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In the context of extendedJ models, with intersite Coulomb interactions of the foraVX; ;yn;n;, with
n; denoting the electron number operator at siteodal liquids are discussed. We use the spin-charge sepa-
ration ansatz as applied to the nodes afwave superconducting gap. Such a situation may be of relevance to
the physics of high-temperature superconductivity. We point out the possibility of existence of certain points
in the parameter space of the model characterized by dynamical supersymmetries between the spinon and
holon degrees of freedom, which are quite different from the symmetries in conventional supersyrishetric
models. Such symmetries pertain to the continuum effective-field theory of the nodal liquid, and one’s hope is
that the ancestor lattice model may differ from the continuum theory only by renormalization-group irrelevant
operators in the infrared. We give plausible arguments that nodal liquids at such supersymmetric points are
characterized by superconductivity of Kosterlitz-Thouless type. The fact that quantum fluctuations around such
points can be studied in a controlled way, probably makes such systems of special importance for an eventual
nonperturbative understanding of the complex phase diagram of the associated high-temperature superconduct-
ing materials.

I. INTRODUCTION the spinons as fermions. That framework, unlike ours, is not
a convenient starting point for making predictions such as
The study of strongly correlated electron systemsthe behavior of the system under the influence of strong ex-
(SCES's is a major enterprise in modern condensed-matteternal fields. As argued in Ref. 6, a strong magnetic field
physics primarily due to high-temperatuigana) supercon- induces the opening of a second superconducting gap at the
ductors, fractional Hall conductors, and, more recently, innodes of thed-wave gap, in agreement with recent experi-
semiconductor quantum dots. Owing to various non-Fermimental findings on the behavior of the thermal conductivity
liguid features of SCES’s, many believe that the low-energyof high-temperature cuprates under the influence of strong
excitations of these systems are influenced by the proximitgxternal magnetic fields.
of a critical Hamiltonian in a generalized coupling-constant In Ref. 3 a single-band Hubbard model was used. Such a
space. In this scenario, known as spin-charge separationnodel should not be regarded as merely phenomenological
these excitations are spinons, holons, and gauge fields.  for cuprate superconductors since it can be deduced from
Important paradigms for SCES’s are the conventionakhemically realistic multiband models involving both Cu and
Hubbard model, or its-j extension, both of which have been O orbitals and it has extra nearest-neighbor interactions of
conjectured to describe the physics of high-temperature suhe forn?
perconducting doped antiferromagnets. Numerical simula-
tions of such model$,in the presence of very low doping, 2 +
have provided evidence for electron substructsgin- Hine= _VZ ning,  Ni= 21 CaiCais 2
charge separationn such systems. Ly “
In Ref. 3, an extension of the spin-charge separation repas well as longer finite-range hoppings.
resentation, allowing for a particle-hole symmetric formula-  What we shall argue below is that the presence of inter-

tion away from half filling, was introduced by writing actions of the form(2) is crucial for the appearence of su-
persymmetric points in the parameter space of the spin-
AN ) _;2 charge separated model. Such points occur for particular
Xap= + T) —_ 1, (1) doping concentrations. As we shall discuss, this supersym-

Y2 i\ oz metry is adynamical symmetrgf the spin-charge separation,

and occurs between the spinon and holon degrees of freedom
where the fieldsz,,; obey canonicabosoniccommutation of the ansatZ1). Its appearance may indicate the onset of
relations, and are associated with #gendegrees of freedom unconventional superconductivity of the Kosterlitz-Thouless
(“spinons”), while the fieldsy are Grassmann variables, (KT) type*'%in the liquid of excitations about the nodes of
which obey Fermi statistics, and are associated with the elethe d-wave superconducting gdpnodal liquid™), to which
tric charge degrees of freeddftholons”). There is a hidden we restrict our attention for the purposes of this work.

non-Abelian gauge symmetri3U(2)®@Ug(1) in the repre- It should be stressed that the supersymmetry characterizes
sentation(1), which becomes a dynamical symmetry of the the continuunrelativistic effective- (gauge} field theory of
pertinent planar Hubbard model, studied in Ref. 3. the nodal liquid. The progenitor lattice model is of counsé

The representatiofl) is different from that of Refs. 4 and supersymmetrin general. What one hopes, however, is that
5, where the holons are represented as charged bosons, aatdsuch supersymmetric points the universality class of the
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continuum low-energy theory is treameas that of the lat- 8 in order to discuss the appearance of relativistic charge

tice model, in the sense that the latter differs from the coniiquids at the nodes of the associatavave superconduct-

tinuum effective theory only by renormalization-groingel- ing gap. We will argue that the nodes characterize the model

evantoperatorg(in the infrared. This remains to be checked in a certain range of parameters. We will demonstrate that at

by detailed studies, which do not constitute the topic of thisa certain regime of the parameters and doping concentration

article. the nodal liquid effective-field theory of spin-charge separa-
In general, supersymmetry provides a much more contion exhibits supersymmetry. This supersymmetry is dynami-

trolled way for dealing with quantum fluctuations about thecal and should not be confused with the nondynamical sym-

ground state of a field-theoretic system than a nonsupersynmetry under a graded supersymmetry algebra that

metric theory*! In this sense, by working in such supersym- characterizes the spectrum of doped antiferromagnets at two

metric points in the parameter space of the nodal liquid onepecial points of the parameter spacVe shall also discuss

might obtain some exact results about the phase structurenconventional mechanisms for superconductivity in the

which might be useful for a nonperturbative understandinghodal liquid similar to the ones proposed in Refs. 9 and 10.

of the complex phase diagrams that characterize the physics To start with, let us describe briefly the extended

of the (superconducting doped antiferromagnets. As we model used in Ref. 8. The Hamiltonian is given by

shall discuss below, to obtain supersymmetric points one

needs to make specific assumptions about the regime of the H=P(Hpopt+H;+Hy)P+PH,P, (©)]

parameters of the model; from an energetics point of viewWhere

such assumptions are retrospectively justified by the fact that (i)

supersymmetric ground states are characterizedzénp

energy'! and hence are acceptable ground states from this

point of view. Hhop= = 2 tiiCihCia— X 1CihCia— X tiC/hCia,
Significant progress towards a nonperturbative under- (i (i} it

standing of non-Abelian gauge-field theories, in four space- (4)

time dimensions, based on supersymmetry has been made gMd<. .-} denotes nearest-neighb@iN) sites,[ - - -] next-

Seiberg and Wittef? The fact that the spin-charge separa-to-nearest neighbagNNN), and{---} third nearest neighbor.

tion representation(1) of the doped antiferromagnet is Here repeated spitor “color”) indices are summed over.

known to be characterized by such non-Abelian gauge strucfhe Latin indices,j denote lattice sites and the Greek indi-

ture is an encouraging sign. However, it should be noted thateso=1,2 are spin components.

in the case of Ref. 12 extended supersymmetries were nec- (jj)

essary for yielding exact results. As we shall discuss below,

under special conditions for doped antiferromagnets, the su- 1

persymmetric points are characterized By=1 three- Hy=32 | TiwgTipa— 2"in; +3' 2 TiagTjpar (5

dimensional supersymmetries. Under certain circumstances o ]

the supersymmetry may be elevated\te- 2,12 for which it with ni:zflzlcﬁacm, and T; aﬁ=cﬁacilg. The quantities

is possible to obtain some exact results concerning the phagej’ denote the couplings of the appropriate Heisenberg an-

structure!® In the present state of the understanding oftiferromagnetic interactions. We shall be intere&ed the

SCES’s it is a pressing need to have relevant models fofegime wherel’ <J.

which we can extract nontrivial exact information. However, jij)

for a realistic condensed-matter system such as a high-

temperature superconductor, even Me 1 supersymmetry N

of the supersymmetric points is expected to be broken at HM:MZ CiaCia> (6)

finite temperatures or under the influence of external elctro-

magnetic fields. Nevertheless, one may hope that by viewingnd u is the chemical potential.

the case of broken supersymmetry as a perturbation about the (iv)

supersymmetric point, valuable nonperturbative information

may still be obtained. As we shall see, a possible example of

this may be the above-mentioned KT superconducting Hy= _V% nin; . (7)

propertied that characterize such points.

