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Monte Carlo simulations have been used to study a vortexxréderromagnet with a random field or a
random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density
wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness.
In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range
order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free
energy separated by high entropy barriers. Our results for the random field case are consistent with the
existence of a Bragg glass phase of the type discussed by Emig, Bogner, and Nattermann.

[. INTRODUCTION For Eq. (2), each¢; can be chosen to be in the interval

The effects of random pinning on systems of charge.[—W/ p,m/p), but ¢; still takes on values ifi —, 7). The

density wavegCDW) or spin-density wavesSDW) and re- p_=2 case, Whlch is often _5|mply referred_ to as Ké mo_del
lated problems, like the pinning of the Abrikosov vortex lat- \/Svgrclvrandon; ?)nlslotrolpy, IS relgt%dlo a Imgarl;r/] polarized
tice, have been studied for a long tirhén real laboratory pmn_e y loca moment |mpur'|t|es In the same way
samples, there are always defects which create such pinnirE at_thep—l case is related t_o a.plnned CDW. Note, in
forces. Nevertheless, fundamental issues remain controver- rt|cglar, that forp=2. the Hamiltonian preserves a twofold
sial. In 1970, LarkiA presented an argument which showsMVersion Sym”.‘eFr% in contrast to the=1 case. One con-
that, if the unpinned system is translation-invarianhich  Scduence of this is that far=2 (or more, unlike p=1, the
means that we are ignoring any effects of a periodic crystal’Elme average of the local magnetlzatlor{M.(r.i D)
lattice potential, then weak random pinning forces will de- — (1ce46(V1.siMa(H]), must be zero for every in the
stroy the long-range ordétRO) of a CDW in four or fewer paramagnetic phase. L . . .
spatial dimensions. A simpler domain-wall energy argument Anl%tper model which is often considered is the elastic
was later presented by Imry and Mand under some con- 9/3SS:™
ditions it can be made mathematically rigordudne unre-
solved issue is whether these argumerjts can be.extgnd.ed to Heg= —JZ (6,— GJ)Z—GZ cogp(6—¢)]. ()
the SDW case, where there are experiments which indicate (i) |
the stability of LRO in the presence of pinniRgAnother
controversy involves the existence of the proposed “Brag
glass” phasé, which has quasi-long-range ord@LRO).

If we ignore amplitude fluctuation®® we can transform
the pinned CDW problem into aXY model in a random
field, whose Hamiltonian is usually taken to have the form

For the elastic glass, thg; again have values in the interval
g[—7-r/p,7r/p), but the §; are now defined on-{«,»). The
dependence of E@3) on p is trivial, since it can be removed

by a rescaling of the variablé8 Therefore, after making the
appropriate scaling, the behavior of the elastic glass must be
the same for allp. Giamarchi and Le Dous$ahave per-
formed an analytical calculation which shows that in three

dimensions at zero temperature this model has a structure
Heexy= —32 00— 0) =G costi=¢). () factord

3
Site i is at positionr;, the sites form a lattice, an¢ij) LE 0 exp(iker)
indicates a sum over nearest neighbors. Edk a dynami- 7 ]
cal variable representing the phase of the CDW atisiémd ) ) ) _
can take on values in the intervah m, 7). Each¢, is a  Which diverges like 1k|* at small|k|. This result has re-
representation of the random pinning energy arising fronfently been confirmed by a numerical simulatfén.
lattice defects. Since the defect sites are assumed to be im- It is argued®**that in the absence of topological defects
mobile, theg; do not change with time. We also assume that(i-e., vortex lineg, Eq. (1) should have the same continuum

the ¢; on different sites are uncorrelated, and that the problimit as Eq.(3), and that this should be true for E(®) as

1
Su(k)= 3 , @

ability distribution for eachg; is uniform on[ — , ). well. The implication is that the behavior of E(®) should
We can generalize Eq) to studyXY models in random be essentially the same for 4d] just as is the case for Eq.
p-fold fields, wherep is any positive integer: (3). However, the phase space for H) is simply con-

nected, while that of Eq(2) is not, even in the absence of
defects. Since it is known that the numerical simulation re-
4
H =—3> cog6-0)-G cosp(0—a)l. (2 sults for thep=3 casé* of Eq. (2) do not show the same
P <IEJ> 16— 6) Z p(6—d)l (2 behavior as the numerical simulatiérof Eq. (3), it appears
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that this difference in the topology of the phase space for thevhere (6M(r;,t));=0. Performing the Fourier transform
two models invalidates the mapping. One can map the eneend taking a time average yields

