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Nonlinear impedance of a microwave-driven Josephson junction with noise
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The nonlinear impedance of a point Josephson junction is calculated under various conditions for the
resistively shunted junction modil the presence of nois@he calculation proceeds by solving the Langevin
equation for the mechanical problem of a Brownian particle in a tilted cosine potential in the presence of a
strong ac force ignoring inertial effects. The exact solution of the infinite hierarchy of equations for the
moments(expectation values of the Fourier components of the phase)amdiezh describe the dynamics of
the junction, is expressed in terms of a matrix continued fraction. This solution allows one to evaluate the
nonlinear response of the junctiémonlinear microwave impedance, for example an ac microwave current
of arbitrary amplitude. Strong nonlinear effects in the resistance and the reactance are observed for large ac
currents as is demonstrated by plotting the nonlinear response characteristics as a function of the model
parameters. For weak ac currents and low noise strengths, our results agree closely with previously available
linear response and nonlinear response noiseless solutions, respectively. Applications of the model to the
interpretation of recent experimental data found in the literature for the nonlinear behavior of microwave
impedance of superconducting weak links are discussed.

[. INTRODUCTION tion impedance is required in matching the junction to the
external high-frequency current so as to achieve maximum
For several decades there has been intense interest in thewer transfer. The calculation of the impeda@da) of a
effect of noise on the static and dynamic characteristics opoint Josephson junction ignoring thermal noise effects has
Josephson junctions. The theoretical description of the efbeen given in many papefsee, e.g., Refs. 16 and 23 and
fects of thermal fluctuations in superconducting weak linksreferences cited therginAccounts of noise effects based on
has been developed by constructing and attempting to solv& numerical solution of the Fokker-Planck equation have
the Fokker-Planck equation for the distribution function of been given in Ref. 24see also the discussion of these results
the phase by analogy with the problem of the Brownian mo4in Ref. 25. Another method of solution of this equation for
tion of a particle in a tilted periodic potential. The model hasa similar problem(a ring-laser gyroscopehas been sug-
been applied to both dc and ac Josephson effects and to tigested by Cresset al2® in terms of infinite continued frac-
driven Josephson oscillatgsee, for example, Refs. 1%7 tions. Further development of this continued fraction ap-
The problem of the Brownian motion of a particle in a tilted proach for the calculation &(w) has been given in Refs. 27
periodic potential also arises in a number of other physicahnd 28. However, all the above solutions are valid only for a
applications: quantum noise in the ring-laser gyrosdbbe, weak ac signal and so pertain to thieear response The
mobility of superionic conductor®, laser with injected calculation of the nonlinear impedance of a Josephson junc-
signall’ theory of phase-locking techniques in radio tion requires the evaluation of thene-dependent nonlinear
engineerind? etc. A related problem is the longitudinal di- responseo a strong ac current, which is a much more com-
electric relaxation of an assembly of single axis rotators in glicated problem than calculating, for example, the dc
cosN# potential*® A comprehensive discussion of this model current-voltage characteristics, where it is sufficient to find
is given in Refs. 14 and 15 while the common features of thenly atime-independerstationary solution of the Langevin
Josephson junction ac response in the presence of noise a¢at the corresponding Fokker-Planaquation. The calcula-
dielectric relaxation have been emphasized in Ref. 13. tion of the time-dependenportion of the nonlinear ac re-
We proceed by recalling that Josephson junction devicesponse requires therefore the application of the nonlinear-
are very sensitive to microwave signafstor example, if a  response theory, which has not yet been developed up to now
Josephson junction is driven by an external(isicrowave (in contrast to well-documented linear-response thedki
field, characteristic featurdsuch as alteration of the overall tempts to calculate thaonlinear ac responsémainly, the
shape of the current-voltage characteristics with the micromicrowave resistance and reactande the strong probing
wave power and the appearance of Shapiro Sfepsire-  ac current have been made by many authors, mainly, by us-
sponding to phase locking of the Josephson oscillator to thiang the perturbation theory, which is valid for low ac current
ac field are observed and have been explained, for exampl@mplitudes only, or in the noiseless limit, where the under-
in Refs. 5 and 18-21. The calculation of the response olying nonlinear equation of motion can be solved numeri-
Josephson devices to an ac signal is generally referred to aslly (see, e.g., Refs. 23, 29 and 30 and references cited
thejunction impedance probleAt A knowledge of the junc- therein. To our knowledge, the nonlinear ac response has
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I. [* rent L(t) superimposed on the bias current. The current-
4 balance equation for the junction is tHén
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where it is assumed that(t) is Gaussian white noise so that

