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Asymptotic form of the reciprocity theorem with applications in x-ray scattering
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The emission of electromagnetic waves from a source within or near a nontrivial méditihor without
boundaries, crystalline or amorphous, with inhomogeneities, absorption, anglisssometimes studied using
the reciprocity principle which is a variation of the method of Green’s functions. If one is only interested in the
asymptotic radiation fields the generality of these methods may actually be a shortcoming: obtaining expres-
sions valid for the uninteresting near fields is not just a wasted effort but may be prohibitively difficult. In this
work we obtain a modified form of the reciprocity principle which gives the asymptotic radiation field directly.
The method may also be used to study scattering problems. We give a few pedagogical examples and then, as
more challenging applications, we calculate the specular reflection of x rays by a rough surface and by a
smoothly graded surface taking polarization effects into account. In conventional treatments of reflection, x
rays are treated as scalar waves; polarization effects are neglected. This is a good approximation at grazing
incidence but becomes increasingly questionable for soft x rays and UV at higher incidence angles.

[. INTRODUCTION one is typically interested in the asymptotic radiation fields
so the relevant exchange should involve a source pang

The principle of reciprocity can be traced to Helmholtz in with a field point atinfinity.
the field of acoustics. It states that, everything else being These technical difficulties have not deterred the users of
equal, the amplitude of a wave at a poitlue to a source at reciprocity from using the principle to make valuable predic-
point B is equal to the amplitude & due to a source &. tions, but a high price has been paid. The required
With its extension to electromagnetic waves by Loréaizd ~ asymptotic limits are usually takererbally and no accounts
later to quantum-mechanical amplitudethie applicability to  are given of where and how spherical waves are replaced by
all sorts of fields was made manifest. Nowadays the principlglane waves. Such sleights of hand, because skillfully per-
is regarded as a symmetry of Green'’s functions when théormed, have not lead to wrong results, but intensities are
source point and the field point are reversed. This symmetrpredicted only up to undetermined proportionality factors
is actually quite general. As shown in Ref. 3 the conditionsand this excludes applications to classes of problems where
of time-reversal invariance and hermiticity of the Hamil- absolute intensities are needed. Moreover one is left with the
tonian are sufficient to guarantee reciprocity, but they are notineasy feeling that the validity of the predictions is justified
necessary; in fact, reciprocity holds even in the presence ahostly on the purely pragmatic grounds that for the problem
complex absorbing potentials. In the case of electromagnetiat hand they seem to work which, again, limits applications
waves the only requirement is that the material medium be&o problems that are already familiar.
linear and described by symmetric permittivity and perme- The main goal of this papdBec. I is to obtain a modi-
ability tensors:® This excludes plasmas and ferrite media infied form of the reciprocity theorem that gives the asymptotic
the presence of magnetic fields. radiation fields directly and that accommodates plane waves

In the field of x-ray optics the principle was used by vonand both point and extended sources in a natural way. Re-
Laué® to explain the diffraction patterns generated by sourcesnarkably, the resulting expressions, which include all the
within the crystal, the so-called Kossel lineMore recently  relevant proportionality factors and yield absolute, not just
there has been a widespread recognition that these interferelative, intensities, are very simple.
ence patterns contain information not just about intensities For many problems the asymptotic reciprocity theorem
but also about phases and can be thought of as holographi@RT) obtained here represents an improvement not only
records from which real space images of the location of thever the usual form of the reciprocity theorem but also over
internal sources can be reconstructed. Thus under the modettme method of Green’s functions. Computing the Green’s
name of “x-ray holography” there has been a considerabldunction requires solving a boundary value problems for
revival of interest in this subjeét. spherical waves in the presence of plane boundaries and/or

However, powerful as it is, the usual formulation of the periodic media; this may well be an intractably difficult
reciprocity principle suffers from a rather serious drawback:problem. Furthermore, a considerable effort is wasted by first
it refers to the exchange of source and figldints As a  obtaining both near fields and far fields and then discarding
consequence, a careful application of the principle requirethe uninteresting near fields. The ART is a shortcut that dis-
one to consider the emission of spherical waves which ircards the near fields before, rather than after, they are com-
crystalline media or even in the mere presence of planguted.
boundaries, can be surprisingly difficytecall, e.g., study- To illustrate the power of the method we consider several
ing the radiation by an antenna in the vicinity of the conduct-applications. The first thre€ec. Ill) are brief pedagogical
ing surface of the Eartror of layered medi®). Furthermore, examples of increasing complexity. First the ART is used to
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calculate the fields radiated by an arbitrary prescribed source
in vacuum; next as an application to scattering problems we
reproduce the kinematical theory of diffraction by crystals.
The third example, the radiation by a current located near a
plane dielectric boundary, is straightforward when the ART
is used but not if other methods are used. One must empha-
size that what is different in these examples are not the re-
sults, but the method; the first two are standard textbook
material, a special case of the third is treated in Ref. 9. As a
more involved application of the ART, in Sec. IV we com-
bine ideas from the three previous examples to study two FIG. 1. (a) In the usual form of the reciprocity theorem the

