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We study the opening of transport channels in mesoscopic ballistic superconductor—normal-metal—
superconductor Josephson contacts. Determining the quasiparticle excitation spectrum in the normal contact
region as a function of gate voltage, we discuss the transformation of the electronic levels into phase-sensitive
Andreev levels with increasing chemical potential. The opening of these superchannels leads to a supercurrent
quantization that exhibits nonuniversal behavior in general, and we discuss its dependence on the junction
parameters.

[. INTRODUCTION with a & scatterer has been analyZ&dnd the phenomenon
of supercurrent quantization has been studied in short
Over the past decade, the miniaturization of electronigunctions? Nonuniversal features of supercurrent quantiza-
. ; ; in] 10
structures has reached the regime where the transport prion had first been observed by Furusakial™ — unfortu-
ceeds via few or even a single conducting chadmiéBuch ~ nately, these numerical results provide limited insight into
devices exhibit distinct steps in the conducta@eas the the physical origin and the parametric dependence of these
number of channels is modified, providing microscopic in-effects. Here, we present a detailed d|s.cu33|on pf the opening
formation on the junction itself, as demonstrated in recenf! SuPerchannels in gated mesoscopic SNS junctjses
experiments on break junctiofis.In superconducting Fig. @] using quasm!assmal and scattering matrix tech-
junctions? it is the maximal(critical) supercurrent that is niques. Given the relatioh, = (2e/%)d e, between the su-

expected to exhibit a similar quantization. E.g., using gate ercurren_tl v anc_i the ph"’?se‘fo senS|t|V|ty_ c.’f the energy
structure$, superconducting junctions can be smoothly trans—evelss? n the link, we discuss the npntnwal eyolut|on of

' : . . the excitation spectrum as the chemical potential drops be-
formed from insulating [superconductor—insulator—

: low the superconducting gap: we analyze in detail the trans-
superconducto(SIS)] to superconductingsuperconductor— ¢,mation of the ballistic SNS structure characterized by
normal-metal—superconductor(SNS]. The onset of

; . X _phase-sensitive Andreev states carrying large supercurrents
superflow then proceeds in steps associated with the openifigio 4 SIS tunnel junction involving only phase-insensitive
of transverse channels: with the conducta@cquantized in  glectronic states. Given the phase dependence of the quasi-
units of 292/h in metallic Contacté’,7 a critical supercurrent partic]e spectrum in the metallic |ink, we then find the super-
quantization in units ofeA/A can be inferred from the current quantization in short and long junctions, where the
relatiorf 1= (7/€)AG (A is the superconducting gap in the contribution from the continuous spectrum can be ignored.
banks. In fact, this result applies to short junctiérs® of

lengthL< £, (&g="hve/mA is the coherence lengthhow- Il. GATED BALLISTIC SNS CONTACTS

ever, contrary to the universality of the quantization in a A. Setup

normal contact, the quantization of the critical supercurrent ) ) )

is nonuniversal in generdfwhile experiments on supercon-  Consider a narrow metallic leadvith few transverse
ducting quantum point contacts do show steps in the criticafhannely connecting two superconducting contacts as

currentl ., their values are nonuniversal and depend on the SreGTAEor
junction parameter&® In this paper, we study the opening of (J (®) A
superconducting channels in the metallic link of narrow-

gated ballistic SNS Josephson contacts and determine the
dependence of théhonuniversal supercurrent quantization
on the junction parameters.

While the behavior of macroscopic SNS Josephson junc-
tions is well understood the present interest concentrateéS £ 1. Narrow-channel SNS contads) geometrical setup
on structures of mesoscopic size. Such quantum point CORowing the adiabatic joining of the wire to the supercondugtor,
FaCtS_arezre4al'zeq n he'[_erOStrUCtu}éS’V'th the help of break  potential landscape with a flat potential in the wire center and
junctions?™" or via manipulations with a scanning tunneling smoothly dropping to the band bottom in the superconducting
microscop€e? Recently, an SNS junction with few conduct- panks. While electrons and holes with small excitation energies
ing channels had been constructed by connecting two supek ., form current carrying Andreev states, the hole propagation is
conducting banks via a carbon nanotdb&heoretically, the quenched at large energies> u,, and the Andreev levels trans-
supercurrent-phase relation in mesoscopic SNS junctionferm into localized electronic states.
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sketched in Fig. (B [we assume piecewise constant gap C. Scattering matrix formalism

