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We study the two-dimensional quantum Heisenberg antiferromagnet on the square lattice with easy-axis
exchange anisotropy. By the semiclassical method called pure-quantum self-consistent harmonic approxima-
tion we analyze several thermodynamic quantities and investigate the existence of a finite temperature transi-
tion, possibly describing the low-temperature critical behavior experimentally observed in many layered real
compounds. We find that an Ising-like transition characterizes the model even when the anisotropy is of the
order of 10°2J (J being the intralayer exchange integrads in most experimental situations. On the other
hand, typical features of the isotropic Heisenberg model are observed for both values of anisotropy considered,
one in thequastisotropic limit and the other in a more markedly easy-axis region. The good agreement found
between our theoretical results and the experimental data relative to the real compgitFRbhows that
the insertion of the easy-axis exchange anisotropy, with quantum effects properly taken into account, provides
a quantitative description and explanation of the experimental data, thus allowing us to recognize in such
anisotropy the main agent for the observed onset of finite temperature long-range order.

[. INTRODUCTION J’; one would hence naively expect the magnetic properties
to be those of an effective two-dimensional magnet down to
In recent years the increasing interest in the physics ofemperatures of the order df, until the transition towards
low-dimensional magnets has led to a deep analysis of then ordered three-dimensional phase should take place. How-
thermodynamic behavior of two-dimensional quantumever, the experimentally observed transition occurs at a criti-
antiferromagnetsand, in particular, of the isotropic quantum cal temperature of the order & signaling the transition
Heisenberg antiferromagnet on the square lati@eAF).>®  itself to be driven by the intralayer exchange interaction;
Such a model has in fact been widely used to describe thdetails of such interaction, such as possible easy-axis or
magnetic properties of many quasi-two-dimensional reakasy-plane anisotropies, are hence fundamental in the analy-
compounds, from thé&=1/2 cuprate LagCuO,*® to the S sis of the critical behavior.
=5/2 compound RfMnF,, recently studied by Leet al® Several workgsee Ref. 21 for a reviemhave shown that,
Different theoretical methods*?have been used to exam- besides the superexchange interaction, there exist further in-
ine the rich reservoir of experimental data and the picture oferaction mechanisms whose effects may be taken into ac-
the subject is now well focused, albeit with some shadedount by inserting proper anisotropy terms in the magnetic
parts. In particular open questions still eXist®on the low-  Hamiltonian; in particular, the transition observed igN{F,
temperature region, where the spin correlation length betS=1)2° Rb,FeF, (S=2)2° K,MnF,? Rb,MnF, (S
comes of the order of £0attice spacings and the real mag- =5/2)2° and others, is seen to be possibly due to an easy-
nets are seen to develop macroscopic areas of correlatedis anisotropy. Such anisotropy has often been described in
spins. the literature via an external staggered magnetic field: This
The theoretical debate on the low-temperature regime hashoice, despite allowing a qualitative description of the ex-
been mainly dedicated to the isotropic QHAF, but real comperimental data, lacks the fundamental property of describ-
pounds are not actually well described by such an isotropiing a genuine phase transition, as the field explicitly breaks
model when temperature is lowered: the experimental evithe symmetry and makes the model ordered at all tempera-
dence of a finite-temperature transition, opposite to theures.
Mermin—Wagner theoreh assertion that such a transition  In order to produce a second order transition known to be
cannot occur in the two-dimensional isotropic QHAF, sug-due to an easy-axis anisotropy, it is actually appropriate to
gests that three-dimensional correlations and possible anisdfisert such anisotropy in the form of an exchange one, thus
ropy effects, as well as a combination of both, must be conpreserving the symmetry under inversion along the easy axis,
sidered. whose spontaneous breaking manifests itself in the transi-
The magnetic structure of layered real compounds is suction: The subject of this paper is the study of the thermody-
that the exchange integralfor neighboring spins belonging namic properties of the resulting model, hereafter called
to the same plane is orders of magnitude larger than that fazasy-axis QHAREA-QHAF).
neighboring spins on different plan¥s2° hereafter called In Sec. Il we define the model and discuss its general
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properties, posing the problems we want to address. Thieveen a Heisenberg-like behavior at high temperature and an
method used is briefly described in Sec. I, where results fofsing-like one nearT.; such crossover is detected in the
several thermodynamic quantities and different values of thexperimental data to such an extent that, well above the tran-
anisotropy are shown and commented on. In Sec. IV wesition, real compounds can be satisfactorily described by the
compare our results with the available experimental data foisotropic QHAF .