2kT
Ie=14+ I, cosot L(t)=0, L(t)L(t’)=?5(t—t').

FIG. 1. Equivalent circuit of the Josephson junction. . )
a P : Herek is the Boltzmann constant, is the temperature, and

. the overbar means statistical averaging over an ensemble of
not yet bee_n analyzed systemahc_ally for large value_s of th nctions, which have all started at some instamiith the
ac current in the presence of noise. Here the nonlinear ame(shérp values of¢b and¢ We further simplify Eq.(2)
resence of noise using the matrix continued fraction techl?y neglecting the effect of the capacitaren the dynami-
P! ted in R ? 31 Thi his i cal behavior of the junction. This also restricts the range of
nique suggested n Ret. s1. This approach 1s, in some .ref'requencies in which the model is applicable, viasf w,,
spects, equivalent to those used in Ref. 8 for the evaluano\r/lvhere — 21e/4iC is the Josephson plasma fre L?enc
of the mean beat frequency of the dithered-ring-laser gyro-, . @Wp= NS _~osepnson p 9 y:
This approximation can be justified@ is small enough and

scope and in Ref. 32 for the calculation of the harmonichas been discussed elsewhbEquation(2) now becomes
mixing signal in a cosine potential. However, the solution

obtained here differs from the solutions of Refs. 8 and 32
(principally because théme-dependent portiqlmf the_ re- 71— (1) —x— £ coswt+sing(t)=1"1L(1), 3)
sponse may now be evaluajedHere the matrix continued dt
fraction method allows one to obtain an exact solution of the )
infinite hierarchy of recurrence equations for the statisticalVherex=Iqc/I and{=1Iy,/1 are the ratios of the dc and ac
averages governing the dynamics of the Josephson junctidiifrént amplitudes to the supercurrent amplitydt: and
in the zero capacitancéoninertia) limit. Thus one may nonlinear parametersr;=7/(2elR) is the characteristic re-
evaluate in the context of the resistively shunted junctiorf@xation time. Equatiori3) is the noninertial Langevin equa-
(RSJ model all the nonlinear response characteristics of th&ion for the RSJ model with noise.
Josephson junctiom the presence of noise and a strong ac
current I1l. EVALUATION OF THE NONLINEAR RESPONSE

IN TERMS OF MATRIX CONTINUED FRACTIONS

Il. RSJ MODEL Making the transformatioms—e™""¢ in Eq. (3) and av-
%raging the equation so obtainéaks described in detail in

ef. 28 yields a system of differential-recurrence relations
for the momentgr")y=(e"""?), viz.,

The Josephson junction comprises two superconducto
separated from each other by a thin layer of oX{ti&@he
phase differenceb= ¢, — ¢, between the wave functions of
the right and left superconductors is given by the Josephson

equatiort* Tja<r“>(t) +[in(x+ & coswt) +n?/ y]{r")(t)

