~] tfW !22v~]xfW !22m2fW 2, ~11!

now without any constraint on thefW field. The boson fieldfW
varies smoothly on the scale of the lattice constant in
commensurate regime~the pure Heisenberg model, whic
the theory applies for, is in the C phase! and thus higher
derivatives, neglected in Eq.~11!, are indeed small. The La
grangian gives rise to a relativistic dispersionv(k)
5Am21v2k2/2m which takes its minimum atk50. @Note
the factor (21)n introduced in Eq.~10! shifting all momenta
by p.#

The NLsM summarized above gives a good descripti
of the low-energy behavior of theS51 Heisenberg chain
but is unable to describe the C-IC transition in the biline
biquadratic chain. The key feature missing is that in the
cinity of our special points the shape of the magnon disp
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3780 PRB 62GÁBOR FÁTH AND ANDRÁS SÜTŐ
sion changes drastically, and the minimum atk5p (k50 in
the momentum-shifted boson language! splits. Obviously,
such an effect can never be obtained from a relativistic fi
theory such as Eq.~11! and we need to consider a nonrel
tivistic model. The simplest continuum Lagrangian with th
property is

L5~] tfW !22a~]xfW !22b~]x
2fW !22m2fW 2. ~12!

At this level a, b, andm areu-dependent phenomenologic
parameters. For stabilityb is supposed to be positive, anda
is assumed to change sign at the special pointudisp. @Note
that in the relativistic caseb50, anda is in factv2, wherev
is the ‘‘speed of light.’’ Formally takinga,0, which we will
consider in the sequel, implies an imaginaryv. This only
means, however, that one should redefine the physical~qua-
si!particles to live around the two new minima of the disp
sion. In fact, one should introduce two new particles, n
with v5real, for the two minima. This immediately leads
a two-particle~two-band! description which was analyzed i
detail in Ref. 14 for the massless case~above the critical
magnetic field! and was shown to result a two-compone
~two-band! Luttinger liquid there. Here we shortcut thes
complications by simply assuming that the two particles
two chiral components (k,0 andk.0) of the same boson
with a,0.#

Since our phenomenological model is not derived direc
from the microscopic Hamiltonian in Eq.~1! the connection
between the boson field and the original spin variables is
known rigorously. In principleSW n can be expanded in power
of the fieldfW and its derivatives, and any term permitted
the symmetries of the model can appear. Being guided by
NLsM description at the Heisenberg point, in the followin
we will assume that the first two terms~linear and quadratic
in fW ) are

SW n~ t !5gf~21!nfW ~xn ,t !1gl lW~xn ,t !1O~ ufW u3!, ~13!

where gf and gl are unknown constants. Note that thelW
term, defined by Eq.~9!, is the most relevant two-boson ter
which is even under parity and odd under time reversal a
should be. Although, we cannot exclude the possibility t
up to O(fW 2) some other terms with higher derivatives al
appear, such extra derivatives, due to the finite mass
would not modify the long distance asymptotics of^SW 0SW n&.
Equation ~13! shows that in the C phase where spin-sp
correlations are antiferromagneticf varies smoothly, and
higher order derivatives in the Langrangian have minor ro
Around the C-CI transition point, and in the IC-phase, ho
ever, this is no longer the case: asSW n picks up incommensu
ration, fW (x) must do so, as well. It no longer varie
smoothly, and higher derivatives in the Lagrangian canno
neglected. This is the effect which we try to take into co
sideration by theb term in Eq.~12!.

The asymptotic behavior of the correlation functio
^Si

zSi 1n
z & is determined by the one-boson term; the tw

boson term and in general any multiboson terms only con
tute minute corrections which decay at least twice as rapi
Thus, up to the two-boson term in Eq.~13! the spin-spin
correlation function has the behavior
d
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^Sn
z~ t !S0

z~0!&5gf
2 ~2 !nGf~xn ,t !1gl

2Gl~xn ,t !, ~14!

with

Gf~x,t ![^fz~x,t !fz~0,0!&, ~15!

Gl~x,t ![^ l z~x,t !l z~0,0!&. ~16!

