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Asymptotic form of the reciprocity theorem with applications in x-ray scattering
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The emission of electromagnetic waves from a source within or near a nontrivial medium~with or without
boundaries, crystalline or amorphous, with inhomogeneities, absorption, and so on! is sometimes studied using
the reciprocity principle which is a variation of the method of Green’s functions. If one is only interested in the
asymptotic radiation fields the generality of these methods may actually be a shortcoming: obtaining expres-
sions valid for the uninteresting near fields is not just a wasted effort but may be prohibitively difficult. In this
work we obtain a modified form of the reciprocity principle which gives the asymptotic radiation field directly.
The method may also be used to study scattering problems. We give a few pedagogical examples and then, as
more challenging applications, we calculate the specular reflection of x rays by a rough surface and by a
smoothly graded surface taking polarization effects into account. In conventional treatments of reflection, x
rays are treated as scalar waves; polarization effects are neglected. This is a good approximation at grazing
incidence but becomes increasingly questionable for soft x rays and UV at higher incidence angles.
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I. INTRODUCTION

The principle of reciprocity can be traced to Helmholtz
the field of acoustics. It states that, everything else be
equal, the amplitude of a wave at a pointA due to a source a
point B is equal to the amplitude atB due to a source atA.
With its extension to electromagnetic waves by Lorentz1 and
later to quantum-mechanical amplitudes,2 the applicability to
all sorts of fields was made manifest. Nowadays the princ
is regarded as a symmetry of Green’s functions when
source point and the field point are reversed. This symm
is actually quite general. As shown in Ref. 3 the conditio
of time-reversal invariance and hermiticity of the Ham
tonian are sufficient to guarantee reciprocity, but they are
necessary; in fact, reciprocity holds even in the presenc
complex absorbing potentials. In the case of electromagn
waves the only requirement is that the material medium
linear and described by symmetric permittivity and perm
ability tensors.4,5 This excludes plasmas and ferrite media
the presence of magnetic fields.

In the field of x-ray optics the principle was used by v
Laue6 to explain the diffraction patterns generated by sour
within the crystal, the so-called Kossel lines.7 More recently
there has been a widespread recognition that these inte
ence patterns contain information not just about intensi
but also about phases and can be thought of as hologra
records from which real space images of the location of
internal sources can be reconstructed. Thus under the mo
name of ‘‘x-ray holography’’ there has been a considera
revival of interest in this subject.8

However, powerful as it is, the usual formulation of th
reciprocity principle suffers from a rather serious drawba
it refers to the exchange of source and fieldpoints. As a
consequence, a careful application of the principle requ
one to consider the emission of spherical waves which
crystalline media or even in the mere presence of pl
boundaries, can be surprisingly difficult~recall, e.g., study-
ing the radiation by an antenna in the vicinity of the condu
ing surface of the Earth9 or of layered media10!. Furthermore,
PRB 620163-1829/2000/62~6!/3639~9!/$15.00
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one is typically interested in the asymptotic radiation fie
so the relevant exchange should involve a source pointhere
with a field point atinfinity.

These technical difficulties have not deterred the user
reciprocity from using the principle to make valuable pred
tions, but a high price has been paid. The requi
asymptotic limits are usually takenverballyand no accounts
are given of where and how spherical waves are replaced
plane waves. Such sleights of hand, because skillfully p
formed, have not lead to wrong results, but intensities
predicted only up to undetermined proportionality facto
and this excludes applications to classes of problems wh
absolute intensities are needed. Moreover one is left with
uneasy feeling that the validity of the predictions is justifi
mostly on the purely pragmatic grounds that for the probl
at hand they seem to work which, again, limits applicatio
to problems that are already familiar.

The main goal of this paper~Sec. II! is to obtain a modi-
fied form of the reciprocity theorem that gives the asympto
radiation fields directly and that accommodates plane wa
and both point and extended sources in a natural way.
markably, the resulting expressions, which include all
relevant proportionality factors and yield absolute, not ju
relative, intensities, are very simple.

For many problems the asymptotic reciprocity theore
~ART! obtained here represents an improvement not o
over the usual form of the reciprocity theorem but also o
the method of Green’s functions. Computing the Gree
function requires solving a boundary value problems
spherical waves in the presence of plane boundaries an
periodic media; this may well be an intractably difficu
problem. Furthermore, a considerable effort is wasted by
obtaining both near fields and far fields and then discard
the uninteresting near fields. The ART is a shortcut that d
cards the near fields before, rather than after, they are c
puted.

