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Supercurrent quantization in narrow-channel superconductor–normal-metal–superconductor
junctions
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1L.D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia
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~Received 14 January 2000!

We study the opening of transport channels in mesoscopic ballistic superconductor–normal-metal–
superconductor Josephson contacts. Determining the quasiparticle excitation spectrum in the normal contact
region as a function of gate voltage, we discuss the transformation of the electronic levels into phase-sensitive
Andreev levels with increasing chemical potential. The opening of these superchannels leads to a supercurrent
quantization that exhibits nonuniversal behavior in general, and we discuss its dependence on the junction
parameters.
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I. INTRODUCTION

Over the past decade, the miniaturization of electro
structures has reached the regime where the transport
ceeds via few or even a single conducting channel.1–3 Such
devices exhibit distinct steps in the conductanceG as the
number of channels is modified, providing microscopic
formation on the junction itself, as demonstrated in rec
experiments on break junctions.4 In superconducting
junctions,5 it is the maximal~critical! supercurrentI c that is
expected to exhibit a similar quantization. E.g., using ga
structures,6 superconducting junctions can be smoothly tra
formed from insulating @superconductor–insulator
superconductor~SIS!# to superconducting@superconductor–
normal-metal–superconductor~SNS!#. The onset of
superflow then proceeds in steps associated with the ope
of transverse channels: with the conductanceG quantized in
units of 2e2/h in metallic contacts,1,7 a critical supercurren
quantization in units ofeD/\ can be inferred from the
relation8 I c5(p/e)DG (D is the superconducting gap in th
banks!. In fact, this result applies to short junctions2,9,10 of
length L!j0 (j05\vF /pD is the coherence length!, how-
ever, contrary to the universality of the quantization in
normal contact, the quantization of the critical supercurr
is nonuniversal in general;10 while experiments on supercon
ducting quantum point contacts do show steps in the crit
currentI c , their values are nonuniversal and depend on
junction parameters.2,6 In this paper, we study the opening o
superconducting channels in the metallic link of narro
gated ballistic SNS Josephson contacts and determine
dependence of the~nonuniversal! supercurrent quantizatio
on the junction parameters.

While the behavior of macroscopic SNS Josephson ju
tions is well understood,11 the present interest concentrat
on structures of mesoscopic size. Such quantum point c
tacts are realized in heterostructures,1,6 with the help of break
junctions,2–4 or via manipulations with a scanning tunnelin
microscope.12 Recently, an SNS junction with few conduc
ing channels had been constructed by connecting two su
conducting banks via a carbon nanotube.13 Theoretically, the
supercurrent-phase relation in mesoscopic SNS junct
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with a d scatterer has been analyzed14 and the phenomenon
of supercurrent quantization has been studied in sh
junctions.9 Nonuniversal features of supercurrent quantiz
tion had first been observed by Furusakiet al.10 — unfortu-
nately, these numerical results provide limited insight in
the physical origin and the parametric dependence of th
effects. Here, we present a detailed discussion of the ope
of superchannels in gated mesoscopic SNS junctions@see
Fig. 1~a!# using quasiclassical and scattering matrix tec
niques. Given the relationI n5(2e/\)]w«n between the su-
percurrentI n and the phase (w) sensitivity of the energy
levels «n in the link, we discuss the nontrivial evolution o
the excitation spectrum as the chemical potential drops
low the superconducting gap: we analyze in detail the tra
formation of the ballistic SNS structure characterized
phase-sensitive Andreev states carrying large supercurr
into a SIS tunnel junction involving only phase-insensiti
electronic states. Given the phase dependence of the q
particle spectrum in the metallic link, we then find the sup
current quantization in short and long junctions, where
contribution from the continuous spectrum can be ignore

II. GATED BALLISTIC SNS CONTACTS

A. Setup

Consider a narrow metallic lead~with few transverse
channels! connecting two superconducting contacts

