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Lattice models and Landau theory for type-II incommensurate crystals

G. H. F. van Raaij,* K. J. H. van Bemmel,† and T. Janssen
Institute for Theoretical Physics, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands

~Received 7 September 1999!

Ground-state properties and phonon dispersion curves of a classical linear-chain model describing a crystal
with an incommensurate phase are studied. This model is the DIFFOUR~discrete frustratedf4) model with an
extra fourth-order term added to it. The incommensurability in these models may arise if there is frustration
between nearest-neighbor and next-nearest-neighbor interactions. We discuss the effect of the additional term
on the phonon branches and phase diagram of the DIFFOUR model. We find some features not present in the
DIFFOUR model such as the renormalization of the nearest-neighbor coupling. Furthermore, the ratio between
the slopes of the soft phonon mode in the ferroelectric and paraelectric phase can take on values different from
22. Temperature dependences of the parameters in the model are different above and below the paraelectric
transition, in contrast with the assumptions made in Landau theory. In the continuum limit this model reduces
to the Landau free-energy expansion for type-II incommensurate crystals and it can be seen as the lowest-order
generalization of the simplest Lifshitz-point model. Part of the numerical calculations have been done by an
adaption of the effective potential method, originally used for models with nearest-neighbor interaction, to
models with also next-nearest-neighbor interactions.
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I. INTRODUCTION

Like other transitions, the phase transition to an inco
mensurate~INC! phase~reviews are given by Bak,1 Selke,2

and Janssen and Janner3! can be described on the phenom
enological level within the frame of extended Land
theory.4 The necessary extension consists essentially in
counting for the expansion of the free-energy density a
function not only of the components of the order parame
but also of their spatial derivatives. Therefore the global f
energy becomes a functional of spatially dependent com
nents of the order parameter and the equilibrium configu
tion for given values of temperature and external parame
is found as a solution of a variational problem.

The continuum Landau theory allows a natu
classification5 of the possible forms of the free-energy fun
tional for an INC transition into two classes, according
whether the driving term in the free-energy expansion
sponsible for the appearance of the incommensurate sta
linear~type I, Lifshitz invariant present! or quadratic~type II,
no Lifshitz invariant! in the gradient of the order paramete
The properties of those two kinds of INC phases are diff
ent: for type-I INC phases the lock-in transition is eith
continuous, or only slightly discontinuous, and approach
the lock-in temperatureTc these phases exhibit the struct
ration of the modulated phase into discommensurations
solitons. On the other hand, the modulation of the type
INC phase remains practically sinusoidal down to the te
peratureTc and the lock-in transition is always of first orde
Although the above statements can be considered as a ru
thumb, there are cases known where there is coexistenc
solitonic and sinusoidal structural modulation. S
Aramburu6 for details.

In the following we will only be concerned with mode
describing type-II INC phases. Landau theory has b
rather successful in describing basic properties of th
phases, but if one wants to have a better understanding o
PRB 620163-1829/2000/62~6!/3751~15!/$15.00
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true microscopic origin of the INC phase one has to go
yond this phenomenological approach. One possibility wo
be to study full microscopic models with realistic intera
tions. Another approach, to which the main part of this pa
will be devoted, is to study semimicroscopic models whi
take into account the discrete nature of the systems and
cuss properties in terms of~effective! interatomic interac-
tions.

The discreteness of a lattice leads to a number of imp
tant physical consequences such as pinning of solitons in
anisotropic next-nearest-neighbor Ising~ANNNI ! model~see
Yeomans7 for a review! and in the Frenkel-Kontorova
model,8 and the existence of a devil’s staircase~infinite num-
ber of commensurate and incommensurate phases!, for ex-
ample found in betaine calcium chloride dihydrate~BCCD!.9

Within Landau theory it is difficult to explain the occurrenc
of a specific sequence of transitions: several lock-in ter
are needed then. For example, Ribeiroet al.10 chose the
magnitude of four distinct lock-in contributions to the fre
energy in such a way as to stabilize the four most promin
commensurate phases in BCCD. Furthermore, in disc
models chaotic states are possible,1,11 which may provide an
alternative description of phenomena observed in for
ample spin glasses, superionic conductors, the magnetic
tem CeSb and systems with pinning of charge-density wa
See Bak1 for details.

In the past few years different lattice models have be
constructed to describe the phase transitions in, for exam
the A2BX4 family,12 in BCCD,13 and, more general, in crys
tals with Pcmn symmetry.14 These models are two dimen
sional, with only nearest-neighbor interactions. Hlin
et al.15 studied a three-dimensional nearest-neighbor mo
applicable to BCCD. All these models have in common th
the frustrated interaction, needed for having an incommen
rate phase, comes from a nearest-neighbor mixing inte
tion.

Recent x-ray,16 neutron,17,18 and Raman19 experiments on
3751 ©2000 The American Physical Society
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the Sn2P2(S12xSex)6 crystal family of uniaxial ferroelectrics
motivated us to study lattice models. In the compositio
temperature phase diagram of this crystal family a Lifsh
point is present.20 At this point the paraelectric phase, th
ferroelectric phase and the INC phase become equal, an
boundaries separating these phases have equal deriv
Such a special point was, except for some ferroelectric liq
crystals, only found in the temperature-applied magne
field phase diagram of the magnetic compound MnP.21 From
both experimental and theoretical point of view this uniax
Lifshitz point is interesting because critical exponen
deviate22 from those found for ordinary critical points. Thi
crystal family furthermore displays an interesting modulat
wave-vector behavior, shows crossover effects from ord
disorder to a displacive type of phase transition,23 and the
ratio between the slopes of the soft phonon mode in
ferroelectric and paraelectric phase deviates17 substantially
from the standard valueR522. These features are muc
easier to understand in a lattice model than in Landau the

The paper is arranged as follows: in Sec. II we presen
one-dimensional model; in many anisotropic systems,
Sn2P2(S12xSex)6, the modulation wave vector is in one sp
cific direction. The incommensurability may arise if there
frustrating interaction between nearest-neighbor and n
nearest-neighbor couplings. We discuss general feature
the model. In Sec. III we give some exact results regard
ground-state properties. In Sec. IV we discuss the dynam
and the stability of the various phases. In Sec. V the ph
diagrams, calculated partly analytically, partly numerical
are presented. Temperature effects are treated in Sec. V
Sec. VII we discuss the continuum limit of the model whi
gives the connection with the Landau theory. We conclu
and give an outlook for further research in Sec. VIII.
Appendix A we give some exact results for phase bounda
and in Appendix B we present the next-nearest-neighbor
tension of the effective potential method for the determi
tion of the ground state. This method was used to calcu
some of the phase diagrams.

II. AN EXTENSION OF THE DIFFOUR MODEL

In the following we will be concerned with an extensio
of the so-called DIFFOUR model24 ~discrete frustratedf4

model!, for which the potential energy can be written as

V5(
n

H A

2
xn

21
B

4
xn

41
C

2
~xn2xn21!21

D

2
~xn2xn22!2

1
E

2
@xn

2~xn2xn21!21xn
2~xn2xn11!2#J . ~2.1!

The original DIFFOUR model, or EHM~elastically hinged
molecule! model,25 has E50. Although in principle this
model gives incommensurate ground states, the behavio
the modulation wave vector as found in experiments can
be reproduced satisfactorily by the model. In order to
count for this shortcoming we supply the DIFFOUR mod
with a nonlinear coupling to neighbors. There are seve
possibilities: if we restrict ourselves to fourth-order terms
can consider a term}(xn2xn21)4. The resulting model has
been studied by Lamb,26 who showed that the origin of thi
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term is related to strain terms in the so-called magnetoela
DIFFOUR model. Another possibility would be to consider
term of the form}(xn2xn22)4. Without the term mentioned
above this would, however, be rather unphysical. Instead
will choose a term of the form}xn

2(xn2xn61)2. This is the
lowest-order dispersive fourth-order term, as will be sho
in Sec. VII, and can, for example, be obtained from str
terms.