gies from Eq.2) into Eq.(3), but the entropies are different,

even in the absence of vortex lines. (S(k, 1)) =[(M(K,1))|>+ (| SM (K, 1)[?);. 8

The difficulty is most transparent in the larg®J limit
considered by Fishéf.In this limit, for the elastic glass, Eq. If the system is not ergodic, then we will find a different
(3), each#; can still assume a countably infinite number of (S(k,t)), for each equilibrium state.
values, for anyp. However, for the random-field model, Eq.  To evaluate Eq.8), Imry and M& ignore the fixed-
(2), eachd; has onlyp distinct allowed values in this limit. length-spin constraint, and assume that for sr@ll they
The 1/k|® divergence ofS,(k) for the elastic glass arises can use a linear response spin-wave perturbation theory. The
from the unbounded variations of thge. This cannot occur second term of Eq8) is the standard contribution from dy-
in the random-field model, wher is defined on a compact namical fluctuations of the spins. In linear response theory it
manifold. gives a contribution t&(k) of Lorentzian form, proportional

to 1/(|k|?+1/£%), where¢ is the correlation length. When
Il. RANDOM P-FOLD FIELDS G=0, then ¢ is infinite in the ferromagnetic phase, and
within perturbation theory this remains true for sm@iJ.

In the remainder of this work we will consider a version |n a ferromagnetic phase, the linear-response spin-wave
of the model of Eq(2), in thep=1 andp=2 cases. In a theory for the first term of Eq(8) generates a 1K|* peak
ferromagnetic phase, where time-reversal symmetry is spofwhose amplitude is proportional @2 times the square of
taneously broken, the configuration averaged value ofhe order paramete¢(|M(r; ,t)|?),);. Such a peak is impos-
M(r,t) in a single sample(M(r,t)),, is not zero. Thus, sijple in four dimensions or less, due to the sum ruleStk).
naively,">*® one would expect that if LRO is destroyed by a if the decoupling of the different Fourier modes assumed in
weak randonp=1 field, then it would also be destroyed by the spin-wave approximation were valid, this would indicate
a weak randonp-fold field for anyp. This argument can be the instability of ferromagnetism in four dimensions or less
made explicit within a perturbation thedfyfor small G/J  in the presence of the randopafold field. As discussed by
which is exact to leading order in W/ whereN is the num-  Fisher!’ this decoupling is adequate when the number of
ber of spin components. dimensions is large, but it breaks down in four dimensions or

The cause of the Larkin-Imry-Ma instability in the |ess.
random-field model may be seen by studying the magnetic For p=1 the random fields cause ea (r; ,t)), to be-
structure factor, whose form in three dimensions is come nonzero even in the paramagnetic phase. Thup for
=1 the spin-wave theory result in the paramagnetic phase

1 for the first term of Eq(8) is a “Lorentzian-squared” peak,
Stk)=13 > M(rj Dexpliker))| (5 of the form G%/(|k|?>+1/£?)%. The sum rule orS(k) then

) implies that¢ must be finite. This Lorentzian-squared peak

In equilibrium, S(k,t) becomes independent of the time also occurs for the random-field Ising modef,and is not
whenL becomes infinite. If the system is not ergodic, how-related to the existence of massless spin waves. _
ever, there may be multiple equilibrium states, each with a There is no Lorentzian-squared peak in the paramagnetic
different S(k). In a ferromagnetic phas&(k) shows a Phase forp=2, since in this case eagM(r;,t))=0, so
s-function peak atk=0. For the randomp=1 field one that the first term of Eq(8) then makes no contribution to
shows that the presence of this function induces a 1k|* ~ S(k). Therefore the sum rule d8(k) cannot preveng from
peak inS(k) at small|k|. Such a peak is impossible in four diverging forp=2, and the existence of a QLRO phase in

spatial dimensions or less. Due to the norm-preserving prophis case was proposed in 1980 by Aharony and Pjtte.
erty of the Fourier transform, The domain-wall energy scaling argument given by Imry

and Ma® which is nonperturbative, compares the relative
strengths of the exchange energy term and the random pin-
E S(k)=L3, (6) ning term as a function of length scale. If the effective value
K of the couplingG/J scales to infinity at large length scales,
where the sum ovek runs over the Brillouin zone. Since the then we know that fop=1 the model cannot be ferromag-
square of the length of each spin is one in this model,(Bg. N€UC: _
merely states that the total cross section in a scattering ex- AN analogous argument does not suffice for 1, how-
periment is equal to the number of spins in the scatterin?ver’ becauos,e even for strong random anisotropy the mean-
volume times the cross section of one spin. There is no cori€ld theory” has a ferromagnetic phase. The domain-wall
responding sum rule fo,(K). energy argument does not account for the exefcid sym-

