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Overcritical states of a superconductor strip in a magnetic environment
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A current-carrying superconducting strip partly penetrated by magnetic flux and surrounded by a bulk
magnet of high permeability is considered. Two types of samples are studied: those with critical current
controlled by an edge barrier dominating over the pinning, and those with high pinning-mediated critical
current masking the edge barrier. It is shown for both cases that the current distribution in a central flux-free
part of the strip is strongly affected by the actual shape of the magnetic surroundings. Explicit analytical
solutions for the sheet current and self-field distributions are obtained which show that, depending on the
geometry, the effect may suppress the total loss-free transport current of the strip or enhance it by orders of
magnitude. The effect depends strongly on the shape of the magnet and its distance to the superconductor but
only weakly on the magnetic permeability.
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I. INTRODUCTION

The most important property of superconductors essen
for large-scale applications is their ability to carry a lar
transport current without energy dissipation. In a Meiss
state, which is realized at magnetic fields~including a self-
field of the current! smaller than the lower critical field of th
material,Hc1, there is no magnetic flux inside a superco
ducting sample and hence no dissipation, although the fi
Hc1 is small for practical low-Tc and very small for high-Tc
superconductors which easily facilitates to overcome
flux-free state. Besides, in the Meissner state the cur
flows only in thin surface layer of a bulk superconductor
mostly along the edges of a superconducting ribbon. T
restricts an effective usage of the inner part of superc
ductor and results in a low average value of a total trans
current. Therefore it is generally believed that an appropr
candidate for a high-current nondissipative conductor i
hard type-II superconductor filled with a magnetic flux in t
so-called critical state1 where the magnetic field penetrat
the whole sample in the form of Abrikosov magnetic vortic
but all vortices are pinned by some pinning centers wh
prevents the vortex motion and dissipation. Thus the m
concern of superconductor developers during the last th
decades was an improvement of the material quality~grain
interconnections, texture, orientation, etc.! and, at the same
time, an introduction of suitable effective pinning centers

In this work we develop another approach to the impro
ment of current carrying capability of a superconductor st
based on the protection of the Meissner state by magn
screening.2 Two sorts of specimens are considered: tho
possessing the large edge barrier against magnetic vorte
try which dominates over the pinning, and those posses
PRB 620163-1829/2000/62~5!/3453~20!/$15.00
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strong pinning masking completely the edge barrier.
For the first specimens, the entirely flux-free Meissn

state of magnetically shielded superconductor strips is s
ied. The nature of the edge barrier itself~Bean-Livingston,3,4

geometrical,5–7 or enhanced bulk pinning at the edges8,9!
does not matter. In what follows, we imply a most robu
geometrical barrier. For the second sort of samples, we c
sider by means of critical state model the magnetica
shielded strips partly penetrated by magnetic flux.

It is shown that, in both cases, current distributions
flux-free regions of strips are very sensitive to presence
soft magnets of high permeability. Depending on the form
magnetic environment the total loss-free transport curr
may be strongly suppressed or enhanced.

Let us note here that, on the contrary to a bulk case,
isolated hard superconductor sheet partly filled with a m
netic flux carries an essential part of a current in the vort
free inner region.9–13 As was stressed by Zeldovet al.,13 at a
total transport current of 0.6I c , where I c is a total critical
current of the sheet, 2/3 of the current flows in the vorte
free region. We show in this work that the partly flux-fre
sheet influenced by controlled external conditions may ca
the total current considerably exceedingI c .

In Sec. II, we show that a superconducting sheet s
rounded by a soft magnetic material exhibits a very unus
current distribution in the Meissner state which may be c
trolled by magnet shape and its permeabilitym. Current dis-
tributions over the sheet located near a bulk flat magne
inserted inside a cylindrical cavity are calculated analytica
for m@1 and numerically for arbitrary magnetic permeabi
ties.

The Meissner state of strips in more complicated m
netic surroundings is studied in Sec. III by means of t
3453 ©2000 The American Physical Society
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method of images and of conformal mapping which is va
for the case ofm→`. It is shown that a sheet current, fixe
at the sheet edges by the edge barrier, may be drasti
enhanced in the inner part of the sheet by a special choic
the shape of the surrounding magnet.

The field and current distributions in magnetica
shielded hard superconductor strips partly filled with ma
netic flux in the critical state are studied in Sec. IV for t
case of flat bulk magnets. The same problem for a con
magnetic cavity is treated in Sec. V by means of conform
mapping of the above-considered flat surrounding. In p
ticular, it is shown the possibility of stable overcritical she
current distributions resulting in the large enhancemen
the total transport current. The results are summarized
discussed in Sec. VI.

II. CURRENT REDISTRIBUTION IN A FLUX-FREE STRIP
BY A MAGNET OF ARBITRARY MAGNETIC

PERMEABILITY

In this section we consider the rearrangement of
Meissner state of a superconductor strip in simple confi
rations of a magnetic surrounding which may be sim
treated by the method of images.14,15 To remind the reade
general results relevant to our problem we consider first
virgin state of an isolated superconductor sheet.11,12,16,17

A. Virgin state of the isolated superconductor strip

Let an infinitely long flat strip occupy the spaceuyu
<d/2,uxu<W/2 and carry a transport currentI in positive z
direction. All physical quantities arez independent andz
component of the magnetic self-field of the current equ
zero. We consider the case of a wide strip of widthW im-
plying the W@d5max(L,d) where L5l2/d is the trans-
verse penetration depth relevant to very thin films withd
,l ~Ref. 18! andl is the magnetic-field penetration dep
for the bulk material. For the present consideration, it is
relevant whether the thicknessd is larger or smaller thanl.

The electrodynamics of such a strip may be describe
the accuracy ofd/W by a sheet current11,12

J~x!5E
2d/2

d/2

dy j~x,y!, ~1!

where j (x,y) is a local current density in the positivez di-
rection. The total value of current is fixed by the conditio

W

2 E2W/2

W/2

du J~u!5I . ~2!

Leaving aside the details on the scale ofd, the magnetic-
field distribution around the strip in the (x,y) plane is given
by a superposition of elementary current contributio
J(u)du according to the Ampere law11,12

H~x,y!5
1

2pE2W/2

W/2

du J~u!
~2y,x2u!

~x2u!21y2
. ~3!

Using the formulay/@y21(x2u)2#→pd(x2u) for y
→10 one easily relates a sheet current to a jump of
parallel field component at the sheet plane
lly
of
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J~x!5Hx~x,y520!2Hx~x,y510!. ~4!

Contrary to the parallel component, the perpendicu
componentHy does not change essentially within the str
along they axis and thusHy(x,6d/2).Hy(x,0)5H(x). To
the same accuracy, one finds

H~x!5
1

2pE2W/2

W/2 du J~u!

x2u
. ~5!

The Meissner flux-free state of the sheet means the
sence of magnetic flux inside it and hence the vanishing
theHy component of the field at the sheet surface. This gi
the condition of the virgin state

E
2W/2

W/2 du J~u!

x2u
50, uxu,W/2. ~6!

In the above formulas~4!–~6!, the sheet is treated as one
zero thickness18 with the same accuracy as Eq.~3!.

The solution to Eq.~6! corresponding to the total curren
I given in16,17

J~x!5
I

pA~W/2!22x2
~7!

diverges formally at the sheet edges where it, in fact, sa
rates on the scale ofd and achieves a maximum value o
JG5I /pAWd. If JG is smaller than a critical valueJb deter-
mined by some edge barrier mechanism4–9 or critical current
Jc determined by pinning strength1 the flux-free state may
exist. If JG exceedsJc andJb the flux enters the sample an
form a profile determined by the pinning strength inside.1

We consider in this section the samples with barri
controlled critical currents which meansJb.Jc . For ex-
ample, the geometrical barrier mechanism gives a thickn
independentJb52«0 /F0,5,6 where«05F0Hc1 is the mate-
rial dependent energy per unit length of a magnetic vor
andF0 is the unit flux quantum. For a wide thin YBCO film
of thicknessd550 nm and widthW55 mm at 77 K one
may expectl50.5 mm,19 L55 mm, d5231023, andJb
50.523104 A/m. Then the maximum average current de
sity still saving the Meissner state j M5I /Wd
5(Jb /d)pAd/2 would amount to 1.023106 A/cm2.

This value may easily be masked in epitaxial YBCO film
of good quality which possess often higher pinning-media
critical currents20 unless special efforts are taken to obta
low-pinning samples and to refine the effect of a possi
edge barrier.21 Better opportunities for the investigation o
the effect are provided by BSCCO single crystals which p
sess initially low pinning and which exhibit barrier-mediate
critical currents.5,6 In this case, a suppression of the curre
peaks at the strip edges through some redistribution of
current in favor of the inner part of the strip would enable t
latter to carry a higher transport current in the Meissner s
and to compete with the flux-filled critical state of hard s
perconductors.

B. Flat magnetic screen

Let us consider the Meissner state of the same super
ducting strip in presence of a bulk magnet. Let the mag
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PRB 62 3455OVERCRITICAL STATES OF A SUPERCONDUCTOR . . .
fill the half spacex>a.W/2 as is shown in Fig. 1. To find
the field and current distribution one can solve the Pois
equation for a vector potentialA5@0,0,Ai(x,y)# in both
media,14,15

DAi52m iJ~x!d~y!, ~8!

wherem i5m1 and m i5m2 are the magnetic permeabilitie
of the media atx,a and x>a, respectively, and the shee
currentJ(x) is defined within the interval (2W/2,W/2). The
vector potentialsAi in both media and their derivatives no
mal to the surface obey the boundary conditions at the
face of the magnet,

A15A21const,
1

m1

]A1

]n
5

1

m2

]A2

]n
, x5a. ~9!

