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Lattice models and Landau theory for type-ll incommensurate crystals
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Ground-state properties and phonon dispersion curves of a classical linear-chain model describing a crystal
with an incommensurate phase are studied. This model is the DIFF@is&ete frustrategp*) model with an
extra fourth-order term added to it. The incommensurability in these models may arise if there is frustration
between nearest-neighbor and next-nearest-neighbor interactions. We discuss the effect of the additional term
on the phonon branches and phase diagram of the DIFFOUR model. We find some features not present in the
DIFFOUR model such as the renormalization of the nearest-neighbor coupling. Furthermore, the ratio between
the slopes of the soft phonon mode in the ferroelectric and paraelectric phase can take on values different from
—2. Temperature dependences of the parameters in the model are different above and below the paraelectric
transition, in contrast with the assumptions made in Landau theory. In the continuum limit this model reduces
to the Landau free-energy expansion for type-Il incommensurate crystals and it can be seen as the lowest-order
generalization of the simplest Lifshitz-point model. Part of the numerical calculations have been done by an
adaption of the effective potential method, originally used for models with nearest-neighbor interaction, to
models with also next-nearest-neighbor interactions.

[. INTRODUCTION true microscopic origin of the INC phase one has to go be-
yond this phenomenological approach. One possibility would

Like other transitions, the phase transition to an incom-be to study full microscopic models with realistic interac-
mensuratgINC) phase(reviews are given by BakSelke?  tions. Another approach, to which the main part of this paper
and Janssen and Janbetan be described on the phenom- will be devoted, is to study semimicroscopic models which
enological level within the frame of extended Landautake into account the discrete nature of the systems and dis-
theory? The necessary extension consists essentially in acuss properties in terms déffective) interatomic interac-
counting for the expansion of the free-energy density as &ons.
function not only of the components of the order parameter, The discreteness of a lattice leads to a number of impor-
but also of their spatial derivatives. Therefore the global fregant physical consequences such as pinning of solitons in the
energy becomes a functional of spatially dependent compaanisotropic next-nearest-neighbor IsiNNNI) model(see
nents of the order parameter and the equilibrium configuraYeoman$ for a review and in the Frenkel-Kontorova
tion for given values of temperature and external parametensiodel® and the existence of a devil’s staircas#inite num-
is found as a solution of a variational problem. ber of commensurate and incommensurate phasesex-

The continuum Landau theory allows a naturalample found in betaine calcium chloride dihydréBCCD).°
classification of the possible forms of the free-energy func- Within Landau theory it is difficult to explain the occurrence
tional for an INC transition into two classes, according toof a specific sequence of transitions: several lock-in terms
whether the driving term in the free-energy expansion reare needed then. For example, Ribeiball® chose the
sponsible for the appearance of the incommensurate state nsagnitude of four distinct lock-in contributions to the free
linear (type I, Lifshitz invariant preseinbr quadratidtype Il,  energy in such a way as to stabilize the four most prominent
no Lifshitz invarianj in the gradient of the order parameter. commensurate phases in BCCD. Furthermore, in discrete
The properties of those two kinds of INC phases are differmodels chaotic states are possibtéwhich may provide an
ent: for type-l INC phases the lock-in transition is eitheralternative description of phenomena observed in for ex-
continuous, or only slightly discontinuous, and approachingample spin glasses, superionic conductors, the magnetic sys-
the lock-in temperaturd@ . these phases exhibit the structu- tem CeSb and systems with pinning of charge-density waves.
ration of the modulated phase into discommensurations dBee Bak for details.
solitons. On the other hand, the modulation of the type-Il In the past few years different lattice models have been
INC phase remains practically sinusoidal down to the tem<constructed to describe the phase transitions in, for example,
peratureT, and the lock-in transition is always of first order. the A,BX, family,*?in BCCD!® and, more general, in crys-
Although the above statements can be considered as a rule @fls with Pcmn symmetry'* These models are two dimen-
thumb, there are cases known where there is coexistence sional, with only nearest-neighbor interactions. Hlinka
solitonic and sinusoidal structural modulation. Seeet al’® studied a three-dimensional nearest-neighbor model,
Arambur(? for details. applicable to BCCD. All these models have in common that

In the following we will only be concerned with models the frustrated interaction, needed for having an incommensu-
describing type-Il INC phases. Landau theory has beemate phase, comes from a nearest-neighbor mixing interac-
rather successful in describing basic properties of thes#on.
phases, but if one wants to have a better understanding of the Recent x-ray'® neutron'”*®and Ramat? experiments on

0163-1829/2000/68)/3751(15)/$15.00 PRB 62 3751 ©2000 The American Physical Society



3752 G. H. F. van RAAIJ, K. J. H. van BEMMEL, AND T. JANSSEN PRB 62

the SBP,(S;_,S8)¢ crystal family of uniaxial ferroelectrics term is related to strain terms in the so-called magnetoelastic
motivated us to study lattice models. In the composition-DIFFOUR model. Another possibility would be to consider a
temperature phase diagram of this crystal family a Lifshitzterm of the forme (x,—X,_,)*. Without the term mentioned
point is present® At this point the paraelectric phase, the above this would, however, be rather unphysical. Instead we
ferroelectric phase and the INC phase become equal, and théll choose a term of the formex2(X,— Xn-1)2. This is the
boundaries separating these phases have equal derivativewest-order dispersive fourth-order term, as will be shown
Such a special point was, except for some ferroelectric liquidn Sec. VII, and can, for example, be obtained from strain
crystals, only found in the temperature-applied magnetidgerms.
field phase diagram of the magnetic compound NMhProm The order parametex,, can be, for example, a displace-
both experimental and theoretical point of view this uniaxialment, a component of the polarizatidh for ferroelectric
Lifshitz point is interesting because critical exponentssystems, a component of the magnetizatibrior magnetic
deviaté? from those found for ordinary critical points. This systems, a rotation angle or a strain component. In this ar-
crystal family furthermore displays an interesting modulationticle we use for convenience terms like paraelectric, ferro-
wave-vector behavior, shows crossover effects from orderelectric, and antiferroelectric to distinguish between different
disorder to a displacive type of phase transitiomnd the ground states. The origin of incommensurability in this
ratio between the slopes of the soft phonon mode in thenodel is essentially competition between interactions with
ferroelectric and paraelectric phase deviftesibstantially —nearest- and next-nearest neighbors which may lead to frus-
from the standard valuR= —2. These features are much tration. Higher-order terms are needed for stabilization.
easier to understand in a lattice model than in Landau theory. We expect that the extra fourth-order terl840) has a

The paper is arranged as follows: in Sec. Il we present darge effect on the phase diagrams #©+0. To actually
one-dimensional model; in many anisotropic systems, likedetermine phase diagrams it is not necessary to vary all five
Sn,P,(S;_4S8)s, the modulation wave vector is in one spe- parameterdA,B,C,D,E, which can be seen as follows: by
cific direction. The incommensurability may arise if there istaking x/,= yB/|D|x, and V' =B/|D|?V we get the follow-
frustrating interaction between nearest-neighbor and nexing renormalized parametersA’=A/|D|, B'=1, C’
nearest-neighbor couplings. We discuss general features efC/|D|, D'=D/|D|==1, andE' =E/B.
the model. In Sec. Ill we give some exact results regarding For some purposes it is convenient to rewrite the potential
ground-state properties. In Sec. IV we discuss the dynamici the following form:
and the stability of the various phases. In Sec. V the phase
diagrams, calculated partly analytically, partly numerically, A ~ ~
are presented. Temperature effects are treated in Sec. VI. In v=> §X§+ ZXﬁ+ CXpXn—1TDXpXp-2