"+

This is an effective static NN interaction which, in the bare
t-J model, is induced by the exchange term, because of the
extra magnetic bond in the system when two polarons are on

In Ref. 8 it was argued that BCS-like scenarios for high-neighboring site8. Notice that this term, when combined
T. superconductivity based on extended models yield ~ With the Coulomb interaction terms i, yields in the ef-
optimum doping. There it was argued that a pivotal role waoupling
played by next-to-nearest neighbor and third neighbor hop- Ve =\/+0.25) 8
pingst’, andt”, respectively. In particular, the combination total™ e (8)
t_=t’'—2t" determines the shape of the Fermi surface angn Ref. 8 the strength of the interacti¢f) is taken to be
the nature of the saddle points and the associaf&d.

Our aim is to use the extendéel model studied in Ref. V~0.585]. (9)

1. MODEL AND ITS PARAMETERS
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This is related to the regime of the parameters used in Ref. &eparationrepresentation occurs aach sitei
for which the NN hopping element satisfies J. In fact, for

the effectivet-j-V model of Ref. 8, viewed as an appropriate B R
reduction of a single-band Hubbard model, one has the rela- Xapi= VayiZypi= ¢ —cl)
tion !
412 _( i l/fz) (21 —22) 16)
- = Tt - |
= Uers+V’ Fse (10 v hli\z oz [

whereU . is an effective Hubbard interaction, adggis a ~ Where the fieldsz, ; obey canonicabosoniccommutation
ferromagnetic exchange Heisenberg energy for the singld€lations, and are associated with pendegrees of freedom
band model. We havi/’|#|V]| in general, unlike the case (SPinong, while the fieldsy,;, a=1,2 havefermionic sta-
of the standard Hubbard model with a supplementary interliStics, and are assumed dceate holesat the sitei with spin
site Coulomb interaction. However, one may consider mordndex a (holons. The ansatz16) has spin-electric-charge
general models, in which the above restriction is not im-Separation, since only the fielgscarry electriccharge. Gen-

posed, and/ is viewed as an independent parameter of theeralization to the non-Abelian model allows for intersublat-
effective theory, e.g., tice hopping of holes which is observed experimentally.

It should be noticed that the anticommutation relations for
V=bJ, (11 the electron fields,, c:g, do not follow from the ansat{.6)

whereb is a constant to be determined phenomenologicalIyW'thOUt additional constraints. Indeed, assuming the canoni-

Such a situation may arise, for instance, in effective model§al (anti-)commutation relations for the(y) fields, one ob-

where one considers repulsive on-site Coulomb interadtiond@"S from the ansat16)

(e.g., between holes and/or electrpris addition to the Crt Co X DUt S
(electron-hol¢ attractions(7). As we shall discuss below, {C1jCoj} =202 6i;
such more general cases turn out to be useful for the exis- (el chi~2y yl. 8
tence of supersymmetric points in the parameter space of the Liv=2) 2171
model.

Cehvcre, efae
(v) The operatolP is a projector operator, expressing the {C1j,C2}~{Cai €1}~ 0,

absence of double occupancy at a site. -
We define the doping parametex®<1 by {Cai cl =8 > [z 52 g+ g i% 1,
, P raaa Y,

(n)=1-24. (12)

d-wave pairing, which seems to have been confirmed experi-

mentally for highT. cuprates, was assumed in Ref. 8. A To ensure the&anonicalanticommutation relations for the

d-wave gap is represented by an order parameter of the formperators we must therefoimposeat each lattice site the
(slave-fermion constraints

o= U, =0,

a=1,2 nosumover,j. (17)

A(K)=Aq(cos ka—cosk,a), (13

wherea is the lattice spacing. The relevant Fermi surface is
characterized by the following four nodes where the gap van- o
ishes: ,8=212[Ziﬁ2i"6+ Vg iy i1=1. (18

(14) Such relations are understood to be satisfied when the holon
and spinon operators act @hysical states. Both of these
relations are valid in the largg-limit of the Hubbard model
and encode the nontrivial physics of constraints behind the
spin-charge separation ansdfit). They express the con-
o >N 121 A2/C straint ofat most one electron or hole per sitehich char-

E(k)_\/[s(k) pI7+ A (15 acterizes the largel Hubbard models we are considering
In the vicinity of the nodes it is reasonabliéto assume that here, and are similar to constraints used in the conventional
u~0 or equivalently we may linearize about i.e., write  slave-representation methods.

We now consider the generalized dispersion reldttbrior
the quasiparticles in the superconducting state:

e(K)— u~vp|g| (Ref. 9 whereup, is the effective velocity ~ There is a local phasgauge non-Abelian symmetry hid-
at the node and is the wave vector with respect to the nodal den in the ansatzl6) (Ref. 3 G=SU(2)xXUg(1), where
point. SU(2) stems from the spin degrees of freeddiy(1) is a
statistics changing group, which is exclusive to two spatial
1. NON-ABELIAN SPIN-CHARGE SEPARATION dimensions and is responsible for transforming bosons into
IN THE t-J MODEL fermions and vice versa. As remarked in Ref. 3, the1)

effective interaction is responsble for the equivalence be-
As already mentioned in the introduction, it wai®posed tween the slave-fermion ansatize., where the holons are
in Ref. 3 that for the largé} limit of the dopedHubbard viewed as charged bosons and the spinons as electrically
model the following“particle-hole” symmetric spin-charge neutral fermion$ and the slave-boson anséiz., where the
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holons are viewed as charged fermions and the spinons &s Eq. (22) is dictated® by the correspondence with the con-
neutral bosori$). This is analogougbut not identical to  ventional antiferromagneti€ P*o- model in the limit6—0.
the bosonization approach of Ref. 18 for anyon systems. The model of Ref. 8 differs from that of Ref. 3 in the

The application of the ansa{i6) to the Hubbardor t-j existence of NNN hopping and triple neighbor hopping/,
model3 necessitates a “particle-hole” symmetric formula- which were ignored in the analysis of Ref. 3. For the pur-
tion of the Hamiltonian(3), which, as shown in Ref. 3, is poses of this work, which focuses on the low-enefigyra-
expressible in terms of the operatoysIn this way, for in-  red) properties of the continuum field theory of EGO), this
stance, the NN Heisenberg interactions terms become can be taken into acount by assuming that

J =t = =t/ 4
HJ:_ggTr[Xin‘erXiT]_ (19) Ity =ti=t+2t,, t.=t'+2t (23
I
_ ) : ) in the notation of Ref. 8. The relation stems from the obser-
By making an appropriate Hubbard-Stratonovich transformayation that in the continuum low-energy field-theory limit

tion onH,; with Hubbard-Stratonovich fielda;; , we obtain  sych NNN and triple hopping terms can be Taylor expanded
the effective spin-charge separated action for the dopedin derivatives. It is the terms linear in derivatives that yield

antiferromagnetic model of Ref. 3: the shift(23) of the NN hopping elemertt Higher deriva-
tives terms, of the formy,d, are suppressed in the low-
Hyp= > (TH(8)ATA +|A[ —ti: (1+03) energy(infrared limit.
nr (0 t e Al ! ° It is important to note that the model of Ref. 3, as well as

+ — its extension(20), in contrast to that discussed in Ref. 9,
A1 VUi g} TILKZ VU ]+ H.C)+ ..o involves only asingle latticestructure, with nearest-neighbor
(20) hopping (ij)) bei_ng taken_ into account;; . The antiferro-
, . . ) magnetic nature is then viewed as a property of a color de-
with the - denoting chemical potential terms and NNN gree of freedom, expressed via the non-Abelian gauge struc-
hopping terms(the Iatter are essential for the model of Ref. ;o of the spin-charge separation ansd). As we shall
8; we shall discuss their effects belpw _ . discuss later, this is very important in yielding the correct
This form of-the action describes Iow-en-ergy exmtqﬂonsnumber of fermionigholons¥) degrees of freedom in the
about the Fermi surface of the theory. The filg is matrix  ~ontinuum low-energy field theory to match the bosonic de-

valued in color space; generically it may be expanded iy ees of freedontspinonsz) at the supersymmetric point.
components in a canonical basis ofX2 matrices,

{1,06%}, a=1,2,3, as follows:
IV. EFFECTIVE LOW-ENERGY GAUGE THEORY

— a
(Ai))ap=A00upT Aal o) ap. (21) It is instructive to discuss in some detail the derivation of
where Greek indices denotex2 color indices. a conventional lattice gauge theory form of the actigf).

