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Random field and random anisotropy effects in defect-free three-dimensionalXY models
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Monte Carlo simulations have been used to study a vortex-freeXY ferromagnet with a random field or a
random anisotropy on simple cubic lattices. In the random field case, which can be related to a charge-density
wave pinned by random point defects, it is found that long-range order is destroyed even for weak randomness.
In the random anisotropy case, which can be related to a randomly pinned spin-density wave, the long-range
order is not destroyed and the correlation length is finite. In both cases there are many local minima of the free
energy separated by high entropy barriers. Our results for the random field case are consistent with the
existence of a Bragg glass phase of the type discussed by Emig, Bogner, and Nattermann.
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I. INTRODUCTION

The effects of random pinning on systems of char
density waves~CDW! or spin-density waves~SDW! and re-
lated problems, like the pinning of the Abrikosov vortex la
tice, have been studied for a long time.1 In real laboratory
samples, there are always defects which create such pin
forces. Nevertheless, fundamental issues remain contro
sial. In 1970, Larkin2 presented an argument which show
that, if the unpinned system is translation-invariant~which
means that we are ignoring any effects of a periodic crys
lattice potential!, then weak random pinning forces will de
stroy the long-range order~LRO! of a CDW in four or fewer
spatial dimensions. A simpler domain-wall energy argum
was later presented by Imry and Ma,3 and under some con
ditions it can be made mathematically rigorous.4 One unre-
solved issue is whether these arguments can be extend
the SDW case, where there are experiments which indi
the stability of LRO in the presence of pinning.5 Another
controversy involves the existence of the proposed ‘‘Bra
glass’’ phase,6 which has quasi-long-range order~QLRO!.

If we ignore amplitude fluctuations,7,8 we can transform
the pinned CDW problem into anXY model in a random
field, whose Hamiltonian is usually taken to have the for

HRFXY52J(̂
i j &

cos~u i2u j !2G(
i

cos~u i2f i !. ~1!

Site i is at positionr i , the sites form a lattice, and̂i j &
indicates a sum over nearest neighbors. Eachu i is a dynami-
cal variable representing the phase of the CDW at sitei, and
can take on values in the interval@2p,p). Each f i is a
representation of the random pinning energy arising fr
lattice defects. Since the defect sites are assumed to be
mobile, thef i do not change with time. We also assume th
the f i on different sites are uncorrelated, and that the pr
ability distribution for eachf i is uniform on@2p,p).

We can generalize Eq.~1! to studyXY models in random
p-fold fields, wherep is any positive integer:

Hrp52J(̂
i j &

cos~u i2u j !2G(
i

cos@p~u i2f i !#. ~2!
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For Eq. ~2!, eachf i can be chosen to be in the interv
@2p/p,p/p), but u i still takes on values in@2p,p). The
p52 case, which is often simply referred to as theXY model
with random anisotropy, is related9 to a linearly polarized
SDW pinned by local moment impurities in the same w
that the p51 case is related to a pinned CDW. Note,
particular, that forp52 the Hamiltonian preserves a twofol
inversion symmetry, in contrast to thep51 case. One con-
sequence of this is that forp52 ~or more!, unlike p51, the
time average of the local magnetization,^M (r i ,t)& t
5^$cos@ui(t)#,sin@ui(t)#%&t , must be zero for everyi in the
paramagnetic phase.

Another model which is often considered is the elas
glass,10,6

Heg52J(̂
i j &

~u i2u j !
22G(

i
cos@p~u i2f i !#. ~3!