Magnetic inductions in both media are connected to theA i

by Bi5curlA i and magnetic fieldsH i5m i
21Bi .

The solution to Eq.~8! for an arbitrary sheet currentJ(x)
satisfying the above boundary conditions may be constru
as a superposition of the vector potentials of the origi
current-carrying strip and its image at the boundaryx5a14,15

~Fig. 1!. By this procedure, every elementary straight w
located at the line (u,0) and carrying a currentJ(u)du gen-
erates an image located at the line (2a2u,0). Then, using
Ampere’s law one finds the vector potentials in both med

A1~x,y!52
m1

4pE2W/2

W/2

du J~u!$ ln@y21~x2u!2#

1q ln@y21~2a2x2u!2#%, x<a,

A2~x,y!52
m2~12q!

4p E
2W/2

W/2

du J~u!ln@y21~x2u!2#,

~10!

where the parameterq5(m22m1)/(m21m1),1 is the im-
age current of the unit current.

The magnetic field around the strip in medium 1 is

H~x,y!5
1

2pE2W/2

W/2

du J~u!F ~2y,x2u!

~x2u!21y2

1q
~2y,x1u22a!

~x1u22a!21y2G ~11!

and in medium 2

FIG. 1. Cross section of a current-carrying sheet near the bo
ary of a magnetic half space. The sheet and its image~shown with
dotted line! lie in the plane perpendicular to the magnet bounda
n

r-

d
l

,

H~x,y!5
12q

2p E
2W/2

W/2

du J~u!
~2y,x2u!

~x2u!21y2
. ~12!

As is seen from the latter equation, the magnetic field d
off slowly inside a magnetic medium asHy;m1I /p(m1
1m2)x at x@1, which should be expected from Ampere
law. This suggests that, under experimental conditions,
effect of current and field redistribution may be noticeab
only if the thickness of the magnetic wall is several tim
larger than the sheet widthW.

Equating theHy component of the field at the sheet
zero one finds a condition for the Meissner state

E
2W/2

W/2

du J~u!S 1

x2u
1q

1

x1u22aD50, ~13!

for all xP(2W/2,W/2). Generally, this singular integra
equation needs a numerical treatment but for the partic
case of very high permeabilitym2@m1(q→1) the analytical
solution can easily be found. Upon the substitution of a n
variable v5(u2a)2 and of an unknown functionf(v)
5J(u)/(u2a) into Eq. ~13!, it is reduced to an equation
similar to Eq.~6! which leads to a solution

J~x!5
2I ~a2x!/p

A~W2/42x2!~2a1W/22x!~2a2W/22x!
.

~14!

The above solution may be tested in the physically cl
situation of the direct contact of the sheet with the bound
of the magnet (a→W/2). In this case, the current sheet a
its image form together a continuous current sheet lying
21<x<3. The Meissner-state conditionHy50 at the left
physical half of this extended sheet is provided by a prope
scaled Eq.~7! and reads

J~x!5
2I

pA~W/21x!~3W/22x!
, 2W/2<x<W/2.

~15!

One can easily check that Eq.~14! coincides with Eq.~15!
for a5W/2. Another obvious solution to Eq.~13! is given by
Eq. ~7! for the case of uniform medium (m25m1) for which
q50.

As may be seen from Eq.~14!, the closer the current shee
is to the magnet surface the more suppressed is the cu
peak at the corresponding side of the sheet. The direct c
tact to the bulk magnet (a5W/2) of infinite permeability
(q51) suppresses the current peak at the contact edge c
pletely @see Eq.~15!#. Allowing a finite permeabilitym,`
or finite distance to the sheeta21.0 should restore the
peak at least partly.

Equation~13! is not convenient for the numerical stud
for arbitrary values of parametersq and a because of the
singularity it contains. To get rid of this, one can transfo
Eq. ~13! in some Fredholm integral equation with a we
singularity.22,23 To perform this we use here the invertio
procedure suggested by Brandt in Refs. 11 and 12. Acc
ing to this, the sheet currentJ(x) may be expressed throug
the magnetic fieldH(x), it generates on the sheet, as

d-

.
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J~x!5
2I /p

AW224x2
2

2

pE2W/2

W/2

duAW224u2

W224x2

H~u!

x2u
.

~16!

Substituting the second term of Eq.~13! for the H(u) in
Eq. ~16! and performing the integration overu one finds for
J(x) the following Fredholm equation with a nonsingul
kernel:

J~x!5
2I ~11q!

pAW224x2

2
2q/p

AW224x2E2W/2

W/2

du
J~u!

2a2u2x
A~2a2x!22

W2

4
.

~17!

One can check that Eq.~17! is satisfied by the solution~15!
at a5W/2,q51 and by the solution~7! at q50(m15m2) or
at a→`.

At a.W/2, Eq.~17! presents no difficulties for a numer
cal study. The set of the solutions to Eq.~17! at 2a/W51,
1.01, 1.1, 2, andm151, m25m53, 9, 200, and̀ corre-
sponding to theq50.5, 0.8, 0.99, and 1, respectively,
presented in Fig. 2. It clearly exhibits the suppression of
current peak at the strip edge when it approaches the ma
boundary at any fixedm or when m grows at any fixed
distancea.

To compare the effectiveness of the above two meas
for the reduction of the sheet current at the edge we
below the dependence of the current peak value versusq at
various fixeda, and also the peak value versusa at various
fixed q ~Fig. 3!. One observes a rather pronounced dep
dence of the edge current on the distance between the s
edge and the magnet at any fixedm @Fig. 3~b!#. On the con-
trary, the dependence onq is practically linear within the
interval 0.5,q,1(3,m,`) at any fixed distancea @Fig.
3~a!#.

It is remarkable that the suppression effect has no pe
liarities atq→1. A relative suppression coefficient

n5
Jedge~m51!2Jedge~m.1!

Jedge~m51!2Jedge~m→`!
~18!

of 97% is achieved already atm540 and n599% at m
5200 @the estimations were made using the sheet cur
values at the point 2x/W50.9996 plotted for 2a/W51.01 in
Fig. 3~a!#. Thus the casem→` studied in Ref. 2 is represen
tative for the current redistribution effect at moderate
high m ’s reasonable for many soft ferromagnets at lo
temperatures.

On the other hand, the distance to magnetic media pro
to be crucial for the current distribution over the sheet. It
close to that of the isolated sheet@Eq. ~7!# at 2a/W52 but
changes strongly at 2a/W51.01.

All of this allows one to study the influence of the sha
of a bulk magnet and its distance to the sheet under
simplifying assumptionq→1(m→`) keeping the main fea
tures of the current redistribution. This will be performe
below in Sec. III.
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Of course, the Meissner flux-free state may be saved
high transport currents only if the current peaks are s
pressed below the barrier-determined valueJb at both edges
of the strip. For this purpose, the current distribution over
sheet in presence of two symmetrical bulk magnets locate
x<2a andx>a, respectively, was considered in Ref. 2.
this case, the original current sheet generates an infinite
cession of the images centered at the pointsxn52an of thex
axis. Therefore the Meissner state equationHy(x,0)50 is

FIG. 2. Distributions of the total transport currentI 51 over the
sheet of widthW52 in the case of one-sided screening for vario
values of distance from the sheet center to the magnet surfac~in
units of the sheet half-width! a52 ~a!, 1.1 ~b!, and 1.01~c!. Dif-
ferent curves in every plot correspond to the magnetic permea
tiesm53, 9, 200, and̀ (q50.5, 0.8, 0.99, and 1, respectively! and
are shown for the in-plane coordinate range20.99<x<0.99. The
larger ism the more effective is peak suppression atx50.99. The
curve forq51 corresponding to the analytical solution~14! cannot
be distinguished from that forq50.99.
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described in this case by the homogeneous integral equa
with a kernel presented by a series inqunu.2

The solution to this problem was found in Ref. 2 analy
cally for the caseq51 only, when the integral kernel re
duced to a circular function. At 0,q,1, even the numerica
study is complicated by the kernel expressed in exten
hypergeometric functions. This study is still in progre
Nevertheless, based on the above-performed study of
one-side screening one can expect that the redistributio
the current by the two-sided screening at finitem follows the
general pattern of the current peak suppression at the
edges and that the difference between the casesm→` and
m.100 is negligible as well. This understanding is co
firmed by considering the case of a symmetrical screenin
the next section.

C. Screening by a thick cylindrical magnetic shell

Consider another case which can be treated in term
images: A current-carrying sheet inside a cylindrical cav
in a soft magnetic medium~Fig. 4!. This configuration might
be of practical interest for the usage of a magnetic scree
but needs a careful study because of its controversial
tures. Indeed, it is not clear at a first sight which effect wo
produce such a surrounding on the current distribution.

FIG. 3. ~a! Dependence of the current peak value taken at
right-hand side of the sheet atx50.9996 in case of one-side
screening versus the image current strengthq. Different curves cor-
respond to sheet distances to the magneta52, 1.1, 1.01, and 1
~direct contact!. The total currentI 51. ~b! The same current pea
versus distancea for different q50.5, 0.8, and 0.99 (m53, 9, and
200, respectively!.
on
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he
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was established in Ref. 2, bulk magnets parallel to the s
push the current to the edges of the strip, while bulk magn
perpendicular to the strip result in the flattening of the c
rent distribution. In the case of closed symmetrical surrou
ing shown in Fig. 4 the above two effects oppose each ot

Let the superconductor strip occupy the same position
in previous sections and be surrounded by a magnet of
meability m2 filling the whole space atx21y2>a2. The
magnetic permeability of the medium inside the cavity ism1.
This problem is also a two-dimensional one and may
treated in terms of a vector potentialA5@0,0,A(x,y)#.