the staggered magnetization and susceptibility, and for the

correlation length, of the S=5/2 real compound IIl. RESULTS

Rb,MnF,,%2° while conclusions are drawn in Sec. V. . . . .
The main output of the PQSCHA is the effective Hamil-

tonian appearing in all statistical averages, whose expression
for the model described by E@l) reads
The EA-QHAF on the square lattice is described by the

. . 1 -
Hamiltonian Hesi= — 5‘] SZ% [67 u(S's g+ 9)s)s o)

Il. MODEL AND METHOD

SN An avn an
H=5 ?:1 [(S S ot S0 + Sl @ + 0202 7S, 41+ G(t,9), )
wherei=(i,i,) runs over the sites of a square lattice, Wheres=(s",s,s") is a classical unit vectof=S+1/2, and
connects each site to its four nearest neighbdrs) is the  t=T/JS is the reduced temperature hereafter used. The ap-
antiferromagnetic exchange integral, gads the anisotropy pearance of the minus sign in front of the effective Hamil-
parameter (6= u<1 for easy-axis modelsThe spin opera- tonian is due to the fact that in E(®), as in all the classical-

tors éia (a=x,y,7) are such thaté|2=S(S+1) and obey like expression_s reported below,. spins belgnging to one of
S S| oy the two sublattices have been flipped, to simplify the nota-
[S ’ ]_Igaﬁyéijsl .

: . ion and because this is an innocuous operation at a classical
When =1 the model looses its easy-axis character an

reduces to thg isgtr_opic QHAF. The=0 case will be her(_e— eV'Ie'lﬁe renormalization parameters are
after called Isingimit, not to be confused with the genuine
Ising model?® reproduced by Eq(1) with x=0 and S , D , D,
=1/2. Despite being a very particular case of Et), the oj=1--, oi=1-—, 3
two-dimensional Ising model on the square lattice is a fun-
damental point of reference for the study of the thermodywhere the coefficients
namic properties of the EA-QHAF.
In particular, a renormalization-group analysis of the clas- 1 ay
sical counterpart of the model E(f.)>*?*foresees the occur- DH:N_~S r b—k(l—lwk)ﬁk,
rence of an Ising-like transition at finite temperature for any
value of u, no matter how near to the isotropic valpe=1;
this analysis is supported by several works based on classical D =— X
Monte Carlo simulation®-?° .
In the quantum case, however, no information is given . . .
about the value of the critical temperatdrg «,S) as a func- ari(tehself—conastently determined by solving E(®.and (4)
tion of anisotropy and spin, save the fact thia{(0,1/2)
=0.567 andT.(1,S)=0. Hence we do not know whether or 2_ 4002 2 2_ 02— 02
not the small anisotropy|—1|=10"2) observed in real A =4O+ b7y, bi=4007—pn67 v, (5
compounds can be responsible of transitions occurring aand
critical temperatures of the order dngiven also the fact that
we expect quantum fluctuations to lower the critical tempera- 1 iK.d B 1 aghy
ture with respect to the classical case. Y=g ; emt L=cothfi— £ = —er
We have developed a quantitative analysis of several ther-
modynamic properties of the model, by means of the semik being the wave vector in the first Brillouin zone.
classical method called pure-quantum self-consistent har- The temperature and spin-dependent uniform term
monic approximationPQSCHA,*°~3? already successfully