For the elastic glass, thef i again have values in the interva
@2p/p,p/p), but theu i are now defined on (2`,`). The
dependence of Eq.~3! on p is trivial, since it can be removed
by a rescaling of the variables.10 Therefore, after making the
appropriate scaling, the behavior of the elastic glass mus
the same for allp. Giamarchi and Le Doussal6 have per-
formed an analytical calculation which shows that in thr
dimensions at zero temperature this model has a struc
factor,11

Su~k!5
1

L3U(
j

L3

u jexp~ ik"r j !U2

, ~4!

which diverges like 1/uku3 at small uku. This result has re-
cently been confirmed by a numerical simulation.12

It is argued10,13 that in the absence of topological defec
~i.e., vortex lines!, Eq. ~1! should have the same continuu
limit as Eq. ~3!, and that this should be true for Eq.~2! as
well. The implication is that the behavior of Eq.~2! should
be essentially the same for allp, just as is the case for Eq
~3!. However, the phase space for Eq.~3! is simply con-
nected, while that of Eq.~2! is not, even in the absence o
defects. Since it is known that the numerical simulation
sults for thep53 case14 of Eq. ~2! do not show the same
behavior as the numerical simulation12 of Eq. ~3!, it appears
361 ©2000 The American Physical Society
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362 PRB 62RONALD FISCH
that this difference in the topology of the phase space for
two models invalidates the mapping. One can map the e
gies from Eq.~2! into Eq.~3!, but the entropies are differen
even in the absence of vortex lines.

The difficulty is most transparent in the largeG/J limit
considered by Fisher.13 In this limit, for the elastic glass, Eq
~3!, eachu i can still assume a countably infinite number
values, for anyp. However, for the random-field model, Eq
~2!, eachu i has onlyp distinct allowed values in this limit.
The 1/uku3 divergence ofSu(k) for the elastic glass arise
from the unbounded variations of theu i . This cannot occur
in the random-field model, whereu i is defined on a compac
manifold.

II. RANDOM P-FOLD FIELDS

In the remainder of this work we will consider a versio
of the model of Eq.~2!, in the p51 andp52 cases. In a
ferromagnetic phase, where time-reversal symmetry is sp
taneously broken, the configuration averaged value
M (r ,t) in a single sample,̂M (r ,t)& r , is not zero. Thus,
naively,15,16 one would expect that if LRO is destroyed by
weak randomp51 field, then it would also be destroyed b
a weak randomp-fold field for anyp. This argument can be
made explicit within a perturbation theory15 for small G/J
which is exact to leading order in 1/N, whereN is the num-
ber of spin components.

The cause of the Larkin-Imry-Ma instability in th
random-field model may be seen by studying the magn
structure factor, whose form in three dimensions is

S~k,t !5
1

L3U(
j

L3

M ~r j ,t !exp~ ik"r j !U2

. ~5!

In equilibrium, S(k,t) becomes independent of the timet
whenL becomes infinite. If the system is not ergodic, ho
ever, there may be multiple equilibrium states, each wit
different S(k). In a ferromagnetic phaseS(k) shows a
d-function peak atkÄ0. For the randomp51 field one
shows3 that the presence of thisd function induces a 1/uku4

peak inS(k) at smalluku. Such a peak is impossible in fou
spatial dimensions or less. Due to the norm-preserving p
erty of the Fourier transform,

(
k

S~k!5L3, ~6!

where the sum overk runs over the Brillouin zone. Since th
square of the length of each spin is one in this model, Eq.~6!
merely states that the total cross section in a scattering
periment is equal to the number of spins in the scatter
volume times the cross section of one spin. There is no
responding sum rule forSu(k).

We proceed by separating the time-dependent and ti
independent parts ofM . Without loss of generality, we ca
rewrite Eq.~5! in the form

S~k,t !5
1

L3U(
j

L3

@^M ~r j ,t !& t1dM ~r j ,t !#exp~ ik"r j !U2

,

~7!
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where ^dM (r j ,t)& t50. Performing the Fourier transform
and taking a time average yields

^S~k,t !& t5u^M ~k,t !& tu21^udM ~k,t !u2& t . ~8!

If the system is not ergodic, then we will find a differe
^S(k,t)& t for each equilibrium state.

To evaluate Eq.~8!, Imry and Ma3 ignore the fixed-
length-spin constraint, and assume that for smallG/J they
can use a linear response spin-wave perturbation theory.
second term of Eq.~8! is the standard contribution from dy
namical fluctuations of the spins. In linear response theor
gives a contribution toS(k) of Lorentzian form, proportional
to 1/(uku211/j2), wherej is the correlation length. When
G50, then j is infinite in the ferromagnetic phase, an
within perturbation theory this remains true for smallG/J.

