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Coherent and incoherent motion in a one-dimensional lattice

M. A. Palenberg and R. J. Silbey
Department of Chemistry and Center for Materials Science and Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

W. Pfluegl
Institut fir Theoretische Physik, Johannes-Kepler Univétsitiaz, A-4040 Linz, Austria
(Received 9 March 2000

We discuss a generalization of the Haken-Strobl-Reineker model for the diffusion coefficient of a fparticle
an excitation in a one-dimensional lattice. In the original treatment, the characteristic correlation time of the
lattice vibrations is assumed to be the smallest time scale in the physical problem. We weaken this requirement
and allow for longer correlation times. We discuss previous results in the context of our theory and present
numerical examples.

I. INTRODUCTION
H()=2) sn(ticica+ X In(D)(Cicns1+Ch1C0). (D)
The charge transport and energy transfer in organic crys- g i
tals can be described either as a coherent or an incohereyite decompose the site energy and the hopping matrix ele-
process, depending on the strength of the interaction of theent into a constant part that describes the coherent particle
migrating particle(or excitation with lattice vibrations. If  motion in a completely rigid chain and into a fluctuating part
the interaction is weak, the phases of the wave function ofvith zero mean:
the particle are conserved and the motion is coherent for

some time, eventually damping due to interaction with lattice en(t)=e+ Sgp(1), (2
vibrations, finally leading to bandlike motion. In the case of
strong interaction, the wave function dephases quickly, lead- Jn(t)y=J+ 6J,4(1) 3

ing to an incoherent, hoppinglike motion. .

Starting in 1967, Haken and Strobl and later ReineketVith 8=(en(t)) andJ=(Ju(t)). The brackets) represent
suggested and worked out a unified théofythat contains the thermal average over all molecular vibrations.
both the coherent and the incoherent limits. In the last 30 '_:0”0""'93912 the approach by Haken, Strobl, and
years, this concept has been successfully applied to the dReineker, 2 we describe the diagonal fluctuations
scription of experimentally observed electronic and excitonid #&n(t)] and the nondiagonal fluctuatiofi$J,(t)] as sto-
propertied-12 chastic processes. F_or the second moments we assume the

A key assumption in the treatment by Haken, Strobl, andOr™m suggested by Kitahara and Halds:

Reineker is the fast decay of the correlation of the lattice 1

V|bra_t|ons. In th_ls paper, we treat and discuss the Wefikenlng (8en(t) Sepi(t+ 7)) = yo— e~lMes, (4
of this assumption by omitting one of the two constraints on Tc '

the time scales of the problem.

The paper is organized as follows. In Sec. Il we discuss
our assumptions, derive the equation of motion for the den-
sity matrix of the particlgor the excitatioln, and discuss its
range of validity. In the next section, an expression for thelhis means that energy fluctuations on different sites and
diffusion coefficient is derived. In Sec. IV we compare our fluctuations of the hopping matrix element between different
result to the result of Haken, Strobl, and Reinékét?and  pairs of molecules are not correlated. We have made the
to the correlation time expansion of Kitahara and H5us. additional assumption thak,(t) is real.

The next section is devoted to explicit numerical results and The Hamiltonian(1) leads to a stochastic density-matrix
we conclude the paper with a summary. equation. Using the statistical properties 6&,(t) and
8J, (1), a statistically reduced equation for the migrating par-
ticle can be obtained either by a projection operator
Il. EQUATION OF MOTION formalism'* or by generalized cumulant methots:®> Going

We consider a particle moving along a chain of identicalt® Second order in the totally time ordered generalized cumu-
molecules with equal equilibrium distances. The thermal molant expansiort; the resulting equation of motion in the in-
tion of the molecules in the chain is taken into account byteraction picture reads
allowing the site energies,(t) and and the hopping matrix .

_eIemenFan(t)_to fluctuate in tlme._Ass_umlng next neighbor H(t)= _f d( SL(t) oL (t— Mp(t—1), (6)
interaction, this leads to the Hamiltonian 0

1
(830(1) 8 (t+ 7)) =y — eI, oy (5)
c
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wherep(t) is the density matrix of the migrating particle in
the interaction picture. The Liouville operatét_(t) is de-

COHERENT AND INCOHERENT MOTION IN A ONE. ..