These are the quantities we will now calculate.
The Euler-Lagrange equation associated with our

grangian gives a generalized Klein-Gordon equation for e
componenta5x,y,z of fW

] t
2fa2a]x

2fa1b]x
4fa1m2fa50, ~17!

whose Green’s function is

Gf~v,k!5
1

v22ak22bk42m21 i«
. ~18!

This defines the nonrelativistic dispersion

v~k!5Am21ak21bk4, ~19!

which reduces to the relativistic dispersion of Ref. 18 wh
b50.

The generalized theory can be quantized identically to
relativistic Klein-Gordon theory.23 The field fa, a5x,y,z,
has the following mode expansion

fa~x,t !5E dk

A4pv~k!
@dk

aeiK "X1dk
a†e2 iK "X#, ~20!

where K "X5vt2kx, and the normalization is@dk
b ,dk8

a†
#

5dbad(k2k8). Using the mode expansion the equal tim
expressionsGf(x) andGl(x) can be easily reduced to Fou
rier transforms18

Gf~x!5E dk

4p

eikx

v~k!
,

Gl~x!5
1

2E dk8

4p
v~k8!eik8xE dk

4p

eikx

v~k!
2

1

2
d2~x!.

~21!

Note that the integral determiningGf also appears as a mu
tiplicative factor inGl .

Since the asymptotic behavior is determined byGf , we
start our analysis with this. The evaluation of the Four
transform starts with locating the zeros ofv(k) in the com-
plex plane. The four zeros are given by

k56F 1

2b
~2a6Aa224m2b!G1/2

~22!

and depend on the single parameteru, via a, b, andm. Since
our phenomenological model is not derived directly from t
microscopic one, we have to make several assumptions a
the u dependence ofa, b, andm. We will assume that this
dependence is smooth~analytical!, m(u) andb(u) are non-
negative whereasa decreases with increasingu and changes
sign atudisp. We introduce the discriminant

D~u!5a224m2b, ~23!
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PRB 62 3781COMMENSURATE AND INCOMMENSURATE . . .
which is hence an analytic function ofu, and we suppose
that it is positive foru,uVBS, vanishes at the VBS point
and it is negative fromuVBS to u5p/4 where it vanishes
again. As we show below, under the above hypotheses
phenomenological model provides the expected asymp
behavior of the correlation function in all parts of th
Haldane phase.

u5uVBS: At this point a.0 andD50. The expression
under the square-root inv(k) is a complete square, thusv
becomes quadratic ink and has two purely imaginary zero
6 iA2m2/a56 iAa/2b @see Fig. 2~b!#. The contour of inte-
gration can be closed in the upper half plane and the resu

Gf~x!5
1

2A2a
e2Aa/2buxu. ~24!

Because of the purely exponential decay, this indeed co
sponds tou5uVBS.

u,uVBS: In this regiona.0 andD.0. We may sup-
poseb.0; the case whenb50 can be obtained by continu
ity. We get four purely imaginary zeros6 iv6 ,where

v65F 1

2b
~a6AD !G1/2

. ~25!

Now

v~k!5Ab~k21v1
2 !1/2~k21v2

2 !1/2 ~26!

is single-valued in the complex plane with two cuts, o
between2 iv1 and2 iv2 and another one betweeniv2 and
iv1 @see Fig. 2~a!#. ~We use the convention thatz1/2 has a cut
along the negative real axis.! The contour of integration can
be closed in the upper half-plane and drawn onto the up
cut, giving

Gf~x!5
1

2pAb
E

v2

v1 e2tuxu

@~ t22v2
2 !~v1

2 2t2!#1/2
dt. ~27!

This function is positive for allx, so with the factor (21)n

introduced in Eq.~13! we obtain the expected antiferroma
netic modulation. Asuxu goes to infinity, the main contribu
tion to the integral is coming from the vicinity of the en

FIG. 2. Roots ofv(k) in the complexk plain. ~a! u,uVBS , ~b!
u5uVBS , ~c! u.uVBS . Branch cuts are chosen according to t
conventions described in the text.
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point v2 , and it is legitimate24 to expand the integrand
around this point. Foruxu.uDu21/2 this yields

Gf~x!5
e2v2uxu

2@2pv2AD#1/2
@ uxu21/21O~ uxu23/2!#. ~28!