The quantitiesV;; and U;; denote lattice link variables One first shifts they;; field: AinA{j:Ainijo—g, and then
associated with elements of t8J(2) andUs(1) groups, assumes that the fluctuations of th¢ field are frozen in
respectively. They are associatedith phases of vacuum such a way that only théA}) component is nontrivial in the
expectation values of bilinearézz;) and/or (wﬂ[—tij(l corresponding expansion in terms of the Pauli matrieds.
+03)+Aj;1¢;). Itis understood that, by integrating out in a This is a variational ansatz that can be justified in the regime
path integral over and ¢ variables, fluctuations are incor- of the parameters of the statistical modett’, , in which
porated, which go beyond a Hartree-Fock treatment. case the dominamd;; configurations(in the path integral

The quantity|A,| is the amplitude of the bilineafz;z;) may be taken to be of orddy and thus any effect of theg
assumed frozehBy an appropriate normalization of the re- color structure in the actiof20) is safely negligible. As we
spective field variables, one may $A§_| =1, without loss of  shall discuss in what follows, the elimination of thg terms
generality. In this normalization, one may then parametrizérom the action(20) results in canonical Dirac kinetic terms
the quantityK, which is the amplitude of the appropriate for the fermionic parts of the nodal liquid effectivéow-
fermionic bilinears, as'° energy action.

However, in view of Eq(23), in the model of Ref. 8, such
2 an assumption is not valid, given that the renormalized hop-
K=[J|A]*(1-5)*]" 1—5:< Z ¢a¢l>, (22)  ping parameter, due to NNN and triple neighbor hoppings,
«t is of similar order as). Nevertheless, for our generic pur-
with & the doping concentration in the sample. The quantityposes in this work we shall work in a model whelet’, .
|A,| is considered as an arbitrary parameter of our effectiveAlternatively, we can assume that the effects of dhecolor
theory, of dimensiongenergy'?, whose magnitude is to be structures can be safely neglected even for the case of the
fixed by phenomenological or other considerati¢sse be- model of Ref. 8. Such assumptions are retrospectively justi-
low). To a first approximation we assume thetis doping fied by the fact that the model of Ref. 8 cannot yield super-
independent. However, from its definition, aga-) of a  symmetric points even under the above assumption, for other
guantum model with complicated dependences in its cou- reasons to be discussed below. Thus our approach in this
plings, the quantityd, may indeed exhibit a doping depen- paper is to identify the circumstances under which deforma-
dence. For some consequences of this we refer the readertions of the model presented in Ref. 8 can yield such points
the discussion in Sec. VI, below. The dependencd andé  in the parameter space.
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Notably, the situatiod>t’, may be met in the models of weak couplings suffices to yield the conventional relativistic
Dagotto et al,®> where NNN hoppingt’ is neglected, but gauge form of the effective action upon the appropriate
where the Coulomb attractidi@) is present, in order to guar- gauge fixing]: f{dxMBffO.
antee the existence dfwave superconducting gapsMore- The weakness of th&U(2) coupling guarantees that a
over, in the context of generalizations of th¥-J models of mass gap in the problem is only generated by thg1)
Feineret al.® such a situatiofcf. Eq. (10)] is met if one  group® In the context of the Hubbard model of Ref. 3, the
assumes an appropriate attracti/e of opposite sign to the couplingg, of the gauged5U(2) interactions, pertaining to
repulsionU.;¢, but close to it in magntitudgnotice that, on  the spin degrees of freedom in the problem, is naturally
account of Eq(23), in our generalization fo theV-j model,  weak, since itis related to the Heisenberg exchange eldergy
one should replacein Eq. (10) by t.]. In such a case one Given that in three space-time dimensions the gauge cou-
has an additional large dimensionful scalg;;, like in the  plings are dimensionful, with dimensions of energy, one may
case of the conventional Hubbard model of Ref. 3. define dimensionless couplings by dividing them with the

We next remark that in conventional non-Abelian gaugeultraviolet scale of the low-energy theory, which in the
theories the fermionic fields are usually spinors in the fundamodel of Ref. 3 is thestrong Hubbard interactior)>J.
mental representation of the gauge group. Let us examin&hus a dimensionless coupling,~J/U<1 is naturally
under what condition this is feasible in our case. To this engmall in this context. A similar situation arises in the context
we assemble the fermionic degrees of freedom into two twoof the effective single-band-V-j model of Ref. 8, in the

component Dirac spinors: large Ugt>J limit [cf. Eqg. (10)]. On the other hand, the
strongUg(1) couplingg,, responsible for mass gap genera-
= (4 _(ﬂ;), q,;:(wz ‘PD' (24) tion for the holons, may be assumed to be of ordgk;,
J i

since this is the highest energy scale. However, in general for
t-j models that we consider these relations may not be valid.
Still as we shall see below, the ultraviolet cutoff of the ef-
fective theory, in the regime relevant for supersymmetric
points, we are interested here, may be up to two orders of
magnitude higher thad, thereby allowing thdJg(1) inter-
actions to be considerably stronger than 816(2) ones, if
one wishes so.

To generate the conventional Dirgematrix structure for
the fermionic action one may redefine the spinors in the path

where« in \Ifli is the color index. We also consider very
weakly coupled SU(2) gauge groups, with couplings
Jsu2=02<1. In the weak gauge-field approximation,
where the gauge group elemélik) along the,u space-time
direction is Ujj.,~ 1+gef}t “Bj, o®+0(g3) (with o?a
=1,2,3 the Pauli matricgs one observes the following

mathematical identities:

Tt to T ~
Tr(ithi ) =YiVis,,  Tr(oag, )=V, integral ¥ —¥, where ¥ are two-componentcolored
spinors, related to the spinors in EQ4) via a Kawamoto-
~ ~ . . 0
Tr(post, )=VrsV,,, Smit transformatior:
N T T W ()= 75 72V (1),
Tr(gioaihiy ) =i _q’iUSE(Tl""Tz)‘I'HM

W (N)=T (1) (y)) 2 - (v)'o, (26)

wherer is a point on the Euclidean lattice, amd=1,2 is a
_ _ color index, expressing the initial antiferromagnetic nature of
where the Pauli matrices®,a=1,2,3 refer to color space, the system. We notice that as a result of fhmatrix algebra

and should be distinguished from the, matrices, which _ :
although are color matrices, they refer to the acti@0), in ;‘:frymlon bilinears of the formIf «¥ip (1=lattice index sat

which the fermionic degrees of freedom consist of Grass-
mann variables assembled ix2 matrices. From the last of — = ~
Egs. (25), therefore, it becomes evident that the acti@f) Vi Vi p=Yi o Vig (27)
may be mapped to a conventional lattice action, with spmors
(24) in the fundamental representation of the color group,
provided that the coupling,<<1 is weak and in addition
there is agauge fixing[Note that the requirement for weak
g, coupling is essential, given the fact that due to the non-

Abelian nature of the gauge field, the local gauge fi Bﬁ We next notice that on a lattice, in the path integral over
the ferm|on|c degrees of freedom in a quantum theory, the
=0 alone is not suff|C|ent to eI|m|nate dangerous terms pro-

~.1 ~
+\I}| §(1+T3)’\Pi+ﬂ ’ (25)

on a Euclidean lattice. As we shall see later on, this last
identity will be crucial in yielding a relativistic form of the
effective action for the interacting nodal liquid of excitations
in generalized Hubbard models.

Hausdorff |dent|ty this, the spinorsP'! in Eq. (24) may be replaced b)['a,
_ being path-integral variables on a Euclidean lattice appropri—
eingazl,avaBi:(Ha:l3eig2f{«raBi)ell2tg2>2[al,03]BfLBi+-~, ate for the Hamiltonian syster8). This should be kept in

mind when discussing the microscopic structure of the
with the commutator being proportional t@,; however, theory in terms of the holon creation and annihilation opera-
such terms are of higher order g3, and hence restriction to tors z//a,z,//a ya=172.
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The fermionic part of the long-wavelegth Lattice La- 2 -
grangian, then, reads 21 [z°z,+ BV %03V, ]=1, (31
1 _ — 12 [ H H
S EK,Z (V= y)Up Vs, where 8 . 1/K' , K’ is given by Eq.(30),. tbe 2X 2 matrix
i o3 acts in spinor space, and the fermioWsare thetwo-
— componentspinors (24). Equivalently the fermion bilinear
+ Wi, (v)U] V] W]+ Bosonic CP parts, terms in Eq{(31) can be expressed in terms of the spindrs