We proceed by separating the time-dependent and timéD€lry of the Hamiltonian which exists fgr>1. Forp>1
independent parts dl. Without loss of generality, we can ©ON€ cannot show that the random term uniquely determines

L3 2

rewrite Eq.(5) in the form the large-scale structure of the low-energy states. Thus the
rigorous proof which works fop=1 cannot be applied for
.3 2 largerp.?

Because the spin-wave argument assumes replica
symmetry>®® its lack of rigor has long been recognized.
(7) More recently, Meard and Youn®f have shown explicitly

1 .
S(kt)= 3 2 [(M(rj, 1))+ M(r;,t) Jexpliker))
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that when one calculates beyond the leading orderfbf  phase. Here, we will study the effects of adding random
p=1, the replica symmetry is broken in the ferromagneticfields and random anisotropies to the vortex-free model. In
phase, and that, therefore, the randomness should §aose order to retain the property that all allowed states of the
be finite. Since the randomness destroys translation invarimodel have the same energy, we replace the random term of
ance, it is not surprising that it should also cause the lond=q. (2) by constraints on each .
wavelength spin waves to become massive. Presumably this To obtain a random-field-type model, for eachwe
replica-symmetry breaking will also occur fpr>1. choose a random arc of the circle of some fixed size, and
Within spin-wave perturbation theof§}” the effect of a  declare thatd; cannot take on values within that arc. The
random anisotropy on the ferromagnetic phase appears to liiaction of the circle which is removed at each site is then a
the same as the effect of a random field. It seems reasonakp@rameter which measures the strength of the random field.
that one should be able to study the properties of a singlén order to maintain the vortex-free constraint everywhere, it
minimum of the free energy, and that, at least for sr@ll,  is sufficient that the fraction removeR,, be less than 1/2.
the behavior of the system in this local minimum should notTo see this, note that any state in which all spins have values
depend orp. Because the replica symmetry is brokefor ~ on the same half of the circle, so that there is some axis for
finite N, however, we know that this can fail. which the projection of all spins is in the same direction, is
There are a number of results which support the existenceortex-free. We will refer to such a state as a “semicircle
of LRO for XY models(i.e., N=2) with random anisotropy state.”
in four dimensions or less. The first are the experinteots For a random-anisotropy-type model we perform the
SDW alloys which appear to have LRO. The second is thesame procedure, except that we symmetrically remove two
high-temperature susceptibility series for the random anisotarcs from opposite sides of the circle at each site. In this case
ropy XY model?® which gives no indication of an instability it is possible to satisfy the vortex-free constraint even if at
of ferromagnetism in four dimensions. The third is the com-each site we only allow two points. For the random anisot-
puter simulation¥' for the p=3 case in three dimensions, ropy model it is clear that the allowed states come in pairs,
which show that thegp=3 random anisotropy does not de- So that time-reversal symmetry is not explicitly broken by
stroy the transition to ferromagnetism, but the transverse cothe Hamiltonian.
relation length in the ferromagnetic phase becomes finite. ~ We expect the qualitative behavior of the constraint-type
In this work we present the results of a computer simulatandom fields and random anisotropies to be the same as the
tion study of a toy model which we believe preserves thecorrespondingp=1 or p=2 random terms of Eq2). It is
essential features of E@R). For this model we find that in somewhat less clear that our replacement of the exchange
three dimensions p=1 random field perturbs the structure term in Eq.(2) by the vortex-free constraint will not make
factor of finite lattices in a manner consistent with the de-any qualitative difference. One can argue that for siG4ll
struction of ferromagnetism for any strength of the randomthe low-energy states of E¢2) should be vortex-free, but it
field, as predicted by the domain-wall energy scaling arguis difficult to prove this. In the simulation of Gingras and
ment. In the corresponding=2 case, however, we find no Husé* it was observed that the vortex loops disappeared
evidence for the destruction of ferromagnetism. Instead, wéapidly as the random field was made weaker at low tempera-
find that for this model th@=2 random anisotropy causés ture. It was suggested by them that in the absence of vortex
to become finite without destroying the LRO. loops anXY model with a random field would possess a
QLRO phase, in which two-point correlations have a power-
law decay as a function of distance. For the vortex-free
model we can test this conjecture in a straightforward man-