In a ferromagnetic phase, the linear-response spin-w
theory for the first term of Eq.~8! generates a 1/uku4 peak
whose amplitude is proportional toG2 times the square o
the order parameter,^^uM (r i ,t)u2& r& t . Such a peak is impos
sible in four dimensions or less, due to the sum rule onS(k).
If the decoupling of the different Fourier modes assumed
the spin-wave approximation were valid, this would indica
the instability of ferromagnetism in four dimensions or le
in the presence of the randomp-fold field. As discussed by
Fisher,17 this decoupling is adequate when the number
dimensions is large, but it breaks down in four dimensions
less.

For p51 the random fields cause each^M (r i ,t)& t to be-
come nonzero even in the paramagnetic phase. Thus fp
51 the spin-wave theory result in the paramagnetic ph
for the first term of Eq.~8! is a ‘‘Lorentzian-squared’’ peak
of the form G2/(uku211/j2)2. The sum rule onS(k) then
implies thatj must be finite. This Lorentzian-squared pe
also occurs for the random-field Ising model,3,18 and is not
related to the existence of massless spin waves.

There is no Lorentzian-squared peak in the paramagn
phase forp52, since in this case eacĥM (r i ,t)& t50, so
that the first term of Eq.~8! then makes no contribution to
S(k). Therefore the sum rule onS(k) cannot preventj from
diverging for p52, and the existence of a QLRO phase
this case was proposed in 1980 by Aharony and Pytte.19

The domain-wall energy scaling argument given by Im
and Ma,3 which is nonperturbative, compares the relati
strengths of the exchange energy term and the random
ning term as a function of length scale. If the effective val
of the couplingG/J scales to infinity at large length scale
then we know that forp51 the model cannot be ferromag
netic.

An analogous argument does not suffice forp.1, how-
ever, because even for strong random anisotropy the m
field theory20 has a ferromagnetic phase. The domain-w
energy argument does not account for the exactp-fold sym-
metry of the Hamiltonian which exists forp.1. For p.1
one cannot show that the random term uniquely determ
the large-scale structure of the low-energy states. Thus
rigorous proof which works forp51 cannot be applied for
largerp.21

Because the spin-wave argument assumes rep
symmetry,3,15 its lack of rigor has long been recognize
More recently, Me´zard and Young22 have shown explicitly
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that when one calculates beyond the leading order in 1/N for
p51, the replica symmetry is broken in the ferromagne
phase, and that, therefore, the randomness should causej to
be finite. Since the randomness destroys translation inv
ance, it is not surprising that it should also cause the lo
wavelength spin waves to become massive. Presumably
replica-symmetry breaking will also occur forp.1.

Within spin-wave perturbation theory,15,17 the effect of a
random anisotropy on the ferromagnetic phase appears t
the same as the effect of a random field. It seems reason
that one should be able to study the properties of a sin
minimum of the free energy, and that, at least for smallG/J,
the behavior of the system in this local minimum should n
depend onp. Because the replica symmetry is broken22 for
finite N, however, we know that this can fail.

There are a number of results which support the existe
of LRO for XY models~i.e., N52) with random anisotropy
in four dimensions or less. The first are the experiments5 on
SDW alloys which appear to have LRO. The second is
high-temperature susceptibility series for the random ani
ropy XY model,23 which gives no indication of an instability
of ferromagnetism in four dimensions. The third is the co
puter simulations14 for the p53 case in three dimensions
which show that thep53 random anisotropy does not d
stroy the transition to ferromagnetism, but the transverse
relation length in the ferromagnetic phase becomes finite

In this work we present the results of a computer simu
tion study of a toy model which we believe preserves
essential features of Eq.~2!. For this model we find that in
three dimensions ap51 random field perturbs the structu
factor of finite lattices in a manner consistent with the d
struction of ferromagnetism for any strength of the rand
field, as predicted by the domain-wall energy scaling ar
ment. In the correspondingp52 case, however, we find n
evidence for the destruction of ferromagnetism. Instead,
find that for this model thep52 random anisotropy causesj
to become finite without destroying the LRO.