FIG. 1. Narrow-channel SNS contact:~a! geometrical setup
showing the adiabatic joining of the wire to the superconductor,~b!
potential landscape with a flat potential in the wire center a
smoothly dropping to the band bottom in the superconduct
banks. While electrons and holes with small excitation energie«
,mx form current carrying Andreev states, the hole propagation
quenched at large energies«.mx , and the Andreev levels trans
form into localized electronic states.
3559 ©2000 The American Physical Society
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3560 PRB 62CHTCHELKATCHEV, LESOVIK, AND BLATTER
sketched in Fig. 1~a! @we assume piecewise constant g
parameters D(x,2L/2)5 D exp(iwL), D(uxu,L/2)50,
and D(L/2,x)5D exp(iwR)#. Joining the wire smoothly to
the superconducting banks, we adopt the adiabatic des
tion for the longitudinal motion of the quasiparticles:7,15

separating the wave function into longitudial and transve
componentsC(x,x')5exp@(i/\)*xdx8px(x8)#f(x') and im-
posing the transverse boundary conditionf„x'56d(x)/2…
50, the longitudinal problem reduces to one describing m
tion in the effective~chemical! potentialmx(x)5«F2«'(x)
@see Fig. 1~b!#, where«'(x) denotes the transverse energy
the channel as obtained from the solution of the eigenva
problem 2¹'

2 f(x')5(2m/\2)«'f(x'), f„x'5
6d(x)/2…50. Provided the curvatureR of the wire’s throat
is small compared to its width,R!d, channel mixing be-
tween different transverse modes is exponentially s
pressed, leaving backscattering within the same channe
the most relevant process. For each transverse channel i
metallic wire, the quasiparticle spectrum«n then is deter-
mined through the one-dimensional Bogoliubov–de Gen
equation16 ~we choose states with«n>0)

F 2
\2]x

2

2m
2mx~x! D~x!

D* ~x!
\2]x

2

2m
1mx~x!

G Fun~x!

vn~x!
G5«nFun~x!

vn~x!
G ,

whereun and vn denote the electronlike and holelike com
ponents of the wave functionCn . The spectrum splits into
continuous and discrete parts, and we concentrate on the
ter part in the following,«n,D.

B. Quasiclassics

We begin with a brief description of the central physic
idea: Within a quasiclassical formulation, we describe
quasiparticles in terms of their kinetic energiesK6

5\2k6
2 /2m5mx(x)6« and assume transmission and refle

tion to be ideal~the excitation energies«5E2«F.0 are
measured with respect to the Fermi energy«F). An electron
with energy«,D below the gap is reflected back from th
superconductor as a hole with kinetic energyK25mx2«,
injecting a Cooper pair into the superconducting contac
process known as Andreev reflection.17 A second reflection
at the opposite NS boundary transforms the hole state b
into the original electron state, thus producing a pha
sensitive Andreev level carrying the supercurrent across
normal-metal lead. The hole part associated with the A
dreev level can propagate only if its kinetic energy is po
tive, K2.0 @see Fig. 1~b!#. Otherwise, the hole is back
reflected from the normal potential in the junction a
transformed into an electron at the NS boundary—the in
dent electron is effectively reflected back as an electron
a phase-insensitive electronic level is formed. Hence, the
perchannel starts being modified when the chemical pote
mx drops below the gapD and is quenched completely wit
all Andreev levels transformed into electronic ones whenmx
becomes negative.
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C. Scattering matrix formalism

Going beyond quasiclassics, the above physics is con
niently described through the scattering mat
formalism.18,19 We define scattering states in the normal
gion and characterize them through the energy-depen
transmission and reflection amplitudest exp(ixt) and
r exp(ixr) describing the propagation of quasiparticles in
dent from the left through the junction@given the smooth
geometry of the wire, adiabaticity of the levels allows us
ignore the mixing between different transverse channels
the discussion above and Ref. 15#. Matching these state
with the evanescent modes in the superconductors, we ob
@within the Andreev approximation,17 (K12K2)/(K1

1K2)!1 at the NS interface# the quantization condition20

cos~S12S22a!5r 1r 2 cosb1t1t2 cosw, ~1!

where the1 (2) signs refer to the positive and negativ
energies6« of the electronlike~holelike! quasiparticles and
S6(«)5x6

t 1k0,6L, with k0,6L5A2m(«F6«)L/\ the
phase for free propagation~while the phaseS refers to the
propagation from2L/2 to L/2, the scattering phasesx t and
x r refer to the origin!. Andreev scattering at the NS bound
aries introduces the phasea52 arccos(«/D) decreasing
from p at «50 to 0 at the gap«5D, as well as the phase
difference w5wL2wR between the two superconductin
banks. The phaseb5(x1

t 2x1
r )2(x2

t 2x2
r ) reduces tob

50 for a symmetric barrier in the absence of perfect re
nances@as follows from the unitarity of the scattering matri
for a symmetric potential shifted bya from the center we
haveb52(k0,12k0,2)a#. The secular equation~1! involves
two main energy dependencies originating from the propa
tion through the wire and from scattering at the NS boun
aries, e.g., due to potential steps or barriers. Here, we c
centrate on the case where the transport through the junc
is dominated by the normal metallic wire—we will comme
on the effect of resonances introduced by an additional s
tering at the NS boundaries below.