3745

This approximation is good if the first term in the Taylor
expansion ofp(t— ) is dominant. This condition can be

fined in Appendix A. If we assume that the Liouville opera- expressed as.<r,, with the definition

tor SL(t) is proportional to some quantity, then Eq.(6) is

a second-order equation in the sense that it has the structure

p=Ap, (7
where A is an operator that is known up to ordef. Some
contributions taA4 of higher order ine have been neglected.

Equation(6) can be written more explicitly as

1

Tckq ko kg kg

p(t) A, ey g Oy (D) iy i, (1)

X f dre”77ee” M M) 3 (t— 7). (8)
0

27.\?
1+ —C)

Tcoh

T=—.
P maxyo,v1)

We refer to Appendix B for the derivation.

The time-local equation of motiofEq. (9)] can also be
derived by directly starting from the time-local second-order
equation of motion that results from a truncated generalized
cumulant expansion with a partial chronological time
ordering®® However, using this approach the range of appli-
cability explained above is inherent in the construction of the
equation and has to be considered careftfi.

Equation(9) contains, in fact, all the relevant information
of a second-order equation because of the following reason.

(10

The detailed derivation of this equation and the definition ofa|| contributions that have been neglected in the derivation
the quantities therein is made in Appendix A. For the presengs Eq. (9) represent fourth and higher-order termsyrusing

discussion it is sufficient to mention thmkl,kz,kg,m is pro-

portional toy, and/ory; or is zero.

Equation(8) is the starting point for our further consider-
ations. Since Eq(8) is a convolution-type equation, a gen-
eral solution is difficult. Kitahara and Hatishave calculated
the first orders inr. of the diffusion coefficient that results
from Eqg.(8) by means of a Laplace transform. We will com-

the terminology introduced after Ed7). It is not clear
whether the partial inclusion of higher-order terms as in Eq.
(8) is better or worse than their rigorous omission as in Eq.
(9). We will return to this point in Sec. IV B of this paper.

Ill. DIFFUSION COEFFICIENT

pare their results to the findings of this paper at the end of the N this section we calculate the diffusion coefficient from

next section.

the equation of motion derived previously. Transforming Eq.

Other approximative solutions depend on the relative(9) to the Schrdinger picture we obtain for the density ma-
magnitude of three different time scales. The kernel of Eqlrix in the wave-vector basis

(8) decays as a function afduring the timer, while oscil-
lating as a function of-on a time scale,,= 1/J. The latter
time scale is due to the oscillatory exponential in EB).and
can be understood using E@4) in Appendix A. The third
time scale,r,, defines the time on which the value of the

density matrix changes appreciably and will be derived later.

Haken, Strobl, and ReineKer'2 have considered the
case thatr; is the smallest of the three time scales, i=.,
<7cnand 7.<7,. In this case, the exponential e{xp’(Hk3

—Hk4)7-] as well as the density matrx(t— 7) in the integral
in Eq. (8) can be replaced by their value &t 0, since they

do not change appreciably during the integration over the

time intervalt=0---7.. Later times do not contribute to the

integral, since by then the kernel has decayed. The same
result is obtained by the original approach by Haken, Strobl,
and Reineker that consists in replacing the exponential decay

in Egs.(4) and(5) by a & function.
In this paper, we will generalize this approach. We will
allow the correlation timer; to have any value relative to

Teon @S long as the change of the density matrix is slow with

respect to the correlation time, i.er,<7,. To clarify this
further, we perform a Taylor expansion'@ft— 7) in Eq.(8)

about7=0 and keep only the first term. This leads to the

considerably simplified equation of motion:

Ay ky kg kg

o(t)=— -
P( ) k1Ko K3,kq 1+I(Hk3—Hk4)TC

X i, k(D die, 1, (DB(L). 9

Pr+qk= ~1(Hirq=Hi) prsq k™ ; W g kK + g, kPK+ak

+; Wi|<+q‘KHk+q,ka+q,K 1D

with the generalized rates

Yo

Yo
Yk=0T Yk+K+q— N Yk=0T Yk+k— N

i
= - + -
Yk T T (H = Fig) T TP H)

Yo
Yqt Yi+K+aT N

0 —
WK+q,KHk+q,k l+i’Tc(HK_Hk)