Large-scale computer simulations of the random-fiefal ~ ner.
and random anisotropy<Y models have been performed in
the_ Ia_st few years. While the r_esults of these simulatior_ls are IV. MONTE CARLO CALCULATION
quite instructive, it has been difficult to study the behavior at
weak randomness and low temperature. This is due to the The Monte Carlo program was a modified version of one
limited size of the lattices which can be studied, and theused earli€r’ to study the vortex-free model without ran-
difficulty of making transitions over energy barriers. In orderdomness. It approximates the circle by a 256 state discreti-
to improve the effectiveness of the simulations, one mayation, and uses a simple cubic lattice with periodic bound-
either try to develop new techniques for studying B2}, or ~ ary conditions. Two linear congruential pseudorandom
else one may try to find a modification of the Hamiltonian number generators are used, one for assigning the random
which preserves the essential features, but is easier to studields, and a different one for flipping the spins. The initial
In this work we adopt the second approach. We will describestate of each lattice is chosen to be a semicircle state. Moves
and study a model in which there are no energy barriers. are rejected if they would violate the vortex-free constraint
It was shown by Kohring, Shrock, and Wilfsthat if one  or the local random-field constraint.
adds a large vortex fugacity term to th€Y model on a A brief study of LX L XL lattices as a function of size
simple cubic lattice, then the model retains a ferromagneti@and the strength of the randomness showed that fopthe
equilibrium state even in the absence of any explicit ex-=1 case increasing the strength of the randomness caused a
change energy. It was later shot{mthat this “vortex-free”  progressive decrease of the equilibrium magnetization,
XY model, in which all allowed spin configurations have the((|M(L)|),);, as expected, witd(|M|),); extrapolating to
same energy, behaves in most respects like a noMal zero for largeL. For thep=2 case, however, there was no
model at some finite temperature within the ferromagnetievidence of a decrease ¢fM|), as the randomness was

Ill. TOY MODEL FOR RANDOM FIELDS
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1000 g T T T 3 for each sample. The data for the samples with no random
F ] fields approximately follow a 1k|? law, with an additional
L "R=0 : 6 function atk=0, which does not appear on the log-log
i ® x R;=1/8 7 plot, as predicted by spin-wave theory. Rs is increased,
100 ® o R;=1/4 the weight of the peak is progressively pushed out to larger
+ R,=3/8 values of|k|, with the sum rule on the integral ovér of

S(k) being preserved. Because of the sum rule, the fluctua-
tions in the different smalk modes are strongly coupled.
This makes it difficult to estimate the statistical error for a
single mode. Suffice it to say that the fluctuation$Sgk) for

a singlek# 0 mode of a single sample are of about the same
size as the average value for that mode.

For R;=1/8, the slope on the log-log plot &(k) in the
accessible smallk| region is approaching-3. Due to the
sum rule, this indicates that there is no evidence for any LRO

o N at this value ofRy, even though the value &t|M|),), is still
0.05 o1 0.2 05 1 not much reduced from itR,;=0 value atL=64. At R;
Ik| =1/4, S(k) shows an apparent slope of2.85+0.05 for
small|k| on the log-log plot. ByR; = 3/8 theL =64 samples

FIG. 1. Angle-averaged magnetic structure fa¢pmr spin com-  are showing multiple local minima of the free energy. This
poneni for the vortex-freeXY model with random fields on 64 may be an indication that some correlation length has be-
X 64X 64 simple cubic lattices, log-log plot. Each data set shows atome comparable to the sample size, B(k) at R;=3/8
average of data from eight samples. The straight line has a slope @i pe fit at smal|k| by a power law in|k| with an expo-

-2 nent, (—2+ %), of —2.63+0.07. A QLRO phase with a con-
tinuously varying value ofy has recently been found in a

turned on. In order to investigate this unexpected result caresimilar model by Emig, Bogner, and Nattermaiin.

fully, it was decided to expend most of the computing effort  In order to distinguish clearly between an infinitevith a

on the computation of the structure factor for lattices withcontinuously varying exponeny and a finite¢, we would