applied to many magnetic systems in one and two dimen- N 5 5 ~ sinhf,
sions. The method reduces quantum expressions for statisti- G(t,9)=2J8(1~ 0161)+JS tEk: n AT

cal averages to effective classical-like ones, containing tem-
perature and spin-dependent renormalization parametergoes not enter the expressions for the statistical averages, but
The thermodynamics of the effective model can then be studsontributes to the free energy and to the related thermody-
ied by means of classical techniques, like Monte Carlo simunamic quantities.
lations. The renormalization coefficient®®; and D, measure the
The PQSCHA is known to be particularly suitable for pure-quantum fluctuations parallel and perpendicular to the
anisotropic (easy-plane or easy-axisnodels, but it also easy axis, respectively, of one spin with respect to its nearest
gives very good results in the isotropic QHAF so that we cameighbors, and vanish in both the high-temperature and the
confidently use it to investigate the possible crossover beelassicalS— o limit. It is worthwhile noticing that the fluc-
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tuations along the easy-axis only enters the renormalization N 2 .
of the zcomponent of the exchange interaction. F==2(00—0D| 01+ 7 =(61—6])
Defining the effective exchange integral and effective an- H
isotropy is a negative zero-point quantum correction term due to the
, anisotropy(it vanishes in the isotropic limit
o1 i) Staggered magnetization=a2;(— 1)'1712(§)/NS
Jeff:J 0ﬁgf , lu'efleu'e_ﬁ ( ) gg g I( ) < I>
o m= 6% (])e+ M(1,5); 9
Eq. (2) can be written in the form o S
where the magnetization renormalization is seen to be due to
1 - an effective spin reductiondf <1) and to the appearance of
_ _ 2 XX Yy ) . .
Her=— 5 JertS % [ mef(SiSisat SISl a) the negative terM = — (6% — 6f)/(1— u?) which vanishes
in the isotropic limit and is finite fop=0.
+s7st 41+ G(1,9), (6) (i) Staggered correlation functioaboveT,

—=(_1\1t2/Q . Q &2 \rji —
to make evident that the PQSCHA leads to a cIassicaI-Iikt,ﬁg)Sau(ar;)k;tti:éiniim_s with r=(r,.r) any vector of

effective model of the same form as the original quantum
one, whose thermodynamic properties can be studied by G(r)=04<s~s Vet (10)
classical numerical technique, properly taking into account ' ol

the spin and temperature dependence of the renormalizedhere 6°=1—D,/2 and

parametersley and puer. As 6f< 67 <1, it is Jeg<J and 1

1 a
> uefi> M, SO that quantum effects are seen to cause the Dr:_éz b—k(l—cos(k~r))/3k
k k

weakening of both the exchange interaction and the easy- N
axis anisotropy; in the isotropic limiDj=D, and ueg=p _ o o
=1. is a further site-dependent renormalization coefficient. For

The PQSCHA expression for the statistical average of dncreasingr, the coefficientD; rapidly converges to a uni-
quantum operatod is form term, so that the asymptotic{>) behavior ofG(r)

is actually determined by that of the effective classical-like

R 1 correlation function(s- S, e -
(O)=—%— dNsOg e Pllet, (7 (iv) Staggered static susceptibilisboveT,

eff x=2,G(r)/3:
where B=T71, Z4=[dNse e, O, is determined by
the same procedure leading« and contains temperature 11 8(S+1)
and spin dependent renormalizations; after gmost ther- X—3 32 +§0 G(n)|- (12)
modynamic quantities may be written in a particularly sug-
gestive form in terms of classical-like statistical averages de- (v) Correlation lengthaboveT,.
fined by the effective Hamiltonian We have determined the correlation lengdtby fitting G(r)

with the expression proposed by Serena, Garcia, and
<. .. >eﬂ:ij st( .. )e_ﬁHeff; LevanyuIZS
Zeft _
1 e r/é¢

as far as the evaluation df - - )¢ is concerned, one must G(r)oec — , (12
keep in mind that, becaus(i of Zhe temperature dependence of g r1eVe+(r1e)™

the effective anisotropy appearing, €ach pointin tem- \hich interpolates the two asymptotic behaviors ~ and
perature corresponds to a different effective model. Thig_.0 of the Ising modef?