D. Quasiparticle spectrum: Flat potential

A rough understanding of the transformation from a m
tallic to an insulating junction is obtained in the quasiclas
cal approximation using a flat potential@see Fig. 1~b!#: For a
large chemical potentialmx.«, we haver 650, t651 in
Eq. ~1!, and we obtain the Bohr-Sommerfeld quantizati
condition for the~phase-sensitive! Andreev levels

S12S22a6w52np. ~2!

On the other hand, for2«,mx,« only the electron gets
transmitted (t151→r 150), while the hole is always re
flected (r 251→t250) and the right-hand side of Eq.~1!
vanishes. UsingS253p/2 as appropriate for a hard-wa
potential, we then find the quantization condition

2S122a52np, ~3!

for the electronic levels.
Evaluating these conditions for a flat potential~ignoring

contributions toS65kF,xLA16«/mx originating from the
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PRB 62 3561SUPERCURRENT QUANTIZATION IN NARROW-CHANNEL . . .
adiabatic joints!, we obtain the level scheme shown in Fi
2~a!: For a large potentialmx@D(kFL)1/3, we can expand
S6'kF,xL(16«/2mx) and obtain the usual Andreev levels
«n(w)5(\vF,x/2L)@2np1a(«n)7w#. As the effective
chemical potential becomes small~but still mx.«), we can-
not expand any longer and find the energy levels at

«n~w!5mxA12F12
@2n1~a7w!/p#2«L

2mx
G2

, ~4!

where@•••#.0 and«L[\2p2/2mL2.
Let us follow the evolution of the spectrum as a functi

of chemical potentialmx : For w50 thenth level appears as
mx is increased beyond«n5«L(2n1a/p)2/2 and rises to-
ward the gapD with increasingmx @see Fig. 2~a!#. These
levels are phasesensitive with a finite phase differencw
producing a level splitting. In the regime2«,mx,«, elec-
tronic states are trapped aten5«L(n1a/p)22mx ; they first
appear asmx drops belowen5«L(n1a/p)2/2, rise toward
the gap with decreasingmx , and are phase insensitive. No
that we have twice as many electronic than Andreev level
the latter are doubly degenerate atw50—the exact transfor-
mation of the Andreev levels into electronic ones at«'mx
requires a more careful analysis accounting for the nonid
transmission and reflection through the normal channel,
below. Finally, asmx drops below2«, both the electronlike
and holelike trajectories are quenched. Note the evolutio
the right-hand side of Eq.~1!, going from cosw at large
positivemx.«, to a small value in the intermediate regio
2«,mx,«, and back to unity at large negativemx,2«.
The replacement of cosw by unity with decreasing chemica
potential mx reflects the crossover from phase-sensit

FIG. 2. Discrete energy spectrum@~a! qualitative sketch for a
flat potential,~b! smooth parabolic potential#. Formx0.« ~region I!
both electrons and holes propagate, forming phase-(w) sensitive
Andreev levels carrying supercurrent. The double degeneracy o
Andreev states is lifted by a finite phase dropw across the junction
as well as a finite reflection in the wire@see~c!#, the latter becoming
relevant upon decreasingmx0. As mx0 drops below«, the Andreev
levels first transform into electronic states~regions II and III! and
finally turn into boundary states trapped at the NS interfaces w
mx0&2« ~regions V and VI!. Within the shaded regions aroun
«56mx0, the transmission drops from unity to zero for holes a
electrons.~c! Graphical solution of Eq.~1! along the cutA-A in ~b!.
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~Andreev! levels to phase-insensitive~electronic! levels. This
provides us with a first rough understanding of the SNS
SIS transformation.