The order parameterxn can be, for example, a displace
ment, a component of the polarizationP for ferroelectric
systems, a component of the magnetizationM for magnetic
systems, a rotation angle or a strain component. In this
ticle we use for convenience terms like paraelectric, fer
electric, and antiferroelectric to distinguish between differe
ground states. The origin of incommensurability in th
model is essentially competition between interactions w
nearest- and next-nearest neighbors which may lead to f
tration. Higher-order terms are needed for stabilization.

We expect that the extra fourth-order term (E5” 0) has a
large effect on the phase diagrams forE50. To actually
determine phase diagrams it is not necessary to vary all
parametersA,B,C,D,E, which can be seen as follows: b
taking xn85AB/uDuxn and V85B/uDu2V we get the follow-
ing renormalized parameters:A85A/uDu, B851, C8
5C/uDu, D85D/uDu561, andE85E/B.

For some purposes it is convenient to rewrite the poten
in the following form:

V5(
n

H Ã

2
xn

21
B̃

4
xn

41C̃xnxn211D̃xnxn22

1
Ẽ

2
@xn

2~xn2xn21!21xn
2~xn2xn11!2#J , ~2.2!

with Ã5A12C12D, B̃5B, C̃52C, D̃52D, and Ẽ
5E. From this the connection with the ANNNI model ca
easily be made. Let us putẼ50 andB̃52Ã. If we now take
the limit Ã→2` we end up with a model with two infinitely
deep wells. Thexn can only take on values61 and can thus
be seen as spins. These spins are coupled to nearest n
bors and next-nearest neighbors via theC̃ and D̃ terms. So
by increasing the depth of the double-well potential there
crossover from displacive behavior to order-disorder beh
ior in the transition from the normal to the incommensura
phase.

Insertingxn85(21)nxn in the above potential leads to

V5(
n

H Ã

2
xn8

21
B̃

4
xn8

42C̃xn8xn218 1D̃xn8xn228

1
Ẽ

2
@xn8

2~xn81xn218 !21xn8
2~xn81xn118 !2#J . ~2.3!

In the DIFFOUR model (Ẽ50) this leads to the following
symmetry: if $xn% is a state forC̃5X, then$(21)nxn% is a
state forC̃52X with the same energy. This property can f
example be seen in the ferroelectric-antiferroelectric pha
However, for Ẽ5” 0 this symmetryC̃↔2C̃ is no longer
present.
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III. GROUND-STATE PROPERTIES

Different ground states are possible, depending on
values of the parameters. The stationary states are solu
of ]V/]xn50, giving

Axn1Bxn
31C~2xn2xn212xn11!1D~2xn2xn222xn12!

1E@4xn
323xn

2~xn211xn11!12xn~xn21
2 1xn11

2 !

2~xn21
3 1xn11

3 !#50. ~3.1!

If we impose periodic boundary conditionsxN1n5xn we ar-
rive at a set ofN coupled nonlinear equations. To find th
lowest-energy state for each solution and for each value oN
the potential energy has to be evaluated. For low-per
commensurate states~small values ofN) analytic solutions
of the above equation can be found. In the following,
study~for fixed N) periodic solutions of Eq.~3.1!. For them
we give the equilibrium values$xn% and the corresponding
energy per particlev5V/N.

In the paraelectric state (N51) all particles are in the
equilibrium positions

xn50, v50. ~3.2!

In the ferroelectric state (N51) all particles are uni-
formly displaced from their equilibrium positions

xn5A2
A

B
, v52

A2

4B
. ~3.3!

Note thatB always has to be positive, for the potential to
bounded from below. This implies that the ferroelectric st
only can exist forA,0. For A.0 the ground state may b
paraelectric. In the following we give some analytic resu
based on numerical calculations of the shape of the solu
$xn%.

In the antiferroelectric state (N52) particle positions al-
ternate along the chain

xn5~21!nA2
A14C

B116E
, v52

~A14C!2

4~B116E!
. ~3.4!

The potential is unbounded from below forE<2B/16 and
stable solutions exist only forE.2B/16 andA14C,0.
Both conditions have to be satisfied.

For N53 we determined the solution with lowest ener
to be of the form (x1 ,x2 ,x3)5(kj,j,kj), with x1 /x2,0,
and

j252
A12~C1D !~12k!

B12E~223k12k22k3!

52
Ak1~C1D !~k21!

Bk31E~2k323k212k21!
. ~3.5!

The factork is determined by

2@B~C1D !1E~2A1C1D !#k42@B~A12C12D !

12E~2A12C12D !#k323AEk21@B~A1C1D !

12E~A12C12D !#k

2@B~C1D !1E~2A12C12D !#50. ~3.6!
e
ns

d

e

,
n

The energy per particle is given in terms ofj andk as

v5
j2

6
@A~112k2!12~C1D !~12k!2#1

j4

12
@B~112k4!

14E~11k2!~12k!2#. ~3.7!

Note that the quartic Eq.~3.6! can be written as

~12k!$22@B~C1D !1E~2A1C1D !#k3

1@BA12E~C1D !#k21@BA1E~3A12C12D !#k

2@B~C1D !1E~2A12C12D !#%50, ~3.8!

where the special solutionk51 gives a ferroelectric state
The solution of the remaining cubic equation, which can
solved exactly for given parameters, gives ak such that
x1 /x2,0, a trueN53 state.

The lowest energy state forN54 hasx15x25r, x3
5x452r with

r5A2
A12C14D

B18E
, v52

~A12C14D !2

4~B18E!
.

~3.9!

We have to keep in mind that we must satisfyE.2B/16,
which is not obvious from the above expression, but com
from the analysis of the antiferroelectric state.

The lowest energy solution forN56 can analytically be
obtained, in the same manner as forN53. It has
the form (x1 ,x2 ,x3 ,x4 ,x5 ,x6)5(kj,j,kj,2kj,2j,2kj).
The lowest energy solution for N58
reads (x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7 ,x8)5(kj,j,j,kj,2kj,2j,
2j,2kj). For N55 one needs two different values ofk:
(x1 ,x2 ,x3 ,x4 ,x5)5(kj,k8j,j,k8j,kj) and for N57 one
needs three different values:k,k8,k9, and the above method
no longer works forN55 andN57. Therefore, to find state
with larger periods, or even incommensurate periods, we
on numerical calculations, for which true incommensur
states of course never can be found. However, the idea is
such a state can always be arbitrarily well approximated b
commensurate state with wavelength

l5
N

s
, s51,2, . . . , N>2s, ~3.10!

whereN,s are coprime numbers. Such a solution has a
riod N and, in general, 2s5 ~number of local minima1
number of local maxima!. In the special case where the$xn%
take on positive and negative values, 2s5 ~number of sign
changes within the periodN). The biggerN ands, the better
the approximation.

As an example of a numerical calculation we consider
ground state for A52.249 99, B51, C51, D5
21, E51. It is known to be incommensurate~see Secs. IV

and V! with a wavelength arccos(1
4 )'4.766 792 13. By the

Farey construction3 we find that62
13 '4.769 230 77 should be

a reasonable commensurate approximation. We numeric
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3754 PRB 62G. H. F. van RAAIJ, K. J. H. van BEMMEL, AND T. JANSSEN
determined the ground state in terms of the$xn%. The result
is shown in Fig. 1. After 62 particles the sequence repe
itself, and the solution passes through zero 26 times. We
label this state by its modulation wave vector13

62 , measured
in units of 2p.