other related scattering problems, the specular reflection of ,;tace s encloses the medium. and all sourcéb) For the
polarized x rays by a rough surface and by a Contmuous%symptotic form of the reciprocity theorem the connecting fégd

graded surface. . L . . . '
The technique of the grazing-incidence reflection of XIS a radiation field, its source lies outside the surf@eeS, +S .

rays has received considerable atterittol from both the

theoretical and the experimental sides as a means to obtain Di=¢;E; and Bj=p;jH;.

structural information about surfaces. The effect of surface ] - -

roughness on the reflection is taken into account by multi¥Vé will assume that the tensogg(r) and u;;(r) are sym-
plying the Fresnel reflectivity of an ideal sharp and p|amjlrmetr_|c, but otherwise the situation remains ql_J|te general, the
surface by a “static Debye-Waller” factor. The problem is to Medium may have an irregular shape, or be inhomogeneous,
calculate this corrective factor. The calculation has been carystalline or amorphous, absorbing, dispersive, etc.

ried out in several different approximations. The Rayleigh or AS in the usual deduction of the reuprocﬂyﬁtheorefee,
Born approximatioh is satisfactory for rough surfaces with e.g., Ref. 4, we consider a second set of fields andH,,

long lateral correlation lengths but for x rays the situations ofwhich we will call the “connecting fields,” generated by a
interest generally involve short lateral correlation Iengths.g,ourcejC [see Fig. 18)]. For simplicity we will also assume
Here ther_apprOX|mat|0ns such as the dlstor.ted—\{vave BOrfhat all fields and sources are monochromatig,
approximation®'*and the Nevot-Croce approximatidrare = - .t = == i . o

used. For variations and interpolations between these two E(r)g ! J=J(r)e*", etc. For linear media this is not
methods see Ref. 16, and for a generalization to surfaced restriction. , .

with non-Gaussian roughness and to graded interfaces of ar- From Maxwell's equations
bitrary profile see Ref. 17. In these treatmefRef. 14 is an
exception the x rays are treated as scalar waves. One ex- VXE=iKB and VXH=—iKD + 4_7ij (1)
pects this approximation to hold at grazing incidence but at c

higher incidence angle¢e.g., for soft x rays its validity
becomes increasingly questionable. Using a modified first/
Born approximation, Dietrich and Had8eook the vector

hereK=w/c, one easily obtains the following identity:

character of the x rays into account but they point out that V. (ExH,—ExH)= 4_77(@ J-E.3)

the validity of their approximation is not in general easy to ¢ c ¢ o

assess and they restrict themselves to studying special inter- . )

face profiles. which, on integrating over a large volunvebounded by the

In Sec. IV we study this problem using a different ap-SurfaceS can be rewritten as
proximation; we useét7he ART to develop approximations of 4
the Nevot-Croce type' There is, of course, a trivial polar- 20 B s Y. 43— _Wf 2 3 23
ization dependence that is already described by Fresnel for- L(EXHC EcxH)-ds c V(EC I=E-Jo)dv. (2)
mulas for the reflectivity of the ideal flat step surface. The
question we address here is whether the static Debye-Walldhis expression simplifies if one deals with point sources.
factor shows any additional dependence on polarization. Thgor example, consider oscillating point dipolﬁgg_i“’t and

final result is remarkably simple: the static Debye-WaIIerﬁCefiwt, located ar, andr,, respectively. The current den-
factor for the specularly reflected vector waves is the same

. T . . "_ i g "_ g _|(L)t =4 . .
for both polarizations and coincides with that for scalars'ty‘] Is given byJ=—iwp,5(r —ro)e andJ; is given

waves. Finally, some brief concluding remarks are collectecs)y an a_nalogous expression. Furth(_ar simplification i
in Sec. V. achieved if one assumes that the surf&ds so remote that

the surface integral is negligibly smafithen

Il. RECIPROCITY THEOREM AND ITS ASYMPTOTIC Ec(ro) Po=E(rc)- Pe- 3

FORM This is the usual form of the reciprocity theorem; it says that

We wish to calculate the asymptotic radiation fielland  if we know E.. at the location o, we can calculat& at the