. . .. . n

Sec. VIl we discuss the continuum limit of the model which
gives the connection with the Landau theory. We conclude E
and give an outlook for further research in Sec. VIIl. In +E[xﬁ(xn—xn,l)2+x§(xn—xn+1)2] . (22
Appendix A we give some exact results for phase boundaries
and in Appendix B we present.the next—nearest-nelghbor eX2ith A=A+2C+2D, B=B, C=-C, D=-D, and E
tension of the effective potential method for the determina-

tion of the ground state. This method was used to calculate E_’ From this the connection with the ANNNI model can

some of the phase diagrams. easily be made. Let us péit=0 andB=—A. If we now take

the limit A— — we end up with a model with two infinitely

deep wells. The,, can only take on values 1 and can thus

be seen as spins. These spins are coupled to nearest neigh-

In the foIIowing we will be concerned with an extension bors and next-nearest neighbors via éandb terms. So

of the so-called DIFFOUR mod (discrete frustrateds* by increasing the depth of the double-well potential there is a

mode), for which the potential energy can be written as  crossover from displacive behavior to order-disorder behav-
ior in the transition from the normal to the incommensurate

II. AN EXTENSION OF THE DIFFOUR MODEL

A B C D hase
_ N2, Poa, > 2,0 2y _ 2 p .
V_En: ZX"Jr 4X”Jr 2 Ot =Xp-1)"+ 2 (Xn—=Xn—2) Insertingx, = (—1)"x, in the above potential leads to
E 2 2 2 2 ’A E = N
+ 5 DX = Xn— ) T+ X0 (X0 = X+ 1) ] 1 - (2.1) szn: Ex,’,erZx,’]“—Cx,’]x,’],lJrDxr’1xr’1,2

The original DIFFOUR model, or EHMelastically hinged E

moleculd mo_del,25 has E=0. Although in principle this +E[xr’lz(x,’ﬁxrq_l)2+xr’12(x,’1+x,’1+1)2] . (23
model gives incommensurate ground states, the behavior of

the modulation wave vector as found in experiments canngt, .« piEFOUR model E=0) this leads to the following
be reproduced satisfactorily by the model. In order to ac- o . ~ no s
count for this shortcoming we supply the DIFFOUR model SYMMetry: ifix,} is a state forC=X, then{(—1)"x,} is a

with a nonlinear coupling to neighbors. There are severa$tate forC= —X with the same energy. This property can for
possibilities: if we restrict ourselves to fourth-order terms weexample be seen in the ferroelectric-antiferroelectric phases.
can consider a term (x,—X,_1)*. The resulting model has However, for E#0 this symmetryC«— —C is no longer
been studied by Lamf,who showed that the origin of this present.
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Ill. GROUND-STATE PROPERTIES

Different ground states are possible, depending on the
values of the parameters. The stationary states are solutions

of oV/9x,=0, giving

AXn+BXa+ C(2X, = Xn— 1= Xn+ 1)+ D(2Xy = Xn_p— X 2)
+ E[4X3— 3X3(Xn— 1+ X4 1) + 2Xn(X5_1 T X5, 1)
—(x3_,+x3.)]=0. (3.2

If we impose periodic boundary conditiorg ., ,=X,, we ar-
rive at a set ofN coupled nonlinear equations. To find the
lowest-energy state for each solution and for each value of

the potential energy has to be evaluated. For low-period

commensurate statédsmall values ofN) analytic solutions
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The energy per particle is given in terms €andk as

4

2
¢ [A(1+2k?)+2(C+D)(1-k)?]+ f—Z[B(sz“)

v=%

+4E(1+k?)(1—-k)?]. (3.7

Note that the quartic Eq3.6) can be written as
(1-k){—2[B(C+D)+E(—A+C+D)]k®

+[BA+2E(C+D)]k?+[BA+E(3A+2C+2D)]k
—[B(C+D)+E(—A+2C+2D)]}=0, (3.9

of the above equation can be found. In the following, wewhere the special solutiok=1 gives a ferroelectric state.

study (for fixed N) periodic solutions of Eq(3.1). For them
we give the equilibrium value$x,} and the corresponding
energy per particle =V/N.

In the paraelectric stateN(=1) all particles are in the
equilibrium positions

x,=0, v=0. (3.2

In the ferroelectric stateN=1) all particles are uni-
formly displaced from their equilibrium positions

A A?
Xn= — E’ v=

1B (3.3

The solution of the remaining cubic equation, which can be
solved exactly for given parameters, giveskasuch that
X1/X,<0, a trueN=3 state.

The lowest energy state fdd=4 hasx;=x,=p, Xj
=X,=—p With
B [ A+2C+4D ~ (A+2C+4D)?
p= B+8E ' U 4(B+8E)
(3.9

We have to keep in mind that we must sati§y —B/16,
which is not obvious from the above expression, but comes

Note thatB always has to be positive, for the potential to befrom the analysis of the antiferroelectric state.
bounded from below. This implies that the ferroelectric state The lowest energy solution fdd=6 can analytically be

only can exist forA<0. For A>0 the ground state may be

paraelectric. In the following we give some analytic results,
based on numerical calculations of the shape of the solutiofhe

{Xn}-
In the antiferroelectric stateN(=2) particle positions al-
ternate along the chain
(A+4C)?

oy [ A+4aC
Xn=(~1) B+16E' ° 4(B+16E)’

The potential is unbounded from below fa< —B/16 and
stable solutions exist only foE>—B/16 andA+4C<0.
Both conditions have to be satisfied.

For N=3 we determined the solution with lowest energy
to be of the form %q,%5,X3) = (K&, &,kE), with x;/x,<0,
and

(3.9

A+2(C+D)(1-k)
B+ 2E(2—3k+2k?—k?)

2_

Ak+(C+D)(k—1)
 BIG+E(2K3—3K2+2k—1)
The factork is determined by

2[B(C+D)+E(—A+C+D)]k*~[B(A+2C+2D)
+2E(—A+2C+2D)]k®—3AEK+[B(A+C+D)

(3.9

+2E(A+2C+2D)]k

—[B(C+D)+E(—A+2C+2D)]=0. (3.6)

obtained, in the same manner as f&=3. It has

the form (Xq,X5,X3,X4,X5,Xg) = (KE, E,kE, —kE, — &, —KE).
lowest energy solution for N=8
reads  K;,Xp.X3,X4,Xs,Xg,X7,Xg) = (K& £, K&, — K&, — £,
—¢,—ké). For N=5 one needs two different values kf
(X1,X2,X3,X4,X5) = (k&K' €,€, k" ¢, kE) and for N=7 one
needs three different values;k’ ,k”, and the above method
no longer works foN=5 andN= 7. Therefore, to find states
with larger periods, or even incommensurate periods, we rely
on numerical calculations, for which true incommensurate
states of course never can be found. However, the idea is that
such a state can always be arbitrarily well approximated by a
commensurate state with wavelength

(3.10

whereN,s are coprime numbers. Such a solution has a pe-
riod N and, in general, & (number of local minima+
number of local maximp In the special case where tke,}
take on positive and negative values=2 (number of sign
changes within the period). The biggem ands, the better
the approximation.