GA0="—, e = SO -], @

whereV(t) is the potential difference across the oxide layer,where y=#1/(2ekT) is the noise strength parametéy

eis the charge of the electron, afic=h/27, wherehisthe ~ —o corresponds to the noiseless limiénd the angular
Planck constant. If the junction is small enough, i.e., thebrackets mean statistical averaging over the sharp values of
junction width is smaller than the Josephson penetration at timet. Here vy differs by a factor; from that used in
depth) 5, it may be modelelf*® (see Fig. 1by a resistance Refs. 27 and 28. In order to obtain Ed) we have used the
Rin parallel with a capacitanc@ across which is connected Stratonovich definition of a stochastic differential equatton

a current generator,, (representating the bias current ap- as that definition is the mathematical idealization of the non-
plied to the junction We suppose that the curreif, con-  inertial relaxation process considered here. Thus it is unnec-
sists of a dc currenity, and an ac current,.=|,,coswt. At  essary to transform the Langevin E8) to an Ito equation

the other end of the junctiofacross the resistand®) is  (e.g., Ref. 15and so the methods of ordinary analysis apply.
connected a phase-dependent current genelagor g, rep- The quantities of physical interest are the mean value of
resenting the Josephson supercurrent due to the Cooper paihe voltage(V) and the junction impedance to an external
tunneling through the junction. Since the junction operates ahigh-frequency current. One may evaluate these quantities
a temperature above absolute zero, there will be a noise cufrom the following equation:
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n+1 B n ; n n
%=x+§cosm—<sin¢)(t), ©) Fi (@) +izy (o)Fy(o) HigFy_ (o) +Fi g (o)]
—Fi Yw)=0, ®
where
i wheren andk vary from —o° to o0, and
(sing)(t)= §[<f>(t)—<r‘1>(t)]- (6)

Zy(w)=2(x+ wrk/n—in/vy). 9
In order to accomplish this, we note that the stochastic dy-
namics of the junction in the presence of the ac currenfThe scalar five-termrecurrence Eq(8) can be transformed
I (t) =1y coset, which is described by the noninertial Lange- into the two uncouplednatrix three-termrecurrence rela-
vin Eq. (3), is a nonstationary Markovian process. Here wetions
are solely concerned with the stationary ac response, which
is independent of the initial condition, so that one needs to Qu(©)Co(@) +Crps1(0)=Cpry (@) (=123 ...)

calculate the solution of E@3) corresponding to the station- (10)
ary state. To accomplish this, one may seek alKt&(t) in
the form
and
n _ n ikwt
(M= 2 Filw)eh. @ ~QA(~@)C_n(@)+C_p_1(0)
On substituting Eq(7) into Eq. (4), we have the following =C_pyi(w) (N=1,23...), (1)
recurrence equations for the Fourier amplitudey o),
namely, whereQ,, is a tridiagonal infinite matrix given by
Z, (o) € 0 0 0
& Z, 1(w) £ 0 0
Qn(w)=i 0 3 Zho() 3 0 (12
0 0 '3 Zy1(w) ¢
0 0

(the asterisk denotes the complex conjupared the infinite  Thus, in order to calculatésin ¢)(t) in Eq. (5), we need to
column vector<C,(w) are defined as evaluateC,(w) andC_;(w), which containall the Fourier
amplitudes of(r)(t) and (r~!)(t). Equation(10) can be
: solved forC, in terms of matrix continued fractiorts:?®viz.,
Frll(w) Cl(w)= | Co, (14)
Chw)=| Folw) |, for n=x1,+2,... (13 Qi(w)+ |
Fllw R
l( ) QZ((‘)) QB(“))+'“

Fi(w
ZE ) where the fraction lines designate the matrix inversionsland
’ is the identity matrix of infinite dimension. Having deter-
and mined C,(w), it is not necessary to solve Eqll) for
C_i(w), as all the components of the column vector
C_,(w) can be obtained from Eq14), on noting that

Fol(w)=F (w) and Fy X (w)=—FY(w) (for k#0).
(15
Co(w)=Co= , for n=0. On using Egs(14) and (15), one can now calculate from

Egs. (5) and (6) both the time independeribut frequency
dependentdc I-V characteristicin the presence of an ac
current

OO R OO
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FIG. 2. (V)§/IR vs ¢ and x (y=25, w7;=0.3), showing the
Shapiro steps, which become pronounced at higralues as the
amplitude ¢ of the ac current increases. In the lingit-0, the dc
current characteristic is given by E@®3).