H generated by a prescribed currélt,r) located near or location of p.. This elegant result takes us a long way to-
within a linear medium, ward a final answer foE, but the remaining problem of
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calculatinglic, that is, the calculation of how the spherical  The choice of the connecting ﬁel:?jC is dictated purely by

wave generated b&c is scattered by the medium, can still be convenience. A particularly good choice fég is the super-
too difficult. position of an incoming plane wave of unit amplitudee

A more useful version of the theorem can be obtainedjse ~ to denote vectors of unit lenyiind wave vectok,,

once one reahzes that the connecting field is merely a t.oq}vith IZC~ Ec: K2 andk.,<0, plus all the waves scattered by
that codifies information about the influence of the nontrlwalthe medium

medium. Above, the field, has been introduced by first o
specifying a sourcel,, but clearly this is an unnecessary E.(r)=ee e "+E(r). (8)
additional complication. In fact, since the most conveannt

is that which results in the simpleéC it is best to focus
attention directly on the field rather than its source. Thus wi

movejc outside the surfac&, to infinity [see Fig. 1b)] so f d2k
aa

On S, , the scattered fieléé is a superposition of outgoing
éalane waves and is given also in a form analogous taBg.

> -

that throughout the volum¥ the connecting fielcE, is a Ec(r)=
pure radiation field. Furthermore, let the surf&itself be so

distant that orS itself both E and E,, are vacuumradiation ~ with k' -r=K| -r, +k.z, andk,=+KZ—k/2.

Bk, ©

’
L K—n =/
)

z

fields. Then Now we are ready to calculate the surface integral on the
left-hand side of Eq(4). Substituting Eq(8) into Eq.(4) the
- - - - . AmiK L . ; i
f[Ex(VXE )—E.X(VXE)]-ds= j E .Jdv integral overS, separates into two terms, one due to the
Cc Cc Cc . ~
S incoming plane wavece'k ‘", and the other due to the scat-

(4) tered Waveéé(F). The first term is
At this point it is not yet clear that this form of the reciproc-
ity theorem is simpler than Eq3) but one remarkable fea-

ture can already be seen: E@) relates the fieldE at a
distant surfaceSto its source] within a nontrivial medium (10)
withouthaving to calculaté in the vicinity of J. The “con-  and substituting Eq7) its evaluation is straightforward. The
nection” between the distant radiation fiegfdand its source integral overdxdy yields (277)26(IZl + IZM). Sincek?= k§

J is achieved through the much simplée., hopefully cal-  =K?, k¢, <0, andk,>0 this implies that the plane waves
culable “connecting” field E superposed in Eq7) yield a vanishing contribution except

To bring eq.(4) into a form ‘that is manifestly simpler than Whenk=—k;. Thus
Eq. (3) the surfaceSis chosen as a cube with edges of length -
L—oe. In Fig. 1(b) the upper face, defined by a constant I = —2iKeg E(—ko). (11)
coordinatez=z, , has been singled out & , the remain-

ing seven faces are denot&d

On the upper fac&, we write the fieldE as a superpo- . L, .
sition of outgoing plane waves of wave vectorsatisfying l= S+dxdyez-[E><(V>< Eo)—EX(VXE)], (12)
k-k=w?/c?=K? andk,>0,

= f dxdye [EX (iKeX &) — 8,X (VX E)]eeT,
S;

The contribution of the scattered waveg(r),

is calculated in a similar way. Substitute E¢#. and(9) and
o d3k Y integrate overdxdy to obtain a delta function.aThis Q!imi—
sz>0(277)32775(k—K)E(k)e ; (5 nates all Fourier components except those Viith= — K. .
o Sincek?=k'%=K?2, and bothk, ,k;,>0, this impliesk,= k,
where, in a self-explanatory notatidk,r =k, -r, +k,z, . It >0. Thus
is here, by the very act of writin& in this form, that the

asymptotic limit of discarding near fields is being taken. For B a2k K2 L. L L,
z<z. additional terms describing the near fields should be =] (2w _,ZeZ‘{E(k)X['k XEc(k)]
included. K,
The integral ovedk, is most easily done using o) . L.
—Ec(k)X[IkXE(K)]}, (13
K - =/ r~
o(k—K)= k—[5(kz— VKZ—K?) = 8(k,+ VK2 —K?)]. where k=-—k +2k,e,. Further manipulation using
‘ 6) K -EdK)=Kk-E(K)=0 givese,-{---}=0, so that
The result is 1,=0. (14)
- - d*k, K. Rekr According to Eqs(11) and(14), the only contributions to
E(n)= (2m)2 k, E( )e (7 the surface integral over the distant plaBg come from

products of outgoing with incoming waves. Products of two
wherek,= + JK?— kf ) outgoing waves yield vanishing contributions. This result ap-
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plies also to the remaining seven faces of the c8b8ince A. Radiation in vacuum