Using an analogy to electrostatics14,15 one can find for
every straight currentt flowing parallel to thez axis along
the line (x5u,y50) ~point A in Fig. 4! an image currentqt
flowing the same direction and located at the line (a2/u,0)
~point B in Fig. 4!. The vector potentialsA1 and A2 in the
corresponding media which match at the cavity surface
radiusa and which satisfy the condition~9! for their normal
to the surface derivatives may be constructed as follows.
vector potentialA1 is chosen as superposition of contrib
tions from the currentt at pointA and currentqt at pointB.
The vector potential in the medium 2 is chosen as supe
sition of currents (12q)t at a pointA andqt at the center of
the cavity. Then, the total vector potential produced by
current sheet in the magnetic cavity may be found by tak
t5J(u)du for the elementary current and integration ov
the sheet width:

A1~x,y!52
m1

4pE2W/2

W/2

du J~u!$ ln@y21~x2u!2#

1q ln@y21~x2a2/u!2#%,

x21y2<a2. ~19!

Inside the magnetic medium

e

FIG. 4. The solution of the magnetostatic problem of a curr
sheet within a cylindrical magnetic cavity may be found by t
method of images for arbitrarym ’s. Every elementary current at
positionA(u,0) produces an image at a positionB(a2/u,0).
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A2~x,y!52
m2

4pE2W/2

W/2

du J~u!$q ln~y21x2!

1~12q!ln@y21~x2u!2#%,

x21y2>a2. ~20!

Then, one can find the magnetic field in the cavity

H~x,y!5
1

2pE2W/2

W/2

du J~u!F ~2y,x2u!

~x2u!21y2

1q
~2y,x2a2/u!

~x2a2/u!21y2G ~21!

and in the magnetic medium 2

H~x,y!5
1

2pE2W/2

W/2

du J~u!Fq
~2y,x!

x21y2

1~12q!
~2y,x2u!

~x2u!21y2G . ~22!

The equation of the Meissner stateHy(x,0)50 now reads

E
2W/2

W/2

du J~u!S 1

x2u
1q

1

x2a2/u
D 50 ~23!

for all xP(2W/2,W/2). As well as Eq.~13!, this equation is
singular in the integration domain and may be transforme
the nonsingular Fredholm equation by the invertion pro
dure. Using as above Eq.~16! and substituting the secon
term of Eq.~23! for the H(u) one obtains

J~x!5
I ~11q!/p

AW2

4
2x2

2
q/p

AW2

4
2x2

E
2W/2

W/2

du J~u!
Aa42u2

a22ux
.

~24!

Numerical solutions of Eq.~24! are presented in Fig. 5
Each set of solutions corresponds to a fixed radius of
cavity 2a/W51.01, 1.1, and 2 while each curve present
solution for a definite value of parameterq of the setq
50.5, 0.8, and 0.99. One can observe a positive effect of
current peaks reduction at the strip edges by a decreasia
or an increasingq. At the same time, the effect of the pea
suppression is weaker then that for the case of the flat
studied above in Sec. II B. The general pattern of the p
behavior when the parametersa and q change remains the
same as in the case of the flat wall. The current peaks
crease practically linearly with growingq at any fixed radius
a @Fig. 6~a!# and are reduced abruptly as the radius of
cavity decreases down to sheet half width, i.e.,a→W/2 @Fig.
6~b!#. The amplitude of the peaks at any fixeda and q are
larger than the corresponding magnitudes for the flat w
case which makes the cylindrical cavity less favorable c
figuration for the purpose of current redistribution by ma
netic screening.

One additional interesting case of magnetic screen
may be studied with the help of Eqs.~23! and~24! by choos-
to
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g

ing the negative parameterqP(21,0). It presents the situa
tion of superconducting sheet immersed in a magnetic cy
der of permeabilitym1 exceeding the magnetic permeabili
of the environmentm2. This configuration reminds the cas
of a current sheet between bulk magnets parallel to its
face calculated in Ref. 2 and is expected to push the cur
out to the edges of the sheet.

Numerical solution indeed demonstrates such a beha

FIG. 5. Transport current distribution over a sheet carrying
total currentI 51 inside a cylindrical magnetic cavity for variou
radii of the cavity in units of the sheet half-widtha52 ~a!, 1.1 ~b!,
and 1.01~c!. Different curves in every plot correspond to the ma
netic permeabilitym53, 9, and 200 (q50.5, 0.8, and 0.99, respec
tively! and are shown for the in-plane coordinate range20.99<x
<0.99. As well as in Fig. 2 the most effective peak suppressio
achieved for the largestm.
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enhancing the current peaks at the sheet edges in compa
with an isolated sheet. Thus this configuration may not
used for the purpose of improving the current-carrying ca
bility of strips. Nevertheless, it exhibits a nontrivial behavi
shown in Fig. 7. The magnitude of the current peak~at the
point 2x/W50.9996) plotted against a parameterq turns out
to have a well defined maximum for all values of the cyli

FIG. 6. ~a! Dependence of the current-peak magnitude take
the pointx50.9996 of a current sheet inside a cylindrical magne
cavity versus the image current strengthq. The total currentI 51.
Different curves correspond to cavity radiia52, 1.1, and 1.01.~b!
The same current-peak magnitude versus distancea for different
q50.5, 0.8, and 0.99 (m53, 9, and 200, respectively!.

FIG. 7. Dependence of the current edge peaks on the neg
parameterq5(m22m1)/(m21m1) in the case of vacuum (m2

51) surrounding a magnetic cylinder (m1.1). Different curves
correspond to different cylinder radiia51.000 001, 1.1, and 2.
son
e
-

der radiusa. The maximum remains~though shifted! also at
any other choice of the edge point chosen to cut the div
gence of the sheet current. This means that the current
tribution over the sheet covered with the thick magnetic sh
behaves nonmonotonously as a function of the permeab
m in contrast to the current peak dependence onm for sheets
in magnetic cavities@Figs. 3~a! and 6~a!#.

III. MAGNETIC SCREENING OF THE MEISSNER
STATE FOR MORE COMPLICATED GEOMETRIES

WITH µš1

The study of current redistributions under the effect
magnetic screens of a high but finite permeabilitym carried
out in Sec. II shows no crucial changes atq→1 (m→`).
This allows one to concentrate on the role of geometry an
assume for simplicityq51. Under this assumption, we stud
in this section some definite geometries of magnetic s
roundings which provide a strong suppression of curr
peaks at strip edges and thus an effective protection of
Meissner state.

In the limit m→` corresponding to«→0 in analogous
electrostatic problem, magnetic field lines seem to beh
exactly as lines of the electrostatic field near the surface
conductor. Indeed, making use of the formula~11! one can
easily check that the tangential component of the field at
boundary surface vanishes as 1/m2 for m2→`. This gives us
the possibility to use the tools elaborated for the calculat
of electrostatic fields around conductors, such as the me
of images~partly used in Sec. II! or of conformal mapping.
The analogy has though a restricted usage that will be
cussed below.

A. Current sheet in an open wedge-shaped cavity

We first study the simple case of the current sheet para
to axis of the wedge-shaped cavity inside a soft magn
medium of permeabilitym2@1 ~Fig. 8!. We suppose that, in
this case, the analogy with electrostatic fields around a m
is valid and that the field lines are perpendicular to the s
face of the magnet from the side of cavity filled with mater
with m1!m2.

If the angle between the intersecting planes in Fig. 8 i
rational fraction ofp the number of images of a straigh
current necessary to construct a solution satisfying Eq.~8!

at

ive

FIG. 8. Current sheet inside a right-angle wedge-shaped ma
cavity and its three images shown with dotted lines.
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and obeying the boundary conditions~9! is finite. We con-
sider for simplicity the case of the cavity with a right ang
between the planes. The solution may be presented by
superposition of contributions of the sheet itself and its th
images as is shown in Fig. 8.

The corresponding vector potential in the cavity reads

A~x,y!52
m1

4pEa2W/2

a1W/2

du J~u!$ ln@y21~x2u!2#

1 ln@y21~x1u!2#1 ln@x21~y1u!2#

1 ln@x21~y2u!2#%, ~25!

where the origin is shifted for convenience to the vertex
the cavity anda denotes the distance between the vertex
the sheet center. The magnetic field in the cavity,

H~x,y!5
1

2pEa2W/2

a1W/2

du J~u!F ~2y,x2u!

~x2u!21y2
1

~2y,x1u!

~x1u!21y2

1
~u2y,x!

x21~y2u!2
1

~2u2y,x!

x21~y1u!2G , ~26!

exhibits a zero tangential component at the boundariey
56x as was assumed.

The condition for the Meissner state formulates now a

H~x!5
1

2pEa2W/2

a1W/2

du J~u!S 1

x2u
1

1

x1u
1

2x

x21u2D
5

2x3

p E
a2W/2

a1W/2du J~u!

x42u4
50. ~27!

Substituting a new variablev5u4 and a new unknown func
tion f(v)5J(u)/4u3 into Eq. ~27! one can reduce it to the
one similar to Eq.~6! and finally find a solution:

J~x!5
4Ix3

pA@~a1W/2!42x4#@x42~a2W/2!4#
~28!

satisfying the normalization~2!.
One can note a much stronger suppression of the cur

peak at the sheet edge close to vertex of the cavity as c
pared to the flat surface of magnetic half space@see Eq.
~14!#. For the sheet directly contacting the magneta
→W/2) one obtains a reduction of the sheet current distri
tion to

J~x!5
4Ix

pAW42x4
. ~29!