means that if the classical Monte Carlo technique is used, as |n what follows, we show our results as obtained combin-

done in this work, the simulated model changes with teming the above PQSCHA expressions with the numerical
perature so that, at variance with the isotropic case, no exisputput of the classical Monte Carlo simulations we have per-
ing classical data can be used and a complete ser@$loéc  formed to evaluate the effective statistical averages
simulations must be carried on. Nevertheless, the computg- ..\ . At variance with the isotropic case, where results
tional effort required is still that of a classical simulation, asfor different values of the spin are obtained by the same
the evaluation of the renormalized parameters is a matter of geries of classical simulations, we now have to fix the value
few seconds on a standard PC. of the spin in order to determine, for a given valuewgfthe
The application of the PQSCHA to the EA-QHAF leads correspondingu.y to be used in the simulation. We have
to the following results for the thermodynamic quantities Wepence concentrated on the case 0.9942 andS=5/2, be-
have considered: . 5 cause these are anisotropy and spin values corresponding to
(i) Internal energy &= (H)/(NJS): the real compound RMnF,; the more anisotropic case
=0.7 andS=5/2 has also been considered, because of its
1 ~ ~ expectedly more marked Ising-like features.
u= @<Heﬁ>eﬁ_ 4(t,9)+ ALS), (®) In Figs. 1 and 2 we show the internal energy and specific
heat versus temperature for both valueswptompared with
where the isotropic casé u=1. As the value of the critical tem-
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FIG. 1. Internal energy v$ for S=5/2 and u=0.7 (dashed| FIG. 3. Staggered magnetization vgor S=5/2 andu=0.7
0.9942(full), 1 (dash-dottey] the curve relative to the Ising model (gashegi 0.9942 (full); the dotted lines are the data fits used to
(S=1/2 andu=0) is shown in the inset. extract the critical temperature values. In the inset the same curves,

) ) o normalized to the saturation value, are shown/tg, together with
perature increases for larger anisotropy, but diminishes whejhe magnetization of the Ising modelotted.

smaller spin values are considered, we avoid the confusing
direct comparison between our curvgs>0, S=5/2) and the analysis of the critical behavior of other quantities. For
the corresponding quantities for the Ising modgl<0, S  instance the critical temperatures determined by fitting the
=1/2), by showing the latter as insets. magnetization curveésee the dotted lines in Fig) &ret,
The Ising character of the=0.7 model is evidenced by =0.787 foru=0.7 andt.=0.576 for u=0.9942.
the pronounced peak in the specific heat, corresponding to a |+ should be noted that even below, where the finite
qualitatively different temperature dependence of the interna|gjye of the magnetization would suggest a complete pre-
energy with respect to that of the isotropic model. Althoughgominance of the Ising character, the system does actually
such a difference is almost not perceptible when the display features which are distinctive of the isotropic model.
=0.9942 curve is considered, a clear peak in the specifigy particular, the specific heat for both values ofshows,
heat is still present, testifying to a persistence of the Isingafter an exponential start typical of a gapped dispersion re-
like behavior even in thigjuastisotropic model. lation, a change in the curvature and a temperature depen-
The same conclusion is drawn when the staggered magtence of the same type of that characterizing the isotropic
netization is considered: in Fig. 3 we see that for model. It is just in the vicinity ot, that a new change in the
=0.9942 there exists a wide temperature range where th@rvature announces the forthcoming transition.
system is ordered, with a critical temperattigeghat, despite In Fig. 4 we show the correlation functioB(r) as a
being lower than the one relative to the=0.7 case, is still  function of r in the quasi-isotropic casg=0.9942 and for
of the order ofJ. In the inset we show the magnetization three different temperatures. The fit of our data with the
curves normalized to their saturation values, as functions o§erena—Garcia—Levanyuk function, Efj2), is very good in
t/t., together with that of the Ising model: It is evident that the whole temperature range examined, and hence leads to a
an increased anisotropy causes a sharpening of the way tgan evaluation of the correlation length.
magnetization vanishes. In Fig. 5 we show the correlation length and also report
The critical temperatures hereafter usedtgre0.785 for  the curve for the isotropic modéf: we notice that theu
#=0.7 andt, = 0.575 foru=0.9942; these values have been =(0.9942 curve lays on the isotropic one up to correlation
determined by locating at best the correlation length diver-
gence and consistently coincide with those emerging from
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FIG. 4. Correlation functions folS=5/2, ©=0.9942, andt
=0.6, 0.7, 0.85(from the top; dotted lines are fits with the
FIG. 2. Specific heat vs(lines and inset as in Fig.)1 Serena—Garcia—Levanyuk functi¢see texk
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FIG. 5. Correlation length vsfor S=5/2 andw= 0.7 (dasheg,
0.9942(full), 1 (dash-dotted FIG. 6. Staggered magnetization vfr Rb,MnF,, normalized
to the saturation valumy: our results(full line) are compared with
experimental datéfull circles) from Ref. 20; the dashed line is the

