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Finite-temperature ordering in two-dimensional magnets
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We study the two-dimensional quantum Heisenberg antiferromagnet on the square lattice with easy-axis
exchange anisotropy. By the semiclassical method called pure-quantum self-consistent harmonic approxima-
tion we analyze several thermodynamic quantities and investigate the existence of a finite temperature transi-
tion, possibly describing the low-temperature critical behavior experimentally observed in many layered real
compounds. We find that an Ising-like transition characterizes the model even when the anisotropy is of the
order of 1022J (J being the intralayer exchange integral!, as in most experimental situations. On the other
hand, typical features of the isotropic Heisenberg model are observed for both values of anisotropy considered,
one in thequasi-isotropic limit and the other in a more markedly easy-axis region. The good agreement found
between our theoretical results and the experimental data relative to the real compound Rb2MnF4 shows that
the insertion of the easy-axis exchange anisotropy, with quantum effects properly taken into account, provides
a quantitative description and explanation of the experimental data, thus allowing us to recognize in such
anisotropy the main agent for the observed onset of finite temperature long-range order.
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I. INTRODUCTION

In recent years the increasing interest in the physics
low-dimensional magnets has led to a deep analysis of
thermodynamic behavior of two-dimensional quantu
antiferromagnets1 and, in particular, of the isotropic quantu
Heisenberg antiferromagnet on the square lattice~QHAF!.2,3

Such a model has in fact been widely used to describe
magnetic properties of many quasi-two-dimensional r
compounds, from theS51/2 cuprate La2CuO4

4,5 to the S
55/2 compound Rb2MnF4, recently studied by Leeet al.6

Different theoretical methods7–12have been used to exam
ine the rich reservoir of experimental data and the picture
the subject is now well focused, albeit with some shad
parts. In particular open questions still exist13–16on the low-
temperature region, where the spin correlation length
comes of the order of 102 lattice spacings and the real ma
nets are seen to develop macroscopic areas of corre
spins.

The theoretical debate on the low-temperature regime
been mainly dedicated to the isotropic QHAF, but real co
pounds are not actually well described by such an isotro
model when temperature is lowered: the experimental
dence of a finite-temperature transition, opposite to
Mermin–Wagner theorem17 assertion that such a transitio
cannot occur in the two-dimensional isotropic QHAF, su
gests that three-dimensional correlations and possible an
ropy effects, as well as a combination of both, must be c
sidered.

The magnetic structure of layered real compounds is s
that the exchange integralJ for neighboring spins belonging
to the same plane is orders of magnitude larger than tha
neighboring spins on different planes,18–20, hereafter called
PRB 620163-1829/2000/62~6!/3771~7!/$15.00
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J8; one would hence naively expect the magnetic proper
to be those of an effective two-dimensional magnet down
temperatures of the order ofJ8, until the transition towards
an ordered three-dimensional phase should take place. H
ever, the experimentally observed transition occurs at a c
cal temperature of the order ofJ, signaling the transition
itself to be driven by the intralayer exchange interactio
details of such interaction, such as possible easy-axis
easy-plane anisotropies, are hence fundamental in the an
sis of the critical behavior.

Several works~see Ref. 21 for a review! have shown that,
besides the superexchange interaction, there exist furthe
teraction mechanisms whose effects may be taken into
count by inserting proper anisotropy terms in the magne
Hamiltonian; in particular, the transition observed in K2NiF4
(S51),20 Rb2FeF4 (S52),20 K2MnF4,22 Rb2MnF4 (S
55/2),20 and others, is seen to be possibly due to an ea
axis anisotropy. Such anisotropy has often been describe
the literature via an external staggered magnetic field: T
choice, despite allowing a qualitative description of the e
perimental data, lacks the fundamental property of desc
ing a genuine phase transition, as the field explicitly bre
the symmetry and makes the model ordered at all temp
tures.

In order to produce a second order transition known to
due to an easy-axis anisotropy, it is actually appropriate
insert such anisotropy in the form of an exchange one, t
preserving the symmetry under inversion along the easy a
whose spontaneous breaking manifests itself in the tra
tion: The subject of this paper is the study of the thermo
namic properties of the resulting model, hereafter cal
easy-axis QHAF~EA-QHAF!.

