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Nonlinear impedance of a microwave-driven Josephson junction with noise
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~Received 21 September 1999!

The nonlinear impedance of a point Josephson junction is calculated under various conditions for the
resistively shunted junction modelin the presence of noise. The calculation proceeds by solving the Langevin
equation for the mechanical problem of a Brownian particle in a tilted cosine potential in the presence of a
strong ac force ignoring inertial effects. The exact solution of the infinite hierarchy of equations for the
moments~expectation values of the Fourier components of the phase angle!, which describe the dynamics of
the junction, is expressed in terms of a matrix continued fraction. This solution allows one to evaluate the
nonlinear response of the junction~nonlinear microwave impedance, for example! to an ac microwave current
of arbitrary amplitude. Strong nonlinear effects in the resistance and the reactance are observed for large ac
currents as is demonstrated by plotting the nonlinear response characteristics as a function of the model
parameters. For weak ac currents and low noise strengths, our results agree closely with previously available
linear response and nonlinear response noiseless solutions, respectively. Applications of the model to the
interpretation of recent experimental data found in the literature for the nonlinear behavior of microwave
impedance of superconducting weak links are discussed.
n
o
e
k
ol
o
o

as
o

d
ica
,

io
i-
n
el
th

a

ice

ll
ro

th
p
o

to

he
um

has
d
n
ve
lts
r

p-
7
r a

nc-
r
m-
dc
nd

-
ar-

now

us-
nt
er-
ri-
ited

has
I. INTRODUCTION

For several decades there has been intense interest i
effect of noise on the static and dynamic characteristics
Josephson junctions. The theoretical description of the
fects of thermal fluctuations in superconducting weak lin
has been developed by constructing and attempting to s
the Fokker-Planck equation for the distribution function
the phase by analogy with the problem of the Brownian m
tion of a particle in a tilted periodic potential. The model h
been applied to both dc and ac Josephson effects and t
driven Josephson oscillator~see, for example, Refs. 1–7!.
The problem of the Brownian motion of a particle in a tilte
periodic potential also arises in a number of other phys
applications: quantum noise in the ring-laser gyroscope8,9

mobility of superionic conductors,10 laser with injected
signal,11 theory of phase-locking techniques in rad
engineering,12 etc. A related problem is the longitudinal d
electric relaxation of an assembly of single axis rotators i
cosNu potential.13 A comprehensive discussion of this mod
is given in Refs. 14 and 15 while the common features of
Josephson junction ac response in the presence of noise
dielectric relaxation have been emphasized in Ref. 13.