parameters A(x<—L/2)= Aexple), A(]x/<L/2)=0, Going beyond quasiclassics, the above physics is conve-
and A(L/2<x)=A exp(¢g) ]. Joining the wire smoothly 10 nieny ~ described through the scattering — matrix
the superconducting banks, we adopt the adiabatic descrigsmalism81° We define scattering states in the normal re-
tion for the longitudinal motion of the quasmarﬂclégf gion and characterize them through the energy-dependent
separating the wave function into longitudial and transversg., smission and reflection amplitudesexp(y’) and
componentsW (x,x, ) =exp (i) [*dx'p(x')]p(x,) and im-  oyni 1y describing the propagation of quasiparticles inci-
posing the transverse boundary conditiptx, = =d(x)/2)  gent from the left through the junctiofgiven the smooth
=0, the longitudinal problem reduces to one describing Moyeometry of the wire, adiabaticity of the levels allows us to
tion in the effective(chemical potential ux(X) =er—&.(X)  ignore the mixing between different transverse channels see
[see Fig. 1b)], wheree , (x) denotes the transverse energy of{he giscussion above and Ref.]1®atching these states
the channel as ozbtalned from the solution of the eigenvalugjith the evanescent modes in the superconductors, we obtain
problem  —V?¢(x,)=(2m/%%)e, H(x,), #(X, = [within the Andreev approximatioH, (K,—K_)/(K
+d(x)/2)=0. Provided the curvatur® of the wire’s throat 1+ K _)<1 at the NS interfacethe quantization conditidfl
is small compared to its widthR<d, channel mixing be-
tween different transverse modes is exponentially sup-
pressed, leaving backscattering within the same channel as
the most relevant process. For each transverse channel in tighere the+ (—) signs refer to the positive and negative
metallic wire, the quasiparticle spectrus then is deter- energies* ¢ of the electronlikgholelike) quasiparticles and
mined through the one-dimensional Bogoliubov—de Gennes, (¢)=y! +k,.L, with Kky.L=+2m(ep=e)L/A the
equatiori® (we choose states with,=0) phase for free propagatiofwhile the phases refers to the

propagation from—L/2 to L/2, the scattering phasgs and

x' refer to the origin. Andreev scattering at the NS bound-

cogS,—S_—a)=r,r_ cosB+t,t_ cose, D

hzéﬁ aries introduces the phase=2 arccosg¢/A) decreasing
~om M%) A(x) u(x) u,(x) from 7 ate=0 to O at the gag=A, as well as the phase
Iy uy(x) =g, UV(X) , difference ¢= ¢ — ¢ tt)etween thet two superconducting
A*(x) I v v banks. The phasg=(x"\.—x")—(x.—x") reduces toB
2 =0 for a symmetric barrier in the absence of perfect reso-

nancegas follows from the unitarity of the scattering matrix;

whereu, andv, denote the electronlike and holelike com- for & symmetric potential shifted bg from the center we
ponents of the wave functiol , . The spectrum splits into  NaveB=2(Ko . —Ko)a]. The secular equatiofl) involves

continuous and discrete parts, and we concentrate on the |40 Main energy dependencies originating from the propaga-
ter part in the followings ,<A. tion through the wire and from scattering at the NS bound-

aries, e.g., due to potential steps or barriers. Here, we con-
centrate on the case where the transport through the junction
B. Quasiclassics is dominated by the normal metallic wire—we will comment

L . . . on the effect of resonances introduced by an additional scat-
We begin with a brief description of the central physical tering at the NS boundaries below.

idea: Within a quasiclassical formulation, we describe the
quasiparticles in terms of their kinetic energids.
=h2k2i/2m=,ux(x)is and assume transmission and reflec-
tion to be ideal(the excitation energies=E—&>0 are A rough understanding of the transformation from a me-
measured with respect to the Fermi enesgy. An electron tallic to an insulating junction is obtained in the quasiclassi-
with energye <A below the gap is reflected back from the cal approximation using a flat potentfslee Fig. 1b)]: For a
superconductor as a hole with kinetic eneflgy = u,—¢, large chemical potentigh,>¢, we haver.=0, t.=1 in
injecting a Cooper pair into the superconducting contact, dq. (1), and we obtain the Bohr-Sommerfeld quantization
process known as Andreev reflectitnA second reflection ~ condition for the(phase-sensitiyeAndreev levels