(WVYEIIR=x+Im{F}(w)} (16)
and thestationary acresponse
V—(V)§) < :
%= > &Rz, 17
k=1
where
Z(w)= 8y wlFU@+F ()] (19

3

and 8, « is Kronecker’s delta. Equatiofl8) for k=1 yields
the nonlinear impedancé(w), viz.,

Z(0)=R,—iX,=RZ(w), (19

whereR, and X, are the dynamic resistance and the reac
tance, respectively. The limiting case of a weak ac curren

allows one to calculate the linear impedairtice., the imped-
ance in the linear response approximatidndeed, if the ac
currentl e'“! is weak, so thafil /2ekT<1, one has from
Egs.(5) and(17)
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FIG. 3. {V)g/IR vs log,o( yw ;) for variousé (y=25,x=1.5).
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log, (ywr)

FIG. 4. (V)§/IR vs log(ywr;) for various y (£=1 andx
=1.5). The effect of decreasing is to greatly decrease the oscil-
latory behavior so that the characteristic becomes frequency inde-
pendent.

(V)=(V)o+(V)1, (20)
where
(V)o/IR=X—(sine), (21)
and
(V)1=Z(w)l ne'" (22)

Here the subscripts “0” and “1” in the angular braces de-
note the average in the absence of the ac current and the
portion of the average which is linear ip,, respectively.
Thus Eq.(21) describes the dt-V characteristic of the junc-
tion, while Eq.(22) yields its linear impedance.

IV. RESULTS AND DISCUSSION

The exact matrix continued fraction solutiohEq. (14)]

just obtained is very convenient for the purpose of computa-

Ition (algorithms for calculating matrix continued fractions
are discussed in Ref. 15, Chap. This matrix continued

fraction satisfies the conditions of a theoréonoved in Ref.

34) appropriate to the convergence of matrix continued frac-

tions. This theorem guarantees the convergence of a matrix
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FIG. 5. Resistanc®,, vs £ for various dc bias current ampli-

Strong nonlinearity corresponding to lar§eauses pronounced os- tudesx (y=50, w7;=0.1), showing strong nonlinearity for small
cillatory behavior of the voltage with numerous troughs and peaksbias and Ohmic resistancelike behavior for high bias.
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FIG. 8. The same as in Fig. 7 fof,, .

For £&=0 Eqgs.(14) and(16) yield the dcl-V characteris-

continued fraction if it satisfies two definite Conditions, tic, which is in Comp|ete agreement with the results of Am-

which for the present problem are

4 De(Q, YYDet(Q,1,)<1 (for all n)
and
lim 4"[] DetQ,%,)Det Q1) =0.

As the matrixQ, in Eq. (12) fulfils the above conditions, the
matrix continued fraction in Eq.14) converges. In the cal-
culation, the infinite matrix continued fraction in E¢L4)

begaokar and Halperirwho computed this characteristic by
solving the noninertialwhen the capacitance is neglected
Fokker-Planck equation associated with the Langevin Eq.
(3). Their results may be presented as folld#s:

Vo [Iwm)]
R M) )

wherel ,(z) is the modified Bessel function of the first kind
of orderv.% There are three simple approximations of Eq.
(23) for extreme casebj.e., (i) y—0: (V)o=I4R—this
limit corresponds to Ohm's law(ii) y—o: (V)y=0(x
<1)—pure superconduction, an@i) (V)o=IR(x?—1)2

(23

was approximated by a matrix continued fraction of finite (x>1)—which is Ohm’s law with a correction factor. In the

order(by puttingQ,,=0 at somen=N) and the dimension of

presence of a strong ac current th¥ characteristics behave

the matrixQ, and the vector€, was confined to some finite in a very interesting way. For low noise strengtissy y

numberM. Both N andM depend on the parameteysand ¢

=25), the shape of thé-V characteristics shown in Fig. 2

and on the number of harmonics to be taken into accounbecome distorted wheg increases and the Shapiro steps
They must be chosen by stipulating the accuracy of the calinduced on the curves adhere to the Ohmic li(),
culation a priori. For example, in the calculation of the =|,R. The frequency spectra qi)3/IR (Figs. 3 and #

F&(w) for k up to 8 and forg up to 10, the dimensions @},

show how the oscillatory behavior appears with increaging

andCy need not exceed 50 and 15-25 iterations in calculatand y. The nonlinear features shown in Figs. 2—4 disappear
ing the matrix continued fraction are enough to arrive at arfor low driving frequencies 4)7-J<y‘1) and/or high noise
accuracy of not less than six significant digits in the majoritystrengths ¢<1).

of cases.