To illustrate the power of the method we consider seve
applications. The first three~Sec. III! are brief pedagogica
examples of increasing complexity. First the ART is used
3639 ©2000 The American Physical Society
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3640 PRB 62ARIEL CATICHA
calculate the fields radiated by an arbitrary prescribed so
in vacuum; next as an application to scattering problems
reproduce the kinematical theory of diffraction by crysta
The third example, the radiation by a current located nea
plane dielectric boundary, is straightforward when the AR
is used but not if other methods are used. One must em
size that what is different in these examples are not the
sults, but the method; the first two are standard textb
material, a special case of the third is treated in Ref. 9. A
more involved application of the ART, in Sec. IV we com
bine ideas from the three previous examples to study
other related scattering problems, the specular reflectio
polarized x rays by a rough surface and by a continuou
graded surface.

The technique of the grazing-incidence reflection of
rays has received considerable attention11–17 from both the
theoretical and the experimental sides as a means to o
structural information about surfaces. The effect of surfa
roughness on the reflection is taken into account by mu
plying the Fresnel reflectivity of an ideal sharp and plan
surface by a ‘‘static Debye-Waller’’ factor. The problem is
calculate this corrective factor. The calculation has been
ried out in several different approximations. The Rayleigh
Born approximation11 is satisfactory for rough surfaces wit
long lateral correlation lengths but for x rays the situations
interest generally involve short lateral correlation lengt
Here other approximations such as the distorted-wave B
approximation13,14 and the Nevot-Croce approximation15 are
used. For variations and interpolations between these
methods see Ref. 16, and for a generalization to surfa
with non-Gaussian roughness and to graded interfaces o
bitrary profile see Ref. 17. In these treatments~Ref. 14 is an
exception! the x rays are treated as scalar waves. One
pects this approximation to hold at grazing incidence bu
higher incidence angles~e.g., for soft x rays! its validity
becomes increasingly questionable. Using a modified
Born approximation, Dietrich and Haase14 took the vector
character of the x rays into account but they point out t
the validity of their approximation is not in general easy
assess and they restrict themselves to studying special i
face profiles.

In Sec. IV we study this problem using a different a
proximation; we use the ART to develop approximations
the Nevot-Croce type.17 There is, of course, a trivial polar
ization dependence that is already described by Fresnel
mulas for the reflectivity of the ideal flat step surface. T
question we address here is whether the static Debye-W
factor shows any additional dependence on polarization.
final result is remarkably simple: the static Debye-Wal
factor for the specularly reflected vector waves is the sa
for both polarizations and coincides with that for sca
waves. Finally, some brief concluding remarks are collec
in Sec. V.

II. RECIPROCITY THEOREM AND ITS ASYMPTOTIC
FORM

We wish to calculate the asymptotic radiation fieldsEW and
HW generated by a prescribed currentJW (t,rW) located near or
within a linear medium,
ce
e
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Di5« i j Ej and Bi5m i j H j .

We will assume that the tensors« i j (rW) andm i j (rW) are sym-
metric, but otherwise the situation remains quite general,
medium may have an irregular shape, or be inhomogene
crystalline or amorphous, absorbing, dispersive, etc.

As in the usual deduction of the reciprocity theorem~see,
e.g., Ref. 4!, we consider a second set of fieldsEW c andHW c ,
which we will call the ‘‘connecting fields,’’ generated by
sourceJW c @see Fig. 1~a!#. For simplicity we will also assume
that all fields and sources are monochromatic,EW

5EW (rW)e2 ivt, JW5JW (rW)e2 ivt, etc. For linear media this is no
a restriction.

From Maxwell’s equations

¹3EW 5 iKBW and ¹3HW 52 iKDW 1
4p

c
JW , ~1!

whereK[v/c, one easily obtains the following identity:

¹•~EW 3HW c2EW c3HW !5
4p

c
~EW c•JW2EW •JW c!,

which, on integrating over a large volumeV bounded by the
surfaceS, can be rewritten as

E
S
~EW 3HW c2EW c3HW !•dsW5

4p

c E
V
~EW c•JW2EW •JW c!dv. ~2!

This expression simplifies if one deals with point sourc
For example, consider oscillating point dipolespW oe2 ivt and
pW ce

2 ivt, located atrWo andrWc , respectively. The current den
sity JW is given byJW52 ivpW od(rW2rWo)e2 ivt andJW c is given
by an analogous expression. Further simplification
achieved if one assumes that the surfaceS is so remote that
the surface integral is negligibly small,18 then

EW c~rWo!•pW o5EW ~rWc!•pW c. ~3!