(28) (26), which have conventional Dirac kinetic terms. It is un-
derstood that appropriate rescalings can be made in the defi-

where the Bosonic CP! parts denote magnon-field hition of the spinors so as to ensure the canonical kinetic
zdependent terms, and are given in E2f). The coefficient  (Dirad) term. We have also taken into account that in a Eu-
K’ is a constant which stems from the- and A;;- depen- clidean path integral the variableis" and¥ are viewed as
dent coefficients in front of the fermion terms in E80). An  independent, which implies that one may redefihé— ¥
orlder of magnitude estimate of the modulus(ibfe shifted \\herew in later analysis will nevertheless be considered in
Ajj then, Whlc_:h deterr_mnes the_ strength 01_‘ the coefflc_Ieht the conventional way, i.e., a&'y,. Consequently, we can
may be provided by its equations of motion. Assuming thafnterpret the fermion term in the constraiitl) asW W the
the modulus ofthe dimensionlegsermionic bilinears is of  tarmion number term.
order unity, then, we have as an order of magnitude The presence of th&# "W (nonrelativistio fermion num-
ber term in the constrairB1) appears at first sight to com-
plicate things, since the conventiondlP! constraint|z|?
=1 is no longer valid. In fact, supersymmetry is compatible
with the following form of the constraints:

J

Note that in the regime of the parameters of Ref<8 , and

t, = 2 J for momenta close to a node in the Fermi surface, of |z]*=1, z,¥,=0, (32

interest to us here. Thus arising from the superfield version of ti&P* constraint:®23

The fermionic counterpart of Eq:32) can be solved by
K'=25J/8. (300 means of a colorless fermion field that satisfieJon ac-

count of the bosoni€ P! parts of Eq.(32)]:
However, one may even consider more general models, in

which K’ and the Coulomb intersite interactidfare treated v, = eaﬁ?ﬁXv X=€,52,V g, (33
as independent phenomenological parameters.

At this stage we would like to make a remark concerningwhere¥ , are the Dirac spinors defined above. To ensure the
the relativistic form of the actior28). Although in Eq.(28)  conventionalC P* form of the bosonic part of the supersym-
we did not give explicitly theCP?* parts, however, we have metric constraintg32) from (31) we should demang@B<
tacitly assumed thequality of the effective velocitiésr spin <1, which is satisfied in a regime of the parameters of the
vs and chargev (Fermi velocity of holes degrees of free- theory for which
dom. If such an assumption is not made, then the relativistic
invariant form of the effective Lagrangian is spoifetiow- K's>K=\J|A,|(1-8), 0<s<L. (34)
ever, at the supersymmetric points of the nodal liquid, where .
as we shall discuss later on, the dynamically generated maﬁ_s?r the g!qdel_of I?ef. Sr; for instance, on account of &),
gaps between spinons and holons must be equal, the equal yIS condition implies that
vs=uvg IS essential, otherwise there would be different dis- B
persion relations, leading to a difference in mass gaps. These ‘/3/|AZ|>0'32 (1=9), 0<d<l. (35)
comments should be understood in what follows. From nowBy appropriately rescaling the fermion fields to ¥', so
on we shall work in units of the Fermi velocity: . that in the continuum they have a canonical Dirac term, we

Moreover, it should be stressed once again that the relanay effectively constrain thefields to satisfy theC P* con-
tivistic form of the action(28) is derived for a weakly straint:

coupledSU(2) gauge group, and under a specific gauge fix-

ing. However, in view of the gauge invariance characterizing 1

Egs. (20) and (28), the physical results based on the above |z, + — (V' —bilinear termg=1,
effective actions, in particular the existence of supersymmet- K

ric points _in the parameter space, which is of interest to USvhere now the fieldst are dimensionful, with dimensions
here, are independent of the gauge chosen. o of [energyl. A natural order of magnitude of these dimen-
'?S discussed n Ref. 13, supgrsymmetnzatmn .Ofsionful fermion bilinear terms is of the order &2, which
CP -type TOdeIS’ I!ke the ones conzsldereci here, reqUIreR1ays the role of the characteristic scale in the theory, being
that theCP" constraint be of the formt;,_|z,|"=1.In our eaeq directly to the Heisenberg exchange endrdp the
case, however, the no-double occupancy constraint, Whefh,it k'K [Eq. (34)] therefore the fermionic terms in the
expressed in terms of theand V¥ ,, a=1,2, (spino) fields,  constraint can be ignored, and the constraint assumes the
with « a color index, is written as standardC P! form involving only thez fields (this being
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also the case for the model of Refs. 9 and 10, in a specifiions of Ay(x,t). Quantum fluctuations of the electromag-

regime of the microscopic parameters netic field will not be of further interest to us here, given that
As we shall see Iater, however, the Cond|t(@5) alone, we shall treat it 0n|y as external background_

although necessary, is not sufficient to guarantee the exis- From the above discussion it becomes clear, then, that in

tence of supersymmetric points. Supersymmetry imposes agither case one maps the double occupancy consif@lit
ditional restrictions, which in fact rule out the existence ofjntg the standardC Pt constraint:

supersymmetric points for the model of Ref. 8 compatible
with superconductivity. We note in passing that in realistic
materials superconductivity occurs for doping concentrations 2 5
above 3%, and is destroyed for doping concentrations larger 21 |2a/°=1. (38)
than ,.—~10%. However, this does not prevent one from “
considering more general models in whigh is viewed as a
phenomenological parameter, not constrained by(&9). In  However, as we have explained above, the restriction given
that case, supersymmetric points may occur for a certain réd Eq.(35) cannot be avoided if supersymmetric points are to
gime of the respective parameters. exist. Any alternative treatment would require coupling the

However, as a result of the spin-charge separation formasystem to (supersymmetry-breakingexternal electromag-
ism, there is a different way to treat the constraints in a patfetic fields, since otherwise the fermionic parts of Ef)
integral, which however takes into account the coupling ofvould be present. As we shall see in Sec. VI, though, the
the system to an external elelctromagnetic field, and as sucHternative treatment of the constraint leads to interesting
is nota priori relevant to the supersymmetric regime. Nev-Phases of the theory characterized by superconducting
ertheless, as we shall discuss in Sec. VI, this will be relevarglectric-charge transport. Any supersymmetry that might
for electric charge transport in the model for which super-have existed before coupling to electromagnetism would
symmetry(in the absence of external fieldsill be argued to  then play an importantbut subtle role in ensuring the exis-
play a rather crucial but subtle role. tence of superconductivity.

Indeed, the fermion number terms in E@1) may be In addition to theCP* constraint, one also encounters the
absorbed in a rescaling of tiguantum fluctuations of the remaining constraintél8). These may be treated in a similar

temporal component of the electromagnetic fiél@()?,t), way, using appropriat_e Lagrange multiplier fields
which couples(relativistically) only to the spinors¥ (see Na(X),A3(X). It can be easily seen that such a treatment leads

Sec. VI B below. Explicitly, by implementing the constraint [© Structures in the effective low-energy action which in-

(31) in a path integral via the introduction of a Lagrange volve “electric current” operators);=¥ ¥, i=1,2 (see
multiplier field A (x) Sec. VIB), and as such can be absorbed in the quantum

o fluctuations of the spatial components of the electromagnetic
8(|2,2+ BY yo3¥ ,— 1) field A(X,t).

It should be stressed again that the situation in which the
Lagrange multiplier fields acquire nonzero vacuum expecta-
tion values (VEV's), (A (X)), (\ij(x))#0, i=2,3, corre-

. sponds to the selection of a specific ground state of the sys-
and on absorbing\(x) in a shift of Ao(x,t), one obtains tem (phas¢, about which one considers quantum
from the Maxwell terms in the electromagnetic part of theflyctuations. There is always the phase in which such VEV's
effective action the following combination: are zero, in which case one implements the constraints di-
rectly on the path-integral correlators, e.g., correlation func-
tions proportional toy, 4, are set to zero in this phase. In
what follows, we shall first resolve the constraints in this
latter phase, and later @Sec. V) we shall discuss the other

+ standard Maxwell terms, (37)  Phases of the model. As we shall discuss later, this phase is

characterized by spin transport but not electric-charge trans-

where Fg; is the appropriate components of the Maxwell port, a situation that should be compared with the case of the
tensor of the(redefined electromagnetic field, the indéxXs  nodal liquids of Ref. 5, where the electrically neutral fermion
a spatial index, and repeated indices denote summation, Thepresentation for spinons is used. On the contrary, as we
equations of motion fo in the effective action obtained shall show in Sec. VI, the phase in which the Lagrange mul-
after integrating out, say, tredegrees of fredom yield the tiplier VEV's are nontrivial may yield unconventional super-
standardCP! model termg! but also terms of the form conductivity of Kosterlitz-Thouless type’
V2\+2V'F,; . One therefore may consider a phase in which  We will consider from now on the standa@P® con-
(\(x))=constt 0, provided that the electromagnetic field is straint involving onlyz fields. By an appropriate normaliza-
chosen as an external one, satisfying Maxwell’s equationgjon of z to z’=z/\/1— § the constraint then acquires the
which is our case. familiar normalizedC P! form |z,|?=1 form. This implies a