For certain regimes in the parameter space the gro
state can be determined analytically. The entire phase bo
ary of the paraelectric state and a part of the phase boun
of the ferroelectric state can be calculated. For the near
neighbor case in the DIFFOUR model proofs are given
Janssen and Tjon.27 We extend their proofs to the case
which we also have next-nearest-neighbor interaction. As
proof is rather lengthy it will be given in Appendix A.

IV. PHONON DISPERSION CURVES AND STABILITY
LIMITS

To decide whether a solution of the equilibrium cond
tions is locally stable or not, one considers small displa
mentsen from the positions given by a static solution$xn%
satisfying Eq.~3.1!:

un5xn1en . ~4.1!

The phonon frequencies are given by the square roots o
eigenvalues of the dynamical matrix and for stability all
genvalues have to be non-negative. The dynamical matrix
a period-N solution (N>5) has elements

Dn,n5A13Bxn
212C12D12E@6xn

223xn~xn211xn11!

1xn21
2 1xn11

2 #,

Dn,n6152C1E@23xn
214xnxn6123xn61

2 #, ~4.2!

Dn,n6252D,

with xN1n5xn and the special cases

FIG. 1. Ground-state configuration forA52.249 99,B51, C
51, D521, andE51 in the commensurate approximation 62/1
xn is the displacement for particlen. For A,B,C,D,E given above
the system is just below the phase boundary between the para
tric phase and the incommensurate phase. Although the disp
ments are small,O(1023), the onset of the incommensurate pha
is evident. Points are calculations, lines are drawn to guide the
ts
an

d
d-
ry

st-
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e

-

he

or

D1,N5@2C1E~23x1
214x1xN23xN

2 !#e2 iq,

D1,N215D2,N52De2 iq. ~4.3!

In the above expressions the$xn% are solutions of Eq.~3.1!.
Furthermore,Dn,m5Dm,n* and all other matrix elements ar
zero. In the following the phonon branches for certain lo
period states will be examined. This will be done in terms
A,B,C,D,E.

A. Paraelectric state

For the paraelectric state~3.2! the dynamical matrix is
given by

D5A12C@12cos~q!#12D@12cos~2q!#5mv2.
~4.4!

Rewriting this equation gives

mv25A1~4C116D !sin2S q

2D216D sin4S q

2D . ~4.5!

Note that this expression does not containE. This means that
the stability limits for the paraelectric phase in this model a
the same as those for the paraelectric state in the DIFFO
model. Now, we are looking for the minimum of this phono
branch. We distinguish the casesD.0 andD,0. The re-
sults are summarized in Table I.

For D.0 and C50, the branch has two minima, a
sin2(q/2)50 and sin2(q/2)51. For A,0 the ferroelectric
state and the antiferroelectric state are degenerate, forE50
only. Comparison with calculations in Appendix A show
that as long as the paraelectric state is stable, it is the gro
state. Destabilization is the condensation of a soft phono

B. Ferroelectric state

For the ferroelectric state~3.3! one has

ec-
e-

e.

TABLE I. Stability limits for the paraelectric phase~4.5!. Note
that B116E.0 must be satisfied.

Parameter
range

q value
of instability

Conditions for
having a stable state

D,0:
C,4D qc5p A.24C

4D<C<24D cos~qc!5
2C

4D
A1

~4C116D !2

64D
.0

C.24D qc50 A.0

D.0:
C,0 qc5p A.24C
C.0 qc50 A.0
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TABLE II. Stability limits for the ferroelectric phase~4.6!. Note thatB116E.0 andA,0 must be
satisfied.

Parameter range q value of instability Conditions for having a stable state

D,0:

C,
2AE

B
14D qc5p A,2C2

4AE

B
2AE

B
14D<C<

2AE

B
24D cos~qc!5

2C

4D
1

AE

2BD
22A1

~C14D22AE/B!2

4D
.0

C.
2AE

B
24D qc50 A,0

D.0:

C,
2AE

B
qc5p A,2C2

4AE

B

C.
2AE

B
qc50 A,0
at

in
ar

of

act
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s
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mv25A13Bx212C@12cos~q!#12D@12cos~2q!#

14Ex2@12cos~q!#522A1S 4C116D

2
8AE

B D sin2S q

2D216D sin4S q

2D . ~4.6!

See Table II for the analysis. Note that forD.0 there is
degeneracy forE50.

C. Antiferroelectric state

Finally, the phonon branches of the antiferroelectric st
~3.4! will be investigated. The 232 dynamical matrix is
given by

D1,15D2,25A12C12D@12cos~q!#

2~3B128E!
A14C

B116E
,

D1,25D2,1* 5~e2 iq11!S 2C110E
A14C

B116ED . ~4.7!

The eigenvalue equation reads

mv25A12C14D2~3B128E!
A14C

B116E
24D cos2S q

2D
62S 2C110E

A14C

B116ED cosS q

2D . ~4.8!

Results are summarized in Table III. Note that forC
510E@(A14C)/(B116E)# the two branches coincide.

D. States with periodNÐ3

For the N53 solution exact phonon frequencies can
principle be found. The elements of the dynamical matrix
given in terms ofj andk, defined in Eqs.~3.5! and ~3.6!:

D1,15D3,35A12~C1D !1@3Bk212E~4k223k11!#j2,
e

e

D2,25A12~C1D !1@3B14E~k223k13!#j2,

D1,25D2,352C2E~3k224k13!j22De2 iq, ~4.9!

D1,352D2~C12Ek2j2!e2 iq.

The eigenvalues are then found as the solution~Cardano’s
formula! of a cubic equation.

For N54 the dynamical matrix has elements in terms
r, defined in Eq.~3.9!:

Dn,n5A12~C1D !1~3B116E!r2,

D1,25D3,452C22Er2,

D1,35D2,452D~11e2 iq!, ~4.10!

D1,45~2C210Er2!e2 iq,

D2,352C210Er2.

The resulting secular equation is a quartic one and ex
solutions for the eigenvalues can be found using Ferra
formula.

For solutions with larger periods we have to rely on n
merical calculations. As an example we again consider
ground state for A52.249 99, B51, C51, D5
21, E51. See also the end of Sec. III. The calculat
phonon dispersion curves in the commensurate approxi
tion l5 62

13 are given in Fig. 2.

V. CALCULATION OF PHASE DIAGRAMS

In this section we present some phase diagrams, ca
lated partly analytically, partly numerically. The tradition
method to find the ground state numerically is to solve
equations for equilibrium~3.1!. However, these equation
also hold for metastable states, maxima, and saddle po
and it may happen that one finds a metastable state inste
the true ground state. This problem is not present for
so-called effective potential method~EPM!, introduced by
Griffiths and Chou.28 This method, in principle, always give
the ground state. Originally it was used to study Frenk
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TABLE III. Stability limits for the antiferroelectric phase~4.8!. BothB116E.0 andA14C,0 must be
satisfied.

Parameter range q value of instability Conditions for having a stable stat

D,0:

C210E
A14C

B116E
,4D qc50 A,24C

4D<C210E
A14C

B116E
<0 cosSqc

2 D5 C

4D
210E

A14C

4D~B116E!
A.22C24D1~3B128E!

A14C

B116E

2
1

4D S 2C110E
A14C

B116ED 2

0<C210E
A14C

B116E
<24D cosSqc

2 D52C

4D
110E

A14C

4D~B116E!
A.22C24D1~3B128E!