This is the usual form of the reciprocity theorem; it says th
if we know EW c at the location ofpW o we can calculateEW at the
location of pW c . This elegant result takes us a long way t
ward a final answer forEW , but the remaining problem o

FIG. 1. ~a! In the usual form of the reciprocity theorem th
surface S encloses the medium, and all sources.~b! For the

asymptotic form of the reciprocity theorem the connecting fieldEW c

is a radiation field, its source lies outside the surfaceS5S11S8.
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calculatingEW c , that is, the calculation of how the spheric
wave generated bypW c is scattered by the medium, can still b
too difficult.

A more useful version of the theorem can be obtain
once one realizes that the connecting field is merely a
that codifies information about the influence of the nontriv
medium. Above, the fieldEW c has been introduced by firs
specifying a sourceJW c , but clearly this is an unnecessa
additional complication. In fact, since the most convenientJW c

is that which results in the simplestEW c it is best to focus
attention directly on the field rather than its source. Thus
move JW c outside the surfaceS, to infinity @see Fig. 1~b!# so
that throughout the volumeV the connecting fieldEW c is a
pure radiation field. Furthermore, let the surfaceS itself be so
distant that onS itself both EW and EW c are vacuumradiation
fields. Then

E
S
@EW 3~¹3EW c!2EW c3~¹3EW !#•dsW5

4p iK

c E
V
EW c•JWdv.

~4!

At this point it is not yet clear that this form of the recipro
ity theorem is simpler than Eq.~3! but one remarkable fea
ture can already be seen: Eq.~4! relates the fieldEW at a
distant surfaceS to its sourceJW within a nontrivial medium
withouthaving to calculateEW in the vicinity of JW . The ‘‘con-
nection’’ between the distant radiation fieldEW and its source
JW is achieved through the much simpler~i.e., hopefully cal-
culable! ‘‘connecting’’ field EW c .

To bring eq.~4! into a form that is manifestly simpler tha
Eq. ~3! the surfaceS is chosen as a cube with edges of leng
L→`. In Fig. 1~b! the upper face, defined by a constanz
coordinate,z5z1 , has been singled out asS1 , the remain-
ing seven faces are denotedS8.

On the upper faceS1 we write the fieldEW as a superpo-
sition of outgoing plane waves of wave vectorkW satisfying
kW•kW5v2/c25K2 andkz.0,

EW ~rW !5E
kz.0

d3k

~2p!3
2pd~k2K !EW ~kW !eikW•rW, ~5!

where, in a self-explanatory notation,kW•rW5kW'•rW'1kzz1 . It
is here, by the very act of writingEW in this form, that the
asymptotic limit of discarding near fields is being taken. F
z!z1 additional terms describing the near fields should
included.

The integral overdkz is most easily done using

d~k2K !5
K

kz
@d~kz2AK22k'

2 !2d~kz1AK22k'
2 !#.

~6!

The result is

EW ~rW !5E d2k'

~2p!2

K

kz
EW ~kW !eikW•rW, ~7!

wherekz51AK22k'
2 .
d
ol
l

e

r
e

The choice of the connecting fieldEW c is dictated purely by
convenience. A particularly good choice forEW c is the super-
position of an incoming plane wave of unit amplitude~we
use ˆ to denote vectors of unit length! and wave vectorkW c ,
with kW c•kW c5K2 andkcz,0, plus all the waves scattered b
the medium,

EW c~rW !5êce
ikWc•rW1EW c

8~rW !. ~8!

On S1 , the scattered fieldEW c
8 is a superposition of outgoing

plane waves and is given also in a form analogous to Eq.~7!,

EW c
8~rW !5E d2k'

8

~2p!2

K

kz
8
EW c

8~kW 8!eikW8
•rW, ~9!

with kW 8
•rW5kW'

8
•rW'1kz

8z1 andkz
851AK22k'8

2.
Now we are ready to calculate the surface integral on

left-hand side of Eq.~4!. Substituting Eq.~8! into Eq.~4! the
integral overS1 separates into two terms, one due to t
incoming plane waveêce

ikWc•rW, and the other due to the sca
tered wavesEW c

8(rW). The first term is

I 15E
S1

dxdyêz•@EW 3~ ikW c3êc!2êc3~¹3EW !#eikWc•rW,

~10!

and substituting Eq.~7! its evaluation is straightforward. Th
integral overdxdy yields (2p)2d(kW'1kW c'). Sincek25kc

2

5K2, kcz,0, andkz.0 this implies that the plane wave
superposed in Eq.~7! yield a vanishing contribution excep
whenkW52kW c . Thus

I 1522iKêc•EW ~2kW c!. ~11!