Yo
Yo Yk+k+q™ 1
+ - . 12
1+|Tc(Hk+q_HK+q) (12
The diffusion coefficient is given by
D=- 5 lim lim To Pk (13)

t—ow g—0 k

which follows directly from the definition of the diffu-
sion coefficient in the site representation D2
=Iimtﬁw(1/t)2nn2pn,n. Inserting Eq.(11) into definition
(13), we obtain
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432 1 . in the general case of diagonal and nondiagonal fluctuations,
D=2y,F+ i N ; sin? k(1—Gy)uy. (14 a Fourier analysis afi in Eq. (15) leads to good results. We
! therefore write
The functionu, is determined by the equation

. uk=2 C,cogkn) (21
Mg=14Gy— — > S’ K U, (15) )
Ul k= - )
? N% 1+e*(cosK—cosk)? " and upon insertion into Eq14) for the diffusion coefficient,
with e=2Jr, . The quantitie, G, , andG, are functions of vsle rgmark that only the coefficien®, andC, contribute to
. . : : , since
J7e, vo7e, and y 7. and are given in Appendix d’y is
given by 1 1 C. C
N> sifku=g > stk C,cogkn)= 70— 72.
r 2 5 Yol y1+ 2+ 2 cosk cosK 16 K K n 22
KN4 1+ €%(cosK —cosk)? (16)
For the coefficient€,,, we obtain a system of coupled equa-
tions
2R 4 Imy/z
= |Ze|~\/—{y0/71+2+2 cogk}— Tz[/_cosk
(17) Cn=An+% BnrCrm (23
with with
z=€’+(1+iecosk)?, e=2Jr,. (18
. e - . 0=— f dk (24)
Expression(14) for the diffusion coefficient is the central I’
result of this paper. It represents the generalization of the
result of Haken, Strobl, and Reineker to larger correlation 2 (= cogkn)
times 7., provided that the density matrix is slowly varying. An>0=— jo T (25

As in the original Haken-Strobl-Reineker model, the diffu-
sion coefficien{14) is the sum of an incoherent and a coher-and
ent part, where the names are chosen according to the fact

that the first(incoherent part does not vanish when the hop- B __ 4 fwdklm(k) 26
ping matrix elemend goes to zero while the secoricoher- | R

eny part does. The incoherent part increases withand

reflects the motion of a particle that is generated by the non- m( k)cos(kn)

diagonal dynamical fluctuations. The coherent part repre- Bn=om= —f (27)

sents the band motion of a particle that is hindered by diag-
onal as well as nondiagonal fluctuations. Here the fluctuatingvith T", as given in Eq(17). The integrald (k) are given
site energies and hopping matrix elements act as disordéy
that tends to stop the free band motion.
In Appendix C we show that in the present approximation k) 1 f’f sin? K cogKm)
m

of a slowly varying density matrix, the functiol®, andG, 1+ €2(cosK — cosk)? (28)
are both small compared to unity and can therefore be ne-
glected, simplifying the expressidi4) for D further. and can easily be solved to give
In the special case of diagonal fluctuationg0), Eq.
(15) is analytically solvable and, neglecting the small contri- | (k)= Reyz—1 29
butions ofG; andG,, we obtain for the diffusion coefficient o(k)= e (29
of a system with only diagonal fluctuations
Reyz—2 Imyz
2J2 sirf k l1(k)= e\/—z cosk+ 3[ (30
Diyy=0)= 2 1 (19 € €
>
% 1+ €%(cosK —cosk)? ReVz(2 codk—1)—6 cogk+2  Imyz
(k)= = +4—y
2\]2 |z|sir? k
Reyz—1
o 7)o M e (20 el 31

€

with z defined in Eq.(18).
If both y, and y; differ from zero, Eq.(15) can be ap-
proximated by iteration as long as the local fluctuations arevith z as defmed in Eq(18). The system of Eq(23) is
dominant (y;<yy). If y, is of the same order of magnitude simplified by the fact thaB, ,=0 for all odd suma1+m.
as vy, the iterative method does not converge. FortunatelyThis leads to decoupling for even and odd indices and since
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we are only interested in the coefficien® and C, the " 2y,
coefficients with odd indices do not need to be considered Dkp=—elo—3 - (36)
further. Yot
as and Haus include a fourth-order contribution in the equation
32 of motion that is neglected in our treatment. To understand
D=2y,F+ —(2Cy—C,), (32)  this better, we explicitly write down the corresponding
Y1 density-matrix equations. Expanding the density matrix in