A14C

B116E

2
1

4D S 2C110E
A14C

B116ED 2

C210E
A14C

B116E
.4D qc50

A

A14C
,

3B18E

B116E

D.0:

C,10E
A14C

B116E
qc50 A,24C

C.10E
A14C

B116E
qc50

A

A14C
,

3B18E

B116E
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Kontorova and similar one-dimensional models with on
nearest-neighbor interaction. As an interesting application
this method, we mention a study of the ground state of
chiral XY model in a field.29 Below we give a brief outline of
the method.

Consider a one-dimensional system with only neare
neighbor interaction in its ground state. If one atom is d
placed from its equilibrium position~we assume thatxn de-
notes the displacement!, the surrounding atoms will chang
their positions in order to minimize the total energy. Th
deformation will in general cost some energy. A functio
called the ‘‘effective potential,’’ describes the net ener
cost as a function of the positions of the atoms. This eff
tive potential achieves its minimum on points of the grou
state30 and rigorous mathematical statements can be mad31

Numerical procedures to find solutions are based on disc
zation of the rangexn of the atomic positions. Thexn can
now only adopt a finite number of values.32–34 For models
with interactions up to next-nearest neighbors, as in the c
of the extended DIFFOUR model, the EPM can be adap
which will be discussed in Appendix B. The proofs of th
existence of solutions for models with next-nearest-neigh
interactions, both in the continuous and discretized vers
are rather long and will be given in a separate paper.35

Using the EPM and Eq.~3.1! we calculated various phas
diagrams. First we varied bothA and E with the other pa-
rameters fixed:B51, C51, and D521. The resulting
phase diagram is given in Fig. 3. From the analysis in A
pendix A we know that the phase boundary for the parae
tric state for uCu,4 is given byA5 1

4 C222C14. For C
of
e

t-
-

,

-

.
ti-

se
d,

r
n,

-
c-

51 andD521 we findA52 1
4 . At this boundary we have a

transition to an incommensurate state with wave vectoq

5arccos(2C/4D)5arccos(14 )'4.766 792 13. This is the
state we discussed at the end of Sec. III. We can clearly
the effect of theE term: for E50 further decreasing ofA
leads to a transition to a commensurate state with perio
For E,0 this transition can be followed by transitions
N53 or N52 commensurate states. ForE sufficiently posi-
tive, the wavelength of the ground state increases for
creasingA. Between the commensurate states incommen
rate ones can be found. By increasingE, the region between
paraelectric and ferroelectric phases shrinks. A positiveE
term favors long-wavelength solutions, with the ferroelect
state being the extreme limit (q50).

Figure 4 gives the phase diagram found forB51, D5
21, E50 and varying bothA and C. This is the phase
diagram for the original DIFFOUR model.3 We have seen
that the phase boundary for the paraelectric phase foruCu
,4 is a parabola symmetric aroundC50. For uCu>4 this
boundary is given byA12C2252212uCu, two straight
lines. The parabola and the lines meet atuCu54, and have
equal derivative at this point. Note the symmetryC↔2C,
which implies36 that the modulation wave vectors for th
system with1C and2C are related by

qC1q2C5
1

2
~5.1!

in units of 2p. At (C54,A50) the paraelectric phase, th
ferroelectric phase and the incommensurate phase bec
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FIG. 2. Phonon dispersion curves forA52.249 99, B51, C
51, D521, andE51 in the commensurate approximation 62/1
This corresponds with the solution depicted in Fig. 1.q is given in
reduced units. There is one branch withv→0 for q→0: the phason
branch. Just above this lies the amplitudon branch.

FIG. 3. The phase diagram for the extended DIFFOUR mo
with B51, C51, D521. Shown are the paraelectric phase~P!,
ferroelectric phase~F!, antiferroelectric phase~2!, and commensu-
rate phases with period 3,4,5,6. Incommensurate phases are la
I, higher-order commensurate phases C. There is no stable gr
state forE,21/16.
equal. The lines separating the paraelectric phase from
incommensurate phase and the incommensurate phase
the ferroelectric phase have equal derivative at this point
Landau theory~see Sec. VII! such a point would be called
Lifshitz point. From the symmetryC↔2C it is obvious that
there is also a Lifshitz point at (C524, A516). At this
point the paraelectric phase, the antiferroelectric phase
the incommensurate phase become equal.

Figure 5 gives the phase diagram forB51, D5
21, E51 in terms ofA andC. The symmetryC↔2C is
no longer present. However, the phase boundary of
paraelectric phase is independent ofE. Also the wavelength
of the phase emanating from this boundary is the same
particular the positions of the Lifshitz points and the de
vates at these points do not change. Note the boundary o
antiferroelectric phase: starting from the Lifshitz point a
going down in the phase diagram, it initially bends to t
right and then returns to lower values ofC. Figs. 4 and 5
have been obtained by solving Eq.~3.1! and comparing the
energies of the solutions.

We investigated the nearby surroundings of the Lifsh
point at (C54, A50)to look how the transition line from

l

led
nd

FIG. 4. The phase diagram for the extended DIFFOUR mo
with B51, D521, and E50. This is the original DIFFOUR
model. Note the symmetryC↔2C. Same labeling as in Fig. 3. L
denotes the Lifshitz points.

FIG. 5. The phase diagram for the extended DIFFOUR mo
with B51, D521, and E51. Note the asymmetric characte
although the boundary of the paraelectric phase is the same
Fig. 4. Same labeling as in Fig. 4.
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the ferroelectric phase to the incommensurate phase cha
by increasingE. See Fig. 6 for the results. One notices
tendency towards a smaller wedgeW ~the vertical distance
between the paraelectric-incommensurate phase boun
and the incommensurate-ferroelectric phase boundary! by in-
creasingE, as was to be expected.

VI. TEMPERATURE-DEPENDENT BEHAVIOR

As the model under consideration is one dimensional w
short-range interactions, there is no phase transition pos
at T5” 0. If we, however, consider weakly interacting line
chains in a three-dimensional system, this system can be
scribed by Eq.~2.1! as well if we interpret the variablesxn as
averages over planes perpendicular to a fixed direction~thec
axis!. Phase transitions become possible due to interch
couplings.

To study the temperature dependence of the parame
we take the thermal average of the conditions for equilibri
~3.1!, resulting in

A^xn&1B^xn
3&1C~2^xn&2^xn21&2^xn11&!1D~2^xn&

2^xn22&2^xn12&!1E@4^xn
3&23^xn

2xn21&

23^xn
2xn11&12^xnxn21

2 &12^xnxn11
2 &2^xn21

3 &

2^xn11
3 &#50. ~6.1!

We have to distinguish between ground states with$x̄n%50
and ground states with$x̄n%5” 0, where the$x̄n% are solutions
of Eq. ~3.1!.

In the former case we assume that the thermal fluctuat
of the displacementxn do not depend on the lattice site
^xn

2&2^xn&
2'^xm

2 &2^xm&2, and if we furthermore approxi
mate the correlations bŷxn

2xm&'^xn
2&^xm&, the following

holds:

E@23^xn
2xn21&23^xn

2xn11&12^xnxn21
2 &12^xnxn11

2 &

2^xn21
3 &2^xn11

3 &#1~B14E!^xn
3&

'E@23^xn&
2~^xn21&1^xn11&!12^xn&~^xn21&

2

FIG. 6. Influence of theE term on the wedge widthW near the
Lifshitz point for B51 andD521. Points are calculations, line
are drawn to guide the eye.
ges

ary

h
le

e-

in

rs

ns

1^xn11&
2!2~^xn21&

31^xn11&
3!#14E~^xn

2&

2^xn&
2!~2^xn&2^xn21&2^xn11&!1~B14E!^xn&

3

1B~^xn
2&2^xn&

2!^xn&. ~6.2!