on each of these faces there are only outgoing waves we find | this case the connecting field is just an incoming plane
that the integral oveB makes no contribution to the left- wave E (r) & elkc’ The ART, Eq.(15), gives the radiated
hand side of Eq(4). Incidentally, this argument completes . ¢ c®

our previously unfinished deduction of the usual form of the]cleld with polarizatione=e as

reciprocity theorem, Eq(3): if both sources] and J, are o 2wl . o
internal to the surfac& the surface integral in Eq2) van- e-E(k)=— ry J(r)-ee K rdy=— Te-J(k),
ishes because it only involves products of outgoing waves. v (19
Substituting Eq.(11) into Eq. (4) leads us to the main
result of this paper, the asymptotic reciprocity theorem,  so that
C oo 2m L L O
e~E(k)=—?J E.-Jdv. (15) E(k)Z?kX[kXJ(k)]. (20
v
The radiated power, Eq18), is
In words:
The field EK) radiated in a direction kwith a certain dw  K? |k><[k><J(k)]|2 2
polarization eis —2#/c times the “component” of the dQ  8mc '
source {r) “along” a connecting field E(r) with incoming 55 expectedFor radiation by a point dipole just substitute
wave vector k= —k and polarization g=e. j(lZ) - ich).]
Typically one is interested in the intensity radiated into a
solid angled(; since the amplitudéE(k) that appears in B. Bragg diffraction

Egs.(7) and(15) is not quite the Fourier transform &f(r) it
may be useful to derive an explicit expression dv/d() .
The total power radiated through the plaBe is given by
the flux of the time-averaged Poynting vectom/8(7r)Re[I§
XB*],

Consider a crystal described by its dielectric susceptibility
x(r),*° which for x rays is quite smaltypically about 10°
or less. An incident plane wave&, e*a'" induces a current

j(F)=—iw5(F)=%X(r)E ekt (22)

c A d
W:f d?x, 5Re[E><B*]-eZ=J dQ3a- (16 which radiates. The connecting field needed to calculate this
radiation is a simple incoming plane Wa\t‘eo(r) eC 'k ’

Using Eq.(7) and d?k, =k, dk, d¢=Kk,dQ (where ¢ is  and the ART, Eq(15), gives the radiated field as
the usual azimuthal angle about thexis) we get

- - i~ .~ - I
E(k)=—zk><(k><Eo)X(k—ko). (23
B d?k, K. . . =
T8 (2)2 K, -E*(k), (17 The scattered field is proportional to the Fourier transform of
the susceptibility of the medium; for a periodic medium this
so that is Bragg diffraction.
dw ¢ 2 C. Radiation in the vicinity of a reflecting surface
40 " 8412, E(K-E*(K). (18 Consider a currend,(r) located within a uniform me-

dium with dielectric susceptibilityy, occupying the region

In the next section we offer a few illustrative examples of thez<0 (see Fig. 2 To calculate the radiation in the directi@n
ART in action. with polarizatione we choose as connecting field an incom-

ing plane wave with wave vectd,= —k and unit amplitude

lll. SOME SIMPLE EXAMPLES e.=e plus the corresponding reflected and transmitted

. . ) waves,
The ART, Eq.(15), holds for an arbitrary linear medium.

In particular, it holds if the medium is vacuum. Our first o e T+ g  ekert, for z>0

trivial example is the radiation by a prescribed current in Edr)=1_. . - ) (24)
vacuum. Next, to show that the ART can be used to study ge'ket for z<0
scattering problems we deal with another equally trivial ex- . .
ample, the kinematical theory of diffraction by crystals. The 1€ various wave vectors are given by

third example, the radiation by currents located near a dielec- . - - .

tric boundary, is also straightforward. What is remarkable ke=—K coste,—qe,= —Kk, (25
here is the ease with which the results are obtained compared

to conventional methods® ke,=—K cosfe,+qe,, (26)
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FIG. 3. The problem of scattering by a rough surface can be
tackled using the ART by adding a fictitious overlay®y.