at the opposite NS boundary transforms the hole state back

into _the original electron state, thus producing a phase- S,—S_ —a*e=2nm. )
sensitive Andreev level carrying the supercurrent across the

normal-metal lead. The hole part associated with the AnOn the other hand, for-e<u,<e only the electron gets
dreev level can propagate only if its kinetic energy is posi-transmitted (. =1—r_=0), while the hole is always re-
tive, K_>0 [see Fig. 1b)]. Otherwise, the hole is back- flected {_=1—t_=0) and the right-hand side of El)
reflected from the normal potential in the junction andvanishes. UsingS_=3w/2 as appropriate for a hard-wall
transformed into an electron at the NS boundary—the incipotential, we then find the quantization condition

dent electron is effectively reflected back as an electron and

a phase-insensitive electronic level is formed. Hence, the su- 2S, —2a=2n, 3)
perchannel starts being modified when the chemical potential

1y drops below the gap and is quenched completely with for the electronic levels.

all Andreev levels transformed into electronic ones wjgn Evaluating these conditions for a flat potentjgnoring
becomes negative. contributions t0S. =kg,L\1*¢e/u, originating from the

D. Quasiparticle spectrum: Flat potential
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Z 5 4L cos® (Andreey levels to phase-insensitivelectronig levels. This
© provides us with a first rough understanding of the SNS to
\ @ ] SIS transformation.
() 0 AE
0 A M | E. Quasiparticle spectrum: Smooth potential
Z AR ekl T In a more accurate study of the evolution of the bound-
= state spectrum from a SNS to a SIS junction, we assume a
L 3 = s smooth potential u,(x) with a small curvaturemQ?

=a)2(,ux, AQ <A, producing a sharp switching between
transmission and reflection within the energy intew@ (a
s-function scatteréf does not describe a pronounced trans-
formation from a SNS to a SIS junctibnAdiabatic joining
of the wire to the superconducting banks requires that
FIG. 2. Discrete energy spectruffe) qualitative sketch for a mQZ(L_/Z)Z/,ZNSF "’,md a”‘?"‘{s us to make use of the Andreev
flat potential (b) smooth parabolic potentiglFor u,o> ¢ (region ) apprOXIme_lt_lon while avoiding the appearance of resonances
both electrons and holes propagate, forming phagegensitive  [this condition can be relaxed as the Andreev approximation
Andreev levels carrying supercurrent. The double degeneracy of thEquiresmQ?(L/2)%/2> A, while a step in the potentia v
Andreev states is lifted by a finite phase dipgcross the junction <0.9 produces only weak resonancesee Ref. 2f. In
as well as a finite reflection in the wifsee(c)], the latter becoming Summary, a smooth contact without resonances requires the
relevant upon decreasing,,. As uyo drops belowe, the Andreev  parameter settingyere, <AQ<A; this condition implies
levels first transform into electronic stat@egions Il and Il) and  that the junction has to be long> &, and hence a relatively
finally turn into boundary states trapped at the NS interfaces whefarge numbern~\/A/e, of levels is trapped. For such a

uxo=—¢ (regions V and V). Within the shaded regions around smooth potential, the Kemble formula is valid and the trans-
&= uyo, the transmission drops from unity to zero for holes andmjssjon probabilities take the form

electrons(c) Graphical solution of Eq(1) along the cuA-A in (b).

(®

1
adiabatic jointy we obtain the level scheme shown in Fig. Tizti— (5)

2(a): For a large potentiaj,>A(keL)Y3, we can expand 1+exp{ =27 uy(0) = e]/h O}
S.~Kkp L(1*&/2u,) and obtain the usual Andreev levels at
en(@)=(hvey/2L)[2nT+a(e,) *¢]. As the effective
chemical potential becomes sméut still ©,>¢), we can-
not expand any longer and find the energy levels at

Figure Zb) shows the refined results for the SNS to SIS
transformation using the quadratic potential(x)= o
+mQO2x%/2 with the parameter Q) (uyo)
=(4lm) Ve (ep— pmyo) and uyo= uy(0), joining the band
bottom of the superconductors at the two NS boundaries. For
this case, the quasiclassical dimensionless a@itakes the