Inserting the last expression in Eq.~6.1! we see that the
conditions for equilibrium for the thermal average of th
displacement,̂xn&, have the same form as those for the d
placementsxn themselves; the only difference being the r
placement of the parametersA andC by temperature depen
dent ones:

A→A1BT,

C→C14ET, ~6.3!

whereT5^xn
2&2^xn&

2 is a measure of the thermal fluctua
tions. So a change in temperature will renormalize both
rametersA and C ~unlike in the DIFFOUR model withE
50).

For all other ground-state solutions (x̄n5” 0) we calculate
the thermal averages aroundx̄n , where the$x̄n% satisfy Eq.
~3.1!,

^xn
pxm

q &5

E E xn
pxm

q e2b(xn2 x̄n)2/2e2b(xm2 x̄m)2/2dxndxm

E E e2b(xn2 x̄n)2/2e2b(xm2 x̄m)2/2dxndxm

5^xn
p&^xm

q &, ~6.4!

where b51/T. Three different integrals have to be calc
lated, yielding

^xn
3&5 x̄n

313x̄nT,

^xn
2&5 x̄n

21T, ~6.5!

^xn&5 x̄n .

Substitution in Eq.~6.1! and comparison with Eq.~3.1! then
leads to

A→A1~3B14E!T,

C→C16ET. ~6.6!

Note that the parameterE now also enters in the temperatu
dependence ofA. This linear behavior inT, with a kink at the
temperature where the transition from the paraelectric ph
to the incommensurate or the ferroelectric phase takes pl
is corroborated by Monte Carlo calculations.37,38Some of the
results38 are shown in Fig. 7. The results~6.3! and ~6.6! are
in sharp contrast with the assumptions made in standard L
dau theory, to be discussed in Sec. VII, that there is only
temperature-dependent parameter, and that its beha
above and below the transition temperature is the same.

It is now straightforward to calculate the temperatu
dependent ground states and stability limits by making s
stitutions~6.3! and ~6.6!. We especially would like to focus
on the phonon branches in the paraelectric and ferroele
phases. Of experimental interest is the ratio between
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slopes of the soft phonon mode in the ferroelectric a
paraelectric phase, the so-calledR parameter:

R5
dv2/dTu ferro

dv2/dTupara

. ~6.7!

Self-consistent renormalized phonon theory39 gives the result
R522. In experiments,17 however, very oftenR5” 22 is
found. Taking into account the temperature depende
given in Eqs.~6.3! and ~6.6!, we find using Eqs.~4.5! and
~4.6!

R5
22~3B14E!232E2/B sin2~q/2!

B116E sin2~q/2!
, ~6.8!

which, for E50, gives~at the center of the Brillouin zone!
R526 instead ofR522, and forE5” 0 can take on any
value as long asB116E.0 is satisfied. Molecular-
dynamics simulations on a three-dimensionalf4 lattice by
Padlewskiet al.40 show thatR522 holds only for systems
with long-range couplings being in the displacive lim
However, Sollichet al.41 showed that this double limit o
displaciveness and long-range interaction is not necessa
the system is displacive enough: they foundR522 for a
system with only nearest-neighbor interactions, there
questioning Padlewski’s claim40 of having studied a system
in the displacive limit.

VII. COMPARISON WITH THE CONTINUUM THEORY

The continuum limit of the extended DIFFOUR mod
leads to a well-known expansion. By replacing the diffe
ences in the general order parameterxn by differentials in the
principal order parameter for ferroelectrics, the polarizat
P(z),

~xn2xn21!2→S dP

dzD 2

,

FIG. 7. Temperature dependenceA(T) calculated on a three
dimensional version of Eq.~2.1! with harmonic nearest-neighbo
coupling andA(0)525, B55, D5E50. Points are calcula-
tions, ~Ref. 38! lines are fits with a linear function. The phase tra
sition takes place atA50.
d

ce

if

y

-

n

~xn211xn1122xn!2→S d2P

dz2 D 2

, ~7.1!

and rearranging terms we arrive at the free-energy dens

f 5
a

2
P21

b

4
P41

k

2 S dP

dzD 2

1
l

2 S d2P

dz2 D 2

1
h

2
P2S dP

dzD 2

,

~7.2!

with a5A, b5B, k5C14D, l52D, and h52E. The
above free-energy density was used by Ishibashi and Shi42

to study phase transitions in NaNO2 and SC(NH2)2 ~thio-
urea!, proper ferroelectrics in which the polarization comp
nent of interest transforms according to a one-dimensio
irreducible representation. Theh term is allowed by symme-
try because it is the product of the two invariantsP2 and
(d2P/dz2)2. Alternatively, as both sodium nitrite and thio
urea admit an interaction ofP with another modeu ~strain
for example!, Dvořák43 showed that theh term accounts in
an effective manner for this interaction, thereby reduc
g(P,u)→ f (P).

By taking the Fourier transform of the above free-ener
density we find

f̃ 5S a

2
1

k

2
q21

l

2
q4D Pq

21S b

4
1

h

2
q2D Pq

4 . ~7.3!

This justifies the choice of theE term in the extended versio
of the DIFFOUR model, discussed in Sec. II. A ter
}(dP/dz)4 has been included in the free-energy expans
by Jacobset al.,44 but by taking the Fourier transform on
finds }q4Pq

4 which is of higher order than theh term used
here.

In a seminal paper, Hornreichet al.45 discussed a multi-
critical point of a different type, which they called a Lifshit
point. In the spherical model limit they were able to calcula
critical exponents and the shape of the phase boundarie
second-order and first-order transitions in the vicinity of t
Lifshitz point.46 Let us return to the above free-energy de
sity to give a definition2 of the Lifshitz point. At an ordinary
paraelectric to ferroelectric phase transition the coefficiena
changes sign. If we have an additional incommensur
phase we need thek andl terms, and at the Lifshitz poin
k50. Higher-order terms in the expansion are needed
stabilization. Convertinga50, k50 to variables in the ex-
tended DIFFOUR model we findA50, C54 ~for D521).
This is exactly the position of the Lifshitz point found in Se
V. There is another analogy between Landau theory and
DIFFOUR model: Michelson47 showed that for systems with
uniaxial polarization the phase transition lines separating
paraelectric phase from the incommensurate phase and
incommensurate phase from the ferroelectric phase are
gent at the Lifshitz point. This feature is also present in Fi
4 and 5.

Let us now discuss some properties of the solutions fo
in Landau theory. Ground states minimize the total free
ergy

F5
1

dE0

d

f ~z!dz, ~7.4!
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and can be found by solving the Euler-Lagrange equatio

l
d4P

dz4
2k

d2P

dz2
2hF PS dP

dzD 2

1P2
d2P

dz2 G1aP1bP350.

~7.5!

Golovko48 was able to obtain exact solutions for some s
cial values of the parameters in a slightly more general fr
energy density@he added a term (g/6)P6 to the expansion
~7.2!#. However, his method is not general and we will n
discuss it further. Instead we follow a different approac
numerically solving42 Eq. ~7.5! shows that the solutions con
tain practically only one harmonic, the amplitude of high
harmonics is at most 3.5% of the former.