As an example of a numerical calculation we consider the
ground state for A=2.24999, B=1, C=1, D=
—1, E=1.ltis known to be incommensurateee Secs. IV

and V) with a wavelength arcco§]~4.766 792 13. By the

Farey constructiohwe find that$2~4.769 230 77 should be
a reasonable commensurate approximation. We numerically
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2 T ' T y T y TABLE |. Stability limits for the paraelectric phagd.5). Note
thatB+ 16E>0 must be satisfied.
Parameter g value Conditions for
range of instability having a stable state
- D<O0:
2 C<4D Qo= A>—4C
: -C (4C+16D)?
4D<C<-4D =— A
cogq,) D A+ ) >0
C>-4D g.=0 A>0
D>0:
- . . . . . . C<o0 qc=1 A>—-4C
0 10 20 30 40 50 60 C>o q =0 A>0
n [

FIG. 1. Ground-state configuration féf=2.24999,B=1, C
=1,D=-1, andE=1 in the commensurate approximation 62/13. . 2 2 “ig
X, is the displacement for particle For A,B,C,D,E given above Din=[—CHE(=3xi+4x;xy—3xy)]e ",
the system is just below the phase boundary between the paraelec-
tric phase and the incommensurate phase. Although the displace- .
ments are smallD(10™3), the onset of the incommensurate phase Din-1=Don=- De 9. (4.3
is evident. Points are calculations, lines are drawn to guide the eye.

In the above expressions tie,} are solutions of Eq(3.1).
FurthermoreD,, ,=Dy, , and all other matrix elements are
ero. In the following the phonon branches for certain low-
. : : at?eriod states will be examined. This will be done in terms of

label this state by its modulation wave vectgr, measured ABCDE

in units of 2. R

For certain regimes in the parameter space the ground

state can be determined analytically. The entire phase bound- A. Paraelectric state

ary of the paraelectric state and a part of the phase boundary _ . -

of the ferroelectric state can be calculated. For the nearest- Fo" the paraelectric stat.2) the dynamical matrix is
neighbor case in the DIFFOUR model proofs are given bydiVen by

Janssen and Tjofl. We extend their proofs to the case in
which we also have next-nearest-neighbor interaction. As the
proof is rather lengthy it will be given in Appendix A.

determined the ground state in terms of {lxg}. The result
is shown in Fig. 1. After 62 particles the sequence repeat

D=A+2C[1—cogq)]+2D[1-cog2q)]=mw?.
(4.9

IV. PHONON DISPERSION CURVES AND STABILITY . . . .
LIMITS Rewriting this equation gives

To decide whether a solution of the equilibrium condi-
tions is locally stable or not, one considers small displace-
mentse, from the positions given by a static soluti¢r,}

mw2:A+(4C+16D)sin2(g)—16D sin“(g). (4.5
satisfying Eq.(3.1):

U= Xt e (4.1) Note that_thi_s e_xpression does not _contﬁirTh_is means that
noonen the stability limits for the paraelectric phase in this model are
The phonon frequencies are given by the square roots of tH&ée same as those for the paraelectric state in the DIFFOUR
eigenvalues of the dynamical matrix and for stability all ei- model. Now, we are looking for the minimum of this phonon
genvalues have to be non-negative. The dynamical matrix fdpranch. We distinguish the casBs>0 andD<0. The re-
a periodN solution (N=5) has elements sults are summarized in Table I.
For D>0 and C=0, the branch has two minima, at
Dy n=A+3BX2+2C+ 2D + 2E[6X2— 3X,(Xp_ 1+ Xn+1) Sirf(/2)=0 and sid(g/2)=1. For A<O the ferroelectric
state and the antiferroelectric state are degeneraté; $d
+Xﬁ_1+xﬁ+1], only. Comparison with calculations in Appendix A shows
that as long as the paraelectric state is stable, it is the ground
Dype1=—C+ E[—3X§+4ann¢1—3xﬁﬂ], 4.2 state. Destabilization is the condensation of a soft phonon.

Dyns2=—D, B. Ferroelectric state

with Xy n=X, and the special cases For the ferroelectric stat€8.3) one has
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TABLE II. Stability limits for the ferroelectric phasé4.6). Note thatB+16E>0 and A<0 must be

satisfied.
Parameter range g value of instability Conditions for having a stable state
D<O0:
2AE _ 4AE
C<—g—+4D Q= A<2C——5—
2AE 2AE ~—C AE (C+4D—2AE/B)?
—g +t4D<C<-—(5—-4D codd)=75 * 28D Aty >0
C>—22E74D Gc=0 A<0
D>0:
2AE _ 4AE
C<—5- Qo= A<2C— ——
C>2A—E gc=0 A<O0
B
mow?=A+3Bx?+2C[1—cogq)]+2D[1—cog2q)] Dy,=A+2(C+D)+[3B+4E(k*—3k+3)]&,
+4EX2[1-cogq)]=—2A+| 4C+16D D1,=Dp5=~C—E(3K*~4k+3)¢*~De 9, (4.9
D,3=—D—(C+2EK*¢?)e .
8AE) . ,[1 4[4 _ - _
-5 sir? 5| —16D sin’ 5| (4.6)  The eigenvalues are then found as the solutiardano’s
formula) of a cubic equation.
See Table Il for the analysis. Note that fbr>0 there is ForN=4 the dynamical matrix has elements in terms of
degeneracy foE=0. p, defined in Eq(3.9):

D, =A+2(C+D)+(3B+16E)p?,
C. Antiferroelectric state nn ( )H )P

Finally, the phonon branches of the antiferroelectric state D1,=D34=—C—2Ep?,
(3.4) will be investigated. The 22 dynamical matrix is .
given by D;3=Dy4=—D(1+e™'9), (4.10
D;1=D,,=A+2C+2D[1-cogq)] Dy4=(—C—10Ep?)e 1,
A+4C D, 4= —C—10Ep>.
—(3B+28E) BT16E’

The resulting secular equation is a quartic one and exact
solutions for the eigenvalues can be found using Ferrari's

12 =21 B+ 16E For solutions with larger periods we have to rely on nu-
) ) merical calculations. As an example we again consider the
The eigenvalue equation reads ground state for A=2.24999, B=1, C=1, D=
At 4C —1, E=1. See also the end of Sec. lll. The calculated
Mmw?=A+2C+4D — (3B + 28E) —4D cog(ﬂ) phononegllspers[on curves in the commensurate approxima-
B+ 16E 2 tion A= 75 are given in Fig. 2.
+4C q
+2| —C+ — =1 . V. CALCULATION OF PHASE DIAGRAMS
2| —-C 10EB+16E cos(2 (4.8
Results are summarized in Table Ill. Note that fGr In this section we present some phase diagrams, calcu-
—10E[ (A+4C)/(B+16E)] the two branches coincide. lated partly analytically, partly numerically. The traditional

method to find the ground state numerically is to solve the
equations for equilibrium(3.1). However, these equations
also hold for metastable states, maxima, and saddle points
For the N=3 solution exact phonon frequencies can inand it may happen that one finds a metastable state instead of
principle be found. The elements of the dynamical matrix are¢he true ground state. This problem is not present for the
given in terms of¢ andk, defined in Egs(3.5 and(3.6): so-called effective potential methd@&PM), introduced by
Griffiths and Chotf® This method, in principle, always gives
D;1=D335=A+2(C+D)+[3Bk*+2E(4k*—3k+1)]&?, the ground state. Originally it was used to study Frenkel-

D. States with period N=3
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TABLE Ill. Stability limits for the antiferroelectric phas@.8). BothB+ 16E>0 andA+4C<0 must be

satisfied.
Parameter range g value of instability Conditions for having a stable state
D<O0:
A+4C
C—lOEm<4D g.=0 A<—4C
A+4C g\ C A+4C A+4C
4DsC—lOE—B+16EsO COE{E):E_NE—4D(B+16E) A>_ZC_4D+(3B+28E)—B+16E
1 A+4C \?
- E( -C+ lOEm
+4C g\ —-C A+4C A+4C
OscfloEB+16Esf4D cos(E)zﬁJrlOEm A>72C74D+(38+28E)m
A+4C)\?
_ﬁ(_CHOEBHaE)
4C A 3B+8E
C-10Eg 1P =0 A+4C BT 16E
D>0:
A+4C
C<1OE—B+16E q.=0 A<—-4C
A+4C A <SB+8E
C>1OEB+16E g.=0 A+4C B+16E