Together with Eq.~13!, we find the expected asymptoti
form Eq.~2! of the spin-spin correlation function with a co
relation lengthj51/v2 which is continuous atu5uVBS.

u.uVBS: HereD becomes negative andv has four com-
plex zeroskj56u6 iv ( j 51, . . . ,4) with

u5F m

2Ab
2

a

4bG 1/2

, v5F m

2Ab
1

a

4bG 1/2

. ~29!

If we write v in the form

v~k!5Ab)
j 51

4

~k2kj !
1/2 ~30!

we see that it is single-valued on the complex plane wit
cut between2u2 iv and u2 iv and another cut betwee
2u1 iv andu1 iv @see Fig. 2~c!#. Fork real we get back the
original positive function. The integration can be carried o
along a contour which starts at2u1 i`, goes vertically
down to2u1 iv, passes below the upper cut and goes v
tically to u1 i`. Next, we replace the integral below the c
by an integral going above the cut and in the opposite se
and this latter by the sum of the two integrals along t
vertical half lines. These are complex conjugate to ea
other, so finally we obtain

Gf~x!5
1

pAb

3E
v

` e2uxut cos@uuxu2w~ t !#dt

At22v2@4u21~ t2v !2#1/4@4u21~ t1v !2#1/4
,

~31!

where

w~ t !5
1

2 S arctan
t2v
2u

1arctan
t1v
2u D . ~32!

Now Gf(x) changes sign periodically, and we can ident
p2u with the wave numberq of the incommensurate oscil
lation. At the VBS pointu50, and as it is shown by Eq
~29!, the assumed analyticity ofm, a andb assures that it has
a square-root-type singularity above the VBS point in acc
dance with Eq.~6!. The large-uxu asymptotics ofGf(x) can
be obtained by Watson’s lemma24 or by a direct expansion

Gf~x!5
e2vuxu cos@uuxu2~1/2!arctan~v/u!#

~2p!1/2S 2mD

Ab
D 1/4

3@ uxu2 1/21O~ uxu23/2!#. ~33!

Formulas~31! and~33! apply for anyu betweenuVBS and
p/4, includingudisp which is a symmetry point of the domai



i-
th
is

in
-

th

e

p

a
f

o

ay
c
s

c

-

at

q

of

t-

e
cor-
u-

er

le
nd
sion

r-
he

r
t

l
tic

3782 PRB 62GÁBOR FÁTH AND ANDRÁS SÜTŐ
of incommensurate oscillations (u5v). As u approaches
p/4, D goes to zero and the zeros ofv(k) tend to the real
axis. Thus,v goes to zero and the correlation length d
verges. This is what we expect at the boundary of
Haldane phaseu5p/4 where the gap disappears. At th
special point the ground state has a tripled periodicity,3,8 im-
plying u(u5p/4)52p/3.

For any fixed x, Gf(x) depends analytically onu inside
the whole Haldane phase. This can be seen from the orig
form Eq. ~21! of Gf(x) by inserting the original, nonfactor
ized expression Eq.~19! for v(k). A proof can be found in
Ref. 25. The argument makes use of the continuity of
integrand ink real, its~supposed! analyticity for any fixedk
as a function ofu in suitable complex domains, and th
uniform convergence of the integral foru in any of these
domains. It is interesting to examine another kind of asym
totics, valid in a close neighborhood ofuVBS, when uDu/a2

!1. In this case Eq.~27! reduces to the form

Gf~x!'
e2Aa/2buxu

A8a

1

pE0

p

coshFA D

8ab
uxusinaGda

[
e2Aa/2buxu

A8a
I 0SA D

8ab
uxu D ~34!

whereI 0 is the zeroth order Bessel function. We can arrive
the same equation from Eq.~31!, by changing the contour o
integration~integrating around the upper cut!. Now analytic-
ity at the VBS point is manifest, because in the expansion
the hyperbolic cosine about zero only the even powers ofAD
appear. Equation~34! shows that the crossover to the dec
with the uxu21/2 prefactor sets in at the characteristic distan
uxu;D21/2, which diverges at the VBS point. This explain
the numerical difficulties5 verifying the expected asymptoti
behavior very close to the VBS point.