As usual in Landau theory only the coefficienta is tem-
perature dependent:a5a0(T2Tc). It is found that between
the high-temperature paraelectric solution

P~z!50, F50, ~7.6!

and the low-temperature ferroelectric solution

P~z!5A2
a

b
, F52

a2

4b
, ~7.7!

an incommensurate solution exists. Just below
paraelectric-incommensurate transition ata i5a0(Ti2Tc)
5k2/4l it has the form48

P~z!5r0 cos~qz!, F52
~a02a!2

2~3b12hq0
2!

. ~7.8!

The amplituder0 and wave vectorq are given by

r0
25

4~a02a!

3b12hq0
2

,

q5q0S 11
h

8k
r0

2D , ~7.9!

q0
252

k

2l
.

The h term makes the incommensurate phase less st
whenh is positive, implying that the transition temperatu
from the incommensurate state to the ferroelectric state
creases ash increases. See also the discussion by Tole´dano.4

In the discrete model a positiveE term is responsible for this
effect.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we have calculated various properties of
extension of the DIFFOUR model. For this purpose a ne
nearest-neighbor generalization of the effective poten
method was developed. The shape of the paraelectric p
boundary was proven rigorously, elaborating on a form
proof which only included nearest-neighbor interactions. W
found that the phase diagram changes considerably du
the extraE term, but the transition at the paraelectric pha
boundary does not depend onE. PositiveE favors longer-
period solutions.
-
-

t
:

r

e

le

n-

n
t-
al
se
r
e
to

e

By taking thermal fluctuations in two different regime
into account the parametersA and C can be considered a
effectively temperature dependent. ForC this holds only for
nonzeroE, which explains the relevance of this extra ter
This has strong consequences for two experimentally e
accessible quantities: the temperature dependence of
modulation wave vector, and the ratio between the slope
the soft phonon mode in the ferroelectric and paraelec
phases (R parameter!.

Although lattice and continuum models have some f
tures in common, the differences are more striking. A latt
model would be a more natural choice than the phenome
logical Landau treatment of incommensurate phases. D
crete models do not needad hoc lock-in terms to explain
different commensurate and incommensurate phases. C
plex phase diagrams can in principle be obtained usin
simple Hamiltonian which takes into account the discre
ness of a lattice.

The Sn2P2(S12xSex)6 crystal family seems to be an ex
cellent system for our future research: it is uniaxial, has
exceptional Lifshitz point in the composition-temperatu
phase diagram, shows crossover effects from order-diso
to a displacive type of phase transition, and displays an
teresting modulation wave vector behavior. All these ph
nomena can in principle be explained by the extended D
FOUR model.
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APPENDIX A: EXACT RESULTS FOR PARAELECTRIC
AND FERROELECTRIC PHASES

In this Appendix explicitly calculated phase boundari
are given for the extended DIFFOUR model. We first co
siderE50 and then discuss the effect ofE5” 0. Let us start
with writing V in the form

V5(
n

H a

2
xn

21
1

4
xn

41cxnxn211dxnxn22J , ~A1!

with d561. The remaining parametersa,c,d are the tilde
parameters defined in Eq.~2.2! after normalization ofB̃ and
D̃. Let us now try to write this as

V5(
n

H p~xn2qxn212rxn22!21
1

4
xn

4J . ~A2!

Comparison of the two expressions yields

p~11q21r 2!5
a

2
,

p~22q12qr !5c, ~A3!

22pr5d.

From this one can see that if it is possible to write the p
tential in this form anda is positive, thenp is positive. Elimi-
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natingq andr from the above equations yields the followin
fourth-order polynomial equation~assuming nonzeroa, c,
andd):

16p41~16d28a!p31~8d214c228ad!p2

1~4d322ad2!p1d450. ~A4!

First consider thed511 case. Equation~A4! then has
the following complex solutions:

p5
1

8
~221a1A~21a!224c2

6A2A241a222c21~221a!A~21a!224c2!,

~A5!

p5
1

8
~221a2A~21a!224c2

6A2A241a222c22~221a!A~21a!224c2!.

~A6!

The first requirement for having a real solution is that
1a)224c2>0, i.e., a>2212ucu. Consider the first two
solutions~A5!. First look atucu>4. Then fora>2212ucu
we find (221a)A(21a)224c2.0. And for the first term
in the root we find241a222c2.2c228ucu>0. So for
ucu>4 the only requirement for having a real~positive, a
.0) solution is a>2212ucu. For ucu,4 we have24
1a222c21(221a)A(21a)224c250 for a521 1

4 c2. It
can be seen that the argument of the root is positive foa
.21 1

4 c2. So, for ucu,4 the requirement for having a rea
~positive,a.0) solution is:a>21 1

4 c2 ~thena.2212ucu
automatically holds too!.

The requirements forucu>4 anducu,4 form a continuous
line in the a2c-parameter space. Above this lineV can be
written as Eq.~A2! with p positive. ThereforeV>0. The
lower bound is reached by the trivial solution which alwa
exists, so the paraelectric phase is the ground state abov
line. In Sec. IV it is shown that the above line correspon
exactly with the stability lines of the trivial solution, showin
that the modulated phases arise from the destabilizatio
the trivial solution due to the condensation of a soft phon
mode.

In cased521 the solutions of the fourth order polyno
mial equation are

p5
1

8
~21a1A~221a!224c2

6A2A241a222c21~21a!A~221a!224c2!,

~A7!
this
s

of
n

p5
1

8
~21a2A~221a!224c2

6A2A241a222c22~21a!A~221a!224c2!.

~A8!

Look at the two solutions~A7!. The first condition isa>2
12ucu. (21a) is positive if this requirement is fulfilled.
Further, 241a222c2>2c218ucu>0. So, here we have
only one requirement for allc, namely,a>212ucu. Above
this line the paraelectric phase is the ground state.

With the same sort of reasoning we can also try to pro
that for certain parameter values the ground state is fe
electric. Here we work with the following form ofV ~with
D561):

V5(
n

H A

2
xn

21
1

4
xn

41
C

2
~xn2xn21!21

D

2
~xn2xn22!2J .

~A9!

We try to write this as

V5(
n

H A

2
xn

21
1

4
xn

41P~xn2Qxn212Rxn22!2J .

~A10!

Comparison of the two expressions yields

P~11Q21R2!5C1D,

P~22Q12QR!52C, ~A11!

22PR52D.

If there exists a solution andC1D is positive, thenP is
positive. Rewriting the above equations yields the followi
fourth-order polynomial equation~assuming nonzeroC and
D):

16P41~232D216C!P31~24D2116CD14C2!P2

1~28D324CD2!P1D450. ~A12!

For the caseD521 the complex solutions are

P5
1

4
~221C6ACA241C!, ~A13!

both having multiplicity 2. For 0,C,4 the solution is not
real. ForC>4 the solution is real. In order to have a positiv
solution we must haveC1D.0, soC.1. So, forC.4 the
potential can be written as Eq.~A10! with P positive. So

V>(
n

H A

2
xn

21
1

4
xn

4J . ~A14!

The ferroelectric phase, which exists ifA,0, reaches this
lower bound. So forB51, D521, A,0 the ground state is
ferroelectric forC.4. In terms of the tilde parameters: fo
B̃51, D̃51, Ã,2222C̃, the ferroelectric phase is th
ground state forC̃,24.
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For D511 the complex solutions are

P5
1

4
~21C6ACA41C!. ~A15!

For 24,C,0 the solution is not real. ForC>0 the solu-
tion is real. In that caseP is positive. ForB51, D51, A
,0 the ferroelectric phase is the ground state forC>0. In
other words: forB̃51, D̃521, Ã,222C̃ the ferroelectric
phase is the ground state forC̃<0. In terms of the tilde
parameters analogous statements about the antiferroele
phase can easily be made (C̃↔2C̃).