E. Quasiparticle spectrum: Smooth potential

In a more accurate study of the evolution of the boun
state spectrum from a SNS to a SIS junction, we assum
smooth potential mx(x) with a small curvaturemV2

5]x
2mx , \V,D, producing a sharp switching betwee

transmission and reflection within the energy interval\V ~a
d-function scatterer14 does not describe a pronounced tran
formation from a SNS to a SIS junction!. Adiabatic joining
of the wire to the superconducting banks requires t
mV2(L/2)2/2;«F and allows us to make use of the Andre
approximation while avoiding the appearance of resonan
@this condition can be relaxed as the Andreev approxima
requiresmV2(L/2)2/2@D, while a step in the potentialDV
,0.9«F produces only weak resonances~see Ref. 21!#. In
summary, a smooth contact without resonances requires
parameter settingA«F«L,\V,D; this condition implies
that the junction has to be long,L.j0, and hence a relatively
large numbern;AD/«L of levels is trapped. For such
smooth potential, the Kemble formula is valid and the tra
mission probabilities take the form7

T65t6
2 5

1

11exp$22p@mx~0!6«#/\V%
. ~5!

Figure 2~b! shows the refined results for the SNS to S
transformation using the quadratic potentialmx(x)5mx0
1mV2x2/2 with the parameter \V(mx0)
5(4/p)A«L(«F2mx0) and mx05mx(0), joining the band
bottom of the superconductors at the two NS boundaries.
this case, the quasiclassical dimensionless actionS takes the
form

S~E!5
2E

\V
$k2A11k221 ln@ uku~11A11k22!#%, ~6!

with

k25Q
\V

E
5

p2\2V2

16E«L
, Q5

p2

16

\V

«L
@1

a large parameter@S65S(E5mx06«); an additional phase
p, which cannot be obtained within the quasiclassi
scheme, is picked up over the energy interval\V asE goes
through zero;22 this additional phase shift has been includ
in the determination of the spectrum in Fig. 2~b!#. As for the
flat potential, the Andreev levels at large chemical poten
mx0.«1\V ~region I! are converted in steps~regions II–V!
to the electronic states at negative potentialmx0,2«2\V:
We begin with the crossover from region I to III at«;mx0
and analyze Eq.~1! in more detail. The argumentS12S2

2a starts from2a(0)52p and increases with energy«.
The first level~or pair of levels! appears asS12S22a goes
through zero; in region I, the right-hand side of Eq.~1! is
~close to! unity and the solutions describe Andreev leve
that split at finite values ofw. Upon approaching the line«
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3562 PRB 62CHTCHELKATCHEV, LESOVIK, AND BLATTER
5mx0 ~region II!, the transmission coefficientt2 for the hole
drops below unity. For«>\V, the electron quasiparticle i
still transmitted perfectly@r 1,exp(24p)# and the condition
~1! reads cos(S12S22a)5t1t2 cosw,1, hence a level split-
ting occurs either as a consequence of a finite phase di
encewÞ0 or even atw50 due to the nonperfect transmi
sion of the holelike quasiparticle,~see Fig. 2!. For w50, the
product t1t2 is unity for small energies«,mx02\V and
drops to zero over the range\V with increasing energies—
correspondingly, the Andreev levels at small energies t
into electronic states at large energies,@see region II of Fig.
2~b! and the construction in Fig. 2~c!#. The splitting of the
levels with increasing hole reflection starts with an expon
tial increased«;2\r 2 /(t21t1) and becomes large, of or
der p\/(t21t1) at «5mx0. Here,t65\]«S6 denotes the
propagation times through the normal regionN; for the
smooth quadratic potential, we find

t~E!5
2

V
ln@ uku~11A11k22!#. ~7!

For small energies, the travel time increases logarithmica

t~E!'V21 ln~4Q\V/E! ~8!

within the interval\V,E,Q\V, and saturates at

t0'V21 ln~4Q! ~9!

asE drops below\V ~in order to obtain this saturation, on
has to go beyond the quasi-classical approximation!.