The most remarkable feature of the above solution is
vanishing of the sheet current at the edge contacting
magnet. An analogous result was obtained in Ref. 2 for
current redistribution in the open magnetic cavity of t
complicated form with wedgelike edges. Essentially, the c
rent near the sheet edge behaves asx1/p21 where the wedge
angle ispp. Practically, the complete vanishing of the ed
current cannot be obtained because in any experiment a
tancea2W/2 remains.0 and because the effect crucial
he
e

f
d

nt
m-

-

e
e
e

r-

is-

depends on (a2W/2) ~see Sec. II B!. Nevertheless, the
wedge-shaped edge of the cavity provides a much more
fective suppression of the current peaks at the edges
leads to a current redistribution to the center of the shee
will be shown below.

B. Conformal mapping of the screening cavity

The method of conformal mapping is very helpful in th
solution of two-dimensional problems in electrostatics
conductors.14,15 Its validity is based on two grounds: Firs
the conformal mapping keeps the form of the tw
dimensional Laplace Eq.~8!; second, it keeps the loca
angles between the curves in the (x,y) plane after the trans
formation. Thus if field lines are perpendicular to a surfa
~of a conductor! they remain perpendicular to a transform
surface after the mapping. In other words, the latter c
serves the boundary condition of the Neumann probl
]A/]n50.24

In the limit m@1, the conformal mapping may be use
for finding field and current configurations in magnetostat
too but with precautions. The electrostatic field lines a
proach the metal surface always at right angles. The an
a1 anda2 which magnetic-field lines assume with the no
mal to the boundary surface between media 1 and 2 are
nected by the refraction relation14,15

tana1

tana2
5

m1

m2
. ~30!

As m2→`, this relation may be satisfied by two alternativ
solutions:a1→0 while 0,a2,p/2 which supports electro
static analogy with the field pattern near the metal surf
from the side of medium 1, anda2→p/2 while 0,a1
,p/2 which gives another pattern of field lines. Both pos
bilities are realized for different geometries but, of cour
only one option is valid in every case because of uniquen
theorem.14,15

It is easy to prove that the first option cannot be realiz
for a currentI flowing inside a closed cavity with medium
surrounded by medium 2 withm2→`. Indeed, if magnetic-
field lines were perpendicular everywhere to the surface
the closed cavity, the contour integral along the surfacerHdl
encircling the current sheet would be equal to zero instea
I according to the Maxwell equation curlH5 j . It is apparent
that, for the same reason, the boundary condition]A/]n
50 cannot be applied to the internal surface of any clo
cavity in a magnetic medium even atm2→`. In this case,
the second alternative is realized and field lines are not
pendicular to the surface. That is why we will consider b
low only open configurations where the boundary condit
a150 applies. One example of the open magnetic cav
with m→` was already considered in Sec. III A wherea1
50 was supposed. One can easily prove that the solu
~26! satisfies the Maxwell equationrHdl5I .

Let us introduce complex variabless5x1 iy and w5z
1 ih and some analytical functionw5 f (s) carrying out the
conformal mapping of the plane (x,y) onto the plane (z,h).
If a vector potentialA satisfies the equationDA50 around
the current sheet with a condition]A/]n50 at some bound-
aries then a vector-potentialV(z,h)5A@x(z,h),y(z,h)#
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satisfies the equationDV50 in the new frame (z,h) and
condition]V/]n50 at the transformed boundaries as well24

Thanks to conservation of local angles between the cu
the field lines parallel to the current sheet in (x,y) plane
remain parallel to a transformed sheet also in (z,h) plane.
This means that the conformal mapping conserves als
Meissner state of the sheet. Thus any conformal mappin
the current sheet being in the Meissner state which keeps
position of the sheet will give us another possible pattern
the Meissner state of the sheet for another geometry of
surrounding.

Let us denote the magnetic field in new coordinates
H̃5(]V/]h,2]V/]z). Then the new Meissner current di
tribution J̃ may be found as a jump of the parallel fie
component at the sheet@see Eq.~4!#,

J̃~z!5H̃z~z,h!Uh510
h5205

]y

]hU
h50

J@x~z,h50!#. ~31!

Let us consider first a case of transformation of a
boundary of the bulk magnetic medium withm@1 to the
wedge-shaped configuration treated in the previous sectio
terms of images~Fig. 8!. Let a magnet fill the left half spac
x<0 and the current sheet which occupies the position
<x<W directly contact the magnet. According to Sec. II
the current distribution delivering the Meissner state (Hy
50 at the sheet! is given by the formula

J~x!5
2I

pAW22x2
, 0<x<W, ~32!

obtained from Eq.~15! by symmetrical reflection and shift o
the origin.

As is well known,24 the transformation of the half plan
into the quarter of plane shown in Fig. 9 is carried out by
square-root function. Scaled to keep the sheet position on
horizontal axis it is described by a functionf (s)5AWs.
Then, finding the derivative]y/]h from the relationx1 iy
5(z1 ih)2/W and substituting it into Eq.~31! one finds a
Meissner current in the new geometry

FIG. 9. Scheme of the conformal mapping of the magnetic h
space boundaryx50 to the surface of a right-angle wedge-shap
cavity.
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J̃~z!5zJ@x~z,h50!#5
4I z

pAW42z4
, 0<z<W,

~33!

which reproduces the solution~29!.
For the general case of a wedge-shaped magnetic ca

with a wedge anglea5pp, 0,p,1 one needs an analyti
cal function f (s)5W(s/W)p. This gives a derivative
]y/]h→p21(z/W)1/p21 at h50 which results in the Meiss
ner current@see Eq.~31!#

J̃~z!5
2I

ppW

~z/W!1/p21

A12~z/W!2/p
, 0<z<W. ~34!

This shows that in a~hardly experimentally accessible! case
of a sharp cavity witha!p(p!1) the current would be
well suppressed in the extended region near the edge.

The practically important conformal mapping of two fl
surfaces onto the complicated concave cavity was consid
in Ref. 2 only for the case of direct contact magne
superconductor. Here we generalize this transformation
study the effect of the cavity size and distance to the strip
the current redistribution. We start from the current sh
between the two magnetic half spaces possessingm→` with
flat boundaries located atx56a. As was shown in Ref. 2,
the Meissner current distribution for this geometry is giv
by the formula

J~x!5
I

a

cos~px/2a!

A2 cos~px/a!22 cos~pW/2a!
. ~35!

Let us perform a mapping of the planes using an analyti-
cal function

f ~s!5ca@~11s/a!p2~12s/a!p#, ~36!

whereca5(W/2)@(11W/2a)p2(12W/2a)p#21. This map-
ping moves the pointss56W/2 to w56W/2 and thus con-
serves the position of the current sheet~Fig. 10!. The edges
of the cavity s56a are moved to the pointsw562pca .
The mapping of the form~36! allows one to control the

lf

FIG. 10. Scheme of the conformal mapping of the two surfa
of magnetic half spacesx>a and x<2a onto the surface of the
convex cavity keeping the position of the current sheet at (21,1)
for a52 and different values of parameterp51/2 and 1/4.
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anglesa5pp at the edges of the cavity and thus the cor
sponding current distribution. We consider below for si
plicity only the casep51/2.

Making use of the formula~31! we find from Eq.~36!

]y

]h
uh505

a

ca

12z2/2ca
2

A12z2/4ca
2

, ~37!

which gives for the corresponding Meissner current

J̃~z!5
I

ca

12z2/2ca
2

A12z2/4ca
2

3

cosS pz

2ca
A12z2/4ca

2D
A2 cosS pz

ca
A12z2/4ca

2D22 cos~pW/2a!

.

~38!

The patterns of the above current distribution for vario
cavity transverse sizes are shown in Fig. 11. One can fol
the evolution of the current pattern from a concave distri
tion with sharp edge peaks typical of an isolated strip in
Meissner state to the convex distribution with suppres
peaks at the edges upon decreasing the transverse cavity

The magnetic field in this geometry remains perpendi
lar to the cavity surface in no contradiction with the Maxw
equation. To check this, consider the simplest casea5W/2.
Let us carry out the contour integration of the field along
path following the cavity surface and closed across the n
row ‘‘bottlenecks’’ of the cavity of the width.1/h at h
@1 as is shown in Fig. 12. The contribution of the surfa
part equals zero since the field is normal to the surface.
magnetic field at the symmetry axis of the cavity (z50)
equals asymptoticallyH̃z.Ih/2 ath@1, i.e., grows to infin-
ity. Then, integrating along the infinitesimal bottlenecks o
finds rH̃dl5I .

The comparison of the open magnetic surroundin
shown in Figs. 8 and 10 with the closed one~Fig. 4! and of
the corresponding current distributions presented in Figs
5, and 11 allows one to conclude that field lines perpend
lar to the magnet surface~which is valid for open cavities

FIG. 11. Transport current distributions over the flux-free sup
conducting sheet in the convex magnetic cavity withp51/2 at
different distances between the magnet and the sheet centera52,
1.1, 1.01.
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only! may be more effectively controlled by a form of th
cavity. In case of the closed cavity, one can control the fi
~and hence current! distribution to a much lesser extent.

Let us estimate the maximal transport current which m
flow in the magnetically screened flux-free superconduct
strips in various magnetic surroundings. For the strip pla
between the flat magnets as in Fig. 10 (p51), the peak value
of the sheet current at the edge pointxG5W/22d50.9996
•W/2 follows from Eq.~35! and equals

JG5
I

A4pad tan~pW/4a!
. ~39!