In caseE5” 0 the following holds: the parts of the phas
diagram where the paraelectric phase is the ground sta
the DIFFOUR model (E50) also belong to the paraelectr
phase for this extended model for all allowed values ofE. In
this extended model there are no other parts of the ph
diagram where the trivial solution is the ground state,
cause the stability conditions for this solution are the sam
in the DIFFOUR model~see Sec. IV!.

For the ferroelectric phase the statements are less ri
ous: if the ferroelectric phase is the ground state in the D
FOUR model (E50), then it is also the ground state in th
extended model forE.0. Again we can prove thatV
>(n$(A/2)xn

21(B/4)xn
4%. However, for positiveE the part

of the phase diagram where the ferroelectric phase is
ground state becomes bigger.

APPENDIX B: EFFECTIVE POTENTIAL METHOD FOR
NEXT-NEAREST NEIGHBORS

In this appendix, which is based on the account given
Griffiths,33 we discuss how the EPM can be generalized to
applicable to systems in which there is next-nearest-neigh
interaction. Consider a classical one-dimensional chain
atoms. The total potential energy of the system is given

H5 (
n52`

`

$V~xn!1W~xn11 ,xn!1D~xn12 ,xn!%. ~B1!

So, interactions up to next-nearest neighbors are inclu
The effective potential method that is used to find grou
states for systems with interaction with first neighbors, c
also be used for systems where second neighbor intera
is included. Instead of a scalar variable at siten, one now has
to deal with a vector consisting of the values forx for two
adjacent atoms.32 Writing xn5(x2n ,x2n21) the above poten-
tial energy is of the form

H5(
n

K~xn ,xn21!, ~B2!

with

K~xn ,xn21!5V~x2n!1V~x2n21!1W~x2n ,x2n21!

1W~x2n21 ,x2n22!1D~x2n ,x2n22!

1D~x2n21 ,x2n23!. ~B3!

The fact that here a vector at siten is considered does no
change the EPM and the proofs given for this method.28,32–34

The solution can be found by solving
tric

in

se
-

as

r-
-

e

y
e
or
of

d.
d
n
on

h1R~xn!5min
xn21

$R~xn21!1K~xn ,xn21!%. ~B4!

Hereh is 2 times the ground-state energy per particle. T
vector consists of two components with respect to which o
has to minimize. Because of this minimization over tw
components, which has to be performed frequently, the
merical procedures based on discretization of the range
possiblexn values will take a very long time. The method w
used is slightly different. Consider thenth couple of adjacent
atoms. Couple (n21) does not consist of two other atoms
is the case above. Instead, the right atom of couple (n21) is
the same as the left atom of couplen. In this case only a
minimization over one atomic degree of freedom~the ‘‘po-
sition’’ ! is left. This leads to more reasonable computat
times. The fact that couple (n21) is not independent o
couplen requires an adaptation of the proof of the existen
of a solution both in the continuous case and in the d
cretized case used for numerical procedures. We only giv
outline of the method, proofs of the existence of solutio
and generalization to systems with interactions up tosth
neighbors are to be given in a separate paper.35 The method
for deriving the equations and the numerical procedures34 for
solving the equations remain essentially the same. Nume
calculations suggest that the error inh has a cubic depen
dence on the grid size rather than the quadratic depend
for the Frenkel-Kontorova model.32

Let us give the following explanation30 for the method:
Imagine that a system described by Eq.~B1! is in its ground
state. If we now change the positions of two adjacent ato
the surrounding atoms will in general also change their
sitions in order to minimize the total energy. This net ener
change caused by the deformation of one couple will
called the effective two-particle potential. This will describ
the energy cost as a function of the positions of two adjac
atoms. At site n, the effective two-particle potentia
R(xn11 ,xn), due to the presence of the atomsi ,n, can be
formally written as

R~xn11 ,xn![min
i ,n

H (
i<n11

@V~xi !1W~xi ,xi 21!

1D~xi ,xi 22!2h#J , ~B5!

where the minimum is taken over all atomic positionsxi with
i ,n and h is the ~unknown! ground-state energy per pa
ticle. By rewriting this equation, one obtains

R~xn11 ,xn!5min
xn21

min
i ,n21

H (
i<n

@V~xi !1W~xi ,xi 21!

1D~xi ,xi 22!2h#1V~xn11!1W~xn11 ,xn!

1D~xn11 ,xn21!2hJ , ~B6!

which gives
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h1R~xn11 ,xn!5V~xn11!1W~xn11 ,xn!

1min
xn21

@R~xn ,xn21!1D~xn11 ,xn21!#.

~B7!

This is the minimization eigenvalue equation forR. The
same procedure can be followed for the effect of the ato
i .n11. The effective two-particle potential due to the
atoms is calledS(xn11 ,xn), which gives

h1S~xn11 ,xn!5V~xn!1W~xn11 ,xn!1min
xn12

@S~xn12 ,xn11!

1D~xn12 ,xn!#. ~B8!

The total effective two-particle potentialF(xn11 ,xn) of a
couple of adjacent atoms in a double infinite chain, is giv
by

F~xn11 ,xn!5R~xn11 ,xn!1S~xn11 ,xn!2V~xn11!2V~xn!

2W~xn11 ,xn!, ~B9!

where the last three terms are subtracted on the right sid
avoid double counting.

Equations~B7! and ~B8! can also be obtained in anoth
way.32,33 Let R̃N(xn11 ,xn) be the minimal energy of a chai
of N atoms with the constraint that the atomsN andN21 are
at fixed positionsxn11 andxn , respectively, while the othe
atoms are free to rearrange themselves in an optimal wa
as to minimize the total energy. This leads to

R̃2~xn11 ,xn!5V~xn11!1V~xn!1W~xn11 ,xn!,
~B10!

R̃3~xn11 ,xn!5V~xn11!1V~xn!1W~xn11 ,xn!

1min
xn21

@V~xn21!1W~xn ,xn21!

1D~xn11 ,xn21!#5V~xn11!1W~xn11 ,xn!

1min
xn21

@R̃2~xn ,xn21!1D~xn11 ,xn21!#,

~B11!

R̃N11~xn11 ,xn!5V~xn11!1W~xn11 ,xn!

1min
xn21

@R̃N~xn ,xn21!1D~xn11 ,xn21!#.

~B12!

Now assume that forN→`, R̃N(xn11 ,xn) approaches
some functionR(xn11 ,xn) plus a constant proportional t
N22:

R̃N~xn11 ,xn!→R~xn11 ,xn!1~N22!h. ~B13!

In that case Eq.~B7! follows. However, it is not clear tha
Eq. ~B13! will always be satisfied. But by imposing a spec
boundary condition, namely

R̃2~xn11 ,xn!5R~xn11 ,xn!, ~B14!
s

n

to

so

l

Equation ~B13! will be satisfied exactly.32 The previous
boundary condition is the same as saying that the left-m
couple experiences the effective two-particle potential
stead of the true two-particle potential. The minimum ene
of this system as a function of the positions of the two rig
most atoms is given byR1Nh. Assuming thatR is a
bounded function, the energy per particle of such a sys
will tend to h as N→`. h is thus the average energy p
particle in any ground state, since the extra boundary co
tion only changes the total energy by a term of order 1. SR
is the effective two-particle potential for the right-mo
couple of a semi-infinite chain. The same is true forS for the
left-most couple of a semi-infinite chain extending to t
right. F is the total effective two-particle potential for
couple in a double-infinite chain.R, S, andF can, of course,
only be defined up to an additive constant.