At the VBS point there is an infinite jump in the deriva
tive of the correlation length, as predicted by Eq.~5!. Indeed,
Eq. ~25! yields

dj

du U
uVBS20

'
D8

4A2am
U

uVBS

D21/2;2~uVBS2u!21/2

~35!

becauseD8(uVBS),0. On the other hand, from Eq.~29!

dj

du UuVBS1052
1

2Aa
S m8

2m
1

a8

2a
1

m2

a2 DU
uVBS

, ~36!

which is finite. The singularity of the correlation length
uVBS is in no contradiction with the analyticity ofGf(x) at a
fixed x. Indeed, the divergence of the derivative ofj was
extracted from the single-exponential asymptotic form E
~28! which, again, is valid only for uxu.(v12v2)21

;D21/2.
To see the role of the two-boson termGl in the correla-

tion functions, we can use the identity~after proper regular-
ization!

E dk

4p
v~k!e2 ikx5v2S i

]

]xD E dk

4p

e2 ikx

v~k!
, ~37!
e

al

e

-

t

f

e

.

where v2( i ]/]x) is a shorthand for m22a]2/]x2

1b]4/]x4 in the present case. With this

Gl~x!5Gf~x!v2S i
]

]xDGf~x!, ~38!

where we have neglected the singular, delta-function term
Eq. ~21!. This term can be evaluated directly for largex,
knowing the asymptotic form ofGf in the different regimes.
Using Eqs.~24!, ~28!, and~33! we obtain

Gl~x!;5
e22v2x

x2
if u,uVBS,

0 if u5uVBS,

e22vx

x2
@c11c2 cos~2ux1a!# if u.uVBS,

~39!

where the constantsc1 ,c2, anda can be expressed straigh
forwardly with a,b, andm. It is interesting to remark thatGl
is exactly zero for anyx.0 at the disorder point, i.e., th
two-boson processes do not contribute to the equal time
relation function there. This can be easily verified by calc
lating v2( i ]/]x)Gf(x) using Eq.~24! and the fact thatD
50 at the VBS point. HerêSn

zS0
z& only contains theGf

term in full accordance with the exact solution. For oth
values ofu, Gl decays twice as rapidly asGf .

It is also of interest to see what predictions our simp
field theory gives for the analytic properties of the grou
state energy density and the gap. Using the mode expan
in Eq. ~20!, the Hamiltonian can be written as

H5E
2L

L

dkv~k!Fdk
†dk1

1

2G , ~40!

where L is an appropriate UV momentum cutoff, propo
tional to the inverse of the lattice constant. From this t
ground state energy is

E5
1

2E2L

L

dkv~k!. ~41!

The ground state energy depends analytically ona, b, andm
whenever the zeros ofv(k) are not on the real axis. Togethe
with the supposed analyticity ofa(u), etc., this means tha
E(u) is also analytic inside the whole Haldane phase.25 A
straightforward expansion arounduVBS yields

lim
L→`

@E~u!2E~uVBS!#

52
8pa3/2

A2b
(
n51

`
226n~4n24!!

~2n22!!n! ~n21!! S D

a2D n

,

~42!

which is convergent ifuDu/a2,1. We notice that in genera
E(u) can be expressed in a closed form in terms of ellip
integrals of the first and second kind.

The energy gap of the model is by definition

D5minkv~k!. ~43!
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This is obviously analytic atuCIC5uVBS but has a singularity
at udisp, where the minima ofv(k) move away fromk50 as
the parametera50 changes sign. While foru<udisp the
minimum is taken atk50, for u.udisp it is taken at
k56A2a/2b. The gapD and its derivatives with respect t
u on the two sides ofudisp turn out to be, respectively,

D~udisp20!5m, D~udisp10!5m,

D8~udisp20!5m8, D8~udisp10!5m8, ~44!

D9~udisp20!5m9, D9~udisp10!5m92
a82

4bmU
udisp

.

We see that there is a discontinuity in the second derivat
This behavior of the effective theory seems consistent w
the numerical results shown in Fig. 9 of Ref. 5.