The contribution of the scattered wavesEW c
8(rW),

I 25E
S1

dxdyêz•@EW 3~¹3EW c
8!2EW c

83~¹3EW !#, ~12!

is calculated in a similar way. Substitute Eqs.~7! and~9! and
integrate overdxdy to obtain a delta function. This elimi
nates all Fourier components except those withkW'52kW'

8 .

Sincek25k825K2, and bothkz ,kz
8.0, this implieskz5 kz

8

.0. Thus

I 25E d2k'
8

~2p!2

K2

kz
82
êz•$EW ~kW !3@ ikW 83EW c

8~kW 8!#

2EW c
8~kW 8!3@ ikW3EW ~kW !#%, ~13!

where kW52kW 812kz
8êz . Further manipulation using

kW 8
•EW c

8(kW 8)5kW•EW (kW )50 givesêz•$•••%50, so that

I 250. ~14!

According to Eqs.~11! and~14!, the only contributions to
the surface integral over the distant planeS1 come from
products of outgoing with incoming waves. Products of tw
outgoing waves yield vanishing contributions. This result a
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3642 PRB 62ARIEL CATICHA
plies also to the remaining seven faces of the cubeS. Since
on each of these faces there are only outgoing waves we
that the integral overS8 makes no contribution to the left
hand side of Eq.~4!. Incidentally, this argument complete
our previously unfinished deduction of the usual form of t
reciprocity theorem, Eq.~3!: if both sourcesJW and JW c are
internal to the surfaceS the surface integral in Eq.~2! van-
ishes because it only involves products of outgoing wave

Substituting Eq.~11! into Eq. ~4! leads us to the main
result of this paper, the asymptotic reciprocity theorem,

ê•EW ~kW !52
2p

c E
V
EW c•JWdv. ~15!

In words:
The field EW (kW ) radiated in a direction kW with a certain

polarization ê is 22p/c times the ‘‘component’’ of the

source JW (rW) ‘‘along’’ a connecting field EW c(rW) with incoming

wave vector kW
c52kW and polarization eˆ c5ê.

Typically one is interested in the intensity radiated into
solid angledV; since the amplitudeEW (kW ) that appears in
Eqs.~7! and~15! is not quite the Fourier transform ofEW (rW) it
may be useful to derive an explicit expression fordW/dV .
The total power radiated through the planeS1 is given by
the flux of the time-averaged Poynting vector, (c/8p)Re@EW

3BW * #,

W5E d2x'

c

8p
Re@EW 3BW * #•êz5E dV

dW

dV
. ~16!

Using Eq. ~7! and d2k'5k'dk'df5KkzdV ~where f is
the usual azimuthal angle about thez axis! we get

W5
c

8pE d2k'

~2p!2

K

kz
EW ~kW !•EW * ~kW !, ~17!

so that

dW

dV
5

c

8p S K

2p D 2

EW ~kW !•EW * ~kW !. ~18!

In the next section we offer a few illustrative examples of t
ART in action.

III. SOME SIMPLE EXAMPLES

The ART, Eq.~15!, holds for an arbitrary linear medium
In particular, it holds if the medium is vacuum. Our fir
trivial example is the radiation by a prescribed current
vacuum. Next, to show that the ART can be used to st
scattering problems we deal with another equally trivial e
ample, the kinematical theory of diffraction by crystals. T
third example, the radiation by currents located near a die
tric boundary, is also straightforward. What is remarka
here is the ease with which the results are obtained comp
to conventional methods.9,10
nd

.

y
-

c-
e
ed

A. Radiation in vacuum

In this case the connecting field is just an incoming pla
wave,EW c(rW)5êce

ikWc•rW. The ART, Eq.~15!, gives the radiated
field with polarizationê5êc as

ê•EW ~kW !52
2p

c E
V
JW~rW !•êe2 ikW•rWdv52

2p

c
ê•JW~kW !,

~19!

so that

EW ~kW !5
2p

c
k̂3@ k̂3JW~kW !#. ~20!

The radiated power, Eq.~18!, is

dW

dV
5

K2

8pc
uk̂3@ k̂3JW~kW !#u2, ~21!

as expected.@For radiation by a point dipole just substitu
JW (kW )52 icKpW .#

B. Bragg diffraction

Consider a crystal described by its dielectric susceptibi
x(rW),19 which for x rays is quite small~typically about 1025

or less!. An incident plane waveEW oeikWo•rW induces a current

JW~rW !52 ivPW ~rW !5
2 iv

4p
x~rW !EW oeikWo•rW, ~22!

which radiates. The connecting field needed to calculate
radiation is a simple incoming plane wave,EW c(rW)5êce

ikWc•rW,
and the ART, Eq.~15!, gives the radiated field as

EW ~kW !52
iv

2c
k̂3~ k̂3EW o!x~kW2kWo!. ~23!