where the coefficient€, andC, are determined by the sys- POWers of the correlation time,

tem of equations in Eq23). The coefficientC, is generally ~ —[0] ~[1] (2]
much smaller thai€, and can sometimes be neglected. For a p(1)=p" (1) +p () +pH () +- - (37
practical calculation, the system of equations is solved fora . _ [n]_ n i
finite cutoff n,=n,m. For a qualitative estimate, it suffices With p(t)'"~7¢, the second-order E(8) for the contribu-
to take into account the trivial solution for,,,=0, while the ~ tion linear in7; reads

cutoff n,=2 approximates the exact result very well. For

example, takinge=1, the relative error made by the cutoff sUn=— S A A (0T (OB
Nmax=0 is smaller than 6% for all values of, andy, , while p Ky Ko kg F1K2 e ke kot T kg P

the cutoffn,,,,=2 yields results with relative errors smaller
than 0.05%. The relative errors made with either cutoff are

- . +i _
roughly linear ine. ire > o Bk e kg (Hi = Hig)

kq.ko k3 Ky

r - ~[0
IV. COMPARISON TO PREVIOUS RESULTS X i, 1, (1) iy 1, (DPN(D)

A. Haken, Strobl, and Reineker model _ -
7o 2 Ak gk (D i, (D

In the original treatment of the problem of mixed coherent kg Ko ks kg
and incoherent particle motion, Haken, Strobl, and Reineker
assumed the correlation timg to be smaller than all other > Avroror oG (D80 o (0310t
time scales in the problem. We retrieve their result by setting k;,g'kgkg kG i i ()i i (VP
7.=0 in Egs.(14) and(15). In this limit, the equation fou,
reads (38)

4 If this equation is used for the calculation@f'!, Kitahara's
U2(yoly1+2)=1- NE sin? Kuy (33)  and Haus’ resulfEq. (36)] is found. On the other hand, our
: simplified Eq.(9) leads to an equation fgit!! that is given
which can readily be solved for the quantityN®, sifku, by Eq.(38) without the last term of the right side. This term
needed in Eq.(14) for the diffusion coefficient. With generates a contribution to the diffusion coefficient equal to
1UNZ, sirfku=1v,/(4y,+12y;) we obtain the result of —eJand is responsible for the difference between ours and
Haken, Strobl, and Reineker, Kitahara's and Haus’ results.

At this point, a clarification is necessary. Both the
convolution-type EQ.(8) and the time-local Eq(9) are
equivalent second-order equations in the sense that the op-
erator. A connectingg with p [Eq. (7)] is identical in both
equations up to second order in a small parameterich
here is essentially given hy= /A whereA is the magnitude
Starting from the second-order H8), Kitahara and Haus of Ay, k, ks .k, @nd proportional to eithey or y;. The third

have calculated the first terms in an expansion of the diffuterm of the right side in Eq(39) that is responsible for the

; » ; ; i 13
sion coefficient in powers of the correlation time.™ The  gjfference of Kitahara’s and Haus’ and our result is clearly a
zeroth-order term in this expansion is given by the result ofgrth-order term. since it carries the factors
Haken, Strobl, and ReinekgEqg. (34)]. Akl,kz,k3,k4Aki,ké,kg,k;”A2~a4- This term, although being

We will show how their result for a correction linear in . ]
the correlationr, can be reproduced within the present for- Of fourth order, nevertheless contributesi}) [Eq. (36)]

malism and then make some general remarks about the e¥ith similar magnitude as the part in E(S) that does not
pansion in powers of.. include the additional term. This might seem surprising at

From Eqs.(14) and(15), the first order oD in a correla- first sight, but can be explained by the fact that the long time

tion time expansion can easily be calculated and yields ~ imit of the density matrix, and hence also the diffusion co-
efficient, cannot be expanded in a power series in powers of

Yo+ Y1 a (or A), since such an expansion would diverge for large
po o (35  times!® Therefore nonanalytic contribution®.g., of order

0 ! 1/A) may occur in the course of solving the equation of
This result differs from Kitahara's and Haus’ result, which in motion and lower the order of the final result. This is exactly
our notation is what happens in the calculation b,