R,/R

FIG. 7. Resistanc®,, vs x for various ¢ (y=50, w7;=0.1),
showing pronounced departure from linear respqoaeve 1 as ac
current amplitude is increased. Stars correspond(Z4j.

Strong nonlinear effects also appear in the ac impedance.
In Figs. 5 and 6, the resistanég, and the reactanck¥,, of

12

1.14

1.04

0.8

07 , ' , . , T , '

FIG. 9. Resistanc®, vs x for variousy at £&=2.0 andwr,
=0.1, showing pronounced nonlinear effects for lasge
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FIG. 12. Surface resistand®, dependence on microwave cur-
the junction are plotted versus the nonlinear param@teor  rent in weak-link Josephson junctions in high-superconductors
comparison we have chosen the value of the parametgr for different temperatures. Solid lines represent fits obtained from
=0.1, as was used in Ref. 30 for the calculation of the nonEgs. (14), (15), and (19) for y=100 (noiseless limit and wr,
linear impedance in the noiseless limits. Just as in that limit~=0.14 (corresponding to the experimental frequency 14 GHEx-
in the presence of noise, the behavioRyf vs £ at small dc  periment: 70 K(circles, 50 K (squaref 25 K (diamonds, and 10
bias exhibits both a threshold field and a parabolic increask (triangles from Ref. 41.
above the threshold with associated steplike structures.

When | 4 is larger than the dc critical currenk$1), R,  Strates pronounced nonlinear effects, viz., the steps at farge
suddenly becomes greater th@nFor large values of the dc and ¢ (curve 1, the threshold points and saturation
bias, the influence of the ac current diminishes &gdand  (R,—R at§—) of the nonlinear response.

X, approach the shunt resistanBeand zero, respectively. ~ For §<1, the present theory is in accordance with the
Figure 5 shows clearly that the resistive response saturates @sults of Refs. 27 and 28, where an approximate analytical
large & This result has also been obtained in the noiselesgduation for thedinear impedanceZ(w) of the junction has
limit.?° The oscillatory behavior of the reactarkg vs ¢isa  been derived, viz.,

manifestation of the dynamic phase slips, which occur as the

ac current is increasggee Fig. 6.° Strong nonlinear effects Z(w) _1_ 1 1+ixy( 7’_)/|i><7( Y) I iy 7’)“ ~ixy(7)
in bothR, and X, versus the bias parametefor various¢ R 2 A—loT; N —iwTy
andy are shown in Figs. 7—10. Figures 7 and 8 also empha- (24)

size the pronounced departure from linear responsé ias
increased. Fory>1, the above results are in quantitative
agreement with those obtained in Ref. 30 in the noiseless
limit. Furthermore, just as in thieV characteristic, the non- A= 21 (Dl 1e (DAL
linear features disappear atr;<+y ! and/ory<1. In Fig. 07Xyl T ixy
11, we have also presented JgdR,/R) as a function of For weak ac currents, E(R4) yields good correspondence to
logio(Im/1p) for various values of the normalized supercur-the exact solution Eq(14) for wide ranges ofw, x, and y
rentl/l, at x=0 andw7;=0.1. This figure clearly demon- (see, for example, Figs. 7 and. 8

The results obtained may be useful for the interpretation
of experimental data for the microwave resistance and reac-
tance of weak links. For example, experimental observations
of nonlinear effects in the microwave resistance of a high
quality single crystal YBgCu;O;_ 5, were presented and ex-
plained in Refs. 30 and 36 using the RSJ model. Experimen-

where\ is given by

IiXy( 7)' 1+i>(y( y)