.~ . [2miK(p-ee 9%+ p-e,rel%) if z,>0
e-E(k)= A — .
2miKp-eqtse™ 9% if z,<0.
(33
The power radiated with polarizatice) Eq. (18), is
FIG. 2. The connecting field for radiation in the presence of a q o . 2
reflecting medium includes reflected and transmitted waves. Here dW | ¢ . . €cr'P gz
> —_— | — . —_— >
the sourcel;, is shown within the mediumz<0). dQ 8’7TK (e-p)7||1+ g € for z,>0,
(34)
kei= —K cosfe,—qe,, 27 and
where K=w/c, and the normal components andaare Ao 2
given by aw_ iK“(é D)2 B R
do xR TS P>
gq=Ksing and q=K(sir? 6+ yo) Y2 (28) (35)

_ - R ) In these two expressions we can recognize the first fditor
The amphtuqle$Cr and e, of the reﬂecteq and transmitted square bracketsas the power radiated by a dipole in
waves are given by the Fresnel expressions vacuum. The second factor accounts for the presence of the
dielectric medium.

q—0Q €€t

Eor=l€e, Whererg=——=—"—"" (29)
gq+0 e.-eg IV. SPECULAR REFLECTION OF POLARIZED X RAYS
and In this section ideas from the three previous examples are
combined to study two similar and considerably more in-
volved scattering problems, the specular reflection of polar-
- - 29 1 ; :
£o=ter, Where tg=——=—— (30) ized x rays by a rough surface and by graded interfaces. We
g+d €€ show that within approximations of the Nevot-Croce type,

grading and roughness affect the specular reflectivity in a
(e., ande; are unit vectors describing the polarization of the manner that is independent of the polarization of the incident

specular reflected and transmitted waves radiation.
Then for a sourcd;,(r) located within the medium, the
ART, Eq. (15), gives the radiated field as A. Reflection by rough surfaces
o o The dielectric susceptibility(F) that describes the rough
e-E(k)=— — jin(r*).gcteikcrfdv_ (3D surface from which we wish to scatter x rays is given by
C Jz<o
o 0 for z>¢(x,y)
On the other hand, had the soukg,(r) been located out- x(X,y,2)= for z<Z(x.y)’ (36)
side the dielectric mediunz0) the corresponding radiated Xo 2
field would be where the height(x,y), is a Gaussian random variable with
zero mean{{)=0, and variancé;?)=c? (see Fig. 3.
& E(IZ)= _ ZTWJ j’out(r")'(éceilch_i_ Ecre”ECf'F)dv. To apply the ART it is convenient to rewrit,e(F) as
z>0
(32 X(1)=xs(F)+ 8x(r), (37
For an oscillating dipole on the axis, J(1)=—iwps(r  wherey(r) represents a medium with an ideally flat surface

—27,€,), Egs.(31) and(32) give at z,,
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- 0 for z>z, 5. 55 (k) = Jd Sy (DED)- i r 49
= e - rE(r g'fet
D=1 for 22z, (39 e v X(NE() &g
and Sx(r) represents the roughness. where the connecting field is precisely as in E@Hl)—(30)

Let éoeikt)" be the incident field. The total scattered field except for phase shifts due to the reflecting surface being at

E(F) includes the Wavés(F) specularly reflected by the step
Xs(r) plus wavesse(r) scattered bysx(r), cor=€ 2%%r g, and g,=€'0" Vot e, . (47)

e(r)=eg(r)+de(r). (39 The reason behind the somewhat surprising choicegor
will now become clear: slightly above,, in vacuum, the

The first term on the right is exact field is

>N A —2iqzgaik, T e e ..
es(M) =€ e e (40 E(r)=epe* o +e(r)=epe 0" +e4(r)+ de(r), (48)
where but slightly belowz, and, in fact, over all of the extension
q-q &8, occupied bysy(r), we are also in vacuufsx(r) and y«(r)

ta6.6 (41) cancel each oth¢rand thereforeé(F) is given by the same
474 o & expression(48). The last termds(r), given by Eq.(42),

(&, andé, are unit vectors describing the polarization of theincludes some weak diffusely scattered and evanescent

specular reflected and transmitted wavéhe second con- waves 5sd(r) Our approximation consists of neglecting

tribution in Eq. (39), the field 8s(r) includes a specular them. Therefore
component plus diffusely scattered and evanescent waves,

o E(r)~eeko +ré, ek, (49
Se(r) = Sg,e,e%r "+ Se4(r). (42) _ . .
where the specular reflections py(r) andx(r) have been
Using Eq.(7) this may be written as combined into the single, and still unknown, reflection coef-
ficientr,
5§(F)=f K R se (ke i (43) r=ree 29%4 5g (50)
(2m)? k, ’ ° A
Substituting into Eq(46) yields
where
, A iKxo 79 A eE
k, e-de(k)=— 5 j dxdyf dZ eye' o’
S (K )— 2 5e,6,(21)2 5(k —Koy )+ Se4(K). (44 {xy)

. +reelkr ] 5 eiker, (51)
To calculateds(r) we can proceed exactly as in the previous .
section(lll C): 8(r) is the field radiated by a curread(r) From now on we focus our attention on the specularly re-

in the presence of the mediug(r). The current, flected component; lee=e.=e, €;=€y, k=k=—k..
Substituting Eqg.(44) into the left-hand side(lhs), using