lengths of the order of 20 lattice spacinge., t=1.03,), interpolating curve therein proposed.

while for ©= 0.7 a deviation is evident already fé=2 (i.e.,
t=1.3t;). This means that, in the former case, there is a v’
temperature region where the model significantly behaves 435062 (0 9/(0) 2 14
like the isotropic model, as far as the correlation length is Pk w01(0) ,uzaj(O) Y (14
concerned, and it is hence meaningful to introduce the idea 2 > o
of a crossover from a Heisenberg- to an Ising-like regfme; Where ¢/(0) and¢;(0) are the renormalization parameters
on the contrary, whenu=0.7 the Ising character of the d€finedin Eq(3) evaluated at=0.
model is manifest already when correlations over a few lat- 1 he resulting equation fo
tice spacings develop.

pacing p 60

IV. COMPARISON WITH EXPERIMENTAL DATA .
must be self-consistently solved, as baeth and 6 depend
The results shown in Sec. Il qualitatively explain the on x, and givesu=0.9942.

mechanism possibly underlying the finite-temperature order- Onceu is determined, the equation for the exchange in-
ing experimentally observed in maiyasitwo dimensional tegral
real magnets.

As for a more precise quantitative analysis, we have con- S s
centrated ourselves on tHe=5/2 magnet REMnF,: The J_gﬂgf(o)

reason for this choice is the availability of recent neutron

scattering dafarelative to such compound and the fact that,is straightforwardly solved and givels=7.42 K.

because of its crystallographic structure ,RInF, is known In Fig. 6 our results for the staggered magnetization are

to behave as a two-dimensional magnet both above and behown together with the experimental data from Ref. 20 and

low the observed transitioff:>* This means that the critical the interpolating curve there proposed. Besides the overall

behavior is not contaminated by the onset of three-agreement inthe whole ordered phase, it should be noted that
dimensional order and a clean characterization of the transi-

tion is possible, as well as a meaningful comparison with the
. e 10000 }
experimental data for the magnetization beldw
The model parametersJ;=7.62-0.09 K and pug
=0.9953 available in the literatuf® for the compound
Rb,MnF, are obtained by fitting the extrapolatdd-0 ex- 1000 ¢
perimental data for the spin-wave frequencies with the ex- =
pression
100 |
1 2
0 =43sS\/ — Vi (13
IU’S 10 L
0.4 0.8 1.2

this means thalg and i are renormalized by the zero-point
quantum fluctuations and are not the bare values to be in- FIG. 7. Staggered susceptibility usfor S=5/2, u=0.9942
serted in Eq(1). These have hence been determined equaifull), and x=1 (dashed-dotted symbols are neutron scattering
ing Eg. (13) with the zero-temperature dispersion relationdata on RpMnF, from Ref. 6. A zoom of the critical region is
relative to the EA-QHAF as given by the PQSCHA shown in the inset.
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V. CONCLUSIONS