Equating this with the sheet current of the geometri
barrier Jb one finds the maximum averaged curre
density which can flow in the Meissner state as a function
distancea:

j M5
I

Wd
5

2Jb

Wd
A4pad tan~pW/4a!, ~40!

whered,a2W/2!W/2. One sees an increase ofj M for a
→W/2. Assuming a least possible gap between the mag
and the sheet of about 0.1 mm one finds, for the above c
sidered YBCO film of widthW55 mm and thicknessd
550 nm ~see Sec. II A!, a valuej M53.43106 A/cm2.

The screening by the convex cavity~Figs. 10 and 11!
enlarges the bearable transport current in the flux-free s
more effectively. The current peak value in this configurati
follows from Eq.~38! at zG5W/22d and equals

JG5IA 12W2/8ca
2

pWd tanS p

2ca
A12W2/16ca

2D.
4I

W2

~r 2W/2!3/2

Ad
,

~41!

wherer 5caA2 is a transverse size of the cavity. Upon t
equatingJG5Jb this gives the maximum average curre
density

j M5
JG

d

WAd

4~r 2W/2!3/2
, d,r 2

W

2
!

W

2
, ~42!

-

FIG. 12. Scheme of the conformal mapping of the two surfa
of magnetic half spacesx>1 andx<21 onto the surface of the
convex cavity with a parameterp51/2. The contour of integration
for the testing a solution is shown with a dashed line.
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which results in j M52.93107 A/cm2 by 2r /W51.04 for
the same YBCO film. This value is about the depairing lim
for this material atT577 K which switches on a process o
direct destruction of superconducting pairs25 in the strip cen-
ter where the current is maximum. To avoid this the cavit
of more complicated shapes should be considered which
lows one to suppress effectively the current peaks at
sheet edges and provide a homogeneous filling of the s
with the transport current.

IV. PARTLY FLUX-FILLED HARD SUPERCONDUCTOR
STRIPS IN A FLAT MAGNETIC ENVIRONMENT

In previous sections we considered the Meissner flux-f
state in the case of a pronounced edge barrier withJb.Jc

valid in single crystals of BSCCO~Refs. 5 and 6! and
YBCO.21 In the following sections, we consider the oppos
case of the negligible edge barrier and characteristic cur
Jb,Jc which is typical of not too thin films of high-Tc ma-
terials.

A conventional tool for the description of the electrod
namics of hard superconductors is the critical-state mo
originally applied to long bulk superconductors in a para
field.1,26 According to this model, magnetic-flux lines of a
external field or generated by a transport current enter
sample and move until the Lorentz force densityu j3Bu ex-
erted upon them by the local current densityj reaches the
pinning-mediated critical valuej c(B)•B, where B is a
magnetic-flux density. Then the flux lines stop to move a
form flux profiles determined by the equationj 5u“3Hu
5 j c(B), whereH5B/m0 is a local magnetic field.

In the simplest Bean model26 of the critical state which
we use in the following,j c is supposed to be field indepen
dent. Then, in the case of full flux penetration,u j u5 j c all
over the long bulk sample. Since in the case of a long sla
cylinder parallel to the field the latter has only one comp
nent, the current and field distributions in the partly flu
filled state are related to each other locally. The current d
sity and the flux density are simultaneously equal to zero
the flux-free region of the specimen.1,26 In the case of a mag
netic field applied transverse to a flat superconduct
sample the field lines are strongly curved, the current-fi
relation becomes nonlocal and the above simple picture i
longer valid.

Current and field distributions in flat samples, especia
in the partly flux-filled state, turned out to look very differe
from those in bulk samples.10–13,27–32The most remarkable
difference is that shielding currents flow along the ent
width of the sample including the flux-free region where
the field component perpendicular to the surface is eq
to zero.

Direct magnetooptical observations of the flux distrib
tions in wide superconducting strips subjected to an exte
field33 or carrying a transport current34 and current distribu-
tions extracted from such data35 are in good agreement wit
theoretical predictions.12,13Before we begin with the study o
flux distributions in magnetically shielded hard superco
ductors it is necessary to resume the main features of
partly flux-filled state of an isolated superconductor strip.
t

s
l-
e
et

e

nt

el
l

e

d

or
-

n-
n

g
d
o

y

al

-
al

-
he

A. Partly flux-filled state of an isolated strip

Consider now a current of magnitudeI such that the shee
current peak at the edgeJG.Jc5 j cd and magnetic flux
partly penetrates the strip. According to the Bean hypothe
of force balance,26 the flux is distributed in a way that th
current is constant in the penetrated region. The rest of
sample remains in the flux-free state so that

H~x!50, uxu,b,W/2,

J5Jc , b,uxu,W/2, ~43!

where the width 2b of the flux-free region is determined b
the value of the total currentI.

Following the scheme suggested by Norris10 the solution
to this problem may be found as follows. First, one sho
find a current distribution arising in a flux-free regionuxu
<b in response to a current of unit strength flowing alo
the line x5x0.b. Then the state satisfying requiremen
~43! is obtained by superposition of responses to all curr
filaments of strengthJc•dx0 in a constant-Jc region b
,ux0u,W/2.

Since in the following we consider only bilaterally sym
metrical problems we are interested in the even current
tributions. Then we may seek an equation for a curr
shielding the regionuxu<b from the field induced by two tes
unit currents located atx56x0 by substitution of

J5J~u!•u~b2uxu!1d~u2x0!1d~u1x0! ~44!

into Eq. ~6!. One finds then an inhomogeneous singular
tegral equation of the form

E
2b

b du J~u!

u2x
5g~x!5S 1

x2x0
1

1

x1x0
D , uxu,b.

~45!

The general solution to this equation with arbitrary righ
hand side~r.h.s.! g(x) reads22

J~x!5
1

p2Ab22x2E2b

b duAb22u2

x2u
g~u!1

N

pAb22x2

~46!

with some arbitrary constantN.
Substituting the right-hand side from Eq.~45! into Eq.

~46! one can reproduce the result found by Norris by me
of conformal mapping:

J~x,x0!52
2x0Ax0

22b2

p~x0
22x2!Ab22x2

. ~47!

Integrating Eq.~47! over the test current positionx0 in the
constant-Jc region b,x0,W/2 and adding the term;(b2

2x2)21/2 originating from a solution~46! to homogeneous
Eq. ~45! to remove the unphysical divergencies atx56b
one finds finally a current distribution in a partly flux-fille
state:10
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J~x!5
2Jc

p
arctanA~W/2!22b2

b22x2
, uxu,b,W/2,

Jc , b,uxu,W/2. ~48!

The total current may be found by integration of t
above sheet current over the strip width. This gives

I 5I cA12~2b/W!2, ~49!

where I c5Jc•W is the maximum nondissipative current
the critical state achieved by a saturation of the strip w
magnetic flux. Inversely, one can find from Eq.~49! the half-
width of the flux-free zoneb5(W/2)A12(I /I c)

2.
The corresponding distribution of the perpendicular co

ponent of the field over the strip may be found by substit
ing the above current into Eq.~5!,12,13

H~x!50, uxu,b,

Hcx

uxu
arctanhA x22b2

~W/2!22b2
, b,uxu,

W

2
,

Hcx

uxu
arctanhA~W/2!22b2

x22b2
, uxu.

W

2
~50!

whereHc5Jc /p denotes a characteristic field.
The above field and current distributions apply to the v

gin state where the transport currentI is increased from zero
More complicated history-dependent distributions are c
sidered in details in Refs. 12 and 13.

B. Superconductor strip between flat magnets: Parallel
configuration

In this section we study the current and field distributio
of a current-carrying superconductor strip partly penetra
by magnetic flux and placed between two half spaces oc
pied by soft magnets. The medium directly contacting
strip is characterized by magnetic permeabilitym1, the mag-
nets by a permeabilitym2. This two-dimensional magneto
static problem may be as well conveniently treated by me
of Eq. ~8! for the vector potentialA with boundary condi-
tions ~9!. General expressions will be written down for arb
trary m1 and m2, but explicit solutions for current distribu
tions will be found only for the casem2@m1.

We begin with the configuration when the boundaries
magnetsy56a are parallel to the strip and the magne
occupy the space at6y>a. The magnetic fieldH and po-
tential A satisfying the proper boundary conditions may
constructed in this case by means of the method
images14,15 as a superposition of the contributions from t
strip itself and its images at the ‘‘mirrors’’ aty56a. The
corresponding set of images represents a series of pa
equidistant strips centered aty52an, n561,62, . . . each
carrying the same current in the same direction~see Fig. 13!.

Then the vector potential in between the magnets rea

A152
m1

4p (
n

qunu E
2W/2

W/2

du J~u!ln@~y22an!21~u2x!2#,

~51!
h

-
-

-

-

s
d
u-
e

s

f

f

llel

where the summation extends over all integers, and ins
the magnets

A252
m1m2

2p~m11m2! (
n50

`

qnE
2W/2

W/2

du J~u!ln@~y62an!2

1~u2x!2#, 6y>a. ~52!

The magnetic fieldH is distributed in between the mag
nets according to the expression

H~x,y!5
1

2p (
n

qunu E
2W/2

W/2

du J~u!
~2an2y,x2u!

~x2u!21~y22an!2
.

~53!

For the casem2@m1 one can calculate the above series
q→1,36 and find

H~x,y!5
1

4aE2W/2

W/2

du J~u!

F2sin
p

a
y,sinh

p

a
~x2u!G

cosh
p

a
~x2u!2cos

p

a
y

.

~54!