The scattered field is proportional to the Fourier transform
the susceptibility of the medium; for a periodic medium th
is Bragg diffraction.

C. Radiation in the vicinity of a reflecting surface

Consider a currentJW in(rW) located within a uniform me-
dium with dielectric susceptibilityx0 occupying the region
z,0 ~see Fig. 2!. To calculate the radiation in the directionkW

with polarizationê we choose as connecting field an incom
ing plane wave with wave vectorkW c52kW and unit amplitude
êc5ê plus the corresponding reflected and transmit
waves,

EW c~rW !5H êce
ikWc•rW1«W cre

ikWcr•rW, for z.0

«W cte
ikWct•rW, for z,0

. ~24!

The various wave vectors are given by

kW c52K cosuêx2qêz52kW , ~25!

kW cr52K cosuêx1qêz , ~26!
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kW ct52K cosuêx2q̄êz , ~27!

where K5v/c, and the normal componentsq and q̄ are
given by

q5K sinu and q̄5K~sin2 u1x0!1/2. ~28!

The amplitudes«W cr and «W ct of the reflected and transmitte
waves are given by the Fresnel expressions

«W cr5r sêcr , where r s5
q2q̄

q1q̄

êcr•êct

êc•êct

, ~29!

and

«W ct5tsêct , where ts5
2q

q1q̄

1

êc•êct

~30!

(êcr andêct are unit vectors describing the polarization of t
specular reflected and transmitted waves!.

Then for a sourceJW in(rW) located within the medium, the
ART, Eq. ~15!, gives the radiated field as

ê•EW ~kW !52
2p

c E
z,0

JW in~rW !•«W cte
ikWct•rWdv. ~31!

On the other hand, had the sourceJWout(rW) been located out-
side the dielectric medium (z.0) the corresponding radiate
field would be

ê•EW ~kW !52
2p

c E
z.0

JWout~rW !•~ êce
ikWc•rW1«W cre

ikWcr•rW!dv.

~32!

For an oscillating dipole on thez axis, JW (rW)52 ivpW d(rW

2zpêz), Eqs.~31! and ~32! give

FIG. 2. The connecting field for radiation in the presence o
reflecting medium includes reflected and transmitted waves. H

the sourceJW in is shown within the medium (z,0).
ê•EW ~kW !5H 2p iK ~pW •êe2 iqzp1pW •êcrr se
iqzp! if zp.0

2p iKpW •êcttse
2 i q̄zp if zp,0.

~33!

The power radiated with polarizationê, Eq. ~18!, is

dW

dV
5F c

8p
K4~ ê•pW !2GU11

êcr•pW

ê•pW
r se

2iqzpU2

for zp.0,

~34!

and

dW

dV
5F c

8p
K4~ ê•pW !2GU êct•pW

ê•pW
tse

2 i q̄zpU2

for zp,0.

~35!

In these two expressions we can recognize the first facto~in
square brackets! as the power radiated by a dipole
vacuum. The second factor accounts for the presence o
dielectric medium.

IV. SPECULAR REFLECTION OF POLARIZED X RAYS

In this section ideas from the three previous examples
combined to study two similar and considerably more
volved scattering problems, the specular reflection of po
ized x rays by a rough surface and by graded interfaces.
show that within approximations of the Nevot-Croce typ
grading and roughness affect the specular reflectivity i
manner that is independent of the polarization of the incid
radiation.

A. Reflection by rough surfaces

The dielectric susceptibilityx(rW) that describes the roug
surface from which we wish to scatter x rays is given by

x~x,y,z!5H 0 for z.z~x,y!

x0 for z,z~x,y!
, ~36!

where the heightz(x,y), is a Gaussian random variable wit
zero mean,̂ z&50, and variancêz2&5s2 ~see Fig. 3!.

To apply the ART it is convenient to rewritex(rW) as

x~rW !5xs~rW !1dx~rW !, ~37!

wherexs(rW) represents a medium with an ideally flat surfa
at z0,

a
re

FIG. 3. The problem of scattering by a rough surface can
tackled using the ART by adding a fictitious overlayerdx.
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3644 PRB 62ARIEL CATICHA
xs~rW !5H 0 for z.z0

x0 for z,z0
, ~38!

anddx(rW) represents the roughness.
Let ê0eikW0•rW be the incident field. The total scattered fie

«W (rW) includes the wave«W s(rW) specularly reflected by the ste
xs(rW) plus wavesd«W (rW) scattered bydx(rW),

«W ~rW !5«W s~rW !1d«W ~rW !. ~39!