In Sec. II we define the model and discuss its gene
3771 ©2000 The American Physical Society
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properties, posing the problems we want to address.
method used is briefly described in Sec. III, where results
several thermodynamic quantities and different values of
anisotropy are shown and commented on. In Sec. IV
compare our results with the available experimental data
the staggered magnetization and susceptibility, and for
correlation length, of the S55/2 real compound
Rb2MnF4,6,20 while conclusions are drawn in Sec. V.

II. MODEL AND METHOD

The EA-QHAF on the square lattice is described by
Hamiltonian

Ĥ5
J

2 (
i,d

@m~Ŝi
xŜi1d

x 1Ŝi
yŜi1d

y !1Ŝi
zŜi1d

z #, ~1!

where i5( i 1 ,i 2) runs over the sites of a square lattice,d
connects each site to its four nearest neighbors,J.0 is the
antiferromagnetic exchange integral, andm is the anisotropy
parameter (0<m,1 for easy-axis models!. The spin opera-
tors Ŝi

a (a5x,y,z) are such thatuŜu25S(S11) and obey

@Ŝi
a ,Ŝj

b#5 i«abgd ij Ŝi
g .

Whenm51 the model looses its easy-axis character a
reduces to the isotropic QHAF. Them50 case will be here-
after called Isinglimit, not to be confused with the genuin
Ising model,23 reproduced by Eq.~1! with m50 and S
51/2. Despite being a very particular case of Eq.~1!, the
two-dimensional Ising model on the square lattice is a f
damental point of reference for the study of the thermo
namic properties of the EA-QHAF.

In particular, a renormalization-group analysis of the cl
sical counterpart of the model Eq.~1!24,25 foresees the occur
rence of an Ising-like transition at finite temperature for a
value ofm, no matter how near to the isotropic valuem51;
this analysis is supported by several works based on clas
Monte Carlo simulations.26–29

In the quantum case, however, no information is giv
about the value of the critical temperatureTc(m,S) as a func-
tion of anisotropy and spin, save the fact thatTc(0,1/2)
50.567J andTc(1,S)50. Hence we do not know whether o
not the small anisotropy (um21u.1022) observed in real
compounds can be responsible of transitions occurring
critical temperatures of the order onJ, given also the fact tha
we expect quantum fluctuations to lower the critical tempe
ture with respect to the classical case.

We have developed a quantitative analysis of several t
modynamic properties of the model, by means of the se
classical method called pure-quantum self-consistent
monic approximation~PQSCHA!,30–32 already successfully
applied to many magnetic systems in one and two dim
sions. The method reduces quantum expressions for sta
cal averages to effective classical-like ones, containing t
perature and spin-dependent renormalization parame
The thermodynamics of the effective model can then be s
ied by means of classical techniques, like Monte Carlo sim
lations.

The PQSCHA is known to be particularly suitable f
anisotropic ~easy-plane or easy-axis! models, but it also
gives very good results in the isotropic QHAF so that we c
confidently use it to investigate the possible crossover
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tween a Heisenberg-like behavior at high temperature an
Ising-like one nearTc ; such crossover is detected in th
experimental data to such an extent that, well above the t
sition, real compounds can be satisfactorily described by
isotropic QHAF .

III. RESULTS

The main output of the PQSCHA is the effective Ham
tonian appearing in all statistical averages, whose expres
for the model described by Eq.~1! reads

Heff52
1

2
JS̃2(

i,d
@u'

4 m~si
xsi1d

x 1si
ysi1d

y !

1u i
2u'

2 si
zsi1d

z #1G~ t,S̃!, ~2!

wheres5(sx,sy,sz) is a classical unit vector,S̃5S11/2, and
t5T/JS̃2 is the reduced temperature hereafter used. The
pearance of the minus sign in front of the effective Ham
tonian is due to the fact that in Eq.~2!, as in all the classical-
like expressions reported below, spins belonging to one
the two sublattices have been flipped, to simplify the no
tion and because this is an innocuous operation at a clas
level.