We proceed by recalling that Josephson junction dev
are very sensitive to microwave signals.16 For example, if a
Josephson junction is driven by an external ac~microwave!
field, characteristic features~such as alteration of the overa
shape of the current-voltage characteristics with the mic
wave power and the appearance of Shapiro steps17 corre-
sponding to phase locking of the Josephson oscillator to
ac field! are observed and have been explained, for exam
in Refs. 5 and 18–21. The calculation of the response
Josephson devices to an ac signal is generally referred
the junction impedance problem.22 A knowledge of the junc-
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tion impedance is required in matching the junction to t
external high-frequency current so as to achieve maxim
power transfer. The calculation of the impedanceZ(v) of a
point Josephson junction ignoring thermal noise effects
been given in many papers~see, e.g., Refs. 16 and 23 an
references cited therein!. Accounts of noise effects based o
a numerical solution of the Fokker-Planck equation ha
been given in Ref. 24~see also the discussion of these resu
in Ref. 25!. Another method of solution of this equation fo
a similar problem~a ring-laser gyroscope! has been sug-
gested by Cresseret al.26 in terms of infinite continued frac-
tions. Further development of this continued fraction a
proach for the calculation ofZ(v) has been given in Refs. 2
and 28. However, all the above solutions are valid only fo
weak ac signal and so pertain to thelinear response. The
calculation of the nonlinear impedance of a Josephson ju
tion requires the evaluation of thetime-dependent nonlinea
responseto a strong ac current, which is a much more co
plicated problem than calculating, for example, the
current-voltage characteristics, where it is sufficient to fi
only a time-independentstationary solution of the Langevin
~or the corresponding Fokker-Planck! equation. The calcula-
tion of the time-dependentportion of the nonlinear ac re
sponse requires therefore the application of the nonline
response theory, which has not yet been developed up to
~in contrast to well-documented linear-response theory!. At-
tempts to calculate thenonlinear ac response~mainly, the
microwave resistance and reactance! to the strong probing
ac current have been made by many authors, mainly, by
ing the perturbation theory, which is valid for low ac curre
amplitudes only, or in the noiseless limit, where the und
lying nonlinear equation of motion can be solved nume
cally ~see, e.g., Refs. 23, 29 and 30 and references c
therein!. To our knowledge, the nonlinear ac response
3480 ©2000 The American Physical Society
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PRB 62 3481NONLINEAR IMPEDANCE OF A MICROWAVE-DRIVEN . . .
not yet been analyzed systematically for large values of
ac current in the presence of noise. Here the nonlinea
response of a point Josephson junction is evaluated in
presence of noise using the matrix continued fraction te
nique suggested in Ref. 31. This approach is, in some
spects, equivalent to those used in Ref. 8 for the evalua
of the mean beat frequency of the dithered-ring-laser gy
scope and in Ref. 32 for the calculation of the harmo
mixing signal in a cosine potential. However, the soluti
obtained here differs from the solutions of Refs. 8 and
~principally because thetime-dependent portionof the re-
sponse may now be evaluated!. Here the matrix continued
fraction method allows one to obtain an exact solution of
infinite hierarchy of recurrence equations for the statisti
averages governing the dynamics of the Josephson junc
in the zero capacitance~noninertial! limit. Thus one may
evaluate in the context of the resistively shunted junct
~RSJ! model all the nonlinear response characteristics of
Josephson junctionin the presence of noise and a strong
current.

II. RSJ MODEL

The Josephson junction comprises two superconduc
separated from each other by a thin layer of oxide.14 The
phase differencef5f l2f r between the wave functions o
the right and left superconductors is given by the Joseph
equation14

d

dt
f~ t !5

2eV~ t !

\
, ~1!

whereV(t) is the potential difference across the oxide lay
e is the charge of the electron, and\5h/2p, whereh is the
Planck constant. If the junction is small enough, i.e.,
junction width is smaller than the Josephson penetra
depthlJ , it may be modeled14,15 ~see Fig. 1! by a resistance
R in parallel with a capacitanceC across which is connecte
a current generatorI ex ~representating the bias current a
plied to the junction!. We suppose that the currentI ex con-
sists of a dc currentI dc and an ac currentI ac5I m cosvt. At
the other end of the junction~across the resistanceR! is
connected a phase-dependent current generator,I sinf, rep-
resenting the Josephson supercurrent due to the Cooper
tunneling through the junction. Since the junction operate
a temperature above absolute zero, there will be a noise

FIG. 1. Equivalent circuit of the Josephson junction.
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rent L(t) superimposed on the bias current. The curre
balance equation for the junction is then14

\C

2e

d2

dt2
f~ t !1

\

2eR

d

dt
f~ t !1I sinf~ t !

5I dc1I m cosvt1L~ t !, ~2!

where it is assumed thatL(t) is Gaussian white noise so tha

L~ t !50, L~ t !L~ t8!5
2kT

R
d~ t2t8!.

Herek is the Boltzmann constant,T is the temperature, and
the overbar means statistical averaging over an ensemb
junctions, which have all started at some instantt with the
same~sharp! values off andḟ. We further simplify Eq.~2!
by neglecting the effect of the capacitanceC on the dynami-
cal behavior of the junction. This also restricts the range
frequencies in which the model is applicable, viz.,v!vp ,
where vp5A2Ie/\C is the Josephson plasma frequenc
This approximation can be justified ifC is small enough and
has been discussed elsewhere.4 Equation~2! now becomes

tJ

d

dt
f~ t !2x2j cosvt1sinf~ t !5I 21L~ t !, ~3!

wherex5I dc/I and j5I m /I are the ratios of the dc and a
current amplitudes to the supercurrent amplitude~tilt and
nonlinear parameters!, tJ5\/(2eIR) is the characteristic re
laxation time. Equation~3! is the noninertial Langevin equa
tion for the RSJ model with noise.