The first term on the right is

«W s~rW !5êr r se
22iqz0eikW r•rW, ~40!

where

r s5
q2q̄

q1q̄

êr•êt

ê0•êt

~41!

(êr and êt are unit vectors describing the polarization of t
specular reflected and transmitted waves!. The second con-
tribution in Eq. ~39!, the field d«W (rW) includes a specula
component plus diffusely scattered and evanescent wav

d«W ~rW !5d« r êre
ikW r•rW1d«W d~rW !. ~42!

Using Eq.~7! this may be written as

d«W ~rW !5E d2k'
8

~2p!2

K

kz
8
d«W ~kW 8!eikW8

•rW, ~43!

where

d«W ~kW 8!5
kz

8

K
d« r êr~2p!2d~kW'

8 2kW0'!1d«W d~kW 8!. ~44!

To calculated«W (rW) we can proceed exactly as in the previo
section~III C !: d«W (rW) is the field radiated by a currentdJW (rW)
in the presence of the mediumxs(rW). The current,

dJW~rW !5
2 iv

4p
dx~rW !EW ~rW !, ~45!

originates in the polarization of the roughnessdx(rW) by the
total electric fieldEW (rW) due to the incident and all scattere
waves, including those generated by the roughness it
Thus the challenge here is that the fieldEW (rW) is itself un-
known; an approximation for it must be obtained as part
our solution.

We can exploit the arbitrariness in the separation ofx(rW)
into xs(rW) plus dx(rW) to suggest a self-consistent approx
mation forEW . Suppose we choosez0 positive and consider
ably larger than the roughnesss ~see Fig. 3!. Then dx(rW)
represents a fictitious overlayer that extends well into
vacuum; the sign ofdx(rW) is opposite to that ofxs(rW) and in
the vicinity ofz0 they completely cancel out. The fieldd«W (kW )
in a directionkW with polarizationê is given by Eq.~31!,
,

lf.

f

e

ê•d«W ~kW !5
iK

2 E dvdx~rW !EW ~rW !•«W cte
ikWct•rW, ~46!

where the connecting field is precisely as in Eqs.~24!–~30!
except for phase shifts due to the reflecting surface bein
z0,

«W cr5e22iqz0r sêcr and «W ct5ei (q̄2q)z0tsêct . ~47!

The reason behind the somewhat surprising choice foz0
will now become clear: slightly abovez0, in vacuum, the
exact field is

EW ~rW !5ê0eikW0•rW1«W ~rW !5ê0eikW0•rW1«W s~rW !1d«W ~rW ! , ~48!

but slightly belowz0 and, in fact, over all of the extensio
occupied bydx(rW), we are also in vacuum@dx(rW) andxs(rW)
cancel each other# and thereforeEW (rW) is given by the same
expression~48!. The last termd«W (rW), given by Eq.~42!,
includes some weak diffusely scattered and evanes
waves d«W d(rW). Our approximation consists of neglectin
them. Therefore

EW ~rW !'ê0eikW0•rW1rêre
ikW r•rW, ~49!

where the specular reflections byxs(rW) anddx(rW) have been
combined into the single, and still unknown, reflection co
ficient r,

r 5r se
22iqz01d« r . ~50!

Substituting into Eq.~46! yields

ê•d«W ~kW !52
iKx0

2 E dxdyE
z(x,y)

z0
dz@ ê0eikW0•rW

1rêre
ikW r•rW#•«W cte

ikWct•rW. ~51!

From now on we focus our attention on the specularly
flected component; letê5êc5êr , êcr5ê0 , kW5kW r52kW c .
Substituting Eq.~44! into the left-hand side~lhs!, using
(2p)2d(k'2k0')5(2p)2d(0)5*dxdy we get

lhs5
q

K
d« r~2p!2d~0!5

q

K
~r 2r se

22iqz0!E dxdy.

~52!

This shows that the unknown reflection coefficientr we want
to calculate appears in both the left and the right-hand s
of Eq. ~51!, as part of the radiated field and also as part of
field that induces the source; Eq.~51! permits a self-
consistent calculation ofr.