The renormalization parameters are

u i
2512

Di

2
, u'

2 512
D'

2
, ~3!

where the coefficients

Di5
1

NS̃
(

k

ak

bk
~12mgk!Lk ,

D'5
1

NS̃
(

k

ak

bk
S 12

gk

m DLk ~4!

are self-consistently determined by solving Eqs.~3! and ~4!
with

ak
254~u i

21mu'
2 gk!, bk

254~u i
22mu'

2 gk!, ~5!

and

gk5
1

4 (
d

eik•d, Lk5cothf k2
1

f k
, f k5

akbk

2S̃t
,

k being the wave vector in the first Brillouin zone.
The temperature and spin-dependent uniform term

G~ t,S̃!52JS̃2~12u i
2u'

2 !1JS̃2t(
k

lnS sinhf k

u'
2 f k

D ,

does not enter the expressions for the statistical averages
contributes to the free energy and to the related thermo
namic quantities.

The renormalization coefficientsDi andD' measure the
pure-quantum fluctuations parallel and perpendicular to
easy axis, respectively, of one spin with respect to its nea
neighbors, and vanish in both the high-temperature and
classicalS→` limit. It is worthwhile noticing that the fluc-
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tuations along the easy-axis only enters the renormaliza
of the z-component of the exchange interaction.

Defining the effective exchange integral and effective
isotropy

Jeff5J u i
2u'

2 , meff5m
u'

2

u i
2

Eq. ~2! can be written in the form

Heff52
1

2
JeffS̃

2(
i,d

@meff~si
xsi1d

x 1si
ysi1d

y !

1si
zsi1d

z #1G~ t,S̃!, ~6!

to make evident that the PQSCHA leads to a classical-
effective model of the same form as the original quant
one, whose thermodynamic properties can be studied
classical numerical technique, properly taking into acco
the spin and temperature dependence of the renorma
parametersJeff andmeff . As u i

2,u'
2 ,1, it is Jeff,J and 1

.meff.m, so that quantum effects are seen to cause
weakening of both the exchange interaction and the e
axis anisotropy; in the isotropic limitDi5D' and meff5m
51.

The PQSCHA expression for the statistical average o
quantum operatorÔ is

^Ô&5
1

Zeff
E dNsOeff e

2bHeff , ~7!

where b5T21, Zeff5*dNse2bHeff; Oeff is determined by
the same procedure leading toHeff and contains temperatur
and spin dependent renormalizations; after Eq.~7! most ther-
modynamic quantities may be written in a particularly su
gestive form in terms of classical-like statistical averages
fined by the effective Hamiltonian

^•••&eff5
1

Zeff
E dNs~••• !e2bHeff ;

as far as the evaluation of^•••&eff is concerned, one mus
keep in mind that, because of the temperature dependen
the effective anisotropy appearing inHeff , each point in tem-
perature corresponds to a different effective model. T
means that if the classical Monte Carlo technique is used
done in this work, the simulated model changes with te
perature so that, at variance with the isotropic case, no e
ing classical data can be used and a complete series ofad hoc
simulations must be carried on. Nevertheless, the comp
tional effort required is still that of a classical simulation,
the evaluation of the renormalized parameters is a matter
few seconds on a standard PC.

The application of the PQSCHA to the EA-QHAF lea
to the following results for the thermodynamic quantities
have considered:

~i! Internal energy u[^Ĥ&/(NJS̃2):

u5
1

NJS̃2
^Heff&eff2G~ t,S̃!1F~ t,S̃!, ~8!

where
n
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F522~u'
2 2u i

2!Fu'
2 1

2

12m2 ~u'
2 2u i

2!G
is a negative zero-point quantum correction term due to
anisotropy~it vanishes in the isotropic limit!.