J2

D=2y,+ (34

Yot3vy1

B. Kitahara’s and Haus’ result

DI=¢J
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FIG. 1. The incoherent part of the diffusion coefficient divided
by 2y;. FIG. 2. The coherent part of the diffusion coefficient multiplied
2
The expansion of the diffusion coefficient in powers of by 71"
the correlation time should therefore be considered with care, 9
since the result depends on higher-order terms in the equa- D =J—(ZC —C,). (40)
tion of motion. Comparing the second-order E@.and(9) "y o

it is hard to tell which expression f@!*! is physically more o _ _

order contributions into account, the convolution-type Eq.cally by the method described in Sec. Ill. They depend on
(8) does take them into account partly, which can be better of =2J7c and the ratioyg/y;. ,
worse. In Fig. 2 we show the quantity@y,—C,=(7y,/J°)Donas

A rigorous calculation of the contribution!™ to the dif- @ function of the ratioy,/y, for different values ofe. We
fusion coefficient should have a fourth-order equation as #ave used the truncatiamy,=2 for this calculation which
starting point, that will lead to the same result @f!!, no ~ @pproximates the exact result with an error of less than 0.5%.

1 L . . 2

matter what kind of fourth-order equation is chosen as a FOr @ ratio yo/y;<1, the quantity {1/3%)Deon ap-
starting point. In this case, the problem discussed above roaches a constant value. This means that in this limit the
encountered on the next higher level: the quadratic contribu¢oherent part of the diffusion coefficient is proportional to

2 . . . . . .
tion D[2]~r§ again depends on the higher-order contribu-J~/ ¥1 which is the same behavior obseryed in the ongmgl
tions («® and higher in the equation of motion. Haken-Strobl-Reineker model. However, its overall magni-

tude is larger than in the original model.
The opposite limit {g/y,>1) can be understood best in
Fig. 3 where we plot the quantityy/J?) D, as a function
A. Incoherent part of the diffusion coefficient of the ratioy, /4. In this case the curves approach constant
The incoherent part of the diffusion coefficie(82) is values for Iarge ra_tioslolyl>_>_l, indicating th‘."‘t the coherent
proportional to the magnitude, of the nondiagonal fluctua- Part of the diffusion coefficient is proportional @/ o,

V. NUMERICAL RESULTS

tions and to the functiof defined in Eq(C7) again in agreement with the original Haken-Strobl-Reineker
D model.
Dine=27;F. (39 Independent of the ratig,/y,, the diffusion coefficient

Dcon is linear in € for large epsilon é>1) and approaches

In Fig. 1 we plotF =Dijn./(2y1) as a function ofe=2Jr. asymptotically the Haken-Strobl-Reineker value &+ 0.

The line F=1 represents the results obtained with the
Haken-Strobl-Reineker model. As expected, the deviations

from the Haken-Strobl-Reineker model become quite dra- 9 ARSI L
matic for large values ot, indicating the violation of the 8- e=1 L
assumptionr < 7o (0r J7.<1) made by Haken, Strobl, and & TP e=10 g n
Reineker. With increasing, the functionF decreases mono- | &6} .
tonically. However, this does not imply that the incoherent<S L i
part of the diffusion coefficient decreases as well, since inT ns N
generaly; depends od and 7. This dependence has to be 3

calculated separately. In a concrete examplspme of us i 3r ]
have obtained dependencies of the fowy~J? and vy, 2r ]
~ 1., leading to an incoherent part of the diffusion coeffi- L

cient that increases with and .. 0 — ccndiil

0.01 0.1 1 10 100
B. Coherent part of the diffusion coefficient Yo/
Neglecting the small contributiors; andG,, the coher- FIG. 3. The coherent part of the diffusion coefficient multiplied

ent part of the diffusion coefficient is given by by vo/J2.
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VI. SUMMARY p(t)y=eolp(t), (A9)
In this paper we have calculated the diffusion coefficient
for a migrating particle on a one-dimensional chain of mol- SL(t)=eltotsL(t)e Lot (A10)

ecules with dynamical disorder described as diagonal and
nondiagonal fluctuations. We have generalized the result pre-. i
viously obtained by Haken, Strobl, and Reineker to large®ith Lo=[Ho,...] and SL(t)=[SH(t),...]. Using Egs.
correlation times, provided that the density matrix is slowly (A5)—(A10), Eq. (6) takes the form
varying.
We have shown that the calculation of an expansion of the _ 1 -
diffusion constant in powers of the correlation time is prob- p(t)=—— D Ak ks Ok (1)
lematic, since the result depends on what type of second- ckakekaka
order equation is chosen as a starting point. The different t e
results can be explained by inclusion of higher-order contri- X fodek3,k4(t_ e "p(t—71)  (All)
butions.
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APPENDIX A: DERIVATION OF THE EQUATION