Kontorova and similar one-dimensional models with only =3 andD=—1 we findA=2%. At this boundary we have a

nearest-neighbor interaction. As an interesting application of.ansition to an incommensurate state with wave veator

this method, we mention a study of the ground state of the_ o _ L
chiral XY model in a field2° Below we give a brief outline of arccost- C/4D)=arccos()~4.76679213. This is the

the method state we discussed at the end of Sec. Ill. We can clearly see
Consider a one-dimensional system with only nearesttn€ effect of the_E_ term: for E=0 further decreasmg OA
leads to a transition to a commensurate state with period 4.

neighbor interaction in its ground state. If one atom is dis- hi -, be followed b ]
placed from its equilibrium positiofwe assume that, de-  FOf E<0 this transition can be followed by transitions to
N=3 or N=2 commensurate states. Feisufficiently posi-

notes the displacementhe surrounding atoms will change .
P on : : tive, the wavelength of the ground state increases for de-

their positions in order to minimize the total energy. This . i
creasingA. Between the commensurate states incommensu-

deformation will in general cost some energy. A function, b q . Bath ion b
called the “effective potential,” describes the net energyrate ones can be found. By increasigthe region between

cost as a function of the positions of the atoms. This effecParaelectric and ferroelectric phases shrinks. A posiive
tive potential achieves its minimum on points of the groundterm favors long-wavelength solutions, with the ferroelectric

state® and rigorous mathematical statements can be riade.State being the extreme limigE0).

Numerical procedures to find solutions are based on discreti- F9ure 4 gives the phase diagram found Bo+1, D=
zation of the range, of the atomic positions. The, can 1, E=0 and varying bothA and C. This is the phase
now only adopt a finite number of valu#s:3* For models diagram for the original DIFFOUR modéIW_e have seen
with interactions up to next-nearest neighbors, as in the cadf@t the phase boundary for the paraelectric phasg @pr
of the extended DIFFOUR model, the EPM can be adapted=4 IS @ parabola symmetric aroui=0. For |C|=4 this
which will be discussed in Appendix B. The proofs of the boundary is given byA+2C—2=—2+2|C|, two straight
existence of solutions for models with next-nearest-neighbotin€s. The parabola and the lines mee{@t=4, and have
interactions, both in the continuous and discretized versiorfdual derivative at this point. Note the symme@y-—C,

Using the EPM and Eq3.1) we calculated various phase System with+C and —C are related by
diagrams. First we varied both and E with the other pa- 1
rameters fixedB=1, C=1, and D=—1. The resulting Gctd-c=5 (5.2

phase diagram is given in Fig. 3. From the analysis in Ap-
pendix A we know that the phase boundary for the paraelecin units of 2. At (C=4,A=0) the paraelectric phase, the
tric state for|C|<4 is given byA=3C?—2C+4. ForC ferroelectric phase and the incommensurate phase become
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25

N
1
1
A+2C-2

FIG. 4. The phase diagram for the extended DIFFOUR model
with B=1, D=-1, and E=0. This is the original DIFFOUR
model. Note the symmetrg« —C. Same labeling as in Fig. 3. L
denotes the Lifshitz points.

equal. The lines separating the paraelectric phase from the
incommensurate phase and the incommensurate phase from
the ferroelectric phase have equal derivative at this point. In
Landau theorysee Sec. Vil such a point would be called a
Lifshitz point. From the symmetr¢Z+« — C it is obvious that
there is also a Lifshitz point atgQ=—4,A=16). At this
point the paraelectric phase, the antiferroelectric phase and
the incommensurate phase become equal.

Figure 5 gives the phase diagram f&=1, D=
0 I ! ! —1, E=1 interms ofA andC. The symmetryC«+ —C is
0 0.2 0.4 06 08 1 no longer present. However, the phase boundary of the

q paraelectric phase is independenttofAlso the wavelength

of the phase emanating from this boundary is the same. In
particular the positions of the Lifshitz points and the deri-
vates at these points do not change. Note the boundary of the
antiferroelectric phase: starting from the Lifshitz point and
going down in the phase diagram, it initially bends to the
right and then returns to lower values 6f Figs. 4 and 5
have been obtained by solving E®.1) and comparing the
energies of the solutions.

We investigated the nearby surroundings of the Lifshitz
point at (C=4,A=0)to look how the transition line from

0.5

FIG. 2. Phonon dispersion curves f8r=2.24999,B=1, C
=1,D=-1, andE=1 in the commensurate approximation 62/13.
This corresponds with the solution depicted in Figgls given in
reduced units. There is one branch with-0 for g—0: the phason
branch. Just above this lies the amplitudon branch.

A+2C-2

FIG. 3. The phase diagram for the extended DIFFOUR model
with B=1,C=1,D=—1. Shown are the paraelectric pha$®,
ferroelectric phaséF), antiferroelectric phas€), and commensu- FIG. 5. The phase diagram for the extended DIFFOUR model
rate phases with period 3,4,5,6. Incommensurate phases are labeledh B=1, D=-1, andE=1. Note the asymmetric character,

I, higher-order commensurate phases C. There is no stable grouradthough the boundary of the paraelectric phase is the same as in
state forE<—1/16. Fig. 4. Same labeling as in Fig. 4.
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FIG. 6. Influence of thé& term on the wedge widtklV near the
Lifshitz point for B=1 andD= —1. Points are calculations, lines
are drawn to guide the eye.

+(Xn1)%) = ((Xa-1)°+ (X1 )% 1+ AE(X7)
_<Xn>2)(2<xn> - <Xn—1>_<xn+1>) +(B+ 4E)<Xn>3
+ B(<X§>_<Xn>2)<xn>- (6.2

Inserting the last expression in E(.1) we see that the
conditions for equilibrium for the thermal average of the
displacement(x,,), have the same form as those for the dis-
placements, themselves; the only difference being the re-
placement of the parametefsand C by temperature depen-
dent ones:

A—A+BT,

C—C+4ET, 6.3

where T=(x2)—(x,)? is a measure of the thermal fluctua-
tions. So a change in temperature will renormalize both pa-
rametersA and C (unlike in the DIFFOUR model withHe

the ferroelectric phase to the incommensurate phase chang?so)'

by increasingE. See Fig. 6 for the results. One notices a

tendency towards a smaller wedgé (the vertical distance

For all other ground-state solutiongnéé 0) we calculate
the thermal averages arourg, where the{x,} satisfy Eq.

between the paraelectric-incommensurate phase boundaf$.1),

and the incommensurate-ferroelectric phase boundgrin-
creasingE, as was to be expected.

f j Xﬁxﬁq67ﬂ(xnfzn)z/ze*ﬁ(xmfzm)zlzdXndxm

(Xpxm) =
VI. TEMPERATURE-DEPENDENT BEHAVIOR f f o Blt— )2 Bm—xm) 2% dix
A A ) . 3 A n m
As the model under consideration is one dimensional with
short-range interactions, there is no phase transition possible =(xP)(x%), (6.4)

at T#0. If we, however, consider weakly interacting linear

chains in a three-dimensional system, this system can be diéthere B=1/T. Three different integrals have to be calcu-

scribed by Eq(2.1) as well if we interpret the variables, as  1ated, yielding
averages over planes perpendicular to a fixed directfec s . —
axis). Phase transitions become possible due to interchain (X =Xp+3X,T,
couplings.
To study the temperature dependence of the parameters <xﬁ) =;§+T, (6.5

we take the thermal average of the conditions for equilibrium

(3.2), resulting in
A<Xn> + B<X§> + C(2<Xn> _<Xn—1> - <Xn+1>) + D(2<Xn>
—(Xn-2) = (Xn42)) + E[4(X3) — 3(xXn_1)
- 3<Xﬁxn+ 1>+ 2<anﬁ—1>+ 2<anﬁ+ 1> - <Xﬁ—1>
—(Xp+1)]=0. (6.1)

We have to distinguish between ground states it} =0

and ground states witfx,} # 0, where thex,,} are solutions
of Eq. (3.1).