III. EVALUATION OF THE NONLINEAR RESPONSE
IN TERMS OF MATRIX CONTINUED FRACTIONS

Making the transformationf→e2 inf in Eq. ~3! and av-
eraging the equation so obtained~as described in detail in
Ref. 28! yields a system of differential-recurrence relatio
for the momentŝ r n&5^e2 inf&, viz.,

tJ

d

dt
^r n&~ t !1@ in~x1j cosvt !1n2/g#^r n&~ t !

5
n

2
@^r n21&~ t !2^r n11&~ t !#, ~4!

where g5\I /(2ekT) is the noise strength parameter~g
→` corresponds to the noiseless limit! and the angular
brackets mean statistical averaging over the sharp value
f at time t. Here g differs by a factor1

2 from that used in
Refs. 27 and 28. In order to obtain Eq.~4! we have used the
Stratonovich definition of a stochastic differential equation33

as that definition is the mathematical idealization of the n
inertial relaxation process considered here. Thus it is unn
essary to transform the Langevin Eq.~3! to an Itô equation
~e.g., Ref. 15! and so the methods of ordinary analysis app

The quantities of physical interest are the mean value
the voltage^V& and the junction impedance to an extern
high-frequency current. One may evaluate these quant
from the following equation:



dy
en
e-
we
hi

t
-

3482 PRB 62W. T. COFFEY, J. L. DE´JARDIN, AND Yu. P. KALMYKOV
^V&
IR

5x1j cosvt2^sinf&~ t !, ~5!

where

^sinf&~ t !5
i

2
@^r &~ t !2^r 21&~ t !#. ~6!

In order to accomplish this, we note that the stochastic
namics of the junction in the presence of the ac curr
I (t)5I m cosvt, which is described by the noninertial Lang
vin Eq. ~3!, is a nonstationary Markovian process. Here
are solely concerned with the stationary ac response, w
is independent of the initial condition, so that one needs
calculate the solution of Eq.~3! corresponding to the station
ary state. To accomplish this, one may seek all the^r n&(t) in
the form

^r n&~ t !5 (
k52`

`

Fk
n~v!eikvt. ~7!

On substituting Eq.~7! into Eq. ~4!, we have the following
recurrence equations for the Fourier amplitudesFk

n(v),
namely,
-
t

ch
o

Fk
n11~v!1 izn,k~v!Fk

n~v!1 i j@Fk21
n ~v!1Fk11

n ~v!#

2Fk
n21~v!50, ~8!

wheren andk vary from 2` to `, and

zn,k~v!52~x1vtJk/n2 in/g!. ~9!

The scalar five-termrecurrence Eq.~8! can be transformed
into the two uncoupledmatrix three-termrecurrence rela-
tions

Qn~v!Cn~v!1Cn11~v!5Cn11~v! ~n51,2,3, . . . !
~10!

and

2Qn* ~2v!C2n~v!1C2n21~v!

5C2n11~v! ~n51,2,3, . . . !, ~11!

whereQn is a tridiagonal infinite matrix given by
Qn~v!5 iS � ] ] ] ] ] �

¯ zn,22~v! j 0 0 0 ¯

¯ j zn,21~v! j 0 0 ¯

¯ 0 j zn,0~v! j 0 ¯

¯ 0 0 j zn,1~v! j ¯

¯ 0 0 0 j zn,2~v! ¯

� ] ] ] ] ] �

D ~12!
d
r-

or

c

~the asterisk denotes the complex conjugate! and the infinite
column vectorsCn(v) are defined as

Cn~v!5S ]

F22
n ~v!

F21
n ~v!

F0
n~v!

F1
n~v!

F2
n~v!

]

D , for n561,62, . . . ~13!

and

C0~v!5C05S ]

0
0
1
0
0
]

D , for n50.
Thus, in order to calculatêsinf&(t) in Eq. ~5!, we need to
evaluateC1(v) andC21(v), which containall the Fourier
amplitudes of^r &(t) and ^r 21&(t). Equation ~10! can be
solved forC1 in terms of matrix continued fractions,15,28viz.,

C1~v!5
I

Q1~v!1
I

Q2~v!1
I

Q3~v!1¯

C0 , ~14!

where the fraction lines designate the matrix inversions anI
is the identity matrix of infinite dimension. Having dete
mined C1(v), it is not necessary to solve Eq.~11! for
C21(v), as all the components of the column vect
C21(v) can be obtained from Eq.~14!, on noting that

F0
21~v!5F0

1* ~v! and Fk
21~v!52F2k

1* ~v! ~ for kÞ0!.
~15!