L=64. need data for largek or R; closer to 1/2. Either of these

Starting from a semicircle state, eaBh>0 lattice was approaches would require a substantial increase in comput-
run for 40960 passes, which is several times the appareing effort. If there really is an infinit¢¢ and an» which
longitudinal relaxation time. Some of th =0 lattices were  varies continuously as a function &%, then we would like
run for only half this time, because the longitudinal relax-to know if this behavior continues out to the maximum al-
ation time is shorter in this case, and the transverse relaxewed value ofR,, and, if so, hown behaves near that point.
ation is given by spin-wave theory. The values(¢fM|),);  If it were practical to perform simulations for larger values of
were obtained by averaging over the last half of each runl.,, we believe that we would see the appearance of many
sampling every 20 passes. Hot 64, the magnetization was local minima for any nonzero allowed value R&f.
found by this procedure to be 0.43516, 0.4018, 0.313, and To study thep=2 case, we concentrated on samples with
0.244 forR;=0, 1/8, 1/4, and 3/8, respectively. The fluctua- R,=3/8, which means that only 1/4 of the states were al-
tions in ((|M|),); between runs become larger B in-  lowed at each site. Smaller valuesRf give anS(k) almost
creases, as does the time-averaged longitudinal susceptibilitgdistinguishable from the result f&= 0, the model without
for a single run. Because only one initial state was used forandomness. Note thda,=3/8 can be obtained fronk;
eachp=1 sample, we do not know if the variations in the =3/8 by removing an additional 3/8 of the allowed states at
time averages for different initial states of the same sampleach site, and thus restoring a twofold symmetry. Because
are as large as the variations between samples. The trarthie random anisotropy constraints now cause most of the
verse susceptibility, obtained from the time-dependent flucattempted moves to be immediately rejected, each sample
tuations of (M), averaged over the last half of each run,was run twice as long as fgp=1. Also, two semicircle
becomes smaller aR; increases. FOR;=3/8 andL=64, states, differing in average orientation by2 from each
(M), remains close to its initial direction for the duration of other, were used for each sample as initial states.
the run, and the transverse susceptibility is not much larger The average magnetization far=64 andR,=3/8 was
than the longitudinal susceptibility. This naturally implies obtained by averaging over the last quarter of each run. The
that there are many local minima of the free energy, at leastesult was(|M|),);=0.43613, slightlylarger than the result
on the time scale of the simulation. FBf=1/8 and 1/4 the for the L=64 system withR=0. The results obtained using
direction of (M), may change substantially at first, but thenthe two different initial states for a given sample did not
it seems to settle into some local minimum of the free en-appear to be more similar to each other than results from two
ergy, although the transverse susceptibility remains large. different samples. The direction of the magnetization rotated

Results for the angle-averaged{k) for L=64 lattices significantly during most runs, indicating thats at least as
with these strengthR; of the randomp=1 field are shown large asL, and that the observed behavior is unlikely to be
on a log-log plot in Fig. 1. Each data set is an average oflue to a failure of the system to relax. For one of these eight
eight samples of the randomness, with one final state useshmples the final states of the two runs appeared to be in the

s(k)
1 1 IIIIII|
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T T T | T T T V. DISCUSSION
oR =0
+ R,=3/8
x Wo= 1

100

The model we are using for our computer simulations is
one in which all allowed states of the spins have the same
energy. If the dynamical behavior is ergodic, then, by defi-
nition, it must be possible to get from any initial state to any
final state. One might imagine therefore that this model, with
single-spin flip dynamics, could have an ergodicity-breaking
transition as a function of the strength of the randomness.
That is, there could be a transition between having a con-
nected phase space to having a phase space which is broken
into many disconnected pieces.

It is easy to see, however, that any semicircle state can be
connected to another semicircle state with an arbitrary choice
of the semicircle, by single spin flips which do not violate
the constraints. This remains true as longRaor R, is less

S ' L] than 1/2. Therefore we cannot explain the result that for large
0.05 0.1 0.2 0.5 1 values ofR; or R, we find many local minima wheh be-
[kl comes large by a percolation transition in phase space. The

FIG. 2. Angle-averaged magnetic structure fafir spin com- breakdov_vn of ergodicity is a true phase tra_nsition, because
ponenj for the vortex-freeXY model with random anisotropy on the trf’;\nSItlo_n r_at_es between_ dlﬁerent local minima only go to
64X 64x 64 simple cubic lattices, log-log plot. Each data set shows?€T0 in the infinite volume limit.