<Xn> :;n .
Substitution in Eq(6.1) and comparison with Eq3.1) then
leads to
A—A+(3B+4E)T,

C—C+B6ET. (6.6

Note that the paramet& now also enters in the temperature
dependence oA. This linear behavior iff, with a kink at the
temperature where the transition from the paraelectric phase
to the incommensurate or the ferroelectric phase takes place,

In the former case we assume that the thermal fluctuationis corroborated by Monte Carlo calculatioHs’® Some of the

of the displacemenk, do not depend on the lattice site,

(X3) = (x,)2~(x2) — (xm)?, and if we furthermore approxi-
mate the correlations byx2xm)~(x2)(xy), the following
holds:

E[ = 3(X3Xn—1) = 3(XaXn+ 1) + 2(XpX5_ 1) T 2(XpX5 1 1)
— (%31 = (X 1+ (BHAE)(X3)
~E[ = 3(Xn)((Xn—1) + (Xn+ 1)) + 2(Xp) ((Xn_1)?

results® are shown in Fig. 7. The result6.3) and (6.6) are

in sharp contrast with the assumptions made in standard Lan-
dau theory, to be discussed in Sec. VII, that there is only one
temperature-dependent parameter, and that its behavior
above and below the transition temperature is the same.

It is now straightforward to calculate the temperature-
dependent ground states and stability limits by making sub-
stitutions(6.3) and (6.6). We especially would like to focus
on the phonon branches in the paraelectric and ferroelectric
phases. Of experimental interest is the ratio between the
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’ ' ' ' d2p)\?
I v Xp_ 1+ Xpe1—2X,)2—| —| | (7.2
2 Mw ( n-1 n+1 n) (d22>
1k ’/// [)
N and rearranging terms we arrive at the free-energy density
H e ! @ B k(dP\2 N [d?P\® 5 _[dP\2
< y _ T p2, Ppa, 2 e T2l 2
vy - f 2P+4P+2(dz) 2(dzz 2PN az)
NS (7.2
b W {  with @a=A, =B, k=C+4D, \=—D, and »=2E. The
rd above free-energy density was used by Ishibashi and $hiba
to study phase transitions in NaN@nd SC(NH), (thio-
M 2 5 4 s 5 7 & s n urea, proper ferroelectrics in which the polarization compo-
T nent of interest transforms according to a one-dimensional

FIG. 7. Temperature dependendéT) calculated on a three- irréducible representation. Theterm is allowed by symme-
dimensional version of Eq2.1) with harmonic nearest-neighbor try because it is the product of the two invariam$ and
coupling andA(0)=—-5, B=5, D=E=0. Points are calcula- (d?P/dZ%)2. Alternatively, as both sodium nitrite and thio-
tions, (Ref. 38 lines are fits with a linear function. The phase tran- urea admit an interaction & with another modeu (strain
sition takes place aA=0. for example, Dvorak*® showed that the; term accounts in

an effective manner for this interaction, thereby reducing
slopes of the soft phonon mode in the ferroelectric andd(P,u)—f(P).
paraelectric phase, the so-callRparameter: By taking the Fourier transform of the above free-energy
density we find

_ dwzldTlferro

= . 6.7 ~:E£2£423
d(J’)Z/d-|—|para f (2+2q +2q Pq+

a4

U
+§q2) Py. (7.3

Self-consistent renormalized phonon thédiives the result  This justifies the choice of the term in the extended version
R=—2. In experiments/ however, very ofterR#—2 is  of the DIFFOUR model, discussed in Sec. Il. A term
found. Taking into account the temperature dependence(dP/dz)* has been included in the free-energy expansion
given in Egs.(6.3 and (6.6), we find using Eqs(4.5 and by Jacobset al.** but by taking the Fourier transform one

(4.9 finds «q*Pg which is of higher order than thg term used
here.
— 2(3B+4E)— 32E2/B sir?(q/2) In a seminal paper, Hornreiott al* discussed a multi-
R= - , (6.8 critical point of a different type, which they called a Lifshitz
B+ 16E sirf(q/2) point. In the spherical model limit they were able to calculate

_ _ o critical exponents and the shape of the phase boundaries of
which, for E=0, gives(at the center of the Brillouin zofe  second-order and first-order transitions in the vicinity of the
R=—6 instead ofR=—2, and forE+#0 can take on any | jfshitz point*® Let us return to the above free-energy den-
value as long asB+16E>0 is satisfied. Molecular- sity to give a definitiof of the Lifshitz point. At an ordinary
dynamics simulations on a three-dimensiodl lattice by  paraelectric to ferroelectric phase transition the coefficient
Padlewskiet al.** show thatR=—2 holds only for systems changes sign. If we have an additional incommensurate
with long-range couplings being in the displacive limit. phase we need the and\ terms, and at the Lifshitz point
However, Sollichet al** showed that this double limit of =g Higher-order terms in the expansion are needed for
displaciveness and long-range interaction is not necessary déapilization. Convertingr=0, k=0 to variables in the ex-
the system is displacive enough: they fouRer —2 for a  tended DIFFOUR model we find=0, C=4 (for D= —1).
system with only nearest-neighbor interactions, therebyrhis is exactly the position of the Lifshitz point found in Sec.
questioning Padlewski's claifhof having studied a system v/ There is another analogy between Landau theory and the

in the displacive limit. DIFFOUR model: MichelsoH showed that for systems with
uniaxial polarization the phase transition lines separating the
VIl. COMPARISON WITH THE CONTINUUM THEORY paraelectric phase from the incommensurate phase and the

_ o incommensurate phase from the ferroelectric phase are tan-
The continuum limit of the extended DIFFOUR model gent at the Lifshitz point. This feature is also present in Figs.
leads to a well-known expansion. By replacing the differ-4 and 5.