Within region III, the hole propagation is quenched wh
the electronic transmission is still perfect. Across region
wheremx0'2«, the transformation of the SNS junction int
a SIS tunneling junction is being completed. Here, the m
contribution to the right-hand side in Eq.~1! is from the term
r 1r 2&1, while the transmission provides only an expone
tially small correction leading to a correspondingly weak d
pendence of the levels on the phasew ~and hence to an
exponentially small supercurrent!. For a wide barrier with
only a small interval left for free propagation, i.e.,S12S2

!p, the levels appear close toD as the condition~1! re-
quires the~Andreev! scattering phase to vanish,a(«→D)
→0 @see Fig. 2~a!#. On the other hand, a wider region of fre
propagation allows for the accumulation of sufficient pha
S12S2.p to produce electronic levels at lower energi
«,D @see Fig. 2~b!#. The level splitting is a consequence
the inequalityt1t21r 1r 2,1 and vanishes asmx0 drops
below 2«, producing~almost! degenerate (w-independent!
electronic states within the SIS regime VI, the analog of
~almost! degenerate (w-dependent! Andreev states in the
SNS regime I, wheremx0.«. Physically, the levels atmx0
;2« can be understood in terms of NS interface sta
where the degeneracy is lifted due to the finite tunnel
across the potential barrier.23

Finally, as the quasiparticle energy« vanishes in region
IV, «<\V, both the electronic and the hole component u
dergo a finite reflection probability and the distinction b
tween Andreev and electronic levels is gone—this resem
the situation of a SNS junction with ad-scattering potential,
~see, e.g., Ref. 14!. In a long junction withQ@1, the spec-
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trum close tomx050 ~i.e., upon channel opening! involves
levels at«n'\$(2n11)p6 arccos@cos2(w/2)#%/2t0 @we ap-
proximate t6'1/A2 in Eq. ~1! and use S6'«t0 /\,
a'p#—at w50,p the finite reflection produces the min
gaps«0(w50)'p\/2t0 and«0(w5p)'p\/4t0. As usual,
the degeneracies atw50 are lifted when we account for th
deviation ofr 1r 21t1t2 from unity.

F. Critical supercurrent

Next, we concentrate on the quasiclassical region I a
study the evolution of the critical supercurrent as the chan
is switched on and off. The supercurrentI flowing through
the junction splits into the two contributions from the di
crete (I dis) and the continuous (I con) parts of the spectrum
Here, we concentrate onI dis, which dominates the expres
sion for the critical supercurrent in the quasiclassical regi
I ~requiring \V,mx0 is sufficient!. The current of thenth
level ~including a factor 2 for spin! can be obtained from the
derivative

I n5
2e

\

d«n

dw
5

2e

T t1t2 sinw, ~10!

with the generalized traveling time

T
\

5sin~dS2a!]«@dS2a#1]«@~ t1t2!cosw

1~r 1r 2!cosb#. ~11!

Within the quasiclassical region I, each Andreev level carr
a finite supercurrent of amplitude 2e/@t11t2

12\/AD22«2#, with t65\]«S6 the propagation times de
fined above.

Adding up the contributions from levels atw50, the pair-
wise degenerate levels«n6 produce equal currents of oppo
site sign, and the sum over the discrete spectrum gives
current. Increasingw, the degeneracy is lifted, with the leve
«n,1(«n,2) going up ~down! in energy as the phasew in-
creases. The currents of the individual pairs no longer can
but produce a monotonously growing current of the sa
sign, hence, the largest current is reached atw5p2. On the
other hand, atw5p2 the levels become degenerate aga
but this time the mutual cancellation of currents occurs
tween the levels«n,1 and«n11,2 . The lowest level«0,2 then
remains unpaired and thus carries all the supercurrent f
the discrete part of the spectrum. The continuous part of
spectrum vanishes atw5p, however, this isa priori not
sufficient to guarantee that the critical currentI c is the cur-
rent I 0 carried by the lowest level—we have to show,
addition, that the maximum ofI 5I dis1I con is reached atw
5p2 @indeed, using the usual Green’s-function technique10

we could prove that this condition is fulfilled within a regim
of the L-mx0 plane away from„L;(j0 /kF)

1/2,mx0;D…#. In
the end, we arrive at a particularly simple expression for
critical current density in the quasiclassical region I,

I c5
e

t01\/D
. ~12!
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The travel timet0 ~i.e., the time a quasiparticle requires
traverse the normal region of lengthL) is constant
(V21 ln 4Q) at the opening of the channel, decreases
V21 ln 4Q\V/mx0 for mx0.\V, and transforms to the fre
travel timeL/vF,x for mx0.Q\V. As the channel become
wide open at high energies, the critical current saturate
the nonuniversalvalue I c5evF /(L1pj0).