I (2m)?8(k, —ko,)=(2m)?5(0)= fdxdy we get
83(F)= = ox(NE(D), (45)

R lhs= ﬂagr(zn)Za(O): ﬂ(r—rse‘z“‘zo)f dxdy.
originates in the polarization of the roughne®g(r) by the K K
total electric fieldE(r) due to the incident and all scattered (52)
waves, including those generated by the roughness itselfthis shows that the unknown reflection coefficiemte want
Thus the challenge here is that the fi#dr) is itself un-  to calculate appears in both the left and the right-hand sides

known; an approximation for it must be obtained as part ofof Eq.(51), as part of the radiated field and also as part of the
our solution. field that induces the source; E@51) permits a self-

We can exploit the arbitrariness in the separationy@f) consk:ste.:nt cal<|:u|ati%n af. He riahhand side of _
into y<(F) plus Sx(f) to suggest a self-consistent approxi- . 1N Integral ovedz in the right-hand side o Ed5D) is

) - . i elementary and the remaining integral owxdy is per-
mation forE. Suppose we choosg positive and consider-

formed using the identity
ably larger than the roughness (see Fig. 3 Then Sx(r)
represents a fictitious overlayer that extends well into the

. > . > . dxdyefiQ{(va)
vacuum; the sign obx(r) is opposite to that of¢(r) and in
the vicinity of z, they completely cancel out. The fiefik (k)
in a directionk with polarizatione is given by Eq.(31), j dxdy

=(e Q%)= e~ Q%2 (53)



PRB 62 ASYMPTOTIC FORM OF THE RECIPROCITY THEOREM . .. 3645

where ¢ is a Gaussian random variable with zero mean,
(£)=0, and variancé{?)=o?. The right-hand sidérhs) of
Eqg. (51) becomes

overlayer Sy
7

th —

fd d ){ emiaraz_ g=(a+a?e?2)

er
-

q-d FIG. 4. The problem of reflection by a graded surface can be
which can be further rewritten by substituting, as given by  tackled using the ART by adding a fictitious overlay@g. The
Eq. (47), and uSingi]z—qZIKz)(O, and rlatc)r(led region shows the transition region fraig=0 to Jdyx
= Xo-

S i@z g (a-0)% 2/2]] (54)

éo'éct écr'éct ér'ét ér'éct > > R
~— === === and ——=1. (59 Se(r)=ds,ee*r ", (60)
e- ect e- ect eo‘ et e- ect

Finally, equating Eq(52) to Eq.(54) yields a self-consistent and the Foungr expan§|on, E@3), and transforrrfs»(k.),
approximation tar, Eq. (44), remain otherwise unchanged. Once agak(r) is

radiated by a current

r= a-a q&-é Ut e 2qa0” e‘zqq" (56)
q+q eo et
This coincides exactly with the Nevot-Croce result for the
polarizatione,=e,= e, for which the ratioey- e,/ €,-¢, is

55(?):%:5)(@)@6), (61)

where the field?(F) includes the incident and the unknown
unity, and provides the correct generalization to all polarlzareerCted WavesE(r) must be self-consistently obtained as

npart of the solution. Then the ART, in the form of E§1),
tions. According to this approximation the specular reflectio

coefficientr has no polarization dependence beyond that al9iVes the fieldse (k) in a directionk with polarizatione as
ready implicit in the reflection coefficiemt, for the ideal flat

step surface; the static Debye-Waller factor expgao?) is e- de(k)= —f dv Sx(2)E(r)- scte'kC‘ r (62
polarization independent. Notice that any possible depen-
dence on the arbitrary choice f has cancelled out. with the same connecting field given back in E47).
The approximation we use fcﬁ'(F) is the same as in last
B. Reflection by smoothly graded surfaces section. The arbitrariness af can be exploited by choosing

The problem of scattering by a smoothly graded interfacd! 'arge¢ enough that the overlayer extends well into the
is similar and somewhat simpler. Here the susceptibilityvacuum. Neag, the overlayer and the sharp steg(r) can-
x(2) depends only on the normal coordinatand not on the ~ cel each other out; slightly abow, in vacuum, the field is
transverse coordinatesandy. This implies that the tangen- e A P
tial component of momentum is conserved in the scattering; E(r)=eqe o +reer, (63

there are no diffuse waves, there is only specular scatteringyhere r is the unknown reflection coefficient we want to
As before, it is convenient to separgéz) into calculate,

x(2)= xs(2) + 6x(2), (57 r=ree 9%+ 8¢, . (64)