2n+(a¥ @)l m]%e |?
8n((p):#)(\/l_{l_[ n (CYZMQD) ™% @ form

oF
where[ - - -]>0 ande, =fi2x2/2mL2. S(E)= 5o VIt kSl (1+ 1+ k9] (6)

Let us follow the evolution of the spectrum as a function
of chemical potentiajs, : For ¢=0 thenth level appears as With
Ly IS increased beyond,=g, (2n+ a/)?/2 and rises to-
ward the gapA with increasingu, [see Fig. 2a)]. These , hQ  7*h*0? w hQ)
levels are phasesensitive with a finite phase differeace K ZQfZE, Q= ES_L>1
producing a level splitting. In the regimees <u,<e, elec-
tronic states are trapped gt=¢, (n+ a/m)%— u,; they first  a large parametdiS. = S(E= u.* ¢€); an additional phase
appear asu, drops belowe,=g (n+ a/7)?/2, rise toward 7, which cannot be obtained within the quasiclassical
the gap with decreasing,, and are phase insensitive. Note scheme, is picked up over the energy intefv@ asE goes
that we have twice as many electronic than Andreev levels aghrough zerd? this additional phase shift has been included
the latter are doubly degenerategat 0—the exact transfor- in the determination of the spectrum in Figb®. As for the
mation of the Andreev levels into electronic onessatu,  flat potential, the Andreev levels at large chemical potential
requires a more careful analysis accounting for the nonideagk,,> ¢+ %) (region )) are converted in stegsegions 11-\)
transmission and reflection through the normal channel, se® the electronic states at negative potentigd<<—e—#{):
below. Finally, asu, drops below— ¢, both the electronlike We begin with the crossover from region | to Il at- ug
and holelike trajectories are quenched. Note the evolution ofind analyze Eq(l) in more detail. The argumer8, —S_
the right-hand side of Eq(l), going from cosp at large  —«a starts from— «(0)=— and increases with energy.
positive u,>¢, to a small value in the intermediate region The first level(or pair of level$ appears aS, —S_ — « goes
—e<puy<e, and back to unity at large negatiye,<—e.  through zero; in region I, the right-hand side of Ef) is
The replacement of casby unity with decreasing chemical (close t9 unity and the solutions describe Andreev levels
potential u, reflects the crossover from phase-sensitivethat split at finite values of. Upon approaching the line
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= uyo (region ll), the transmission coefficient for the hole  trum close tou,o=0 (i.e., upon channel openihgnvolves
drops below unity. Foe=#%(, the electron quasiparticle is levels ate,~#%{(2n+ 1)+ arccofcog(¢/2)]}/27, [we ap-
still transmitted perfectlyr , <exp(—4)] and the condition proximate t.~1/\/2 in Eq. (1) and use S.~&7y/#,
(1) reads cos%, —S_—a)=t,t_cose<1, hence a level split- a~m]—at ¢=0,7 the finite reflection produces the mini-
ting occurs either as a consequence of a finite phase diffetiapse (¢ =0)~ wh/27y andey(@o= m)~ whldr,. As usual,
encep+0 or even atp=0 due to the nonperfect transmis- the degeneracies at=0 are lifted when we account for the
sion of the holelike quasiparticlésee Fig. 2 For¢=0, the  deviation ofr .r _+t_ t_ from unity.

productt,t_ is unity for small energiez <u,o—#A{) and

drops to zero over the rang&) with increasing energies— F. Critical supercurrent
correspondingly, the Andreev levels at small energies turn ) ) )
into electronic states at large energigsee region Il of Fig. Next, we concentrate on the quasiclassical region | and

2(b) and the construction in Fig.(@]. The splitiing of the Study the evolution of the critical supercurrent as the channel
levels with increasing hole reflection starts with an exponeniS switched on and off. The supercurrdnfiowing through
tial increasese ~ 2#r _ /(r_+ 7, ) and becomes large, of or- the junction splits into the two contributions from the dis-
der whi/(7_+7,) ate= . Here,7. =%4,S. denotes the crete (g4 and the continuousl {,) parts of the spectrum.

propagation times through the normal regidh for the ~ Here, we concentrate ohys, which dominates the expres-
smooth quadratic potential, we find sion for the critical supercurrent in the quasiclassical regime

I (requiring 2 Q< u,q is sufficien). The current of thevth
level (including a factor 2 for spincan be obtained from the