III. TOY MODEL FOR RANDOM FIELDS

Large-scale computer simulations of the random-field24,25

and random anisotropy9 XY models have been performed
the last few years. While the results of these simulations
quite instructive, it has been difficult to study the behavior
weak randomness and low temperature. This is due to
limited size of the lattices which can be studied, and
difficulty of making transitions over energy barriers. In ord
to improve the effectiveness of the simulations, one m
either try to develop new techniques for studying Eq.~2!, or
else one may try to find a modification of the Hamiltoni
which preserves the essential features, but is easier to s
In this work we adopt the second approach. We will descr
and study a model in which there are no energy barriers

It was shown by Kohring, Shrock, and Wills26 that if one
adds a large vortex fugacity term to theXY model on a
simple cubic lattice, then the model retains a ferromagn
equilibrium state even in the absence of any explicit
change energy. It was later shown27 that this ‘‘vortex-free’’
XY model, in which all allowed spin configurations have t
same energy, behaves in most respects like a normalXY
model at some finite temperature within the ferromagne
c
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phase. Here, we will study the effects of adding rand
fields and random anisotropies to the vortex-free model
order to retain the property that all allowed states of
model have the same energy, we replace the random ter
Eq. ~2! by constraints on eachu i .

To obtain a random-field-type model, for eachi we
choose a random arc of the circle of some fixed size,
declare thatu i cannot take on values within that arc. Th
fraction of the circle which is removed at each site is the
parameter which measures the strength of the random fi
In order to maintain the vortex-free constraint everywhere
is sufficient that the fraction removed,R1, be less than 1/2
To see this, note that any state in which all spins have va
on the same half of the circle, so that there is some axis
which the projection of all spins is in the same direction,
vortex-free. We will refer to such a state as a ‘‘semicirc
state.’’

For a random-anisotropy-type model we perform t
same procedure, except that we symmetrically remove
arcs from opposite sides of the circle at each site. In this c
it is possible to satisfy the vortex-free constraint even if
each site we only allow two points. For the random anis
ropy model it is clear that the allowed states come in pa
so that time-reversal symmetry is not explicitly broken
the Hamiltonian.

We expect the qualitative behavior of the constraint-ty
random fields and random anisotropies to be the same a
correspondingp51 or p52 random terms of Eq.~2!. It is
somewhat less clear that our replacement of the excha
term in Eq.~2! by the vortex-free constraint will not mak
any qualitative difference. One can argue that for smallG/J
the low-energy states of Eq.~2! should be vortex-free, but i
is difficult to prove this. In the simulation of Gingras an
Huse24 it was observed that the vortex loops disappea
rapidly as the random field was made weaker at low temp
ture. It was suggested by them that in the absence of vo
loops anXY model with a random field would possess
QLRO phase, in which two-point correlations have a pow
law decay as a function of distance. For the vortex-fr
model we can test this conjecture in a straightforward m
ner.

IV. MONTE CARLO CALCULATION

The Monte Carlo program was a modified version of o
used earlier27 to study the vortex-free model without ran
domness. It approximates the circle by a 256 state disc
zation, and uses a simple cubic lattice with periodic bou
ary conditions. Two linear congruential pseudorando
number generators are used, one for assigning the ran
fields, and a different one for flipping the spins. The init
state of each lattice is chosen to be a semicircle state. Mo
are rejected if they would violate the vortex-free constra
or the local random-field constraint.

A brief study ofL3L3L lattices as a function of sizeL
and the strength of the randomness showed that for thp
51 case increasing the strength of the randomness caus
progressive decrease of the equilibrium magnetizati
^^uM (L)u& r& t , as expected, witĥ^uM u& r& t extrapolating to
zero for largeL. For thep52 case, however, there was n
evidence of a decrease of^uM u& r as the randomness wa
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364 PRB 62RONALD FISCH
turned on. In order to investigate this unexpected result c
fully, it was decided to expend most of the computing eff
on the computation of the structure factor for lattices w
L564.