where x5(z) represents an ideally flat surfacezat Slightly belowz, and over most of the extension occupied
by 6x(z) we are also in vacuungprovided the bulk to
(58 vacuum transition is not too gradyigdnd we approximate

xo for z<z, E(r) by the same expression, E§3). Substituting into Eq.
and 8x(2) is an overlayefsee Fig. 4describing the smooth (62 yields an equation for,

transition from bulk to vacuum. q

_ Let e,e™®0" be the incident field. The total scattered field E(r—rse*ZiqZO)(ZTr)zé(ki—km)

e(r), Eq.(39),

0 for z>z,
Xs(2)=

. . iK [z A iReT
e(r)=s4(r)+de(r), (59 :7£de5)‘(2)[ dxdyf eoe™

includes the wave(r) reflected by the steps(z), Eq. (40), ra el g gert 65
plus Wavesag(F) scattered by the overlayety(z). While
diffusely scattered waves are not presendarr), faint eva- The integral overdxdy yields a delta function, (%) 5(k

nescent waves could be; these are weak near field effects antKo.), and we can substitute=e.= ¢, e;=eg, k=K
we neglect them. Thus = —k . The integral over is conveniently expressed as
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2 _i0z. Xo| x'(Q)
dzdy(z)e Q*=""|e Q%0+ Z——| 66
fﬁw X(2) 0 o (66)
where ' (Q) is the Fourier transform afly(z)/dz,
+o dy(z) .
x'(Q)=f dz );(Z)e*"?z. 67)
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x'(ata) _q-gsin(a+q)ol2]
x'(q—q) q+qsin(q—q)o/2]

(74)

The reliability of these approximations was studied in
Ref. 17 in the case of scalar waves. There is no reason to
expect any difference from the conclusions reached there: the
static Debye-Waller in Eq68) provides a remarkably good

Equation(66) is proved by integrating the left-hand side by approximation for the intensities reflected by interfaces of

parts, usingdx(zp)~ — xo. andddx(z)/dz=dx(z)/dz. Us-
ing g°—q?=K?y, and the identities in Eq(55) the final

result is

r=rsw. (68)
x'(q—q)

arbitrary grading profile even for transition regions that are
quite wide ( as large as several nanomejeihe phase of
the reflected waves is, however, more sensitive; ©®8)
provides a good approximation for more abrupt transitions
(o of the order of 1 nm or legs

V. CONCLUSION

Notice that any possible dependence on the arbitrary choice The main result of this work Eq15), is an asymptotic

of z4 has canceled out.

This coincides exactly with the scalar wave reSuénd

form of the reciprocity theorem which can be used as the
basis for a practical method for calculations. The theorem

provides the correct generalization to all polarizations.giates that the field radiated in the presence of a nontrivial
Within these approximations the specular reflection Coeﬁ"medium, in a certain direction and with a given polarization,

cientr has no polarization dependence beyond that already; 5 gyjitable “component” of the radiating source. This com-
implicit in the reflection coefficient for the ideal flat step  honent is to be extracted by introducing an auxiliary connect-
surface; the static Debye-Waller factor is polarization inde-ng field which contains the necessary information about the

pendent.
To conclude we mention some illustrative examples:
(i) The error-function profile,

mToTJ —*

2
X z X
X(Z): > 0 ZJ' dXEXp—(F), (69)
gives

X' (q+q) ze,zqaaz

— , (70
x'(q—q)

medium. The practical advantage of the method lies in the
simplifications achieved by systematically avoiding unneces-
sary calculations; it thereby allows one to tackle problems of
increasing complexity.

While the ART method is most ideally suited to studying
the radiation by a prescribed current it can also be used to
study scattering problems provided one knows the currents
induced in the scatterer. When it is not possible to calculate
these currents exactly one must resort to approximations.
Thus, while the ART itself is exact, its implementation may
require that the ART be used in conjunction with any of the
usual approximation schemés.g., the Born approximation,
the distorted wave Born approximation, various partial re-

the same factor obtained in the previous section for a Gaussummations of perturbation expansions, or a self-consistent
ian rough surface. This is as expected, the error function ischeme of the Nevot-Croce typén fact, the simplifications

the averaged profile for the Gaussian rough surface.
(i) The Epsteinor Fermi distribution profile !’

X0
2)=——, 71
x(2) T (71)
gives
X' (@+q) q+qsinf{mo(q—q)]
. == E —_ - (72)
x'(q—q) q—qsinfwo(q+q)]
(iii) The triangular profile,
Xo for z<—o0/2
x(2)=4 xo(1—2zlo) for |[z]<ol2, (73
0 for z>a/2

gives

inherent in the ART methotkay, in focusing attention away
from near fieldg can enhance the power of these approxima-
tion schemes by making it easier to carry them to comple-
tion.