For the perpendicular field component at the sheet sur
one obtains

H~x!5
1

4aE2W/2

W/2

du J~u!cothS p

2a
~x2u! D . ~55!

All the above formulas in this section were derived so
for an arbitrary current distributionJ(x). Now we apply
these to a description of the partly flux-filled state of t
strip. For this aim, we substitute the field expression~55!
into Eqs. ~43!. The resulting problem is very close to th
problem of field and current distributions over a stack
superconducting films considered by Mawatari.32 In fact, the
set of images in the limit of infinite permeabilitym→`(q
→1) is, in the regionuyu<a, physically identical to the stack
of real films. The only difference from results of Mawata
consists in the fact that in his work a stack of films w
considered exposed to an external field in the absence

FIG. 13. ~a! The current-carrying sheet between two magn
half spaces with boundaries parallel to the sheet. All surfaces
shown with solid lines and images of the sheet at the magn
mirrors are shown with dashed lines.
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transport current while we study the alternative case of
transport current applied to a strip in the absence of an
ternal field.

As well as in Ref. 32 one can introduce new variablet
5tanhpu/2a and t5tanhpx/2a, which vary within the in-
terval (2 l ,l ) with l 5tanhpW/4a, and parameterp
5tanhpb/2a, and define a new unknown functionf(t)
[J(u). Substituting the new variables into Eq.~55! and
seeking for the even solutionJ(u)5J(2u), which is fol-
lowed by f(t)5f(2t), one finds conditions of the partl
flux-filled state~43! for the new variables

H~x!5
1

2pE2 l

l dtf~t!

t2t
50, utu,p, l ,

J5Jc , p,utu, l . ~56!

The identity of the above problem to that of the isolat
strip @Eqs.~5! and~43!# allows one to write immediately the
current distribution over the strip

J~x!5
2Jc

p
arctanA l 22p2

p22S tanh
p

2a
xD 2, uxu,b,

Jc , b,uxu,W/2 ~57!

and the field distribution over the strip

H~x!50, uxu,b,

Hcx

uxu
arctanhAS tanh

p

2a
xD 2

2p2

l 22p2
, b,uxu,

W

2
,

Hcx

uxu
arctanhA l 22p2

S tanh
p

2a
xD 2

2p2

, uxu.
W

2
. ~58!

The width of the flux-free region 2b is defined by the
value of the total current. This may be found by integrati
of the above current distribution over the strip width

p5sinhFpW

4a S 12
I

I c
D G

3A2 tanh
pW

4a Fcoth
pW

4a S 12
I

I c
D2coth

pW

2a G ,
b5

2a

p
arctanh~p!. ~59!

An evolution of the current and field distributions with
decreasing distance to the magnetsa is shown in Fig. 14.
Different curves present the same total current distribu
over the strip for different distancesa. At a@W the distri-
butions reproduce the current and field patterns of the
lated strip~48! and ~50!. The same result may easily be e
tablished analytically by consideringa→` in Eqs.~57! and
~58!. At a.W the dip in the current distribution become
e
x-

d

o-

deeper and narrower. Ata!W the current is almost com
pletely expelled from the flux-free central part to the flu
filled regions along edges of the strip.

The exhibited behavior is similar to the current distrib
tion in a completely flux-free strip influenced by a magne
surrounding studied in Ref. 2. By smalla, the resulting cur-
rent and field distributions approach the profiles typical fo
long bulk slab.1,26 This is not surprising since the set of str
images in our problem, as well as the stack of the fil
considered by Mawatari,32 really form a slab of the widthW
for a→0.

C. Superconductor strip between flat magnets:
Perpendicular configuration

Let us consider now the case of a transverse position
the strip with respect to the magnets as is shown in Fig.
The boundaries of the magnets assume now the locatiox
56a wherea.W/2 holds for this geometry. The images o
the strip lie now on thex axis centered atx52an with inte-
ger n. The solution to Eq.~8! in between the magnets now
reads@evenJ(u) is assumed#

FIG. 14. Transport current~a! and perpendicular to the strip
magnetic field~b! distributions over the sheet carrying the tot
currentI 50.7•I c are shown for various distancesa from the sheet
to the magnets in parallel configuration. Vertical dashed lines ax
560.714 show the boundaries of flux-free region fora5`.
Dashed lines atx560.3 show the current profile ata50 which
coincides with that of a slab of the same width.
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A152
m1

4p (
n

qunu E
2W/2

W/2

du J~u!ln@y21~x2u22an!2#,

~60!

and inside the magnets it is

A252
m1m2

2p~m11m2! (
n50

`

qnE
2W/2

W/2

du J~u!

3 ln@y21~x2u62an!2#, 6x>a. ~61!

Following from Eq. ~60!, the magnetic field in betwee
the magnets now writes as

H~x,y!5
1

2p (
n

qunu E
2W/2

W/2

du J~u!
~2y,x2u22an!

~x2u22an!21y2
.

~62!

At m2@m1 one can putq51 and find36

H~x,y!5
1

4aE2W/2

W/2

du J~u!

F2sinh
p

a
y,sin

p

a
~x2u!G

cosh
p

a
y2cos

p

a
~x2u!

.

~63!

The perpendicular component of the field at the strip equ

H~x!5
1

4aE2W/2

W/2

du J~u!cotS p

2a
~x2u! D . ~64!

The expressions~60!–~64! are again valid for an arbitrary
current distribution. Now we try to find the current satisfyin
the conditions of the flux-filled state~43!. This equation is
similar to Eq. ~55! and may be treated as in Mawatari
work32 devoted to the field and current distributions ove
horizontal array of superconductor films subjected to an
ternal field. Substituting new variables and parametert
5tanpu/2a, t5tanpx/2a, p5tanpb/2a, l 5tanpW/4a,
and f(t)[J(u), one can once more reduce the conditio
~43! exactly to Eqs.~56!. This allows one to write a solution
at once in the form

FIG. 15. The current-carrying sheet between two magnet
spaces with boundaries perpendicular to the sheet. All surface
shown with solid lines and images of the sheet at the magn
mirrors are shown with dashed lines.
ls

-

s

J~x!5
2Jc

p
arctanA l 22p2

p22S tan
p

2a
xD 2, uxu,b,

Jc , b,uxu,W/2. ~65!

A corresponding field distribution follows from Eq.~50!
and reads as

H~x!50, uxu,b,

Hcx

uxu
arctanhAS tan

p

2a
xD 2

2p2

l 22p2
, b,uxu,

W

2
,

Hcx

uxu
arctanhA l 22p2

S tan
p

2a
xD 2

2p2

, uxu.
W

2
. ~66!

The width of the flux-free region 2b is defined by the
value of the total current. This may be found by integrati
of the current distribution~65! which gives

FIG. 16. Transport current~a! and perpendicular to the strip
magnetic-field~b! distributions over the sheet carrying the total cu
rent I 50.7•I c are shown for various distancesa from the sheet
center to the magnets in perpendicular configuration. In the li
casea51 the entire sheet is flux-free and sheet currentJ50.7•Jc

2const~dashed line!.
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p5AcosS pW

2a

I

I c
D2cos

pW

2a

11cos
pW

2a

,

b5
2a

p
arctanp. ~67!

Sheet current distributions over the strip and field patte
of a fixed total current at various distances to the magnea
are shown in Fig. 16. An approaching of the magnet walls
the strip causes a flattening of the current distribution i
flux-free region and an extension of the latter. The reas
for this flattening are physically transparent if one takes i
account that, ata→W/2, the strip with its images, as well a
films array in the work of Mawatari,32 form a continuous
infinite superconductor strip lying on thex axis. The Meiss-
ner state of the latter is provided by a constant sheet curr

Figure 17 presents an evolution of the current distribut
for different total currents at the small fixed magne
superconductor distance 2a/W51.04. The picture exhibits a
close analogy to the results for the Meissner state of a
with a large edge barrier.2 In fact, pinning in Fig. 18 acts like
an extended edge barrier providing a wide flux-free zo
inside a strip up to the largest magnitudes of a total curr
I .I c .

This analogy allows one to suppose that a special de
of the magnetic surrounding may permit a redistribution
the current to the center of the strip similar to that obtain
above in Sec. III for the edge barrier mechanism. We st
this question in the next section.

V. OVERCRITICAL STATES OF A HARD
SUPERCONDUCTOR STRIP IN AN OPEN CURVED

MAGNETIC CAVITY

As was established in Ref. 2 and above in Sec. III B
maximum nondissipative current flowing in a flux-free s
perconductor strip may be strongly enhanced in open cur

FIG. 17. Current distributions in the partly flux-filled state of
superconducting strip with total currentsI /I c50.5, 0.7, 0.95, (I c

5JcW) placed between magnetic shields perpendicular to the s
plane at a distancea2150.04 ~in units of W/2).
s

o
a
s

o

nt.
n

e
nt

n
f
d
y

e
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magnetic cavities. It was shown also in the previous sec
that, in a partly flux-filled state, the central flux-free region
very sensitive to the magnetic surrounding too. That is w
we study in this section how a current distribution behaves
a strip partly filled with a pinned magnetic flux and placed
a convex magnetic cavity.

For the study of the pure Meissner state of a strip s
rounded by a magnet withm@1 the mighty tool of a confor-
mal mapping was used in Sec. III B. In that case, magne
field lines are parallel to the strip everywhere at the st
surface and almost perpendicular to the surface of the m
net shields in analogy to an electrostatic field near the sur
of a conductor. Conformal mapping keeps these propertie
field lines during the deformation of the geometry and th
allows one to construct the Meissner state in various ge
etries if it is known in some configuration.