10 —

S(k)

an average of data from eight samples. Re=3/8 data set in- ere shoulld remember that the phase.space. availgble to an
cludes two stategwith different initial conditions per sample. The  individual spin depends on how well aligned its neighbors
straight line is identical to the one shown in Fig. 1. are. In a semicircle state, the magnetization isr,2about

0.636 62. Thus, when the system relaxes into a state with
same local minimum. Studying smaller samples for much<|M|>r<O'5’ the ability of individual spins to reorient by
A j ying smafier samp single-spin flips is greatly reduced, even though the entropy
longer running times also gave no indication that the result%f the system as a whole has increased

were caused by insufficient relaxation. Entropy barrier® are just as effective as energy barriers
Eight samples with maximal random anisotrdpyly two i, guppressing transitions between different minima. If the

allowed states at each site, labelg=1 in Fig. 2 were  paths in phase space between different local minima must

also studied. In this case, with only two allowed states pephass through intermediate states in which the valughat),

spin, a Metropolis-type algorithm, for which spin flips al- jn a volume¢? is close to 0.6, then the probability of making

lowed by the vortex-free constraint were made with prob-such transitions is suppressed by a factor exponential in the

ability 3/4, was used to improve the efficiency of the pro-correlation volume.

gram. ForW,=1, theL =64 value of((|M|),); was 0.4662, The above estimate may be unduly pessimistic. For ex-
and the orientation ofM), always remained close to its ample, it may be enough to increase the local magnetization
initial direction. in a surface layer, so that the entropy barrier is only propor-

The structure factor for thege=2 cases, again averaged tional to £2. Nevertheless, the basic principle, that uncorre-
over eight samples, is shown in Fig. 2, along with the datdated single-spin flips are not an efficient way to achieve
for R=0. We see that at =64 the structure factor forR,  large-scale reorientation ®, is correct.
=3/8 is not distinguishable from that &= 0. Although the It would not be surprising if an alternative dynamics

data forR,=3/8 appears to be slightly above the data forcould be developed which flipped large clusters of spins
R=0 at small|k|, this is a sampling artifact. The actual simultaneously?*! and was thus more effective in moving

average of(|M|), for the 16 R,=3/8 states used in con- through phase space. Therefore we would like to check our

structing the figure is 0.4349, while for ther8=0 states it is results to see if they reflect true equilibrium behavior by
0.4357 ' ' developing such an algorithm. However, the results as they

. . . . . stand seem internally consistent, and they are also consistent
ForW,=1, ¢ is approximately eight lattice spacings, and 4 y

) . with the other related results cited earlier.
the line shape appears to be Lorentzjplus thes function

. : . For p=2, there is no instability of the LRO when the
atk=0). In this case it appears that largdehavior is seen  anqomness is too weak to induce the creation of vortex

already forl =16. A sample wittW,=1 andL =16 was run jines. We remind the reader that when vortex lines are al-
for approximately 5 10° steps per spin. The system ap- |owed, as for the strong random anisotropy limit of E2),
peared to relax to equilibrium within the first 50 steps perthe LRO appears to be unstable in three dimensions, and the
spin, which was essentially the same as the relaxation timgw-temperature phase seems to have only QL°RMe na-

for the L=64 samples, and no transitions were seen out ofure of the transitions between the LRO, QLRO and para-
the local minimum, which retained aiM), almost parallel magnetic phases are clearly of great interest, but they cannot
to that of the initial semicircle state. The transverse suscepbe explored within the vortex-free model.

tibility is approximately 15 times the longitudinal suscepti- It should be noted that the infinite vortex fugacity used in
bility. our model does not satisfy the smoothness conditions used in
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the proof of Aizenman and WeliTherefore our finding that dom p=1 andp=2 fields. This toy model is intended to
the randomp=1 field destroys the LRO in our model is an represent the effects of random pinning on uniaxial CDW’s
indication that the smoothness conditions can be relaxed iand SDW'’s. We have found that for CDW'’s the LRO should
three dimensions. Of course, it does not follow from this thathe destabilized by weak random pinning, but that for SDW'’s
the smoothness conditions can be relaxed in four dimensionghe LRO should survive. These conclusions are consistent
: ,33 ; H H . . .
An alternative methot** of removing the vortices is by ith experiment. Our results for the=1 case are consistent

placing a lower bound on the allowed values of &s6)  with the existence of a QLRO of the type discussed by Emig,
for all nearest neighbor pairs ofindj. This method directly Bogner, and Nattermarf.

violates the smoothness conditigd.5 of Aizenman and
Wehr? and is a more severe constraint than the vortex fugac-
ity method used here. It is likely that this alternative method
would produce results in qualitative agreement with those
found here using the Kohring-Shrock-Wills method.
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