The bosonic part of the constraint, then, implies a massescaling of the normalization coefficiekitin Eq. (20):
for the spinonsm,(\(x)).?* The fermionic part, on the
other hand, has the form of a temporal component of the
electric current(see Sec. VIB beloyw The coefficient
B(\(x)) may be absorbed in a shift of the quantum fluctua-

:f D)\(X)ei)\(X)(Za;a+ﬂq_,ao-3qfa_1), (36)

1
Lemd — ———[20;\Fgi+(ai\)?
em 4(62/C2)[ i Oi ( i )]

KH%EK(l—é):\mAZKl—&)Z. (39)
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. . . . . 3 . . . 1 .
In the naive continuum limit, then, the effective Lagrangian@cts in (space-timg spinor space, and th€ P~ constraint
of spin and charge degrees of freedom describing the low(38) has been taken into account.

energy dynamics of the Hubbafdr t-j) model(20) of Ref. Consider now the attractive interaction teky (41), in-
3 is then troduced in Ref. 8. We then observe than the terms linear in

(2—6) in the expression foH,, can be absorbed by an ap-
propriate shift in the chemical potential, about which we lin-
earize to obtain the low-energy theory. We can therefore
(40 ignore such terms from now on.
wherez denotes the 2 CP* matrix appearing in Eq(1), Next, we make use of the fact, mentioned earlier, that in a

and the(compley fields z,, a=1,2 satisfy the co.nstr%int lattice path integral the spinots! may be replaced bﬁf_a.
(38). The trace Tr is over group indice®,=d,—ig1a,  From the structure of the spinot84), then, we observe that
—ig,7"B,, . —(e/c)A,, B} is the gauge potential of the lo- we may rewrite theH,, term effectivelyas a Thirring vector-

cal (“spin”) SU(2) group, anda, is the potential of the | actor interaction among the spinots
Ug(1) group. It should be remarked that we are working in

1 _ _ _
L= ;Tr|(aﬂ+|gZTan‘L+|glaﬂ)z|2+\IfD v,

wYu

units of the Fermi velocityw ¢(=vp) of holes, which plays Viotal = o~ = o~
the role of the limiting velocity for the nodal liquid. Hy=+ <.2,> (Vv Vo) i(Wey* W), (49
V. NN INTERACTION TERMS H, where ©=0,1,2, with =0 a temporal index. To arrive at

Eq. (45) we have expressed; as —iy,, and used the Clif-
ford algerba and the off-diagonal nature of the,=io; »
matrices, as well as the constraiEd). In particular the
latter imply that any scalar product between Grassmann vari-
Hy= _\/totaﬂ(iz> nin; (41D ablesy, (or ) with different color indicessanish

: Taking the continuum limit of Eq(45), and ignoring
higher derivative terms involving four-fermion interactions,
which by power counting are irrelevant operators in the in-
frared, we obtain after passing to a Lagrangian formalism

We will now discuss the Coulomb-interactigattractive
terms

introduced in Ref. 8, wher¥,, is given in Eqg.(8). Using
the ansatZ16) at a sitei, the electron number operatary
may be expressed through the determinaldt of the y
matrix in Eg. (16), and consequently in terms of the spin
operatorz,, «=1,2, and charge operatgr,, a«=1,2, as

2
— T
ni= 2 Ca,ica,i
a=1

Vtotal =

- T )2
‘CV_ 4K,2(\Pa’ylu\pa) ) (46)

where we have used rescaled spinors, with the canonical
Dirac kinetic term with unit coefficient, for which the ca-

:detXaBi : 1 i i isfi
' nonical form of theC P+ constraint(38) is satisfied. For no-
=detz,g;+deti,g; tational convenience we use the same notatiorfor these
2 spinors as the unscaled ones. Although this is called the na-
_ t 2 ive continuum limit, it actually captures correctly the leading
= +12,4|%)- 42 . L
Zl (Vatat1Zal") 42 infrared behavior of the model.

We may express the quantum fluctuations for the Grassmann W€ then use a Fierz rearrangement formula for ghe
fields ¢, (which now carry a color indexx=1,2, unlike in matrices:
abelian spin-charge separation mogeis

Wt =(g, ot N+, 0 nosumoveri, (4 . . o
Vaithai=(Vaitlai) T Yaitfei: N0 SUMoveri, (43) where Latin letters indicate spinor indices, and Greek letters

where : - -: denotes normal ordering of quantum operatorsgpace-time indices. The Thirringour-fermion interactions
and repeated indices are summed over, from now on unle§gs) then become

explicitly stated otherwise. Since

YabYu.cd= 20ad%c— Sanded>

($aithai)=1—5, nosum over, (U y, ¥ 2= =3V, T )2~ (0, T ,0,7,).

S the doping concentration in the samglE2), we may re- a<h 47)

write n; as
Notice that this form permits us to use, on account of the

— 2 _ . T ,
Ni=[|z,|*+ (1= 8)+: ¢4 :]i identity (27), either of the formg26) or (24) for the spinors

which in terms of the spinor¥d is given by[cf. Eq. (24)]: W or ¥ in the expression dfly . It should be noted, though,

that the canonical Dirac form of the kinetic terms for the

n=2—6+ 1(ﬁf’rggﬁfa)i (44) spinors is valid only in the forni26), which we stick to from
2 now on.
where As mentioned above, in the model of Ref. 3, due to the
1 0 first of the constraintg18), the mixed color terms vanish,
03:( ) thereby leaving us with pure Gross-Newatractiveinterac-
0 -1 tion terms of the form
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o sults. Technical details of the formalism are given in Refs.
(¥, ¥,)2 (48) 13 and 23 where we refer the interested reader. Since it has
been argued that/g(1) is responsible for dynamical mass

which describe the low-energy dynamics of the interactiof@eneratiorand superconductivitin the model of Ref. 3 we
(41) in the context of the non-Abelian spin-charge separatiorshall ignore the non-AbeliaiBU(2) interactions, keeping
(16). It should be stressed that EGi8) is specific to our ©nly the Abelian. However, since the latter argument is not
spin-charge separation model. rigorous, it would be desirable to supersymmetrize the full
Moreover, in the context of the spinoi&4), a condensate 9roup in order to check the phenomenon of dynamical mass
generation. The extension to supersymmetrizing the full
gauge multipletSU(2) <X Ug(1) will be the topic of a forth-
coming work. However we shall still maintain the color
structure in the spinors, which is important for the ansatz

Vtotal

3
L=+ 5

of the form(\l_fa\lfa> on the latticevanishesbecause of the
constraints(18). Such condensates would violate pariig-
flection) operation on the planar spatial lattice, which on the

spinorsV is defined to act as follows: (16). Ignoring theSU(2) interactions implies, of course, that
- - - ~ the color structure becomes a “flavor” index; however, this
Vi(X) =01 Va(x), Va(x)— o ¥i(X), is essential for keeping track of the correct degrees of free-

dom required by supersymmetry in the problem at hignd.
As discussed in detail in Refs. 13 and 23, the conditions
for N=1 supersymmetric extensions ofGP! o model is
Pr(X) = PNX), (X)) — = (%) that the constraint is of the standa®dP* form (38), supple-
mented byattractive four-fermion interactions of the Gross-
To capture correctly this fact in the context of our effec- Neveu type(48), whose coupling is related to the coupling
tive continuum Gross-Neveu interactiqd8) the coupling constant of the kinetiz-magnon terms of the- model in a
strengthmustbe subcritical, i.e., weaker than the critical cou- way such as to guarantee the balance between bosonic and
pling for mass generation. The critical coupling of the Gross{fermionic degrees of freedom. Specifically, in terms of com-
Neveu interaction is expressed in terms of a high-energyonent fields, the pertinent Lagrangian reads
cut off scaleA as??

d3q  2g2A
— 402 1 _ g —raTa o
1—4QCLA 8?2 (49 +2i(g Pz~ W yz%)], (52)

or equivalently, in terms of thémicroscopi¢ holon operx-
tors ¢, a=1,2:

L=g%[D,z*D*z*+i WDV +FF*

whereq is a momentum variable ar), is a sphere of radius whereD,, here denotes the gauge covariant derivative with
A. The divergenty integral is cut off at a momentum scale  respect to theJg(1) field. The analysis of Refs. 13 and 23
which defines the low-energy theory of interest. For the casséhows that, upon using the equations of motion,

of interestg?=3V,q,/4K'?; on using Eq.(30), then, the )
condition of subcriticality requires that Fop — 2 1