2 o
T(E)=5In[|x|(1+ i+ k™ 9)]. (7y  derivative
For small energies, the travel time increases logarithmically, 2eds, 2e .
v= 7 g, — g lit-sing, (10)
h de T
(E)~Q ™t In(4QHO/E) (8)

with the generalized traveling time
within the intervalh Q<E<Q#% (), and saturates at

T
70~ 1In(4Q) 9) %=sin(5$— a)d [ 6S—a]+d [ (t,t_)cose

asE drops belowrz Q) (in order to obtain this saturation, one
has to go beyond the quasi-classical approximation

Within region Il the hole propagation is quenched while \ithin the quasiclassical region I, each Andreev level carries
the electronic transmission is still perfect. Across region V.5 finite supercurrent  of amplitude efr, +7_

whereu,o~ — ¢, the transformation of the SNS junction into + 2/ JAZ=£2], with 7. =#4,S. the propagation times de-

a SIS tunneling junction is being completed. Here, the mai%ineq above. - -

contribution to the right-hand side in E@) is from the term Adding up the contributions from levels at=0, the pair-
r,r_=1, while the transmission provides only an exponen-ise degenerate levels,.. produce equal currents of oppo-
tially small correction leading to a correspondingly weak de-gji sign, and the sum over the discrete spectrum gives no

pendence of the levels on the phage(and hence to an .rent. Increasing, the degeneracy is lifted, with the levels
exponentially small supercurrent~or a wide barrier with en+(en_) going up (down) in energy as the phase in-

only a small interval left for free propagation, i.6, =S creases. The currents of the individual pairs no longer cancel
<, the levels appear close t as the condition(1) re-  p,t hroduce a monotonously growing current of the same
quires the(Andreey scattering phase to vanisi(s—A)  gjgn, hence, the largest current is reacheg-atr—. On the

—0 [see Fig. 28)]. On the other hand, a wider region of free giper hand, atp= the levels become degenerate again,
propagation allows for the accumulation of sufficient phase,t this time the mutual cancellation of currents occurs be-
S;—S. >mto produce electronit_: _Ieve]s at lower energiesyyeen the levels,, , ande, ;. The lowest levek, _ then
e<A [see Fig. 2)]. The level splitting is a consequence of yamains unpaired and thus carries all the supercurrent from
the inequalityt.t_+r.,r_<1 and vanishes ag,o drops  the discrete part of the spectrum. The continuous part of the
below —&, producing(almos} degenerate ¢-independent  gpectrum vanishes ap=, however, this isa priori not
electronic states within the SIS regime VI, the analog of thegfficient to guarantee that the critical curréptis the cur-
(almos} degenerate -dependent Andreev states in the rent | carried by the lowest level—we have to show, in
SNS regime |, whergu,o>e. Physically, the levels g0 aqdition, that the maximum df= g+ | oo, iS reached atp
~—e& can be understood in terms of NS interface states- ;.- [indeed, using the usual Green’s-function technitfue,
where the degeneracy is lifted due to the finite tunnelingye could prove that this condition is fulfilled within a regime
across the potential barriét. of the L-pu,o plane away from(L~ (&o/Ke) Y2 11 o~A)]. In

Finally, as the quasiparticle energyvanishes in region  he end, we arrive at a particularly simple expression for the
IV, e<#(), both the electronic and the hole component Uncyitical current density in the quasiclassical region I,

dergo a finite reflection probability and the distinction be-

tween Andreev and electronic levels is gone—this resembles

the situation of a SNS junction with é&scattering potential, | = e
(see, e.g., Ref. 34In a long junction withQ>1, the spec- ¢ rothIAT