100 In this work we have studied the easy-axis quantum

Heisenberg antiferromagnet on the square lattice by means of
the pure-quantum self-consistent harmonic approximation;
expressions for several quantum statistical averages have
been determined for the general model, with any value of the
spin and of the anisotropy. The numerical work, consisting
of classical Monte Carlo simulations on a properly renormal-
ized model, have been concentrated on $3e5/2, ©=0.7
andS=5/2, ©=0.9942 cases, the latter corresponding to the
02 08 > real compound RIMnF,. N -
t We have shown that a finite temperature transition is
present in both cases and that such a transition is clearly of
FIG. 8. Correlation length v§ lines, symbols, and inset as in an Ising type; the value of the corresponding critical tem-
Fig. 7 apart from the dashed curve, representing the result of gerature has been determined by the analysis of the correla-
mean-field approach to the anisotropy proposed in Ref. 6, and thgon |ength dependence on temperature and has been always
triangles, which are quantum Monte Carlo data for the isotropic, ;nd to perfectly agree with that extracted by the analysis of
model, from Ref. 16. other thermodynamic quantities.
Despite the essential presence of the transition, the EA-
QHAF also display(both below and abové.) features
: . . ; which are typical of the isotropic model. In the ordered phase
analysis, which gived;=38.4 K (.., 1;=0.575); such a itis the spe)::Fi)fic heat behaviorpthat testifies to the existeF;lce of

Iilrge value ofT, with respect to the exchange integihl isotropic-like excitations. On the other hand, when the criti-
=7.42 K should not surprise us, as the squared value of thé

spin has been actually extracted from the latter. pal region is al_)andoned in the paramagnetic phase, the an-
In order to obtain the best quantitative description of the'SOtr_Opy Io_ses Its fgndgmental role and a crossover towards

EA-QHAF in the paramagnetic phase, and given the smaﬁhe |_sotrop|c bghawor is observed, at least as far as the cor-

anisotropy of RBMnF,, the lowest-temperature data for the relation Iength. is concerned, su.ch crossover, howeyer, has a

staggered susceptibility and correlation length, shown iveaker meaning for larger anisotropy, being confined al-

Figs. 7 and 8, are determined by the PQSCHA version introt€ady foru=0.7 to the high-temperature region whefes

duced in Ref. 12 and there shown to be the most appropriaﬁ@e order of the lattice spacing and differences between dif-

to study the isotropic model. The difference between such &rent models become irrelevant.

version and the original one described in Sec. Il consists in We have compared our theoretical results with the neu-

the appearance of the renormalization paramertﬁrls, in- tron scattering experimental data for the staggered magneti-

stead oftgﬁl , in Egs.(5), with Kﬁiz gﬁi_pﬂ/z, DTIL be-  zation, staggered susceptibility, and correlation length of the

ing the renormalization coefficients determined by the clasfeal compound R#MnF, and found an excellent agreement

sical self-consistent harmonic approximation. both for the overall temperature behavior and for the value of
The agreement between our results and the experimenttiie critical temperature.

data is indeed noticeable, given also the fact that no best-fit We can hence conclude that the experimentally observed

procedure has been used. In addition, our results represenfiaite temperature transition in ReInF, is due to an easy-

clear improvement with respect to those coming from aaxis anisotropy in the intralayer exchange interaction and

mean-field treatment of the anisotropy, as proposed by Kethat, despite the small value of the anisotropy, the compound

imer et al,> which enables one to derive the correlation shows an Ising-like critical behavior.

length of the anisotropic model directly from the data of the

isotropic one, as done in Ref. 6 starting from the PQSCHA

results for th_e isotropic mod“élitself. In particular, it is evi- ACKNOWLEDGMENTS

dent from Fig. 8 that the mean-field approach, apart from
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