P e (52)

A<T77 J. (50)

L . : . We thus observe that tié=1 supersymmetric extension of
which is in agreement with the fact that in all effective mod- 1 . .
the CP o model necessitategshe presence ofttractive

ﬁllzisfg;bi?pee?(cigt:egzwggneﬁ)o%ses slerz]rvt:se ;gistﬂre etthGross-Neveu type interactions among the Dirac fermions of
9 9 9y PPET oach sublatticein addition to the gauge interactions.

bound for the energies of the excitations of the effective™| v "0 text of the effective theor0) and (46), dis-
(continuum theory. However, as mentioned above, to obtain - - . _ . .
cussed in this article, thid=1 supersymmetric effective La-

a relativistic gauge theory from the lattice actie0) one grangian(51) is obtained under the following restrictions

needs théS_U(Z) in.teractions o l_ae considerably weakgr thanamong the coupling constants of the statistical model:
the Ug(1) interactions, responsible for mass generation: the
above condition(50) is also compatible with this, provided 3V 1
one identifies thédimensionfu) coupling of theUg(1) in- 0’= otal _ = ,
teractions with ghigh-energy cutoff scaleA~77 J. In the K2 VI|A,|(1-6)2
context of the effective single-bartdV-j models(10), for

instance, A may be identified with &J .¢;>J.

0<o<l. (53

Note that in the context of the model of Ref. 8, for which
Eqgs.(9) and(30) are valid, the relatiori53) gives the super-
symmetric point in the parameter space of the model at the

VI. DYNAMICAL SPINON-HOLON SYMMETRY particu|ar d0p|ng concentratiofi= 55:
(SUPERSYMMETRY) IN THE NODAL LIQUID AND
POTENTIAL PHENOMENOLOGICAL IMPLICATIONS J
N _ (1-69)°=3.80\/—, 0<é8.<1. (54)
A. Conditions for N=1 supersymmetry in the nodal |4,
liquid

As discussed in Sec. IV, unbroken supersymmeiryich is
We turn now to conditions for supersymmetrization of thevalid only in the absence of external electromagnetic fields
above continuum theory, i.e., conditions for dynamical sym-imposes an additional restrictig85). Then we observe that
metries between the spinghoson and holon(fermion) de-  compatibility of Eq.(54) with Egs. (34) and (35) requires:
grees of freedom. Below we shall only outline the main re-1— §.>1.25, which implies that the model of Ref. 8 does not
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have supersymmetric points. However, one may considegation velocitiesr=v g, which yielded the relativistic form
more general models in whicV and K’'~t’.+J/8 are of the effective continuum actio40) of the nodal excita-
treated as independent phenomenological param¢ufrs tions at the supersymmetric points. The opening of a nodal
(11)]; in such a case one can obtain regions of parameter®ass gap, due to tHeg(1) gauge interactions, would imply
that characterize the supersymmetric poifi8) and (54) @ breaking of the fermion numbéglobal U(1)] symmetry,
compatible with superconductivity. and thus superconductivity upon coupling the system to ex-

It is quite important to remark that in the model of Ref. 3 ternal electromagnetic fields, according to the scenario of

where the antiferromagnetic structure of the theory is enRefs. 9 and 3, which is reviewed briefly below for the benefit

coded in a color(non-Abelian degree of freedom of the ©Of the nonexpert reader.

spin-charge separated composite electron opetajowith-

out the need for sublattice structure, there is a matching be- B- Kosterlitz-Thouless realization of superconductivity

tween the bosonicz(spinon field$ and fermionic @ holon in the SU(2)®Us(1) model

fields) physical degrees of freedom, as required by super- This section is mainly a review of results that appear in

symmetry, without the need for duplicating them by intro- the literature regarding the mod&l:>* It mainly serves as a

ducing “unphysical” degrees of freedof. comprehensive account of the various delicate issues in-
The gauge multiplet of th€P* o model also needs a volved, which play a very crucial role in the underlying

supersymmetric partner which is a Majorana fermion calleddhysics. It is primarily addressed to the nonexperts in the

the gaugino. As shown in Ref. 13, such terms lead to effecarea. Only the basic results will be presented; the interested

tive electric-charge violating interactions on the spatial'eader may then find the relevant details in the published

planes, given that the Majorana gaugino is a real field, and dgerature.

such cannot carry electric chargehich couples as a phase AN important issue in the effective gauge the@y(2)
to a Dirac field. These terms can be interpreted as the re®Us(1) model is the existence ofglobal conserved sym-

moval or addition of electrons due to interlayer hopping,m_etry’ namely the ferm_ion number, which is d_ue to the el_ec-
which, in fact, can be shown to be suppressed by terms dfic charge of the fermion¥. The corresponding current is
g

order 1A/J. ven by
Another important point we wish to make concerns the 2
four-fermion attractive Gross-Neveu interactions in E§8) J.= 2 vey,¥,, w=012 (55)
a=1

and(52). As discussed in detail in Ref. 24, if the coupling of

such terms is supercritical, then a parity-violating fermion-l-hiS current generates a glohak(1) symmetry, which after
(holor) mass would be generated in the model. However, th%oupling with external electromagnetic fieldsgauged In

condition (50), which is valid in the statistical model of in- this sense the holon currefi5) coincides with the charge
terest to us here, implies that the respective coupling is alfransport properties of the system

ways subcritical, and thus there is no parity-violating dy-  gome giscussion is in order at this point. The association

namical mass gap for the holons, induced by the contacl the currentd (55) with an electric current for holons

Gross-Neveu interactions. This leaves one with the pOSSIbIléomeS about due to the similarity of the form of the spinors

ity of parity conservingdynamical mass generation, due 0 ;4 \yith the conventional Nambu spinors appearing in the

the statlst_lcal gauge interactions in the mo%l_@i, CS Hamiltonian for superconductivity. Indeed, for the ben-
A detailed analysis of such phenomena in the context okt of the reader we remind that in such a case the electron

our CP* model is left for future work. For the present, NOW- oneai0rec are assemblied, in a particle-hole formalism,

ever, we note that ilN=1 supersymmetric gauge models, into two component spinorsc(,c]), and the resulting

- i 1 1 6
supersymmetry-preserving dynamical mass is possite: Hamiltonian couples in a gauge invariant way to an external

In fact, as discussed in Ref. 26, although by supersymmetry i . ) )
the potential is zero, and thus there would naively seem thdt €ctromagnetic potentidl by making the standard substitu-

there is no obvious way of selecting the nonzero masdion of the momentum operatqs— p—(e/c)A. The only
ground state over the zero mass one, however, there appeﬁﬁerence in our nodal liquid case is that the holon spinors
to be instabilities in thguantum effective actian the mass- (24) come in two colors and, as contrasted to the generic
less phase, which manifest themselves through instabilitieBCS case, the problem is relativistic due to the restriction in
of the pertinent running coupling. The opening of such athe nodal excitations. Thus, at the level of the continuum
fermion mass gap has been associated with the existence of#ective action of the nodal excitations, the coupling to elec-
nontrivial infrared fixed point of the renormalization-group tromagnetic potentials is straightforward by extending the
flow, which implies non-Fermi-liquid behavidf. (statistica] gauge covariant derivatives in the Dirac kinetic
From a physical point of view, such a phenomenon wouldterms(40) to incorporate the electromagnetic potential cou-
imply that, for sufficiently strong gauge couplings, the zero-pling terms
temperature liquid of excitations at the nodes ofi-wave )
superconducting gap would be characterized by the dynami- 3 € -
cal opening of mass gaps for the holons. At zero tempera- f d XE Zl VALY o (56)
ture, and for the specific doping concentrations correspond-
ing to the supersymmetric points, as advocated above, th&herec is the light velocity anc is the absolute value of the
nodal gaps between spinon and holons would be equal, ialectron chargéfor holon excitations the charge ise, for
agreement with the assumed equality of the respective propalectron—e; in our problem here we concentrate in the ho-
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lon currenj. The resulting nodal holon electric current is
given by differentiation with respect ta4,, i.e., by the ex-
pression(55).
Before discussing superconducting properties of the sys-
tem we should remark that, as a result of the constrair@s
and the nondiagonal nature of the,i=1,2 matrices, the
spatial components of the curreit§s) vanish but the tem- FIG. 1. Anomalous one-loop Feynman matrix element, leading
poral componen(charge densityis nontrivial. Moreover, 4 5 Kosterlitz-Thouless-like breaking of the electromagnieti¢1)
given that the constraintd8) do not concern the spinoZs  symmetry, and thus superconductivity, once a fermion mass gap
this means that there is a phase of the nodal liquid in whiclypens up. The wavy line represents ®&(2) gauge bosoiB? ,
there isno charge transportbut only spin transport The  which remains massless, while the blob denotes an insertion of the
nontrivial “spin current” may be thought of as given by fermion-number curren,, =Wy, ¥. Continuous lines represent
J3P'"~2z4,z. This situation should be compared with the cor-fermions.
responding phase in nodal liquids in the approach of Ref. 5,
where the spinons are represented as electrically neutral fer- ) .
it P P y §2=(B33,|0), a=123; J,=¥y,¥. (57
However, in our model there are other possibilities, lead-As a result of the color group structure only the massﬁ%s
ing to more complicated phases, as we shall discuss novgauge boson of th&U(2) group, corresponding to the,