~ii ! Staggered magnetization m[( i(21)i 11 i 2^Ŝi
z&/NS̃:

m5u'
2 ^si

z&eff1M~ t,S!; ~9!

where the magnetization renormalization is seen to be du
an effective spin reduction (u'

2 ,1) and to the appearance o
the negative termM52(u'

2 2u i
2)/(12m2) which vanishes

in the isotropic limit and is finite form50.
~iii ! Staggered correlation functionaboveTc

G(r )[(21)r 11r 2^Ŝi•Ŝi1r&/S̃
2 with r5(r 1 ,r 2) any vector of

the square lattice andr 5ur u:

G~r !5u r
4^si•si1r&eff , ~10!

whereu r
2512Dr/2 and

Dr5
1

NS̃
(

k

ak

bk
„12cos~k•r !…Lk

is a further site-dependent renormalization coefficient. F
increasingr, the coefficientDr rapidly converges to a uni
form term, so that the asymptotic (r→`) behavior ofG(r )
is actually determined by that of the effective classical-li
correlation function̂ si•si1r&eff .

~iv! Staggered static susceptibilityaboveTc
x[( rG(r )/3:

x5
1

3FS~S11!

S̃2
1(

rÞ0
G~r !G . ~11!

~v! Correlation lengthaboveTc .
We have determined the correlation lengthj by fitting G(r )
with the expression proposed by Serena, Garcia,
Levanyuk28

G~r !}
1

j1/4

e2r /j

~r /j!1/21~r /j!1/4
, ~12!

which interpolates the two asymptotic behaviorsr→` and
r→0 of the Ising model.33

In what follows, we show our results as obtained comb
ing the above PQSCHA expressions with the numeri
output of the classical Monte Carlo simulations we have p
formed to evaluate the effective statistical averag
^•••&eff . At variance with the isotropic case, where resu
for different values of the spin are obtained by the sa
series of classical simulations, we now have to fix the va
of the spin in order to determine, for a given value ofm, the
correspondingmeff to be used in the simulation. We hav
hence concentrated on the casem50.9942 andS55/2, be-
cause these are anisotropy and spin values correspondi
the real compound Rb2MnF4; the more anisotropic casem
50.7 andS55/2 has also been considered, because of
expectedly more marked Ising-like features.

In Figs. 1 and 2 we show the internal energy and spec
heat versus temperature for both values ofm, compared with
the isotropic case12 m51. As the value of the critical tem
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perature increases for larger anisotropy, but diminishes w
smaller spin values are considered, we avoid the confu
direct comparison between our curves (m.0, S55/2) and
the corresponding quantities for the Ising model (m50, S
51/2), by showing the latter as insets.

The Ising character of them50.7 model is evidenced by
the pronounced peak in the specific heat, corresponding
qualitatively different temperature dependence of the inte
energy with respect to that of the isotropic model. Althou
such a difference is almost not perceptible when them
50.9942 curve is considered, a clear peak in the spe
heat is still present, testifying to a persistence of the Isi
like behavior even in thisquasi-isotropic model.

The same conclusion is drawn when the staggered m
netization is considered: in Fig. 3 we see that form
50.9942 there exists a wide temperature range where
system is ordered, with a critical temperaturetc that, despite
being lower than the one relative to them50.7 case, is still
of the order ofJ. In the inset we show the magnetizatio
curves normalized to their saturation values, as function
t/tc , together with that of the Ising model: It is evident th
an increased anisotropy causes a sharpening of the wa
magnetization vanishes.

The critical temperatures hereafter used aretc50.785 for
m50.7 andtc50.575 form50.9942; these values have be
determined by locating at best the correlation length div
gence and consistently coincide with those emerging fr

FIG. 1. Internal energy vst for S55/2 andm50.7 ~dashed!,
0.9942~full !, 1 ~dash-dotted!; the curve relative to the Ising mode
(S51/2 andm50) is shown in the inset.

FIG. 2. Specific heat vst ~lines and inset as in Fig. 1!.
en
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the analysis of the critical behavior of other quantities. F
instance the critical temperatures determined by fitting
magnetization curves~see the dotted lines in Fig. 3! are tc8
50.787 form50.7 andtc850.576 form50.9942.

It should be noted that even belowtc , where the finite
value of the magnetization would suggest a complete p
dominance of the Ising character, the system does actu
display features which are distinctive of the isotropic mod
In particular, the specific heat for both values ofm shows,
after an exponential start typical of a gapped dispersion
lation, a change in the curvature and a temperature de
dence of the same type of that characterizing the isotro
model. It is just in the vicinity oftc that a new change in the
curvature announces the forthcoming transition.