The particular~exponential! cutoff of the critical current
throughout the regions II–V depends on the details of
junction potential. The quenching involves two steps, w
an exponential reductionI}t2 in region II ~while the elec-
tron still propagates witht1'1, the hole undergoes tunne
ing! and a further reductionI}t2t1 in region V ~both, elec-
tron and holetunneling!. Note that for the ballistic case
~region I! the factor sin(w→0);w is compensated by th
time T}w, while the finite reflection in regions II–V leads t
a vanishing supercurrent asw→0 for each level separately

The above discussion dealt with the parameter sett
A«F«L,\V,D requiring a junction withL.j0. Releasing
the condition of small curvature and assumingD,\V, the
SNS to SIS transformation is smeared and the region
occupies all of the interesting crossover regime. For a
potential \V,A«F«L, the situation is complicated by th
appearance of resonances due to reflection from the pote
step at the NS boundary.21 The situation simplifies for a very
short junction withL!j0, where we can again make use
Eq. ~1! to reproduce a simple and universal result for t
current-phase relation~see Refs. 24–26!: with dS5S1

2S2'0 andt2't1'AT, r 2'r 1'AR, one finds that only
one level remains trapped in the junction at«05D@1
2T sin2(w/2)#1/2 ~here, we require a width\V.D in order
to avoid a strong energy dependence in the transmis
probability T). Determining the currentI 0(w) from «0 and
maximizing, we obtain

I c5
eD

\
~12AR!, ~13!

in marked difference from the result for the conductan
quantizationG5(2e2/h)(12R): a finite reflection 0,R
!1 will affect the supercurrent quantization much mo
strongly than the conductance quantization.

G. Supercurrent quantization

Finally, we discuss the supercurrent quantization ‘‘step
appearing as the gate potential is decreased to open the
ducting channel. We concentrate on the quasiclassica
gime I, assuming a parabolic potentialmx(x) in the junction
which matches the band bottom of the superconductors a
NS boundary and ignore a possible change in the effec
mass. The quantized transverse energy of a channel of w
d is given by«'; l'\2p2l 2/2md2; these levels match up with
the Fermi energy whend5dk5kp/kF . As we open thekth
channel, the other open channels have already droppe
mx0;l ,k5«F2«'; l ,k5«F(12 l 2/k2), where «'; l ,k

5\2p2l 2/2mdk
2 , e.g., the first channel is wide open whe

the second channel appears,mx0;1,25(3/4)«F . Increasing the
s
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by

channel widthd, the first channel opens@i.e., mx05«F(1
2p2/kF

2d2) turns positive# as we reachd15p/kF , the criti-
cal current increases sharplyI c'eV/ ln@4/(kF

2d2/p221)#
~the logarithmic singularity is cut off at\V) and saturates a
I c'evF /(L1pj0) ~see Fig. 3!.

Here, we have ignored the smearing near the onset wi
the range\V due to a finite reflection—while the interestin
evolution of the quasiparticle spectrum is washed out as\V
increases beyond the gapD ~see Fig. 2!, the steps in the
onset of the supercurrent are much more robust. On the o
hand, the absence of sharp steps of universal height in
critical current is an intrinsic feature of the superconduct
junction: the steps are rounded at the top and their heigh
limited by the junction length,dI c;evF /L for junctions
longer than the coherence lengthj0 of the superconductor
For short junctions withL!j, the sharpness of the steps
I c is dictated by the reflection probabilityR of the junction
and, thus, is more similar to the steps in the conductanceG.
However, with I c}(12AR), the steps inI c are always
‘‘smoother’’ than those in the conductanceG}(12R).

III. CONCLUSION

In the end, universal supercurrent quantization first see
to require short junctions, but the gate needed to switch
channels will produce backscattering and spoil the quant
tion. While going over to longer contacts helps to produ
sharp and universal conductance stepsdG'2e2/\, the steps
in the supercurrent exhibit flat tops and assume the n
universal valuedI c'evF /L due to the long traveling time
for the Andreev states.
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FIG. 3. Supercurrent quantization: with increasing widthd of
the normal channel the supercurrent increases in steps ofe/(t0

1\/D). The dotted and dashed lines give the approximationst0

'V21 ln(4Q\V/E) and t0'L/vF at small and large energies~pa-
rameters:«F51 eV, D/«F51023, L/j0;1,10; with the curvature
\V/D,5,0.5 no smearing is visible at the supercurrent onset!.
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