ences in the general order paramedeby differentials in the Let us now discuss some properties of the solutions found
principal order parameter for ferroelectrics, the polarizationin Landau theory. Ground states minimize the total free en-
P(2), ergy

dP\2 1d
(xn—xn1)2—><5> , F= ajo f(z)dz (7.9
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and can be found by solving the Euler-Lagrange equation By taking thermal fluctuations in two different regimes
into account the parametefsand C can be considered as
3 effectively temperature dependent. Fothis holds only for
+aP+pP =0. nonzeroE, which explains the relevance of this extra term.
This has strong consequences for two experimentally easy
(7.5 : >ons
accessible quantities: the temperature dependence of the
Golovkd® was able to obtain exact solutions for some spe-modulation wave vector, and the ratio between the slopes of
cial values of the parameters in a slightly more general freethe soft phonon mode in the ferroelectric and paraelectric
energy densitfhe added a term+(6)P® to the expansion phases R parametex
(7.2)]. However, his method is not general and we will not  Although lattice and continuum models have some fea-
discuss it further. Instead we follow a different approach:tures in common, the differences are more striking. A lattice
numerically solvind® Eq. (7.5) shows that the solutions con- model would be a more natural choice than the phenomeno-
tain practically only one harmonic, the amplitude of higherlogical Landau treatment of incommensurate phases. Dis-
harmonics is at most 3.5% of the former. crete models do not neeatd hoclock-in terms to explain
As usual in Landau theory only the coefficiemtis tem-  different commensurate and incommensurate phases. Com-
perature dependenti= a(T—T,). It is found that between plex phase diagrams can in principle be obtained using a

d'P  d?°P 2+P2d2
dz*

N — gl P
iz a2 7

dp
dz

the high-temperature paraelectric solution simple Hamiltonian which takes into account the discrete-
ness of a lattice.
P(z)=0, F=0, (7.6 The SnP,(S;_,Sg)s crystal family seems to be an ex-
and the low-temperature ferroelectric solution cellent system for our future research: it is uniaxial, has an
exceptional Lifshitz point in the composition-temperature
a a? phase diagram, shows crossover effects from order-disorder
P(z)=+/ I3 F=- i’ (7.7 to a displacive type of phase transition, and displays an in-

teresting modulation wave vector behavior. All these phe-
an incommensurate solution exists. Just below thenomena can in principle be explained by the extended DIF-
paraelectric-incommensurate transition @t= ay(T;i—T;) FOUR model.
= k?/4\ it has the forrf®
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2 4(ap—a) APPENDIX A: EXACT RESULTS FOR PARAELECTRIC
p0_3,3+277Q(2), AND FERROELECTRIC PHASES

In this Appendix explicitly calculated phase boundaries
1+ n 2) (7.9 are given for the extended DIFFOUR model. We first con-
FPLCIR ' siderE=0 and then discuss the effect B# 0. Let us start
with writing V in the form

d=0o

2__ K
Qo= 2\ VZE
n

The n term makes the incommensurate phase less stable
when 7 is positive, implying that the transition temperature with d==*1. The remaining parametessc,d are the tilde
from the incommensurate state to the ferroelectric state inparameters defined in ER.2) after normalization oB and
creases ag increases. See also the discussion by @a®!  § | et us now try to write this as

In the discrete model a positiieterm is responsible for this
effect.

a, 1.,
Exn+zxn+cxnxn,1+dxnxn,2, (A1)

1
V:; (p(xn_qxnl_anZ)z"' Zxﬁ] (A2)

VIll. CONCLUSIONS AND OUTLOOK

] . ) Comparison of the two expressions yields
In this paper we have calculated various properties of an

extension of the DIFFOUR model. For this purpose a next- , .. A

nearest-neighbor generalization of the effective potential p(1+qg°+r )=§,

method was developed. The shape of the paraelectric phase

boundary was proven rigorously, elaborating on a former —20+2ar)=c A3
proof which only included nearest-neighbor interactions. We p(—2q+2qn)=c, (A3)
found that the phase diagram changes considerably due to —2pr=d.

the extraE term, but the transition at the paraelectric phase
boundary does not depend & PositiveE favors longer-  From this one can see that if it is possible to write the po-
period solutions. tential in this form andh is positive, therp is positive. Elimi-
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natingq andr from the above equations yields the following 1
fourth-order polynomial equatiofassuming nonzera, c, p=—(2+a—(—2+a)’—4c?
andd): 8
2\ —a1a2-2c2— (2+a)\(—2+a)>—4cd).
16p*+ (16d—8a)p®+ (8d?+4c?—8ad)p? (A8)
+(4d3-2ad?)p+d*=0. (A4) ook at the two solutiongA7). The first condition isa=2

+2|c|. (2+a) is positive if this requirement is fulfilled.
Further, —4+a?—2c?=2c?+8|c|=0. So, here we have
only one requirement for alt, namely,a=2+ 2|c|. Above
this line the paraelectric phase is the ground state.

With the same sort of reasoning we can also try to prove
that for certain parameter values the ground state is ferro-

First consider thed=+1 case. EquatioiA4) then has
the following complex solutions:

p= %(—2+a+ [(2+a)?—4c? gle_cgi:.).Here we work with the following form o¥ (with
t\/5\/—4+a2—2c2+(—2+a)\/(2+a)2—4cz),

V= 2 { X + 1X + C( Xn—1)2+ E(Xn_xnz)z)
(A5) 2 2
(A9)

1 We try to write this as

p=—(—2+a—(2+a)?—4c? 1
8 V= E [ X2+ 7 P (Xp— an_l—Rxn_z)Z].
+ 2\ —4+a2-2c2— (—2+a)(2+ a)2— 4cd). (A10)

(A6)  Comparison of the two expressions yields

2, p2y_
The first requirement for having a real solution is that (2 P1+Q™+R)=C+D,

+a)2—4c?=0, i.e.,, a=—2+2|c|. Consider the first two

solutions(A5). First look at|c|=4. Then fora=—2+ 2|c] Plm2Qr2QR=-¢. A
we find (—2+a)(2+a)?—4c?>0. And for the first term —2PR=-D

in the root we find—4+a?—2c2>2c¢?—8|c|=0. So for

|c|[=4 the only requirement for having a regositive,a  f there exists a solution an@+D is positive, thenP is
>0) solution isa=—2+2|c|. For |c[<4 we have—4  positive. Rewriting the above equations yields the following
+a?—2c?+(—2+a)\(2+a)?~4c?=0 fora=2+;c% It fourth-order polynomial equatiotassuming nonzer€ and
can be seen that the argument of the root is positiveafor p):

>2+%c?. So, for|c|<4 the requwement for having a real

(positive,a>0) solution is:a=2+ 3c? (thena>—2+2|c| 16P*+ (—32D — 16C)P3+ (24D?+ 16C D+ 4C?)P?
automatically holds too 3 ) 4
The requirements fdic|=4 and|c| <4 form a continuous +(=8D°~4CD%)P+D"=0. (A12)

line in thea— c-parameter space. Above this livecan be
written as Eq.(A2) with p positive. Thereforev=0. The
lower bound is reached by the trivial solution which always
exists, so the paraelectric phase is the ground state above this pP= E( —24+C=+.C\J-4+0C), (A13)
line. In Sec. IV it is shown that the above line corresponds 4
exactly with the stability lines of the trivial solution, showing
that the modulated phases arise from the destabilization
the trivial solution due to the condensation of a soft phono
mode.

In cased= —1 the solutions of the fourth order polyno-
mial equation are

For the casé = —1 the complex solutions are

(Roth having multiplicity 2. For 82C<4 the solution is not
eal. ForC=4 the solution is real. In order to have a positive
solution we must hav€+D>0, soC>1. So, forC>4 the
potential can be written as EGA10) with P positive. So

1
V>Z [ =X3+ 7 ] (A14)
1 : . . .
p=—(2+a+(—2+a)?>—4c? The ferroelectric phase, which existsAf<0, reaches this
8 lower bound. So foB=1,D= —1, A<0 the ground state is

\/ . . . - ferroelectric forC>4. In terms of the tilde parameters: for
=2\ - 4+a%—2c2+(2+a)\(—2+a)2- 4c?), B=1,D=1,A<-2-2C, the ferroelectric phase is the

(A7)  ground state foC<—4.
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For D= +1 the complex solutions are 7+ R(X,) = mMin{R(Xn-1) + K(Xy,Xn-1)}- (B4)
Xn—1
1
P:Z(2+Ci\/6\/4+C). (A15)