(29

& tal datd” on the nonlinear microwave surface impedaige
& ] x=0, wr,=0.1 of high-temperature superconducting thin films were also
o interpreted®“%in the context of the RSJ model and a quali-
- 1-1/,= 10, 7=100 tative agreement of the model with experimental measure-
2-IM,=5, y=50 ments ofZs was observed. It was shown there that the above
3-11, =2, =20 systems behave like a Josephson junction and the RSJ model
2 1, =1 =10 describes the main features of the nonlinear surface imped-
" ' 0 ’ i 2 ance: the steps in the ac current dependence of the
log (I, /I) resistancé®® the threshold poinf&“° and saturatiof?**°

(see Fig. 1L Other experiments, which can be analyzed in
FIG. 11. logo(R, /R) Vs logyo(l /1) for various values of/1,  the context of the RSJ model, are microwave absorption
and y (such thatl/(1,y)=cons} at x=0 andw7;=0.1, showing measurements in weak-link Josephson juncfibimshigh-T,
pronounced nonlinear effectghreshold points and saturatjon temperature superconductors, where the microwave surface
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resistanceRrg can also be studied. As was shown in Ref. 41, Thus in the present paper we have established formulas
the numerical solution of the underlying nonlinear dynamicfor the ac nonlinear response of a Josephson junction in the
equation for thenoiselessRSJ mode[Eq. (3) with L(t)=0]  presence of noise for wide ranges of the nonlinedgtythe
agrees closely with experiment. For the purpose of illustranoise strength(y), and the bias(x) model parameters. In
tion, a comparison of the theoretical results presented in thi§rder to obtain these results, we have used the matrix con-
paper with experimental d4faon measurements of the mi- tinued fraction approach, which allowed us to solve exactly
crowave surface resistan@®, of a Y-Ba-Cu-O film at 14 the_problem o_f th_e noninertial Brownian motion in a tilted
GHz for 70, 50, 25, and 10 K is shown in Fig. 12. Here the€0Sine potent_lal in the presence _of a large ac force. Pro-
solid lines represent the fits obtained from E€s4), (15), nounced nonlinear effects appear |n.the_ response of t.hejunc—
(18), and(19) for R, in the low noise case/=100, say(a t|(3r1 for y>1 and frequenue&)_ satlsf_ylng the condmon
further increase of does not change the resiltgach of the ¥ ~=@7s=1. As we have mentioned in the Introduction, a
four temperature data was fitted with the same valugRof ~ -@ngevin equation of the kind used in the present paper also
—212uV (as in Ref. 41 the following values ofl being &rises ina number of other st.ochasu.c systems with a cosine
obtained from the fits: 3.0 mA for 70 K, 4.8 mA for 50 K, potential in the overdamped limftsubjected to a strong ac
5.5 mA for 25 K, and 6.0 mA for 10 Kthese values of are driving fo_rce. '_I'herefore the regults obtained he_re for the Jo-
very close to those given in Ref. $1As can be seen in Fig. sephson ]unct!on may .be applied to other nonlinear systems
12, the fitting is good and is very similar to that obtained in(SUch as the dithered-ring-laser gyroschpahere the effect
Ref. 41. This similarity is not surprising because the experi2f Noise is of importance.
mental condition® correspond to values af>1 for which

the RSJ model with noise agrees in all respects with that
used in Ref. 41. The above estimates, as well as those given The support of this work by the International Association
in Refs. 30 and 36—41, correspond to the noiseless agase, for the Promotion of Cooperation with Scientists from the
>1. However, the theory presented here can also be appliedew Independent States of the Former Soviet Uni@Brant

to the analysis of the nonlinear impedance taking account dilo. INTAS 96-0663 and by the French Ministry of Foreign
noise effects, which may provide a better quantitative agreeAffairs (French Embassy in Irelapds gratefully acknowl-
ment with experiments. edged.
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