On using Eqs.~14! and ~15!, one can now calculate from
Eqs. ~5! and ~6! both the time independent~but frequency
dependent! dc I -V characteristicin the presence of an a
current
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^V&0
v/IR5x1Im$F0

1~v!% ~16!

and thestationary acresponse

^V2^V&0
v&

IR
5 (

k51

`

jk Re$Zk~v!eikvt%, ~17!

where

Zk~v!5d1,k2
i

jk @Fk
1~v!1F2k

1* ~v!# ~18!

andd i ,k is Kronecker’s delta. Equation~18! for k51 yields
the nonlinear impedanceZ(v), viz.,

Z~v!5Rv2 iXv5RZ1~v!, ~19!

whereRv and Xv are the dynamic resistance and the re
tance, respectively. The limiting case of a weak ac curr
allows one to calculate the linear impedance~i.e., the imped-
ance in the linear response approximation!. Indeed, if the ac
current I meivt is weak, so that\I m/2ekT!1, one has from
Eqs.~5! and ~17!

FIG. 2. ^V&0
v/IR vs j and x ~g525, vtJ50.3!, showing the

Shapiro steps, which become pronounced at highx values as the
amplitudej of the ac current increases. In the limitj→0, the dc
current characteristic is given by Eq.~23!.

FIG. 3. ^V&0
v/IR vs log10(gvtJ) for variousj ~g525, x51.5!.

Strong nonlinearity corresponding to largej causes pronounced os
cillatory behavior of the voltage with numerous troughs and pea
-
t

^V&5^V&01^V&1 , ~20!

where

^V&0 /IR5x2^sinf&0 ~21!

and

^V&15Z~v!I meivt. ~22!

Here the subscripts ‘‘0’’ and ‘‘1’’ in the angular braces d
note the average in the absence of the ac current and
portion of the average which is linear inI m , respectively.
Thus Eq.~21! describes the dcI -V characteristic of the junc-
tion, while Eq.~22! yields its linear impedance.

IV. RESULTS AND DISCUSSION

The exact matrix continued fraction solution@Eq. ~14!#
just obtained is very convenient for the purpose of compu
tion ~algorithms for calculating matrix continued fraction
are discussed in Ref. 15, Chap. 9!. This matrix continued
fraction satisfies the conditions of a theorem~proved in Ref.
34! appropriate to the convergence of matrix continued fr
tions. This theorem guarantees the convergence of a m

s.

FIG. 4. ^V&0
v/IR vs log10(gvtJ) for various g ~j51 and x

51.5!. The effect of decreasingg is to greatly decrease the osci
latory behavior so that the characteristic becomes frequency i
pendent.

FIG. 5. ResistanceRv vs j for various dc bias current ampli
tudesx ~g550, vtJ50.1!, showing strong nonlinearity for smal
bias and Ohmic resistancelike behavior for high bias.
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continued fraction if it satisfies two definite condition
which for the present problem are

4 Det~Qn
21!Det~Qn11

21 !<1 ~ for all n!

and

lim
n→`

4n)
k50

n

Det~Qk12
21 !Det~Qk11

21 !50.

As the matrixQn in Eq. ~12! fulfils the above conditions, the
matrix continued fraction in Eq.~14! converges. In the cal
culation, the infinite matrix continued fraction in Eq.~14!
was approximated by a matrix continued fraction of fin
order~by puttingQn50 at somen5N! and the dimension o
the matrixQn and the vectorsC0 was confined to some finite
numberM. Both N andM depend on the parametersg andj
and on the number of harmonics to be taken into acco
They must be chosen by stipulating the accuracy of the
culation a priori. For example, in the calculation of th
Fk

1(v) for k up to 8 and forj up to 10, the dimensions ofQn

andC0 need not exceed 50 and 15–25 iterations in calcu
ing the matrix continued fraction are enough to arrive at
accuracy of not less than six significant digits in the major
of cases.

FIG. 6. The same as in Fig. 5 for the reactanceXv .