III. EFFECTIVE THEORY—LATTICE VERSION

The effective theory presented above is capable of pro
ing a complete qualitative description of the C-IC transiti
of the spin-1 bilinear-biquadratic model in accordance w
the available numerical data. However, in order to give qu
titative predictions, too, the theory needs some refinem
We have seen earlier that our simple theory identifies
disorder pointuCIC with the point where the discriminantD
defined by Eq.~23! vanishes. It is easy to verify that th
second and fourth derivatives ofv(k) at k50 are, respec-
tively,

]2v

]k2
~k50!5

a

m
,

]4v

]k4
~k50!52

3D

m3 , ~45!

thus in the above theory the fourth derivative vanishes at
disorder point. In contrast with this, Golinelliet al.6 mea-
sured numerically the second and fourth derivatives at
known disorder pointuVBS and found

]2v

]k2
~k50!50.9778~1!,

]4v

]k4
~k50!521.202~1!.

~46!

Note that the fourth derivative is only zero far inside the
regime, which seems inconsistent with the above theory

One step to improve the theory is to realize that the mo
is defined on a lattice, and thus the dispersionv(k) must be
a 2p-periodic function ofk ~from now on the lattice constan
is setdx51). This can be incorporated into the Lagrangi
in Eq. ~12! by the standard replacement]xf→@f(n1dx)
2f(n)#/dx, leading to the substitutionk2→2@12 cos(k)# in
the dispersion

v~k!5Am212a16b2~2a18b!cos~k!12b cos~2k!.
~47!

The Green’s function now reads

Gf~n!5E
2p

p dk

4p

1

v~k!
eikn. ~48!
e.
h

-

-
t.
e

e

e

el

The condition that the expression under the square roo
v(k) is a complete square is againD(u)50 with D defined
in Eq. ~23!. When this is satisfied the dispersion simplifies

vVBS~k!5mVBS1
aVBS

mVBS
@12 cos~k!#, ~49!

and 1/vVBS(k) has poles instead of branch cuts.@One pole
within the Brillouin zone2p,Re(k)<p with 0,Im(k).#
Now the second and fourth derivatives atk50 are@see Eq.
~45!#

]2v

]k2
~k50!5

a

m
,

]4v

]k4
~k50!52

3D

m3 2
a

m
. ~50!

At the disorder point we find

]4v

]k4
~k50!52

aVBS

mVBS
, ~51!

which is nonzero. The correlation lengthj51/Im(k) at the
disordered point is determined by the position of the po
i.e., by the solution of the transcendental equation

11
aVBS

mVBS
2 @12 cos~k!#50. ~52!

Working the other way around, knowing that at the VB
~C-IC! point jVBS51/ln 3, Eq. ~52! gives aVBS53mVBS

2 /2
and thus the dispersion

vVBS5mVBSF5

2
2

3

2
cos~k!G . ~53!

With this expression the lattice Green’s function defined
Eq. ~48! reads

Gf~n!5
1

4mVBS
e2unu ln 3, ~54!

which should be conferred to Eq.~4!. The functional form of
the dispersion relation in Eq.~53! is exactly the same as th
one appearing in thesingle mode approximationof the VBS
model.16,17 There, one derives an upper bound for the g
DVBS5mVBS5A40/9, whereas here we should use the p
nomenological~numerical! value DVBS50.664314 in Eq.
~53!. This, together with Eq.~51! yields the value]4v/]k4

523mVBS/2'21.0, which is rather close to the numeric
estimate in Eq.~46!.

The split of the double root in the vicinity of the disorde
point can be analyzed similarly to the continuum theory. W
do not go into details here, but emphasize that the crit
exponents characterizing the behavior ofj(u) and q(u) at
uVBS, and the type of the singularity of the gap atudisp
remain the same. Similarly, we find that the ground st
energy is analytic everywhere.

One can wonder about the possible consequences of k
ing higher order terms in the continuum Lagrangian Eq.~12!
or in the improved lattice version. If the theory remains fr
the only effect is to bring about additional branch cuts
poles in 1/v(k). If the higher order terms are small the a
ditional branching points are far ink space, and the C-IC
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transition remains intact. The long distance asymptotics
the correlation functions do not change. Since at the V
point the exact correlation function in Eq.~4! only contains a
single exponential term, the free boson approximation d
not allow any higher order spatial derivatives in the effect
Lagrangian there.