Starting from a semicircle state, eachR1.0 lattice was
run for 40 960 passes, which is several times the appa
longitudinal relaxation time. Some of theR150 lattices were
run for only half this time, because the longitudinal rela
ation time is shorter in this case, and the transverse re
ation is given by spin-wave theory. The values of^^uM u& r& t
were obtained by averaging over the last half of each r
sampling every 20 passes. ForL564, the magnetization wa
found by this procedure to be 0.435 16, 0.4018, 0.313,
0.244 forR150, 1/8, 1/4, and 3/8, respectively. The fluctu
tions in ^^uM u& r& t between runs become larger asR1 in-
creases, as does the time-averaged longitudinal suscepti
for a single run. Because only one initial state was used
eachp51 sample, we do not know if the variations in th
time averages for different initial states of the same sam
are as large as the variations between samples. The t
verse susceptibility, obtained from the time-dependent fl
tuations of ^M & r averaged over the last half of each ru
becomes smaller asR1 increases. ForR153/8 andL564,
^M & r remains close to its initial direction for the duration
the run, and the transverse susceptibility is not much lar
than the longitudinal susceptibility. This naturally implie
that there are many local minima of the free energy, at le
on the time scale of the simulation. ForR151/8 and 1/4 the
direction of^M & r may change substantially at first, but the
it seems to settle into some local minimum of the free
ergy, although the transverse susceptibility remains large

Results for the angle-averagedS(k) for L564 lattices
with these strengthsR1 of the randomp51 field are shown
on a log-log plot in Fig. 1. Each data set is an average
eight samples of the randomness, with one final state u

FIG. 1. Angle-averaged magnetic structure factor~per spin com-
ponent! for the vortex-freeXY model with random fields on 64
364364 simple cubic lattices, log-log plot. Each data set shows
average of data from eight samples. The straight line has a slop
22.
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for each sample. The data for the samples with no rand
fields approximately follow a 1/uku2 law, with an additional
d function at k50, which does not appear on the log-lo
plot, as predicted by spin-wave theory. AsR1 is increased,
the weight of the peak is progressively pushed out to lar
values of uku, with the sum rule on the integral overk of
S(k) being preserved. Because of the sum rule, the fluc
tions in the different smallk modes are strongly coupled
This makes it difficult to estimate the statistical error for
single mode. Suffice it to say that the fluctuations ofS(k) for
a singlekÞ0 mode of a single sample are of about the sa
size as the average value for that mode.

For R151/8, the slope on the log-log plot ofS(k) in the
accessible smalluku region is approaching23. Due to the
sum rule, this indicates that there is no evidence for any L
at this value ofR1, even though the value of^^uM u& r& t is still
not much reduced from itsR150 value atL564. At R1

51/4, S(k) shows an apparent slope of22.8560.05 for
small uku on the log-log plot. ByR153/8 theL564 samples
are showing multiple local minima of the free energy. Th
may be an indication that some correlation length has
come comparable to the sample size, butS(k) at R153/8
can be fit at smalluku by a power law inuku with an expo-
nent, (221h), of 22.6360.07. A QLRO phase with a con
tinuously varying value ofh has recently been found in
similar model by Emig, Bogner, and Nattermann.28

In order to distinguish clearly between an infinitej with a
continuously varying exponenth and a finitej, we would
need data for largerL or R1 closer to 1/2. Either of these
approaches would require a substantial increase in com
ing effort. If there really is an infinitej and anh which
varies continuously as a function ofR1, then we would like
to know if this behavior continues out to the maximum a
lowed value ofR1, and, if so, howh behaves near that poin
If it were practical to perform simulations for larger values
L, we believe that we would see the appearance of m
local minima for any nonzero allowed value ofR1.