F MOTION . . . .
OF MoTIo As long as we are not interested in the short-time behavior

The equation of motion assumes a particularly simple(t<7.) of the density matrix, we can safely replace the up-
form in the wave-vector representation. We therefore definger integration limit by infinity and using E4A12) we ob-
tain the equation of motion

1 .
Bl(t)= J_NE e kmel(t), (A1) .
n ) ~ ~
) p(t)=— T_ckl,kgq,m Ay ke kg kg Gky k(D) iy i, (1)
Tt = =2 eXTey(), (A2) - |
YN R ) xf dre eI (Hi,~Hi) (1 — 7). (A13)
0
1
Y= (Yot 21 C0SK), (A3)
APPENDIX B: DERIVATION OF THE TIME-LOCAL
Hy=e+2J cosk (Ad) EQUATION OF MOTION
performing the integrals, we obtain
H(t)=Hg+ SH(t) (A5)
Ay, Ky ks k
. 1:72:73'™4 ~ ~
_ t t H(t)=— - d t)d (t)
Ek Hc.Cy+ ka’ (t)cyCk:r - p( k1«k§<3vk4 1+|Tc(Hk3_Hk4) kl’kZ( k3.ky
(A6) _
;’2e second momen{&gs. (4) and (5)] can now be written X [ p(t)— 1+iTC(HCk3— Hk4) p(t)
2
_ Lot TR 2P = (B1)
(OHy, i, (1) SHy, k(1= T)>_Ak1,k2,k3,k4T_ce ¢ [1+i7c(He,—Hy,)]
(A7)
with We now assume that the first term in the Taylor expansion is
dominant, i.e.,
Yn=0
Ay, Ky kg k= Oy —kytkg—k, 0| Yky—kg T 'yk2+k4_nT : B - )
(A8) B> TrirgHy— ) P (B2)

The interaction picture quantities are related to their coun-
terparts in the Schuinger picture by which is equivalent to
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Tc

l+iTC(Hk3_Hk4)

[B(t)]>

A kKK,
—I—. r— ’
1 |TC(Hk3 Hk4)

>

! ! ! !
Ky kj kb k)

X

X k(D) k(DD (B3)

This is fulfilled if

max o, Y1) 7c

1+ €2 <1,

€=2J7;. (B4)

APPENDIX C: CALCULATION OF F, G4, and G,

The quantities=, G;, andG, are derivatives of the gen-
eralized rate$Eq. (12)]:

11

2
Jd W(k’+q,kHK+q,K
F=_—__

4y Nk

e

o

&W(Ingq,kﬂKJrq,K‘
Jq

)

q=0

2\ fi
_(9 Wk+q,kﬁK+q,K

992

_awlk+q,k—>K+q,K
a9

(CD

G 1
17 2iJ sink

>

K

(C2

q
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G,=— 1 2 &W(k)+q,kHK+q,K‘
27 2iJsink % aq l4=0
aWIK+q K—k+q,k
—T B . (C3)
q=0
After some algebra we can rewrite this as
- 1 s 1+ cosk cosK ca
- N? &% 1+ €%(cosK —cosk)?’ (€4
Ay, 7, cosK —cosk
G1=y EK: cosK 7 €(cosK — cosk)?’ (€5
27,
GZ:WE (yo+ 27y, + 2y, cosk cosK)
K
1— €*(cosK — cosk)?
(Co)

x [1+ €*(cosK — cosk)?]?

with e=2J7.. Converting the suniC4) into an integral, we
obtain

(1+4€*)K(2ie)—E(2ie)

e '

(C7)

whereK(x) and E(x) are the complete elliptic integrals of
the first and second kind, respectively.

The expressions fdg; andG, can easily be integrated as
well, but since both quantities are of the order of magnitude
of max(yo,yy)7./(1+€°) which is assumed to be much
smaller than unitfEq. (B4)], they can be neglected and will
not be given here.
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