In the above derivations the problems arising from t
summation of an infinite number of terms in Eq.~B5! are
neglected. In fact, one considers local deformations of len
M, with the limit M→`. This will be explained below. De-
fine the effective two-particle potential due to the local d
formation of lengthM as

R(M )~xn11 ,xn!

[ min
n112M, i ,n

H (
n132M, i<n11

@K~xi ,xi 21 ,xi 22!2h#

1@K~xn132M ,xn122M ,un112M !

1K~xn122M ,un112M ,un2M !22h#J , ~B15!

where ui refers to the ground-state value for atomi, and
where we have introduced

K~xn11 ,xn ,xn21![V~xn11!1W~xn11 ,xn!

1D~xn11 ,xn21!. ~B16!

The right-hand side of Eq.~B15! can be rewritten as

R(M )~xn11 ,xn!5min
xn21

@R(M21)~xn ,xn21!

1K~xn11 ,xn ,xn21!2h#. ~B17!

It is reasonable to assume that in the limitM
→`:R(M )(xn11 ,xn)→R(M21)(xn11 ,xn) ~becausexn122M
→un122M). Writing R(xn11 ,xn)5 limM→`R(M )(xn11 ,xn)
the minimization eigenvalue equation results. In the sec
version of obtaining the equations it is clear that it is, in fa
the limit of local deformations, however, with the bounda
condition that the left most couple of atoms experiences
effective two-particle potential. Here, one should take
length of the chain going to infinity in order to leth go to the
ground-state energy per particle. The above explanation
holds for S. It is best to picture the situation as a local d
formation of the ground state.

Now, the nonlinear minimization eigenvalue equations
R andSare rewritten.32,33The eigenvalue equation forR now
becomes
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h1R~xn11 ,xn!5min
xn21

@R~xn ,xn21!1K~xn11 ,xn ,xn21!#.

~B18!

Let the functionL be defined by

L~xn11 ,xn!5S~xn11 ,xn!2V~xn11!2V~xn!2W~xn11 ,xn!.
~B19!

The minimization eigenvalue equation forS can now be re-
written as

h1L~xn11 ,xn!5min
xn12

@L~xn12 ,xn11!1K~xn12 ,xn11 ,xn!#.

~B20!

In terms ofR andL one has

F~xn11 ,xn!5R~xn11 ,xn!1L~xn11 ,xn!. ~B21!

In fact, there may be multiple solutions of the eigenva
equation, not only differing by a trivial constant.32,33 The
existence of different solutions is related to the existence
different degenerate ground states. The general solutio
given by

R~xn11 ,xn!5min
a

@Ra~xn11 ,xn!1Ka#. ~B22!

The Ra correspond to the pure phases and theKa are arbi-
trary constants.

For each solution of the minimization eigenvalue equat
for R @Eq. ~B18!#, a t map can be defined,32,33 where
t(xn11 ,xn)5$(xn ,xn21)% with xn21 one of the values for
which the minimum on the right-hand side of Eq.~B18! is
achieved. AnR orbit is defined as

;n: ~xn ,xn21!Pt~xn11 ,xn!⇒h1R~xn11 ,xn!

5R~xn ,xn21!1K~xn11 ,xn ,xn21!.

~B23!

Similarly, for the minimization eigenvalue equation forL
@Eq. ~B20!#, a s map can be defined, wheres(xn11 ,xn)
5$(xn12 ,xn11)% with xn12 one of the values for which the
minimum on the right-hand side of Eq.~B20! is achieved.
An L orbit is defined as

;n: ~xn12 ,xn11!Ps~xn11 ,xn!⇒h1L~xn11 ,xn!

5L~xn12 ,xn11!1K~xn12 ,xn11 ,xn!.

~B24!

A ground state is both anR orbit and anL orbit. Therefore it
can be proven that for a ground state

F~xn11 ,xn!5R~xn11 ,xn!1L~xn11 ,xn!5F~xn ,xn21!.
~B25!

So,F is constant on the positions of two adjacent atoms i
ground state, which is logical since it is the effective tw
particle potential.

Numerical procedures are based on a discretized ver
of the system. In that case, for each ground state there
solution for the eigenvalue equation for which there is a p
from each point to the ground state in the correspondint
graph.34 So, the situation is as follows. There is a local d
e

f
is

n

a
-

on
a

h

-

formation of lengthM ~with M→`), in a chain coinciding
with a particular ground state for6`. This ground state
corresponds to a certain solution of the eigenvalue equat
The deformation is such that atomsn andn11 have values
xn andxn11. By applying the correspondingt map one can
obtain the positions of the atoms left fromn. For the dis-
cretized system one will finally reach the ground state in t
way ~in the continuous case it is supposed to converge to
ground state!. The same can be done for the atoms right fro
n11 by applying thes map. From this picture it is clear tha
the ground state is both anR orbit and anL orbit. In fact, the
t map and thes map may be multivalued. So, the atom
positions of the atoms~say! left from n do not have to be
unique. The deformation can have parts consisting of m
mizing cycles~cycles of minimal energy! different from the
ground-state configuration at6`. In thet graph one can go
directly to the minimizing cycle corresponding to th
ground-state configuration at2`, or one can first stay for
some time in another minimizing cycle if this exists. If the
are several solutions forR andS ~with several corresponding
t ands maps!, there are several possibilities to constructF.
It will often be logical to take the ground states, towa
which the chain converges at2` and 1`, the same. The
numerical algorith we used is an adapted version of the
discussed by Floria and Griffiths.34

Here an example will be given to show that it is importa
that in fact limits of finite deformations are considered. Su
pose that the ground state is ferroelectric, with two degen
ate ground states:xn5x56 l wherelÞ0. If the deformation
is just infinite as suggested in Eq.~B5! the value ofR( l ,l )
should be the same as the value forR(2 l ,2 l ). However,
something else is seen. Two solutions can be found co
sponding to the two ground states. In the solution cor
sponding to the solutionxn5 l , R(2 l ,2 l ) has a higher
value thanR( l ,l ). The difference is the defect energy, th
energy cost for going from the1 l phase to the2 l phase.
@The defect energy~and the defect configuration! can also be
calculated using thet map.# From this it can be seen that th
deformation is in fact embedded in the ground stateui5
1 l at 2` ~in the limit M→`: xn122M→un122M where
un122M51 l , or for the second version: the left most coup
of atoms in the finite chain experiences the effective tw
particle potential corresponding to the ground stateui5
1 l ).

It can also be expected thatF has local minima at the
positions of two adjacent atoms in metastable states. H
ever, since only two atoms are at a fixed position, while
other atoms are free to rearrange themselves in an opt
way, this may not be the case. When changing the posit
of two adjacent atoms by an infinitesimal amount, t
changes of the other atomic positions in the metastable s
does not have to be infinitesimal. Therefore it is not nec
sarily true that there is a local minimum inF for positions of
two adjacent atoms in a metastable state. When there ar
other atomic positions in the metastable state~a period 1
solution!, F does have a local minimum. When the lowe
metastable state has positions of two adjacent atoms w
are not seen in a ground state~which will often be the case!,
there will be a local minimum inF for these two positions. In
that case the energy cannot be lowered by changing the o
atoms by any amount, since the only states which have lo
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energy are ground states and these cannot be reached
the positions of the two adjacent atoms under considera
are not in a ground state~and the changes of them should
infinitesimal!. By following the development of the shape
ince
ion
e
f

F one may also investigate the kind of phase transitions
are involved. For example, a discontinuous change in the
of points whereF achieves its global minimum, indicates
first-order transition.33
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