In forthcoming papers we will further explore the appli-
cation of the ART to the study of the dynamical diffraction
of radiation generated by sources within a crystal, the so-
called Kossel lines. Even this well explored topic has not
been exhausted. Of particular interest are situations where
the Bragg angle lies close /2 and the Kossel cones de-
generate into single bearffsand situations where the source
location is revealed by the oscillatory “Pendelimg” struc-
ture of the diffraction patterf Other applications will in-
clude a theory of thermal diffuse scattering under conditions
of dynamical diffractior??

ACKNOWLEDGMENTS

| am indebted to P. Zambianchi and E. Sutter for valuable
discussions.



PRB 62

1H. A. Lorentz, Proc. R. Acad. Sci. Amsterda8n401 (1905.

2See, e.g., J. M. Blatt and V. F. Weisskopheoretical Nuclear
Physics(Dover, New York, 1978 E. MerzbacherQuantum
Mechanics(Wiley, New York, 1998.

3D. E. Bilhorn, L. L. Foldy, R. M. Thaler, and W. Tobocman, J.
Math. Phys5, 435(1964).

4L. Landau, E. M. Lifshitz, and L. P. PitaevskE|lectrodynamics
of Continuous MedidButterworth-Heinemann, Oxford, 1984

5J. A. Kong, Electromagnetic Wave TheoiyViley, New York,
1990.

M. von Laue, Ann. Phys(Leipzig) 23, 705(1935.

"W. Kossel, V. Loeck, and H. Voges, Z. Phy, 139(1935.

8M. Tegze and G. Feigel, Europhys. Lets, 41 (1991); Nature
(London 380 49 (1996; T. Gog, D. Bahr, and G. Materlik,
Phys. Rev. B51, 6761(1995; T. Gog, P. M. Len, G. Materlik,

ASYMPTOTIC FORM OF THE RECIPROCITY THEOREM . ..

3647

MA, 1987); J. Lekner,Theory of Reflection of Electromagnetic
and Particle WavesMartinez Nijof, Dordrecht, 1987

12D, G. Stearns, J. Appl. Phy85, 491(1989; 71, 4286(1992; A.

V. Vinogradov,'N. N. Zorev, I. V. Kozhevnikov, and |. G.
Yakushkin, Zh. E&sp. Teor. Fiz.89, 2124 (1985 [Sov. Phys.
JETP62, 1225(1985] 67, 1631(1988; W. Weber and B. Len-
geler, Phys. Rev. Bl6, R7953(1992; J. C. Kimball and D.
Bittel, J. Appl. Phys.74, 887 (1993; A. V. Vinogradov, N. N.
Zorev, |. V. Kozhevnikov, S. I. Sagitov, and A. G. Turyanskii,
Zh. Eksp. Teor. Fiz94, 203(1988 [Sov. Phys. JETB7, 1631
(1988].

133, K. Sinha, E. B. Sirota, and S. Garoff, Phys. Rev3® 2297
(1988; V. Holy, J. Kubena, I. Ohlidal, K. Lischka, and W.
Plotz, ibid. 47, 15 896(1993.

143, Dietrich and A. Haase, Phys. R&80, 1 (1995.

D. Bahr, C. S. Fadley, and C. Sanchez-Hanlee, Phys. Rev. Letf?L. Nevot and P. Croce, Rev. Phys. Apfb, 761 (1980.

76, 3132(1996; P. M. Len, T. Gog, C. S. Fadley, and G. Mater-
lik, Phys. Rev. B55, R3323(1997).

°J. A. StrattonElectromagnetic TheorgMcGraw-Hill, New York,
1941).

10\, C. Chew,Waves and Fields in Inhomogeneous Me@ian
Nostrand Reinhold, New York, 1990J. R. Wait, Electromag-
netic Waves in Stratified MedidlEEE-Oxford, New York,
1996.

11p, Beckmann and A. SpizzichinBhe Scattering of Electromag-
netic Waves from Rough Surfacé&srtech House, Norwood,

18R. Pynn, Phys. Rev. B5, 602(1992; D. K. G. de Boerjbid. 49,
5817 (1994).

17A. Caticha, Phys. Rev. B2, 9214(1995.

18This is a nontrivial statement; its justification is given in the para-
graph following Eq.(14).

1970 avoid factors of 4r elsewhere it is usual in x-ray optics to
define the susceptibility by #P= yE.

20 p. Zambianchi and A. Catich@npublisheal

21E. Sutter and A. Catichaunpublishedl

22p_ zambianchi and A. Catich@npublishedl