Here 7 is 2 times the ground-state energy per particle. The
For —4<C<0 the solution is not real. FGE=0 the solu- Vector consists of two components with respect to which one
tion is real. In that cas® is positive. ForB=1,D=1,A has to minimize. Because of this minimization over two

<0 the ferroelectric phase is the ground state@s0. In  components, which has to be performed frequently, the nu-
other words: folB=1.D=—1.A<2—2C the ferroelectric merical procedures based on discretization of the range of

phase is the ground state f&r<0. In terms of the tilde possiblex, values will take a very long time. The method we

: | tat ts about th tif | tused is slightly different. Consider timeh couple of adjacent
parameters analogous statements about the antterroelectiiy, o Couplerf—1) does not consist of two other atoms as

phase can easily be mad€«: —C). is the case above. Instead, the right atom of couple ) is
In caseE+0 the following holds: the parts of the phase the same as the left atom of coupie In this case only a
diagram where the paraelectric phase is the ground staFe Minimization over one atomic degree of freedd¢tine “po-
the DIFFOUR model £=0) also belong to the paraelectric sjtion”) is left. This leads to more reasonable computation
phase for this extended model for all allowed value&on  times. The fact that couplen¢-1) is not independent of
this extended model there are no other parts of the phasguplen requires an adaptation of the proof of the existence
diagram where the trivial solution is the ground state, beywf 3 solution both in the continuous case and in the dis-
cause the stability conditions for this solution are the same agretized case used for numerical procedures. We only give an
in the DIFFOUR model(see Sec. IV. outline of the method, proofs of the existence of solutions
For the ferroelectric phase the statements are less rigogng generalization to systems with interactions upstio
ous: if the ferroelectric phase is the ground state in the D”:heighbors are to be given in a separate pap&he method
FOUR model £=0), then it is also the ground state in the for deriving the equations and the numerical procedtiries
extended model forE>0. Again we can prove thaV  solying the equations remain essentially the same. Numerical
=3 {(AI2)x;+ (Bl4)x}. However, for positiveE the part  calculations suggest that the error inhas a cubic depen-
of the phase diagram where the ferroelectric phase is thgence on the grid size rather than the quadratic dependence

ground state becomes bigger. for the Frenkel-Kontorova modéf.
Let us give the following explanatidf for the method:
APPENDIX B: EFFECTIVE POTENTIAL METHOD FOR Imagine that a system described by Eg1) is in its ground
NEXT-NEAREST NEIGHBORS state. If we now change the positions of two adjacent atoms,

. . o . the surrounding atoms will in general also change their po-
In this appendix, which is based on the account given by ¢ ¢ g P

e : . sitions in order to minimize the total energy. This net ener
Griffiths,*® we discuss how the EPM can be generalized to b&ange caused by the deformation of gﬁe couple wil %)é
applicable to systems in which there is next-nearest-neighb

) ) _ . ) : : alled the effective two-particle potential. This will describe
interaction. Consider a classical one-dimensional chain o,

: . he energy cost as a function of the positions of two adjacent
atoms. The total potential energy of the system is given byatoms. At site n, the effective two-particle potential

% R(Xn+1,Xn), due to the presence of the atomsn, can be
H= 2 {V(X)+W(Xn+1. %)+ D(Xns2.%n)}. (B1)  formally written as
n=—o

So, interactions up to next-nearest neighbors are included.
The effective potential method that is used to find ground R(Xn+1,Xn)Emin[_ > V) +W(Xi X - 1)
states for systems with interaction with first neighbors, can i<n(i=ntl
also be used for systems where second neighbor interaction
is included. Instead of a scalar variable at sitene now has +D (X, Xi_2)— 7]¢, (B5)
to deal with a vector consisting of the values fofor two
adjacent atom& Writing X, = (X5 ,Xon_1) the above poten-
tial energy is of the form where the minimum is taken over all atomic positionsvith
i<n and 7 is the (unknowr) ground-state energy per par-
H :z K(Xe Xn_ 1), (B2) ticle. By rewriting this equation, one obtains
n
with
R(Xp+1,%,) =min min ‘2 [VOQ) +W(x; ;1)
K(Xn Xn-1) = V(Xzn) +V(X2n-1) + W(Xzn ,X2n- 1) Xn—gi<n—1{1=N
+W(Xon—1,Xan—2) + D(Xon , Xon—2) +D (X Xi—2) = 7]+ V(Xn+1) + W(Xn11,Xn)
FB0n-1Xen-2) (83 D (X1 X 1) n], (B6)
The fact that here a vector at siteis considered does not

change the EPM and the proofs given for this metftf3*
The solution can be found by solving which gives
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7+ R(Xn11,%0) = V(Xn4 1) ¥ W(Xq11,Xp)
+min[R(Xn -Xn71)+D(Xn+1-Xn71)]-
Xn—-1
(B7)
This is the minimization eigenvalue equation fBr The
same procedure can be followed for the effect of the atom

i>n+1. The effective two-particle potential due to these
atoms is called5(x,,+1,X,), which gives

7+ S(Xn+1,Xn) = V(Xp) + W(Xp 4 1,Xp) + Min[ S(X,12,Xn41)

Xn+2

+D(Xn+2:%n)]- (B8)

The total effective two-particle potentid(x,,.41,%,) of a

couple of adjacent atoms in a double infinite chain, is given

by
F(Xn+1.Xn) =R(Xp41,Xn) + S(Xn+1,Xn) = V(Xn11) = V(X,)

_W(XnJrlaXn)' (Bg)
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Equation (B13) will be satisfied exactly?> The previous
boundary condition is the same as saying that the left-most
couple experiences the effective two-particle potential in-
stead of the true two-particle potential. The minimum energy
of this system as a function of the positions of the two right-
most atoms is given byR+Nz. Assuming thatR is a
bounded function, the energy per particle of such a system
Will tend to n asN—w. 7 is thus the average energy per
particle in any ground state, since the extra boundary condi-
tion only changes the total energy by a term of order 1RSo

is the effective two-particle potential for the right-most
couple of a semi-infinite chain. The same is true3$dor the
left-most couple of a semi-infinite chain extending to the
right. F is the total effective two-particle potential for a
couple in a double-infinite chaik, S, andF can, of course,
only be defined up to an additive constant.

In the above derivations the problems arising from the
summation of an infinite number of terms in E®5) are
neglected. In fact, one considers local deformations of length
M, with the limit M —oo. This will be explained below. De-
fine the effective two-particle potential due to the local de-
formation of lengthM as

where the last three terms are subtracted on the right side to

avoid double counting.

Equations(B7) and (B8) can also be obtained in another
way 3233 et Ry(X,+1.X,) be the minimal energy of a chain
of N atoms with the constraint that the atodsindN—1 are
at fixed position,, ; andx,, respectively, while the other

atoms are free to rearrange themselves in an optimal way so

as to minimize the total energy. This leads to

Ro(Xn+1:Xn) = V(Xn+ 1)+ V(Xn) + W(Xn 1 1,Xn),
(B10)

Fz3(xn+l an) :V(Xn+1) +V(Xn) +W(Xn+1 !Xn)
+min[V(X;-1) +W(Xq,Xq-1)
Xn—1
+D(Xnt1:Xn- D)1=V (Xns1) + W(Xn11,Xn)
+ min[ﬁz(xn 1Xn—1) + D(Xn+1 1Xn—1)]:
Xn—1

(B11)

§N+1(Xn+l Xn) =V (Xny1) T W(Xp11,Xn)

+ min[ﬁN(Xn aXn—l) + D(Xn+1 vXn—1)]-
Xn—1

(B12)

Now assume that folN—oo, ~RN(xn+1,xn) approaches
some functionR(x,, 1,X,) plus a constant proportional to
N—2:

Ru(Xns 1, %) = R(Xn11,X) +(N=2) 7. (B13)

In that case Eq(B7) follows. However, it is not clear that
Eqg. (B13) will always be satisfied. But by imposing a special
boundary condition, namely

Ro(Xn+1,%0) =R(Xn11,Xn), (B14)

R(M)(Xn-¢—1 ,Xn)

= min
n+1-M<i<n|nN+t3—-M<i=n+1

[K(Xi Xj—1,Xi—2)— 7]

+[K(Xn+3-m Xnt2-M Uns1-m)

+K(Xnt2-m>Uns1-m,Un-m)—27]}, (B15

where u; refers to the ground-state value for atamand
where we have introduced

K(Xn+1 »Xn vanl)EV(XnJrl) +W(Xn+l aXn)

+D(Xn+1axn71)- (B]-G)

The right-hand side of EqB15) can be rewritten as

RM) (X4 1,%0) =min[RM=D(x,, X, _1)
Xpn-1

+K(Xpy1, X0, X0-1) = 77]. (B17)
It is reasonable to assume that in the Ilimi¥
_’oo:R(M)(Xn+1an)_’R(M_l)(Xn+1vXn) (becausex; -y
—Upip-). Writing R(Xn+laxn):limMﬁocR(M)(XnJrlen)
the minimization eigenvalue equation results. In the second
version of obtaining the equations it is clear that it is, in fact,
the limit of local deformations, however, with the boundary
condition that the left most couple of atoms experiences the
effective two-particle potential. Here, one should take the
length of the chain going to infinity in order to letgo to the
ground-state energy per particle. The above explanation also
holds forS It is best to picture the situation as a local de-
formation of the ground state.

Now, the nonlinear minimization eigenvalue equations for
R andSare rewritter?>3The eigenvalue equation f&now
becomes
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7+ R(Xp11,%0) = MIN[R(Xp ,Xp—1) + K(Xp 4 1,Xn ,Xn-1) ]- formation of lengthM (with M— ), in a chain coinciding
Xn-1 with a particular ground state fot-c. This ground state

(B19) corresponds to a certain solution of the eigenvalue equation.
Let the functionL be defined by The deformation is such that atomsandn+1 have values
X, andx, ,,. By applying the corresponding map one can
L(Xp41.Xn) =S(Xn41,Xn) = V(Xn11) — V(X)) —W(X,41,Xp)- obtain the positions of the atoms left from For the dis-

(B19) cretized system one will finally reach the ground state in this
The minimization eigenvalue equation fSrcan now be re- W&y (in the continuous case it is supposed to converge to the

written as ground state The same can be done for the atoms right from
n+1 by applying thex map. From this picture it is clear that
7+ L(Xnt1,Xn) =MIN[L(Xp42,Xn51) F K(Xpn42,Xn+1:.%0) 1- the ground state is both @horbit and arL orbit. In fact, the
Xnt2 7 map and thes map may be multivalued. So, the atomic
(B20)  positions of the atomgsay) left from n do not have to be
In terms ofR andL one has unigue. The deformation can have parts consisting of mini-

mizing cycles(cycles of minimal energydifferent from the
F(Xn+1:%0)=R(Xn+1,Xn) + L(Xp41:Xn)- (B21) ground-state configuration atoc. In the 7 graph one can go
directly to the minimizing cycle corresponding to the
In fact, there may be multiple solutions of the eigenvalueground-state configuration ato, or one can first stay for
equation, not only differing by a trivial constaift®* The  some time in another minimizing cycle if this exists. If there
existence of different solutions is related to the existence ofire several solutions fd? andS (with several corresponding
different degenerate ground states. The general solution i8ando map3, there are several possibilities to constrEct

given by It will often be logical to take the ground states, toward
) which the chain converges atoc and +o0, the same. The
R(Xn+1,Xn) =MIN[R, (X +1,%0) T Kol (B22 numerical algorith we used is an adapted version of the one
“ discussed by Floria and Griffitt§.
The R, correspond to the pure phases and kheare arbi- Here an example will be given to show that it is important
trary constants. that in fact limits of finite deformations are considered. Sup-

For each solution of the minimization eigenvalue equatiorpose that the ground state is ferroelectric, with two degener-
for R [Eq. (B18)], a = map can be definetf;>®> where ate ground states,,=x=*1| wherel #0. If the deformation
7(Xn+1,Xn) ={(Xn . Xn—1)} With x,_, one of the values for is just infinite as suggested in E(5) the value ofR(l,l)

which the minimum on the right-hand side of E@®18) is  should be the same as the value Rf—I,—1). However,
achieved. AnR orbit is defined as something else is seen. Two solutions can be found corre-
sponding to the two ground states. In the solution corre-

vni (Xq.Xp-1) € T(Xn+1,X0)= 7+ R(Xq41,Xn) sponding to the solutiox,=1, R(—I,—1) has a higher

value thanR(l,l). The difference is the defect energy, the
energy cost for going from the-| phase to the-| phase.
(B23)  [The defect energyand the defect configuratipran also be
calculated using the map] From this it can be seen that the
deformation is in fact embedded in the ground state

+1 at —oo (in the limit M— o X,,o_y—Unso_m Where
Un.o_m= t1, or for the second version: the left most couple
of atoms in the finite chain experiences the effective two-
particle potential corresponding to the ground state

=R(Xp ,Xp—1) T K(Xn+1,Xn  Xn-1).

Similarly, for the minimization eigenvalue equation fbr
[Eqg. (B20)], a ¢ map can be defined, wheie(x,, 1,Xp)
={(Xn+2,Xn+1)} With x,, » one of the values for which the
minimum on the right-hand side of E¢B20) is achieved.
An L orbit is defined as

Vni (Xns2.Xn+1) € 0(Xn41.X0)= 7+ L(Xn+1.%n) +1). .
It can also be expected th&t has local minima at the
=L(Xn+2,Xn+1) T K(Xn+2,Xn+1,Xn)- positions of two adjacent atoms in metastable states. How-

(B24) ever, since only two atoms are at a fixed position, while the
other atoms are free to rearrange themselves in an optimal
A ground state is both aR orbit and anL orbit. Therefore it way, this may not be the case. When Changing the positions
can be proven that for a ground state of two adjacent atoms by an infinitesimal amount, the
changes of the other atomic positions in the metastable state
F(Xn+1:%) =R(Xn1,Xn) +L(Xn+1.%0) = F(%q 'X“—lé‘zs does not have to be infinitesimal. Therefore it is not neces-
(B25) sarily true that there is a local minimum infor positions of
So, F is constant on the positions of two adjacent atoms in dwo adjacent atoms in a metastable state. When there are no
ground state, which is logical since it is the effective two-other atomic positions in the metastable stéeperiod 1
particle potential. solution, F does have a local minimum. When the lowest
Numerical procedures are based on a discretized versiometastable state has positions of two adjacent atoms which
of the system. In that case, for each ground state there isae not seen in a ground stdtehich will often be the cage
solution for the eigenvalue equation for which there is a pathithere will be a local minimum iifr for these two positions. In
from each point to the ground state in the corresponding that case the energy cannot be lowered by changing the other
graph® So, the situation is as follows. There is a local de-atoms by any amount, since the only states which have lower
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energy are ground states and these cannot be reached sificene may also investigate the kind of phase transitions that
the positions of the two adjacent atoms under consideratioare involved. For example, a discontinuous change in the set
are not in a ground statand the changes of them should be of points whereF achieves its global minimum, indicates a

infinitesima). By following the development of the shape of

first-order transitior®
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