To study thep52 case, we concentrated on samples w
R253/8, which means that only 1/4 of the states were
lowed at each site. Smaller values ofR2 give anS(k) almost
indistinguishable from the result forR50, the model without
randomness. Note thatR253/8 can be obtained fromR1
53/8 by removing an additional 3/8 of the allowed states
each site, and thus restoring a twofold symmetry. Beca
the random anisotropy constraints now cause most of
attempted moves to be immediately rejected, each sam
was run twice as long as forp51. Also, two semicircle
states, differing in average orientation byp/2 from each
other, were used for each sample as initial states.

The average magnetization forL564 andR253/8 was
obtained by averaging over the last quarter of each run.
result waŝ ^uM u& r& t50.43613, slightlylarger than the result
for the L564 system withR50. The results obtained usin
the two different initial states for a given sample did n
appear to be more similar to each other than results from
different samples. The direction of the magnetization rota
significantly during most runs, indicating thatj is at least as
large asL, and that the observed behavior is unlikely to
due to a failure of the system to relax. For one of these e
samples the final states of the two runs appeared to be in

n
of
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same local minimum. Studying smaller samples for mu
longer running times also gave no indication that the res
were caused by insufficient relaxation.

Eight samples with maximal random anisotropy~only two
allowed states at each site, labeledW251 in Fig. 2! were
also studied. In this case, with only two allowed states
spin, a Metropolis-type algorithm, for which spin flips a
lowed by the vortex-free constraint were made with pro
ability 3/4, was used to improve the efficiency of the pr
gram. ForW251, theL564 value of^^uM u& r& t was 0.4662,
and the orientation of̂ M & r always remained close to it
initial direction.

The structure factor for thesep52 cases, again average
over eight samples, is shown in Fig. 2, along with the d
for R50. We see that atL564 the structure factor forR2

53/8 is not distinguishable from that ofR50. Although the
data for R253/8 appears to be slightly above the data
R50 at small uku, this is a sampling artifact. The actu
average of^uM u& r for the 16 R253/8 states used in con
structing the figure is 0.4349, while for the 8R50 states it is
0.4357.

For W251, j is approximately eight lattice spacings, an
the line shape appears to be Lorentzian~plus thed function
at k50). In this case it appears that largeL behavior is seen
already forL516. A sample withW251 andL516 was run
for approximately 53105 steps per spin. The system a
peared to relax to equilibrium within the first 50 steps p
spin, which was essentially the same as the relaxation t
for the L564 samples, and no transitions were seen ou
the local minimum, which retained an̂M & r almost parallel
to that of the initial semicircle state. The transverse susc
tibility is approximately 15 times the longitudinal suscep
bility.

FIG. 2. Angle-averaged magnetic structure factor~per spin com-
ponent! for the vortex-freeXY model with random anisotropy on
64364364 simple cubic lattices, log-log plot. Each data set sho
an average of data from eight samples. TheR253/8 data set in-
cludes two states~with different initial conditions! per sample. The
straight line is identical to the one shown in Fig. 1.
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V. DISCUSSION

The model we are using for our computer simulations
one in which all allowed states of the spins have the sa
energy. If the dynamical behavior is ergodic, then, by de
nition, it must be possible to get from any initial state to a
final state. One might imagine therefore that this model, w
single-spin flip dynamics, could have an ergodicity-break
transition as a function of the strength of the randomne
That is, there could be a transition between having a c
nected phase space to having a phase space which is br
into many disconnected pieces.

It is easy to see, however, that any semicircle state ca
connected to another semicircle state with an arbitrary cho
of the semicircle, by single spin flips which do not viola
the constraints. This remains true as long asR1 or R2 is less
than 1/2. Therefore we cannot explain the result that for la
values ofR1 or R2 we find many local minima whenL be-
comes large by a percolation transition in phase space.
breakdown of ergodicity is a true phase transition, beca
the transition rates between different local minima only go
zero in the infinite volume limit.

One should remember that the phase space available
individual spin depends on how well aligned its neighbo
are. In a semicircle state, the magnetization is 2/p, about
0.636 62. Thus, when the system relaxes into a state w
^uM u& r,0.5, the ability of individual spins to reorient b
single-spin flips is greatly reduced, even though the entr
of the system as a whole has increased.