In the case of the partly flux-filled state, conformal ma
ping cannot be applied directly. Field lines in this case
still parallel to the strip in the flux-free region@see Eqs.
~43!#, which holds during the conformal mapping, but th
second property,J5Jc in the flux-filled region, does no
hold generally. Thus the state resulting from the mapping
some partly flux-filled state does not have the form~43!.
Nevertheless, conformal mapping may be used for the c
structing of partly flux-filled states in complicated geom
etries following the scheme advanced by Norris and sum
rized above in Sec. IV A.

In our problem, we seek first for the Meissner response
the flux-free regionuxu<b to the unit test currents located a
x56x0 , x0.b with account of the flat magnetic walls lo
cated atx56a, a.x0 ~see perpendicular configuration i
Sec. IV C!. The obtained solution is transformed then
conformal mapping to the current distribution over som
flux-free strip in the curved magnetic surrounding arising
response to external test currents. Finally, the partly fl
filled state in a curved surrounding is constructed by integ
tion over the test current position in the constant-Jc region.
The integration of the resulting sheet current over the s
width gives the total current flowing in the strip. This wa
the relation between the main parameter of the problem,
flux-free zone width 2b, and the total current is establishe

A magnetic field induced by a current strip between ma
netic walls perpendicular to it is given by Eqs.~63! account-
ing for multiple images of the strip. The equation for th

ip

FIG. 18. Current-carrying strip inside an open magnetic cav
obtained by conformal mapping from configuration of Fig. 15 to
new frame (z,h) for various distancesza from the strip center to
the cavity vertex. The strip width in new coordinates is 2zW52.
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Meissner response of the flux-free region to two test curre
of unit strength flowing along the linesx56x0 is found by
substitution of the form~44! into Eq. ~64! which gives

E
2b

b

du J~u!cotS p

2a
~x2u! D5cotS p

2a
~x02x! D

2cotS p

2a
~x01x! D .

~68!

With the help of substitutions used in Sec. IV C andt0
5tan(px0/2a) one can reduce the above equation to the

1

pE2p

p dtf~t!

t2t
5

11t0
2

2a S 1

t1t0
1

1

t2t0
D , utu<p. ~69!

This equation reproduces, in principle, Eq.~45! and its
solution follows with an adjusting factor from the solutio
~47! and reads

f0~ t !52
t0~11t0

2!

a~ t0
22t2!

At0
22p2

p22t2
. ~70!

One can check that the integration off0(t) over the test
current positionx0 in the interval b,x0,W/2 gives the
partly flux-filled state~65!.

We are now in a position to perform a conformal mappi
of a strip carrying a current

J0~x!5f0@ t~x!#1d~x2x0!1d~x1x0!, ~71!

where t(x)5tanpx/2a, and located between magnets wi
m→` occupying the space atuxu>a to another geometry.

Let us carry out the mapping of the wallsx56a to the
convex cavity similar to the transformation~36!. This map-
ping of the initial complex planes5x1 iy onto a new one
w5z1 ih is performed by an analytical function

w5 f ~s!5c@A11s/a2A12s/a#, ~72!

where a factorc5b@A11b/a2A12b/a#21 is chosen to
keep the position of the flux-free region:f (6b)56b. Let us
note that the strip half-widthW/2 and distance to the mag
netsa are changed after the mapping to thezW5 f (W/2) and
za5 f (a), respectively.

The form of magnetic walls resulting from the conform
mapping of flat walls~Fig. 15! is shown in Fig. 18 for vari-
ous distances between the strip and magnets. Note tha
get different solutions for a given flux-free zone width a
strip width, initial strips with different widths should be cho
sen for mapping.

The sheet current distribution over the strip after the m
ping is given by a jump of a parallel field component as
presented by Eq.~31!. Then the test currentDJ5d(x2x0)
transforms to

D J̃~z!5
]y

]h U
h50

d@x~z,h50!2x0#5
]y

]h

d~z2z0!

u]x/]zu U
h50

,

~73!
ts

to

-

where z05 f (x0). Making use of Eqs.~37! and ~72!, one
finds

]y

]h U
h50

5
]x

]zU
h50

5
a

c

12z2/2c2

A12z2/4c2
. ~74!

Thus, in new coordinates, the test currents remain curren
unit strength.

A Meissner response current acquires then a form

J̃M~z!5
a

c

12z2/2c2

A12z2/4c2
f0$t@x~z,h50!#%, ~75!

wherex(z,h50)5(az/c)A12z2/4c2.
This solution presents a current flowing in the regionuzu

<b and shielding this region from a field induced by the tw
test currents of unit strength with account of contributi
from surrounding curved magnets. In the new coordina
the test currents are flowing along the linesz56z0 and
magnet surfaces assume positions determined parametri
as

w5c@A1611 iy /a2A1712 iy /a# ~76!

with 2`,y,` as is shown in Fig. 18.
A current distribution for the partly flux-filled strip in the

curved magnetic surrounding may be obtained by integra
of the solution~75! overz0 in the constant-Jc region (b,zW).
As well as after integration of Eq.~47!, a contribution arises
which diverges at the edges of flux-free regionz56b. Since
the solution to the inhomogeneous Eq.~69! includes a solu-
tion to a corresponding homogeneous equation with an a
trary factor @see also Eq.~46!#, this unphysical divergence
may be canceled by adding of a conformally mapped so
tion of the homogeneous Eq.~69! with a proper factor. The
latter Meissner solution which presents a flux-free state o
strip uxu<b placed in the curved magnetic cavity defined
the mapping~72! is given by Eq.~38! where one should
substitutec for ca andb for W/2.

After this regularization a continuous current distributio
looks finally as

J̃~z!5
Jc

A2p

12z2/2c2

A12z2/4c2 E0

w0
dwH Fp2

1arctan~Ap21~p22t2!~ tanw!2!G21/2

1Fp2 2arctan~Ap21~p22t2!~ tanw!2!G21/2J
~77!

when uzu,b and J̃(x)5Jc when b,uzu,zW . In the above
formula,

t5tanS p

2c
zA12z2/4c2D and w05arctanAl 22p2

p22t2
.

Current distributions computed using the formula~77! are
presented in Fig. 19. The initial strip widthW was chosen for
every initial distancea to flat magnets so that it is mappe
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onto the strip of a given width 2zW52 while the flux-free
region occupies the positionuzu<b50.8.

One can observe that at distancesza@zW(a@W) the cur-
rent distribution reproduces the pattern characteristic of
isolated strip@Eq. ~48! and Fig. 16#. When the magnets ap
proach the strip to a distanceza.zW(a.W/2) the current
starts to redistribute to the center of the strip. At distance
the strip edgeza2zW!zW the current distribution in the
central flux-free region is inflated high above the critical c
rent level thus providing a total transport current larger th
that of the isolated strip in the critical state. However, t
overcritical current distributions forza51.04 and 1.1 turn
out to be unstable with respect to transition to the comm
critical state withJ̃5Jc2const all over the strip. Indeed, th
vortices at the boundaries of the flux-filled region atz5

6b would be dragged inwards by currentJ̃.Jc until they
meet in the center of the strip.

It is typical of hard superconductors that the current a
field distributions are history dependent and therefore a s
with a given transport current may be realized in ma
ways.12,13 In the case of a magnetically screened strip
picture becomes even more complicated since, contrar
the isolated strip case,10,12,13the total current turns out to b
a nonmonotonous function of the width of the flux-free r
gion. To study the possibility of stable overcritical states
consider now the evolution of the current distribution in t
strip located at a small fixed distance to magnetsza51.04
while gradual increase of the total transport current fr
zero.

At small total currents, the constant-Jc domain b,uxu
,zW grows but remains first very small so that the who
strip but narrow margins is in the flux-free state. By furth
increase of the current it concentrates mostly in the s
center where it may exceedJc . At the total currentI
52.74I c , whereI c52JczW is the total critical current of the
isolated strip, only 1023 of the strip is penetrated by flu
(b50.999) as is seen in the left inset in Fig. 20. Note t

FIG. 19. Magnetically screened current-carrying state of a
perconducting sheet of width 2zW52 inside a cavity shown in Fig
18. Meissner flux-free state occupies the regionuzu,b50.8. Dif-
ferent current profiles correspond to different distancesza from the
cavity vertex to the sheet center.
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vertical slope of current distributions at boundaries of t
flux-free region which is typical of two-dimensional flux an
current distributions.10,12,13

For b50.99 and 0.999 the region with the overcritic
current J.Jc is separated from the flux-filled margins b
undercritical regions withJ,Jc which prevents the flux-
front propagation inwards. Thus the corresponding curr
distributions are stable. On the contrary, the current patte
with b50.95 and smaller in Fig. 20 exhibit a direct conta
of the flux-filled regions with the overcritical region whic
makes these distributions unstable.

Computation results presented in the right inset in Fig.
reveal the critical value of the flux-free zone widthb5b0
50.975 when the undercritical region first vanishes. The c
responding current distribution lies above the other distri
tions and thus delivers the largest total current ofI max
57.3I c . This is the maximum stable current which can
carried by the strip in the magnetic cavity of Fig. 18 wi
m@1 and distanceza2zW50.04•zW between magnets an
superconductor. The distributions withb,b0 carry smaller
currents and are unstable with respect to transition in us
critical state withJ̃5Jc2const.