Although the dispersionvVBS in Eq. ~53! gives rise to the
exponential term in Eq.~4!, it misses thedn,0 contribution.
This is, however, another artifact of the continuum approa
which necessarily neglects some important short distance
tails. In fact, we should recall that in a quantum spin liqu
with short-range valence bond ground state the elemen
excitations~bosons! are physically triplet bonds livingbe-
tween lattice sites, rather than on the sites themselves.
was argued in Ref. 16,Si

z acting on the VBS ground stat
produces the linear combination of two states, one of wh
containing a boson at sitei 21/2, the other a boson at sitei
11/2. Hence the one-boson term of^SiSi 1n& is in fact

^Sn
zS0

z&5gf
2 ~2 !n@Gf~n21!12Gf~n!1Gf~n11!#.

~55!

Using Eq.~54! this leads directly to Eq.~4!, including the
d-function piece, ifgf

2 5mVBS.

IV. SUMMARY AND DISCUSSION

In summary, we proposed a simple effective field theo
to describe the commensurate-incommensurate transitio
the Haldane phase of the spin-1 bilinear-biquadratic ch
The theory is capable of reproducing many features of
transition previously seen in the numerical studies. Moreo
it also has some new predictions. The effective theory p
dicts that the C-IC transition atuVBS is not a phase transition
in the conventional sense, since the ground state energ
mains an analytic function of the control parameteru. The
only singularity occurring is in the correlation length. W
should emphasize, however, that the correlation function
self remains analytic as a function ofu for any fixed dis-
tance, unlike in conventional phase transitions.

There is another pointudisp close to the disorder poin
where another quantity becomes singular. This is the ene
gap~Haldane gap! whose second derivative produces a jum
This singularity in the singlet-triplet gap becomes importa
when a high enough magnetic field is applied, producin
crossing between these levels, and thus leading to the
lapse of the gap. At the critical field, asu is varied a real
f
S

s

h,
e-

ry

s

h

y
in

n.
is
r
-

re-

t-

gy
.
t
a
ol-

phase transition takes place atudisp, thus this point is the
endpoint of a phase transition line on the magnetic field vu
plain separating two Luttinger liquid type phases.

In a technical sense the C-IC transition is a conseque
of an accidental degeneracy of roots of the dispersion r
tion. We have shown in the free boson approach that
degeneracy causes the ‘‘dimensional reduction’’ of the c
relation function, and makes it to be a pure exponential at
VBS point. We also found that the two-magnon contrib
tions, and presumably any higher order, multimagnon con
butions too, vanish exactly at this point. We derived a f
mula valid in the vicinity of the VBS point showing how th
pure exponential decay emerges from the standard form
algebraic prefactors. In particular we found that there i
crossover between a pure exponential decay and a d
containing algebraic prefactors. The characteristic dista
of this crossover tends to infinity as the VBS point is a
proached.

The spin-1 bilinear-biquadratic model studied in this p
per is not the only model which produces a C-IC transitio
Another example is the spin-1/2 chain with next-neare
neighbor interaction~this can also be visualized as a two-le
zig-zag ladder!.26 By now it is well established that the
Majumdar-Ghosh point of this model is a disorder po
where a C-IC transition of the first kind occurs. On the sa
footing as described here, it seems possible to develop
effective theory which supposes that the elementary exc
tions ~spin-1/2 solitons in that case! are essentially free par
ticles with a nonrelativistic dispersion. Care should, ho
ever, be taken on the facts that solitons are always create
pairs and that they are spin-1/2 particles. Beside theS51/2
case, the appearance of disorder points has been de
strated in otherS>1 frustrated Heisenberg chains too.27 An-
other interesting quasi-one-dimensional system where
commensurate-incommensurate transition has been rep
in a numerical investigation is the SU(2)3SU(2) symmetric
coupled spin-orbit model.28 The elaboration and testing o
effective theories, similar to the one described in this pap
for these models could be a possible direction of future
search.
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