+(r,r_)cosp]. (11

(12
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The travel timer, (i.e., the time a quasiparticle requires to
traverse the normal region of length) is constant
(27 'In4Q) at the opening of the channel, decreases as
Q1IN 4QA0 g for uyo>%Q, and transforms to the free
travel timeL/vgy for uy>QAL). As the channel becomes
wide open at high energies, the critical current saturates at
the nonuniversavaluel ,=evg/(L+7&). .
The particular(exponential cutoff of the critical current (.-,w—
throughout the regions II-V depends on the details of the . o L=lpym
junction potential. The quenching involves two steps, with e
an exponential reductioh<t_ in region Il (while the elec-
tron still propagates with, ~1, the hole undergoes tunnel-
ing) and a further reductioh<t_t_ in region V (both, elec-
tron. and hOIetunne“r).g Note tha.t for the ballistic case the normal channel the supercurrent increases in steps (e}
(_reglon ) the. faCtor_S,'n(DHO)Nﬁo IS com.pensated by the +#/A). The dotted and dashed lines give the approximatiogns
time 7% ¢, while the finite reflection in regions -V leads to _ (-1 (4Q#(/E) and ry~L/vs at small and large energi¢pa-
a vanishing supercurrent gs—0 for each level separately. rametersez=1 eV, Aler=10"3, L/&,~1,10; with the curvature
The above discussion dealt with the parameter settingg/A<5,0.5 no smearing is visible at the supercurrent dnset
Vepe <hQ <A requiring a junction withL>£&,. Releasing
the condition of small curvature and assumiheg (), the  channel widthd, the first channel openf.e., u,o=cg(1
SNS to SIS transformation is smeared and the region V- 772/k§d2) turns positivé as we reacttl; = 7/kg, the criti-
occupies all of the interesting crossover regime. For a flaga| current increases sharply~eQ/In[4/(k2d?/ w*—1)]
potential 2{) < \ere |, the situation is complicated by the (the logarithmic singularity is cut off dt{)) and saturates at
appearance of resonances due to reflection from the potentiptclw evel(L+ &) (see Fig. 3.
step at the NS boundafy The situation simplifies for avery ~ Here, we have ignored the smearing near the onset within
short junction withL <&, where we can again make use of the rangei () due to a finite reflection—while the interesting
Eqg. (1) to reproduce a simple and universal result for thegyolution of the quasiparticle spectrum is washed out@s
current-phase relatior(see Refs. 24-26 with 6S=S.  increases beyond the gap (see Fig. 2 the steps in the
—S_~0andt_~t,~\T,r_~r.~R, onefinds thatonly onset of the supercurrent are much more robust. On the other
one level remains trapped in the junction a§=A[1  hand, the absence of sharp steps of universal height in the
—T sirf(¢/2)]"2 (here, we require a widthQ>A in order critical current is an intrinsic feature of the superconducting
to avoid a strong energy dependence in the transmissigjinction: the steps are rounded at the top and their height is
probability T). Determining the currenlty(¢) from eq and  limited by the junction length,sl ~evg/L for junctions
maximizing, we obtain longer than the coherence length of the superconductor.
For short junctions with. < ¢, the sharpness of the steps in
eA I is dictated by the reflection probabilif of the junction
le=—>-(1- VR), (13)  and, thus, is more similar to the steps in the conduct&@ce
However, with | .«(1—R), the steps inl. are always
in marked difference from the result for the conductance:smoother” than those in the conductanGex(1—R).
quantizationG=(2e?/h)(1—R): a finite reflection &R
<1 will affect the supercurrent quantization much more IIl. CONCLUSION
strongly than the conductance quantization.

L=0.1um

~ Th/eA 4

o

T 2T k,d 37 47

FIG. 3. Supercurrent quantization: with increasing widtlof

In the end, universal supercurrent quantization first seems

G. Supercurrent quantization to require short junctions, but the gate needed to switch the

. . L channels will produce backscattering and spoil the quantiza-

Finally, we discuss the supercurrent quantization “steps”io while going over to longer contacts helps to produce
appearing as the gate potential is decreased to open the C%rh'arp and universal conductance stéfs<2e?/%, the steps

ducting channel. We concentrate on the quasiclassical g e supercurrent exhibit flat tops and assume the non-

gime |, assuming a parabolic potental(x) in the junction  \ niversal valuesl ,~evq/L due to the long traveling time
which matches the band bottom of the superconductors at thg, he Andreev states.

NS boundary and ignore a possible change in the effective
mass. The quantized transverse energy of a channel of width
dis given bye . ~%?7%%/2md; these levels match up with
the Fermi energy whed=d,=kn/ke. As we open thekth We thank D. Kuhn, G. Wendin, and V. Shumeiko for
channel, the other open channels have already dropped Ihelpful discussions and the Swiss National Foundation for
Mol k= EF— em,k:sp(l—lzlkz), where €)1k financial support. The work of N.M.C. and G.B.L. was partly
=#2m?22md, e.g., the first channel is wide open when supported by the Russian Foundation for Basic Research un-
the second channel appegtsg.; ;= (3/4)er. Increasing the der Contract No. RFFI-000216617.
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