FIG. 7. ResistanceRv vs x for various j ~g550, vtJ50.1!,
showing pronounced departure from linear response~curve 1! as ac
current amplitude is increased. Stars correspond Eq.~24!.
t.
l-

t-
n

For j50 Eqs.~14! and~16! yield the dcI -V characteris-
tic, which is in complete agreement with the results of Am
begaokar and Halperin1 who computed this characteristic b
solving the noninertial~when the capacitance is neglecte!
Fokker-Planck equation associated with the Langevin
~3!. Their results may be presented as follows:28

^V&0

IR
5x1ImH I 11 ixg~g!

I ixg~g! J , ~23!

whereI v(z) is the modified Bessel function of the first kin
of order v.35 There are three simple approximations of E
~23! for extreme cases,1 i.e., ~i! g→0: ^V&05I dcR—this
limit corresponds to Ohm’s law,~ii ! g→`: ^V&050(x
,1)—pure superconduction, and~iii ! ^V&05IR(x221)1/2

(x.1)—which is Ohm’s law with a correction factor. In th
presence of a strong ac current theI -V characteristics behav
in a very interesting way. For low noise strengths~say g
525!, the shape of theI -V characteristics shown in Fig. 2
become distorted whenj increases and the Shapiro ste
induced on the curves adhere to the Ohmic line^V&0

5I dcR. The frequency spectra of^V&0
v/IR ~Figs. 3 and 4!

show how the oscillatory behavior appears with increasinj
andg. The nonlinear features shown in Figs. 2–4 disapp
for low driving frequencies (vt j<g21) and/or high noise
strengths (g<1).

Strong nonlinear effects also appear in the ac impeda
In Figs. 5 and 6, the resistanceRv and the reactanceXv of

FIG. 8. The same as in Fig. 7 forXv .

FIG. 9. ResistanceRv vs x for various g at j52.0 andvtJ

50.1, showing pronounced nonlinear effects for largeg.
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the junction are plotted versus the nonlinear parameterj. For
comparison we have chosen the value of the parametervtJ
50.1, as was used in Ref. 30 for the calculation of the n
linear impedance in the noiseless limits. Just as in that lim
in the presence of noise, the behavior ofRv vs j at small dc
bias exhibits both a threshold field and a parabolic incre
above the threshold with associated steplike structu
When I dc is larger than the dc critical current (x.1), Rv

suddenly becomes greater thanR. For large values of the dc
bias, the influence of the ac current diminishes andRv and
Xv approach the shunt resistanceR and zero, respectively
Figure 5 shows clearly that the resistive response saturat
large j. This result has also been obtained in the noise
limit.29 The oscillatory behavior of the reactanceXv vs j is a
manifestation of the dynamic phase slips, which occur as
ac current is increased~see Fig. 6!.30 Strong nonlinear effects
in both Rv andXv versus the bias parameterx for variousj
andg are shown in Figs. 7–10. Figures 7 and 8 also emp
size the pronounced departure from linear response asj is
increased. Forg@1, the above results are in quantitativ
agreement with those obtained in Ref. 30 in the noise
limit. Furthermore, just as in theI -V characteristic, the non
linear features disappear atvtJ<g21 and/org<1. In Fig.
11, we have also presented log10(Rv /R) as a function of
log10(I m /I 0) for various values of the normalized supercu
rent I /I 0 at x50 andvtJ50.1. This figure clearly demon

FIG. 10. The same as in Fig. 9 forXv .

FIG. 11. log10(Rv /R) vs log10(I m /I 0) for various values ofI /I 0

and g ~such thatI /(I 0g)5const! at x50 andvtJ50.1, showing
pronounced nonlinear effects~threshold points and saturation!.
-
t,

e
s.
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e
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ss

strates pronounced nonlinear effects, viz., the steps at larg
and j ~curve 1!, the threshold points and saturatio
~Rv→R at j→`! of the nonlinear response.

For j!1, the present theory is in accordance with t
results of Refs. 27 and 28, where an approximate analyt
equation for thelinear impedanceZ(v) of the junction has
been derived, viz.,

Z~v!