The integral overdz in the right-hand side of Eq.~51! is
elementary and the remaining integral overdxdy is per-
formed using the identity

E dxdye2 iQz(x,y)

E dxdy

5^e2 iQz&5e2Q2s2/2, ~53!
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where z is a Gaussian random variable with zero me
^z&50, and variancêz2&5s2. The right-hand side~rhs! of
Eq. ~51! becomes

rhs5
Kx0

2 S E dxdyD H ê0•«W ct

q1q̄
@e2 i (q1q̄)z02e2(q1q̄)2s2/2#

2r
êr•«W ct

q2q̄
@ei (q2q̄)z02e2(q2q̄)2s2/2#J , ~54!

which can be further rewritten by substituting«W ct as given by
Eq. ~47!, and usingq̄22q25K2x0, and

ê0•êct

ê•êct

5
êcr•êct

ê•êct

5
êr•êt

ê0•êt

and
êr•êct

ê•êct

51. ~55!

Finally, equating Eq.~52! to Eq.~54! yields a self-consisten
approximation tor,

r 5
q2q̄

q1q̄

êr•êt

ê0•êt

e22qq̄s2
5r se

22qq̄s2
. ~56!

This coincides exactly with the Nevot-Croce result for t
polarizationê05êt5 êr for which the ratioê0•êt / êr•êt is
unity, and provides the correct generalization to all polari
tions. According to this approximation the specular reflect
coefficientr has no polarization dependence beyond that
ready implicit in the reflection coefficientr s for the ideal flat
step surface; the static Debye-Waller factor exp(22qq̄s2) is
polarization independent. Notice that any possible dep
dence on the arbitrary choice ofz0 has cancelled out.

B. Reflection by smoothly graded surfaces

The problem of scattering by a smoothly graded interfa
is similar and somewhat simpler. Here the susceptibi
x(z) depends only on the normal coordinatez and not on the
transverse coordinatesx andy. This implies that the tangen
tial component of momentum is conserved in the scatter
there are no diffuse waves, there is only specular scatte

As before, it is convenient to separatex(z) into

x~z!5xs~z!1dx~z!, ~57!

wherexs(z) represents an ideally flat surface atz0,

xs~z!5H 0 for z.z0

x0 for z,z0
~58!

anddx(z) is an overlayer~see Fig. 4! describing the smooth
transition from bulk to vacuum.

Let ê0eikW0•rW be the incident field. The total scattered fie
«W (rW), Eq. ~39!,

«W ~rW !5«W s~rW !1d«W ~rW !, ~59!

includes the wave«W s(rW) reflected by the stepxs(z), Eq.~40!,
plus wavesd«W (rW) scattered by the overlayerdx(z). While
diffusely scattered waves are not present ind«W (rW), faint eva-
nescent waves could be; these are weak near field effects
we neglect them. Thus
,

-
n
l-

n-

e
y

g;
g.

nd

d«W ~rW !5d« r êre
ikW r•rW, ~60!

and the Fourier expansion, Eq.~43!, and transformd«W (kW ),
Eq. ~44!, remain otherwise unchanged. Once again,d«W (rW) is
radiated by a current

dJW~rW !5
2 iv

4p
dx~z!EW ~rW !, ~61!

where the fieldEW (rW) includes the incident and the unknow
reflected waves;EW (rW) must be self-consistently obtained a
part of the solution. Then the ART, in the form of Eq.~31!,
gives the fieldd«W (kW ) in a directionkW with polarizationê as

ê•d«W ~kW !5
iK

2 E dvdx~z!EW ~rW !•«W cte
ikWct•rW, ~62!

with the same connecting field given back in Eq.~47!.
The approximation we use forEW (rW) is the same as in las

section. The arbitrariness ofz0 can be exploited by choosin
it large enough that the overlayer extends well into t
vacuum. Nearz0 the overlayer and the sharp stepxs(rW) can-
cel each other out; slightly abovez0, in vacuum, the field is

EW ~rW !5ê0eikW0•rW1rêre
ikW r•rW, ~63!

where r is the unknown reflection coefficient we want
calculate,

r 5r se
22iqz01d« r . ~64!

Slightly below z0 and over most of the extension occupie
by dx(z) we are also in vacuum~provided the bulk to
vacuum transition is not too gradual! and we approximate
EW (rW) by the same expression, Eq.~63!. Substituting into Eq.
~62! yields an equation forr,

q

K
~r 2r se

22iqz0!~2p!2d~k'2k0'!

5
iK

2 E
2`

z0
dzdx~z!E dxdy@ ê0eikW0•rW

1rêre
ikW r•rW#•«W cte

ikWct•rW. ~65!