Entropy barriers29 are just as effective as energy barrie
in suppressing transitions between different minima. If t
paths in phase space between different local minima m
pass through intermediate states in which the value of^uM u& r
in a volumej3 is close to 0.6, then the probability of makin
such transitions is suppressed by a factor exponential in
correlation volume.

The above estimate may be unduly pessimistic. For
ample, it may be enough to increase the local magnetiza
in a surface layer, so that the entropy barrier is only prop
tional to j2. Nevertheless, the basic principle, that uncor
lated single-spin flips are not an efficient way to achie
large-scale reorientation ofM , is correct.

It would not be surprising if an alternative dynamic
could be developed which flipped large clusters of sp
simultaneously,30,31 and was thus more effective in movin
through phase space. Therefore we would like to check
results to see if they reflect true equilibrium behavior
developing such an algorithm. However, the results as t
stand seem internally consistent, and they are also consi
with the other related results cited earlier.

For p52, there is no instability of the LRO when th
randomness is too weak to induce the creation of vor
lines. We remind the reader that when vortex lines are
lowed, as for the strong random anisotropy limit of Eq.~2!,
the LRO appears to be unstable in three dimensions, and
low-temperature phase seems to have only QLRO.9 The na-
ture of the transitions between the LRO, QLRO and pa
magnetic phases are clearly of great interest, but they ca
be explored within the vortex-free model.

It should be noted that the infinite vortex fugacity used
our model does not satisfy the smoothness conditions use
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the proof of Aizenman and Wehr.4 Therefore our finding tha
the randomp51 field destroys the LRO in our model is a
indication that the smoothness conditions can be relaxe
three dimensions. Of course, it does not follow from this t
the smoothness conditions can be relaxed in four dimensi

An alternative method32,33 of removing the vortices is by
placing a lower bound on the allowed values of cos(ui2uj)
for all nearest neighbor pairs ofi andj. This method directly
violates the smoothness condition~4.5! of Aizenman and
Wehr,4 and is a more severe constraint than the vortex fug
ity method used here. It is likely that this alternative meth
would produce results in qualitative agreement with tho
found here using the Kohring-Shrock-Wills method.

VI. CONCLUSION

In this work we have used Monte Carlo simulations
study a vortex-freeXY model in three dimensions with ran
s-

nd
,

n

in
t
s.

c-
d
e

dom p51 and p52 fields. This toy model is intended t
represent the effects of random pinning on uniaxial CDW
and SDW’s. We have found that for CDW’s the LRO shou
be destabilized by weak random pinning, but that for SDW
the LRO should survive. These conclusions are consis
with experiment. Our results for thep51 case are consisten
with the existence of a QLRO of the type discussed by Em
Bogner, and Nattermann.28
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22M. Mézard and A.P. Young, Europhys. Lett.18, 653 ~1992!.
23R. Fisch and A.B. Harris, Phys. Rev. B41, 11 305~1990!.
24M.J.P. Gingras and D.A. Huse, Phys. Rev. B53, 15 193~1996!.
25R. Fisch, Phys. Rev. B55, 8211~1997!.
26G. Kohring, R.E. Shrock, and P. Wills, Phys. Rev. Lett.57, 1358

~1986!.
27R. Fisch, Phys. Rev. B52, 12 512~1995!.
28T. Emig, S. Bogner, and T. Nattermann, Phys. Rev. Lett.83, 400

~1999!.
29F. Ritort, Phys. Rev. Lett.75, 1190~1995!; S. Franz and F. Ritort,

Europhys. Lett.31, 507 ~1995!.
30U. Wolff, Phys. Rev. Lett.62, 361 ~1989!.
31U.K. Rossler, Phys. Rev. B59, 13 577~1999!.
32A. Patrascioiu and E. Seiler, J. Stat. Phys.69, 573 ~1992!.
33M. Aizenman, J. Stat. Phys.77, 351 ~1994!.