R
512

1

2 F I 11 ixg~g!/I ixg~g!

l2 ivtJ
1

I 12 ixg~g!/I 2 ixg~g!

l* 2 ivtJ
G ,
~24!

wherel is given by

l5
I ixg~g!I 11 ixg~g!

2*0
gI ixg~ t !I 11 ixg~ t !dt

. ~25!

For weak ac currents, Eq.~24! yields good correspondence t
the exact solution Eq.~14! for wide ranges ofv, x, and g
~see, for example, Figs. 7 and 8!.

The results obtained may be useful for the interpretat
of experimental data for the microwave resistance and re
tance of weak links. For example, experimental observati
of nonlinear effects in the microwave resistance of a h
quality single crystal YBa2Cu3O72d , were presented and ex
plained in Refs. 30 and 36 using the RSJ model. Experim
tal data37 on the nonlinear microwave surface impedanceZs
of high-temperature superconducting thin films were a
interpreted38–40 in the context of the RSJ model and a qua
tative agreement of the model with experimental measu
ments ofZs was observed. It was shown there that the abo
systems behave like a Josephson junction and the RSJ m
describes the main features of the nonlinear surface imp
ance: the steps in the ac current dependence of
resistance,30,36 the threshold points39,40 and saturation39,40

~see Fig. 11!. Other experiments, which can be analyzed
the context of the RSJ model, are microwave absorpt
measurements in weak-link Josephson junctions41 in high-Tc
temperature superconductors, where the microwave sur

FIG. 12. Surface resistanceRs dependence on microwave cu
rent in weak-link Josephson junctions in high-Tc superconductors
for different temperatures. Solid lines represent fits obtained fr
Eqs. ~14!, ~15!, and ~19! for g5100 ~noiseless limit! and vtJ

'0.14 ~corresponding to the experimental frequency 14 GHz!. Ex-
periment: 70 K~circles!, 50 K ~squares!, 25 K ~diamonds!, and 10
K ~triangles! from Ref. 41.
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resistanceRs can also be studied. As was shown in Ref. 4
the numerical solution of the underlying nonlinear dynam
equation for thenoiselessRSJ model@Eq. ~3! with L(t)50#
agrees closely with experiment. For the purpose of illus
tion, a comparison of the theoretical results presented in
paper with experimental data41 on measurements of the m
crowave surface resistanceRs of a Y-Ba-Cu-O film at 14
GHz for 70, 50, 25, and 10 K is shown in Fig. 12. Here t
solid lines represent the fits obtained from Eqs.~14!, ~15!,
~18!, and ~19! for Rv in the low noise caseg5100, say~a
further increase ofg does not change the results!. Each of the
four temperature data was fitted with the same value ofIR
5212mV ~as in Ref. 41!, the following values ofI being
obtained from the fits: 3.0 mA for 70 K, 4.8 mA for 50 K
5.5 mA for 25 K, and 6.0 mA for 10 K~these values ofI are
very close to those given in Ref. 41!. As can be seen in Fig
12, the fitting is good and is very similar to that obtained
Ref. 41. This similarity is not surprising because the exp
mental conditions41 correspond to values ofg@1 for which
the RSJ model with noise agrees in all respects with
used in Ref. 41. The above estimates, as well as those g
in Refs. 30 and 36–41, correspond to the noiseless casg
@1. However, the theory presented here can also be app
to the analysis of the nonlinear impedance taking accoun
noise effects, which may provide a better quantitative agr
ment with experiments.
,
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Thus in the present paper we have established form
for the ac nonlinear response of a Josephson junction in
presence of noise for wide ranges of the nonlinearity~j!, the
noise strength~g!, and the bias~x! model parameters. In
order to obtain these results, we have used the matrix c
tinued fraction approach, which allowed us to solve exac
the problem of the noninertial Brownian motion in a tilte
cosine potential in the presence of a large ac force. P
nounced nonlinear effects appear in the response of the j
tion for g@1 and frequenciesv satisfying the condition
g21<vtJ<1. As we have mentioned in the Introduction,
Langevin equation of the kind used in the present paper
arises in a number of other stochastic systems with a co
potential in the overdamped limit15 subjected to a strong a
driving force. Therefore the results obtained here for the
sephson junction may be applied to other nonlinear syst
~such as the dithered-ring-laser gyroscope9!, where the effect
of noise is of importance.
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