The integral overdxdy yields a delta function, (2p)2d(k'

2k0'), and we can substituteê5êc5êr , êcr5ê0 , kW5kW r

52kW c . The integral overz is conveniently expressed as

FIG. 4. The problem of reflection by a graded surface can
tackled using the ART by adding a fictitious overlayerdx. The
hatched region shows the transition region fromdx50 to dx
52x0.
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E
2`

z0
dzdx~z!e2 iQz5

x0

iQ Fe2 iQz01
x8~Q!

x0
G , ~66!

wherex8(Q) is the Fourier transform ofdx(z)/dz,

x8~Q!5E
2`

1`

dz
dx~z!

dz
e2 iQz. ~67!

Equation~66! is proved by integrating the left-hand side b
parts, usingdx(z0)'2x0, andddx(z)/dz5dx(z)/dz. Us-
ing q̄22q25K2x0 and the identities in Eq.~55! the final
result is

r 5r s

x8~ q̄1q!

x8~ q̄2q!
. ~68!

Notice that any possible dependence on the arbitrary ch
of z0 has canceled out.

This coincides exactly with the scalar wave result17 and
provides the correct generalization to all polarizatio
Within these approximations the specular reflection coe
cient r has no polarization dependence beyond that alre
implicit in the reflection coefficientr s for the ideal flat step
surface; the static Debye-Waller factor is polarization ind
pendent.

To conclude we mention some illustrative examples:
~i! The error-function profile,

x~z!5
x0

A2ps2E2`

z

dx exp2S x2

2s2D , ~69!

gives

x8~ q̄1q!

x8~ q̄2q!
5e22qq̄s2

, ~70!

the same factor obtained in the previous section for a Ga
ian rough surface. This is as expected, the error functio
the averaged profile for the Gaussian rough surface.

~ii ! The Epstein~or Fermi distribution! profile,17

x~z!5
x0

11e2z/s
, ~71!

gives

x8~ q̄1q!

x8~ q̄2q!
5

q̄1q

q̄2q

sinh@ps~q2q̄!#

sinh@ps~q1q̄!#
. ~72!

~iii ! The triangular profile,

x~z!5H x0 for z,2s/2

x0~122z/s! for uzu,s/2

0 for z.s/2

, ~73!

gives
ce

.
-
y

-

s-
is

x8~ q̄1q!

x8~ q̄2q!
5

q2q̄

q1q̄

sin@~q1q̄!s/2#

sin@~q2q̄!s/2#
. ~74!

The reliability of these approximations was studied
Ref. 17 in the case of scalar waves. There is no reaso
expect any difference from the conclusions reached there
static Debye-Waller in Eq.~68! provides a remarkably good
approximation for the intensities reflected by interfaces
arbitrary grading profile even for transition regions that a
quite wide (s as large as several nanometers!. The phase of
the reflected waves is, however, more sensitive; Eq.~68!
provides a good approximation for more abrupt transitio
(s of the order of 1 nm or less!.

V. CONCLUSION

The main result of this work, Eq.~15!, is an asymptotic
form of the reciprocity theorem which can be used as
basis for a practical method for calculations. The theor
states that the field radiated in the presence of a nontri
medium, in a certain direction and with a given polarizatio
is a suitable ‘‘component’’ of the radiating source. This com
ponent is to be extracted by introducing an auxiliary conne
ing field which contains the necessary information about
medium. The practical advantage of the method lies in
simplifications achieved by systematically avoiding unnec
sary calculations; it thereby allows one to tackle problems
increasing complexity.

While the ART method is most ideally suited to studyin
the radiation by a prescribed current it can also be use
study scattering problems provided one knows the curre
induced in the scatterer. When it is not possible to calcu
these currents exactly one must resort to approximatio
Thus, while the ART itself is exact, its implementation m
require that the ART be used in conjunction with any of t
usual approximation schemes~e.g., the Born approximation
the distorted wave Born approximation, various partial
summations of perturbation expansions, or a self-consis
scheme of the Nevot-Croce type!. In fact, the simplifications
inherent in the ART method~say, in focusing attention awa
from near fields! can enhance the power of these approxim
tion schemes by making it easier to carry them to comp
tion.

In forthcoming papers we will further explore the app
cation of the ART to the study of the dynamical diffractio
of radiation generated by sources within a crystal, the
called Kossel lines. Even this well explored topic has n
been exhausted. Of particular interest are situations wh
the Bragg angle lies close top/2 and the Kossel cones de
generate into single beams,20 and situations where the sourc
location is revealed by the oscillatory ‘‘Pendello¨sung’’ struc-
ture of the diffraction pattern.21 Other applications will in-
clude a theory of thermal diffuse scattering under conditio
of dynamical diffraction.22
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