Note that current distribution derivatives atz56b are
infinite but of different signs forb.b0 and,b0. This allows
one to find the critical valueb0 from the conditionJ8(z
→6b)50. We consider for simplicity the case of the sma
distance magnet superconductorza /zW511e, e!1 which
gives W/2a.122e2 and l 5tan(pW/4a).1/pe2@1. It is
also assumed that the flux-filled region of interest is narr
so that W/22b!W/2 which gives p5tan(pb/2a)
.2a/p(a2b)@1. In this limit, the current distribution~77!
may be simplified to

J̃~z!5
Jc

A2p

12z2/2c2

A12z2/4c2 E0

w0
dw@p21~p22t2!~ tanw!2#1/4.

~78!

-

FIG. 20. Evolution of the sheet current distribution in a str
placed in a cavity shown in Fig. 18 with the change of the to
current. The distance from the sheet center to the cavity verteza

51.04 is fixed. Different curves correspond to different magnitud
of the total current which determine the different values of t
width 2b of the flux-free zone. In the left inset, marginal parts
current distributions with narrow flux-filled regions are zoomed
Right inset shows the transformation of the stable current patter
unstable when parameterb falls below the critical value ofb0

50.975.
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The main contribution in the derivative whenz→b20
~and hencet→p20) reads

] J̃

]z
;

Jc

Ap22t2 S 112A l

p
2

l 2

p2D ~79!

which exhibits the singularity att→p in qualitative agree-
ment with Fig. 20. A polynomial with respect toAl /p in
brackets has the only positive rooth51.395 which provides
the criterion of a stable current distribution:

tanS pb

2a D>h22tanS pW

4a D . ~80!

For the strip of unit half-widthzW51 ande!1 this results
approximately in

b0512e~h21!. ~81!

This simplified expression givesb050.984 fore50.04 used
above in Fig. 20 which differs by 10% from the valueb0
50.975 found by computation of exact Eq.~77!.

Taking into account that the integral in Eq.~78! depends
weakly onz one can estimate the maximum total current

I max5I cA 1

4p
tanS pW

4a D.
I c

2pe
, a2W/2!W/2.

~82!

This means formally that the total current grows infinitely
a→W/2 (za→zW). In fact, the usage of the formulas~80!
and ~82! is restricted by the smallest reasonab
superconductor-magnet distanceza2zW.d ~which is fol-
lowed by a2W/2.4d2/W) since at smaller distances ou
basic Eqs.~3!, ~5!, and ~8! are no longer valid. Practica
reasons impose much stronger restrictions on this dista
which seems to be at best of the order of 0.1 mm. This giv
for the film of width 5 mm, an enhanced total current
I max.4•I c which is less than enhancement 7.3 found abo
numerically. Thus approximate expressions~78!–~82! give
underestimated values of the total current. Nevertheless
ing formula ~82! one finds, for the least physically reaso
able distance ofd/W.1023, the huge enhancement of th
total currentI max.160•I c .

VI. DISCUSSION AND CONCLUSIONS

In this paper we studied theoretically the completely flu
free Meissner state and partly flux-filled critical state
current-carrying superconductor strips placed in a magn
surrounding. No external field or remanent magnetizat
was implied. Only the self-field of a transport current w
considered with account of surrounding magnetic medi
which is supposed to be homogeneous, linear, and revers
Analytical results were obtained for field and current dis
butions over the strip in the limit of the infinite magnet
permeability of magnetsm→` for various shapes of magne
boundaries.

The analytical solutions of singular integral equations
scribing a current distribution were found for the flux-fre
sheet located near a flat bulk magnet surface and inside
wedge-shaped cavities for the case of an infinite magn
permeabilitym→`. A strong suppression of current peaks
s
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-

en
ic
t

the sheet edges and the redistribution of the current to
inner part of the sheet were shown to strongly enhanc
current-carrying capability of the sheet in the Meissner sta

Numerical studies for finitem allow one to conclude tha
the current peak height at the sheet edges depends pract
linearly on the parameterq5(m21)/(m11) and 90% of
the suppression effect is reached already form.30. The cur-
rent redistribution thanks to the magnetic screening bym
.100 is represented to an accuracy of 1% by the analyt
solutions obtained form→`.

Physically important for all above solutions is that th
sheet remains in the flux-free Meissner state. Then the re
tribution of the current is not accompanied by the motion
magnetic vortices and may not be prevented by pinning. T
Meissner state of the sheet is supposed to be protected b
large edge barrier against the magnetic flux entry and ma
distinctly observed only on samples whose critical curren
essentially controlled by the barrier effect. Thanks to t
edge barrier and the current redistribution over the shee
duced by a magnetic surroundings it turns out to be poss
to carry a high total transport current.

The most crucial parameter for the substantial current
distribution is the distance between the bulk magnets and
superconducting sheet. The direct contact (a→1) and a con-
sequently complete suppression of the current peaks at
edges is hardly achievable. Practically plausible gaps
tween the magnet surfaces and the sheet are about 0.1
which gives, for the sheet widthW55 mm, the least pos-
sible value of the distance to the sheet centera51.04•W/2.
For the most robust geometrical barrier mechanism,
gives an average current in the Meissner state of ab
106 A/cm2 in a flat magnetic surroundings~Fig. 15! and a
current about 107 A/cm2 in a convex magnetic cavity for a
YBCO film of thicknessd550 nm at 77 K~Figs. 11 and
12!.

Hard superconductors possessing strong pinning and
ligible edge barrier exhibit similar behavior in the part
flux-filled state. We found that the current distribution in th
central flux-free part of the strip is very sensitive to the sha
of the magnetic shields and their distance to the strip. I
simple case of flat magnet surfaces the current behaves
actly as in the stack and linear array of superconduc
films32 for strip positions parallel and perpendicular to t
magnet walls, respectively.

In the parallel configuration, the current is expelled fro
the flux-free central region reminding, at close contact of
magnets to the strip, the well-known Bean’s field and curr
profiles for a bulk slab.1,26 In the perpendicular configura
tion, on the contrary, the current distribution in the flux-fr
zone is flattened. At close contact of the strip to the magn
the major part of the strip remains flux-free even at high to
currentsI .I c , the critical current of the isolated strip, thu
reminding the current distribution in a magnetically screen
superconducting film with a high edge barrier against fl
entry.

The above results apply to the virgin state when a tra
port current grows from zero. An arbitrary succession of c
rent switching ~on and off! produces more complicate
history-dependent current and field patterns arising beca
of the pinning-induced irreversibility. These patterns in t
isolated strip studied in details in Refs. 12 and 13 may
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simply reproduced for the strip in a flat magnetic surroun
ing by proper substitutions of variables32 which make the
problems identical.

The most unusual behavior of the current distribution w
found for the strip placed in an open convex magnetic cav
Contrary to the current concentration near slab surfaces
strip edges typical of flux-free superconductors, the curren
redistributed in this case to the center of the flux-free zo
where it can exceed the pinning-determined sheet crit
currentJc .

The filling of the strip with a transport current starts,
small total currents, with a very nonmonotonous distribut
which has some extrema in a flux-free region. As in us
critical state,1,26 the sheet current is constant and equalJc in
the flux-filled margins along the strip edges. These marg
are as narrow as the distance magnet-superconductor an
come infinitesimal simultaneously with the latter. By furth
increase of the total current the sheet current in the flux-
zone grows and becomes finally larger thanJc . The
constant-Jc regions remain very small thus reminding th
current behavior of strips with a high edge barrier.2 The dif-
ference from the latter is that, even at finite distance to m
nets, there are no edge peaks in the current distribution.

The overcritical flux-free region where the sheet curr
J.Jc is first separated from the flux-filled margins withJ
5Jc by undercritical flux-free regions whereJ,Jc which
secure the overcritical state. At some value of the total c
rent I max the undercritical regions vanish which let the cu
rentJ.Jc directly contact the vortices at the boundary of t
flux-filled margins that makes this configuration unstab
Then the vortices dragged by currentJ.Jc move inwards
until they meet in the center of the strip thus restoring
usual critical state withJ5Jc all over the sample.

The maximum total nondissipative currentI max which
may be carried by the strip grows, in the considered confi
ration, approximately proportional to the inverse magn
et
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superconductor distance. This distance is restricted from
low by some characteristic length equal to or exceeding
film thickness, which leads toI max values two orders of mag
nitude larger thanI c . Practically, the magnet-superconduct
distance can hardly be made smaller than 0.1 mm wh
results in anI max.7•I c for a film of width 5 mm.

For both flux-free strips secured by large edge barri
and hard superconductor strips dominated by pinning, o
mechanisms restricting the total current may become va
At high enoughJc or Jb , the enhanced current in the str
center may reach the magnitude of the Ginzburg-Landau
pairing current25 and switch on a direct depairing process.
wide films, where current densitiesj c.106 A/cm2 where
achieved at 77 K,20 this may happen by total currents e
hanced by one order overI c .

Another more practical restriction is connected with t
violation of the used one-dimensional scheme when m
netic vortices enter from the top and bottom surfaces of
strip where magnetic field exceeds the lower critical fie
parallel to stripHc1

i . To avoid this process, thin films with
thicknessd!l may be used2 where the parallel critical field
is enhanced up to (l/d)2Hc1

i .37 This should not present a
problem for YBCO films possessing al50.5 mm at 77 K.19

Other experimental difficulties may be connected with t
magnetic shielding material which should possess, at
temperatures, a high enoughm and a high saturation field~to
be linear atH;Jc), and which should behave reversibly, i.e
exhibit no remanent magnetization. The size of the b
magnets may turn out to be crucial too. Since the magn
field of the strip decreases very slowly with the distan
inside the magnets and all calculations in the theory w
performed for infinite medium, the size of the magne
should be much larger than the film width. Thus numeri
calculations for finite-size and finite-m magnets are neces
sary to establish exactly a possible current enhancemen
fect under real conditions.
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