These possibilities are realized by implementing the congenerator in two-component notation, contributes to the
straints(18) via appropriate Lagrange multipliers in the path graph. The result %

integral over the fermionic variableg', s, as we discussed

in Sec. IV[cf. Eq. (36)]. Expressing the producig; ¢, (and p

their conjugatesas spatial components of the currdgs), S§=(B3|J,/0)=(sgnM)e,,,,,—=, (58)
then, one may assume a specific ground state in which the \/p—o

appropriate Lagrange multipliers for the constraifify,  whereM is the parity-conserving fermion ma&s the holon
~0 (and Hermitean conjugat@cquire nonzero vacuum eX- condensate in the context of the doped antiferromagiret
pectation values that may be absorbed by appropriate shiftsyr case this mass is generatbthamicallyby means of the

of the corresponding spatial components of the electromagy (1) interactions, as we discussed above, provided its cou-
netic potentialA(x,t) coupled to the curreni. As we have pling constant is sufficiently strong. The res(B8) is exact
already discussed in Sec. IV, a nontrivial vacuum expectamn perturbation theory, in the sense that the only modifica-
tion value for the Lagrange multiplier(x) of the last of the tions coming from higher loops would be a multpilicative
constraint(18) will yield mass terms for thez magnons, factor 1/1—1II(p)] on the right-hand side, withl(p) the
while the fermionic part of the constraint may be absorbedsi-gauge-boson vacuum polarization functfén.

by an appropriate shift of the temporal component of the ~ As discussed in Refs. 9 and 28, tB& color component
electromagnetic potential. This procedure breaks supersymyjays the role of thesoldstone bosomwf the spontaneously
metry explicitly but, as we shall argue now, the existence ohroken fermion-number symmetry. If this symmetry is exact,
supersymmetry before coupling to external electromagnetisithen the gauge bosoB® remainsmasslessThis is crucial

is crucial in implying superconducting properties after cou-for the superconducting propertigiven that this leads to
pling to external fields. _ _the appearance ofraassless pol the electric-current two-

In this framework, the constrain{a8) no longer apply in  point correlators, the relevant graph being depicted in Fig. 2.
the path integral, and nonvanishing spatial compontents Ofhjs is the standard Landau criterion for superconductivity.
the electric currend appear. It should be remarked that in It can be showh that in the massive-fermiofibroken
such a case the mixed color terms in E4j7) do not vanish, SU(2)] phase, the effective low-energy theory obtained after
and hence the resulting effective Lagrangian breaks supertegrating out the massive fermionic degrees of freedom
symmetry explicitly. This was to be expected, anyhow, fromassumes the standard London action for superconductivity,
the very presence of externalonsupersymmetricelectro-  the massless excitatiaf being defined to be theual of B :
magnetic fields. However, given that the coupling of such
contact four fermion interactions &ubcritical[cf. Eqs.(48) 9= 5wpay|32_ (59)
and (50)], such interactions are irrelevant operators in a ) o )
renormalization-group sense, and hence the universality clagyl the standard properties of superconductivity, Meissner
of the theory(in the infrared can still be determined using effect[strongly type II(Ref. 9], flux quantization and infi-
the supersymmetric version of the theory in the absence of
any external fieldgwhich also satisfies the additional restric-
tion (35)]. As we shall argue below, this more general phase
is important in that it yields unconventional superconductiv-
ity for the nodal liquid.

To this end, we remark that in the absence of external FiG. 2. The lowest-order contribution to the electric current-
electromagnetic potentials, the symmetdy(1) is broken  current correlator(0|J,(p)J,(—p)[0). The blob in the prop-
spontaneouslin the massive phase for the fermiolis This  agator for the gauge bosd®}, indicates fermion loogresummel
can be readily seen by considering the following matrix ele<corrections. The blob in each fermion loop indicates an insertion of
ment(see Fig. L the current,, .

T
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nite conductivity, follow then in a standard way after cou- mass gap for the nodal holons, which, however, is not char-
pling to external elelctromagnetic potentials, provided theacterized by superconducting properties.
excitation¢ (and henceBZ) is exactly massless. The presence ofmasslessfermions, with zero modes
However, it is knowf'°3 that superconductivity is of a around the instanton configuration, is kndmo suppress
Kosterlitz-Thoules$KT)-type superconductivity, not charac- the instanton effects on the mass of the photon, and under
terized by a local order parameter. Let us briefly review thecertain circumstances, to be specified below, the Abelian
arguments leading to thisThe neutral parity-invariant con- gauge boson may remain exactly masskegsn in the pres-
densatd\l_flllfl—\?z\lfz), generated by the strondi(1) in- ence Qf nonperturbative effectius Ieadlpg to supercogujuc—
teraction, isinvariant under theU (1)® Ug(1), as aresult of t'r\]”ty’ in the contlext IOf our quel.' TT}'S rrr:ay hapﬁ fif
the 75 coupling of BS in the action, and hence does not there are extra global symmetries in the theory, whose cur-
constitute an order [SLarameter for the spontaneous breakir{ﬁntstﬁonnbe ct tl?e vactuum to lt heT(;]rje-_gauge_-bolsotr;] state, anfd
of any of these symmetrieghe groupU(1) denotes the us they break spontaneously. 'Nis IS precisey e case o

: ) . the fermion number symmetry considered ab®&.In such
SU(2) subgroup associated with tBE gauge bosch This case, the massless gauge boson is the Goldstone boson of

is a characteristic feature of our gauge interactions. Putativghe (nonperturbatively spontaneously broken symmetry.
charge 2 or — 2e order parameters, like the pairing interac- However, in ourSU(2)®U«(1) model’?*as a result of the

tions among opposite spins in the statistical model of Refs. 95009 U(1) interaction, a mass for the fermions is gener-
and 3, e.g.{V1¥,),(¥,¥,) [in four-component notation, ated, and hence there is no issue of fermion zero modes in

such fermionic bilinears correspond (& ysW),(¥ ysW), this case. The analysis of th_e low-energy effgctivg theory
considered in Ref. Pwill vanish at any finite temperature, in Presented in Refs. 3 and 24 is based on a Wilsonian treat-
the sense that strong phase fluctuations will destroy th&ent, where massive degrees of freedom are integrated out
vacuum expectation values of the respective operators, dde the path integral. This includes the gapful fermions and
to the Mermin-Wagner theorem. Even at zero temperaturedhe massiveSU(2) gauge bosons. The resulting effective
however, such VEV's yield zero result to any order in per-theory, then, which encodes the dynamics of the gapped
turbation theory trivially, due to the fact that in the context of phase, is a pure gauge thedsy1) e SU(2), and thenstan-

the effectiveBi gauge theory of the broke8U(2) phase, ton contributions to the mass sz are present, given by Eq.
the gauge interactions preserve flavor. For a more detailef0), in the one-instanton case. Thus, it seems that, generi-
discussion on the symmetry breaking patterns ofcally, in the context of theSU(2)®Ug(1) of Ref. 3, the
(2+1)-dimensional gauge theories, and the proper definitioodal gap is actually a pseudogap.

of order parameter fields, we refer the reader to the

literature®®® Thus, from the above analysis, it becomes clear D. Instantons and supersymmetry

that gap formation, pairing and superconductivity can occur

. . . X We now remark that supersymmetry is kndwio sup-
in the above model without implying any phase coherence. W Hpersy y! up

press instanton contributions. For instance, in cerbinl
supersymmetric models with massless fermions, considered

C. Instantons and the fate of superconductivity in Ref. 29 the instanton-induced mass of the Abelian gauge
in the SU(2)®Ug(1) model boson is given by
An important feature of the non-Abelian model is that, ~5 62
due to the non-Abelian symmetry breaking patt&bl(2) Mgauge boson™ € (62)

—U(1), theAbelian subgroupJ (1) e SU(2), generated by  \yhich is suppressed compared to the nonsupersymmetric
the o Pauli generator o8U(2), is compact and may con- case(60).

tain instantons?® which in three space-time dimensions are  N=2 supersymmetric theories in three space-time dimen-
like monopoles, and are known to be responsible for giving &jons constitute additional examples of theories where the

3 . . .
small but nonzero masto the gauge bosoB, Abelian gauge boson remains exactly massless, in the pres-
s, ence of instanton®3°Such theories have complex represen-
Mg3~¢€ , (60) tation for fermions, and hence are characterized by extra glo-

bal symmetries(like fermion number. In view of our
discussion above, such models will then lead to Kosterlitz-
Thouless superconductivity upon gauging the fermion num-
ber symmetry.