In Fig. 4 we show the correlation functionG(r ) as a
function of r in the quasi-isotropic casem50.9942 and for
three different temperatures. The fit of our data with t
Serena–Garcia–Levanyuk function, Eq.~12!, is very good in
the whole temperature range examined, and hence leads
clean evaluation of the correlation length.

In Fig. 5 we show the correlation length and also rep
the curve for the isotropic model:12 we notice that them
50.9942 curve lays on the isotropic one up to correlat

FIG. 3. Staggered magnetization vst for S55/2 andm50.7
~dashed!, 0.9942 ~full !; the dotted lines are the data fits used
extract the critical temperature values. In the inset the same cu
normalized to the saturation value, are shown vst/tc , together with
the magnetization of the Ising model~dotted!.

FIG. 4. Correlation functions forS55/2, m50.9942, andt
50.6, 0.7, 0.85~from the top!; dotted lines are fits with the
Serena–Garcia–Levanyuk function~see text!.
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lengths of the order of 20 lattice spacings~i.e., t.1.03tc),
while for m50.7 a deviation is evident already forj.2 ~i.e.,
t.1.3tc). This means that, in the former case, there is
temperature region where the model significantly beha
like the isotropic model, as far as the correlation length
concerned, and it is hence meaningful to introduce the i
of a crossover from a Heisenberg- to an Ising-like regim6

on the contrary, whenm50.7 the Ising character of th
model is manifest already when correlations over a few
tice spacings develop.

IV. COMPARISON WITH EXPERIMENTAL DATA

The results shown in Sec. III qualitatively explain th
mechanism possibly underlying the finite-temperature ord
ing experimentally observed in manyquasi-two dimensional
real magnets.

As for a more precise quantitative analysis, we have c
centrated ourselves on theS55/2 magnet Rb2MnF4: The
reason for this choice is the availability of recent neutr
scattering data6 relative to such compound and the fact th
because of its crystallographic structure, Rb2MnF4 is known
to behave as a two-dimensional magnet both above and
low the observed transition.20,34 This means that the critica
behavior is not contaminated by the onset of thr
dimensional order and a clean characterization of the tra
tion is possible, as well as a meaningful comparison with
experimental data for the magnetization belowTc .

The model parametersJs57.6260.09 K and ms
50.9953 available in the literature35 for the compound
Rb2MnF4 are obtained by fitting the extrapolatedT→0 ex-
perimental data for the spin-wave frequencies with the
pression

vk54JsSA 1

ms
2

2gk
2; ~13!

this means thatJs andms are renormalized by the zero-poin
quantum fluctuations and are not the bare values to be
serted in Eq.~1!. These have hence been determined eq
ing Eq. ~13! with the zero-temperature dispersion relati
relative to the EA-QHAF as given by the PQSCHA

FIG. 5. Correlation length vst for S55/2 andm50.7 ~dashed!,
0.9942~full !, 1 ~dash-dotted!.
a
s

s
a

;

t-

r-

-

,

e-

-
si-
e

-

n-
t-

vk54JS̃mu'
2 ~0!A u i

4~0!

m2u'
4 ~0!

2gk
2, ~14!

whereu i
2(0) andu'

2 (0) are the renormalization paramete
defined in Eq.~3! evaluated att50.

The resulting equation form

m5ms

u i
2~0!

u'
2 ~0!

must be self-consistently solved, as bothu' and u i depend
on m, and givesm50.9942.

Oncem is determined, the equation for the exchange
tegral

J5
S

S̃

Js

mu'
2 ~0!

is straightforwardly solved and givesJ57.42 K.
In Fig. 6 our results for the staggered magnetization

shown together with the experimental data from Ref. 20 a
the interpolating curve there proposed. Besides the ove
agreement in the whole ordered phase, it should be noted

FIG. 7. Staggered susceptibility vst for S55/2, m50.9942
~full !, and m51 ~dashed-dotted!; symbols are neutron scatterin
data on Rb2MnF4 from Ref. 6. A zoom of the critical region is
shown in the inset.

FIG. 6. Staggered magnetization vst for Rb2MnF4, normalized
to the saturation valuem0: our results~full line! are compared with
experimental data~full circles! from Ref. 20; the dashed line is th
interpolating curve therein proposed.
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our prediction for the value of the critical temperature p
fectly coincides with the one deriving from the experimen
analysis, which givesTc538.4 K ~i.e., tc50.575); such a
large value ofTc with respect to the exchange integralJ
57.42 K should not surprise us, as the squared value of
spin has been actually extracted from the latter.

In order to obtain the best quantitative description of
EA-QHAF in the paramagnetic phase, and given the sm
anisotropy of Rb2MnF4, the lowest-temperature data for th
staggered susceptibility and correlation length, shown
Figs. 7 and 8, are determined by the PQSCHA version in
duced in Ref. 12 and there shown to be the most approp
to study the isotropic model. The difference between suc
version and the original one described in Sec. II consist
the appearance of the renormalization parametersk i ,'

2 , in-
stead ofu i ,'

2 , in Eqs.~5!, with k i ,'
2 5u i ,'

2 2Di ,'
cl /2, Di ,'

cl be-
ing the renormalization coefficients determined by the cl
sical self-consistent harmonic approximation.

The agreement between our results and the experime
data is indeed noticeable, given also the fact that no bes
procedure has been used. In addition, our results repres
clear improvement with respect to those coming from
mean-field treatment of the anisotropy, as proposed by
imer et al.,5 which enables one to derive the correlati
length of the anisotropic model directly from the data of t
isotropic one, as done in Ref. 6 starting from the PQSC
results for the isotropic model12 itself. In particular, it is evi-
dent from Fig. 8 that the mean-field approach, apart fr
accounting for the existence of the phase transition, lead
an overestimate of the critical temperature, while the mo
with exchange anisotropy gives a very accurate estimat
tc .

FIG. 8. Correlation length vst; lines, symbols, and inset as i
Fig. 7 apart from the dashed curve, representing the result
mean-field approach to the anisotropy proposed in Ref. 6, and
triangles, which are quantum Monte Carlo data for the isotro
model, from Ref. 16.
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V. CONCLUSIONS

In this work we have studied the easy-axis quant
Heisenberg antiferromagnet on the square lattice by mean
the pure-quantum self-consistent harmonic approximat
expressions for several quantum statistical averages h
been determined for the general model, with any value of
spin and of the anisotropy. The numerical work, consist
of classical Monte Carlo simulations on a properly renorm
ized model, have been concentrated on theS55/2, m50.7
andS55/2, m50.9942 cases, the latter corresponding to
real compound Rb2MnF4.

We have shown that a finite temperature transition
present in both cases and that such a transition is clearl
an Ising type; the value of the corresponding critical te
perature has been determined by the analysis of the cor
tion length dependence on temperature and has been al
found to perfectly agree with that extracted by the analysis
other thermodynamic quantities.

Despite the essential presence of the transition, the
QHAF also display~both below and abovetc) features
which are typical of the isotropic model. In the ordered pha
it is the specific heat behavior that testifies to the existenc
isotropic-like excitations. On the other hand, when the cr
cal region is abandoned in the paramagnetic phase, the
isotropy loses its fundamental role and a crossover towa
the isotropic behavior is observed, at least as far as the
relation length is concerned; such crossover, however, h
weaker meaning for larger anisotropy, being confined
ready form50.7 to the high-temperature region wherej is
the order of the lattice spacing and differences between
ferent models become irrelevant.

We have compared our theoretical results with the n
tron scattering experimental data for the staggered magn
zation, staggered susceptibility, and correlation length of
real compound Rb2MnF4 and found an excellent agreeme
both for the overall temperature behavior and for the value
the critical temperature.

We can hence conclude that the experimentally obser
finite temperature transition in Rb2MnF4 is due to an easy-
axis anisotropy in the intralayer exchange interaction a
that, despite the small value of the anisotropy, the compo
shows an Ising-like critical behavior.
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