In this respect, the supersymmetric poi&s3) and (35)
const (61) for which such instanton effects are argtfe be strongly
gg ' suppressed in favor of KT superconductivity, as reviewed

above, would constitute “superconducting stripes” in the

For weak couplingy, the induced gauge-boson mass can beemperature-doping phase diagram of the nodal ligsie
very small. However, even such a small mass is sufficient té-ig. 3) It should be stressed that the term “stripe” here is
destroy superconductivity, since in that case there is noneant to denote a certain region of the temperature-doping
massless pole in the electric current-current correlator. Iphase diagram of the nodal liquid and should not be con-
Ref. 24 a breakdown of superconductivity due to instantorfused with the stripe structures in real space which charac-
effects has been interpreted as implying a “pseudogap’terizes the cuprates at special doping concentrations. Theo-
phase: a phase in which there is dynamical generation of eetically, the stripes should have zero thickness, given that

whereS; is the one-instanton action, in a dilute gas approxi-
mation. Its dependence on the coupling constgat gsy2)
is well known?°
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nodal liquid phase diagram with ferent boundary conditions between fermionic and bos_onic

Tempe- supersymmetric “islands" (scenario degrees of freedom, and, alt_hough the vacuum energy is no

M longer zero, however a detailed analysis should be made in
order to determine whether the equality of mass gaps be-

tween the nodal spinons and holons at the supersymmetric

Normal Srate points is lifted by temperature-dependent corrections. In the

~ - context of a supersymmetric theory this issue can be tackled
Svo ey mm e - by means of “thermal superspace” methods, which have

N . . been developed recently in the context of particle-physics

feromag- Y 7 Pseudogap Puedogap models® The generic result of such analyses seems to be

ohase Y that the mass degeneracy among the superpartners is lifted at
0. i . — the Ievel_ of t_h(_a mass of the va(ious thermal modes, the cor-
SAT Supersymimettc ® responding lifting being proportional to the temperature. The

Point - KT 5C thermal superspace method can be applied to the present

FIG. 3. A possible scenario for the temperature-doping phasgwdeI as well, however, this falls beyond the scope of the

diagram of a charged, relativistic, nodal liquid in the context of present article and is thereby left for a future work.

spin-charge separation. At certain doping concentratiégg ¢here Moreover, as thg crude analysis of Ref. 6 |n_d|cates, the
are dynamical supersymmetries among the spinon and holon dQ—Odal gaps would disappear at temperatures which are much

grees of freedom, responsible for yielding thin “stripes” in the I0Wer than the critical temperature of tiieulk) d-wave su-
phase diagrartshaded regioncharacterized by Kosterlitz-Thouless P€rconducting gap. For instance, for a typical set of the pa-
(KT) superconductivity without a local order parameter. The dia-fameters of the-j model used in Ref. 6, the nodal critical
gram is conjectural at present. It pertains strictly to the nodal liquidtemperature is of order of a femK, which is much smaller
excitations about the-wave nodes of a superconducting gap, andthan the 100-K bulk critical temperature of the high-
hence should not be confused with the phase diagram of the entitemperature superconductors. The application of an external
(high-temperatunesuperconductor. magnetic field in the strongly type-Il high-temperautre super-
conducting oxides, which is another source for explicit
they occur for specific doping concentratio®s) and (35). breaking of the potential supersymmetry, _enhances the_criti—
However, in practice, there may be uncertaintise to dop- @l temperatufeup to 30 K, thereby providing a potential
ing dependencesn the precise value for the parametky explanatlon for _the recent findings of _F\’_ef. 7, accord_lng to
entering Egs(53) and (35) which might be responsible for which plateaux in th_e thermal ponductmty as a function of
giving the superconducting stripe a certémal) thickness. the external magnetic field indicate the opening of a gap at
A detailed analysis of such important issues is still pendingthe d-wave nodes. _ o _
It is hoped that due to supersymmetry one should be able to We now remark that, if such situations with broken super-

discuss some exact analytic results at least for zero temper@YMmetry are viewed as cases of perturbed supersymmetric
tures. points, then one might hope of obtaining nonperturbative in-

We also remark that in supersymmetric theories of theforlmatiqn on.the phase structure of the quuid of nodal exci-
type considered here and in Ref. 13, it is kndthat su-  tations in spin-charge separating scenariagztuge high-
persymmetry cannot be broken, due to the fact that the witlemperature supe_rconductors. Th_ls may also prove useful for
ten index (_l)F, whereF is the fermion number, is always & com_plete _phy3|cal L_Jnderstandlng of the entire phenom-
nonzero. Thus in supersymmetric theories the presence &NON. including excitations away from the nodes.
instantons should give a small mass, if at all,bath the
gauge boson and the associated gaugino. However, in three-
dimensional supersymmetric gauge theories it is possible that
supersymmetry is broken by having the system in a “false”  From the above discussion it is clear that supersymmetry
vacuum, where the gauge boson remains massless, evendan be achieved in the effective continuum field theories of
the presence of nonperturbative configurations, while thejoped antiferromagnetic systems exhibiting spin-charge
gaugino acquires a small mass, through nonperturbative egeparation only forparticular doping concentrationgcf.
fects. The lifetime, though, of this false vacuum is veryEgs. (54) and (35)]. One’s hope is that the ancestor lattice
long® and hence superconductivity can occur, in the sensenodel will lie in the same universality clag® the infrared
that the system will remain in that false vacuum for a veryas the continuum model, in the sense that it differs from it
long period of time, longer than any other time scale in theonly by the action of renormalization-group irrelevant opera-
problem. tors. This remains to be checked by explicit lattice calcula-
tions. We should note at this stage that this is a very difficult
problem; in the context of four-dimensional particle-physics
models it is still unresolved? However, in view of the ap-
parent simpler form of the three-dimensional lattice models

So far, our discussion was restricted to zero temperatureat hand, one may hope that these models are easier to handle.
At any finite temperature, no matter how small, supersym- By varying the doping concentration in the sample, one
metry is explicitly broken, and thus the supersymmetricgoes away from the supersymmetric point and breaks super-
points should be viewed aguantum critical pointsHow-  symmetry explicitly at zero temperatures. At finite tempera-
ever, the breaking of supersymmetry is associated with diftures, or under the influence of external electromagnetic

VII. CONCLUSIONS

E. Some comments on supersymmetry breaking
at finite temperatures
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fields at the nodes of thd-wave gap, supersymmetry will calculations in the spirit of the nonperturbative modern
also be broken explicitly. Therefore realistic systems ob{framework of Ref. 12. At present, such nonperturbative ef-
served in nature will be characterized by explicitly brokenfects can only be checked explicitly in three dimensions for
supersymmetries even close to zero temperatures. Howevétighly extended supersymmetric mod&lslt is, however,
there is value in deriving such supersymmetric results in thapossible that some exact results could be obtained at least for
at such points in the parameter space of the condensethe N=2 supersymmetric models which may have some rel-
matter system it is possible to obtain analytically some exactvance for the effective theory of the nodal liquid at the
results on the phase structure of the theory. Supersymmetsupersymmetric points. Then, one may get some useful in-
may allow for a study of the quantum fluctuations aboutformation for theN=1 models studied here by viewing them
some exact ground states of the spin-charge separated sy supersymmetry-breaking perturbations of the2 mod-
tems in a controlled way. Then one may consider perturbingls. Such issues remain for future investigations, but we hope
around such exact solutions to get useful information abouthat the speculations made in the present work provide suf-
the nonsupersymmetric models. ficient motivation to carry out research along these direc-

We have argued that such special points will yield newtions.
phases for the liquid of excitations about nodal points of the
d-wave superconducting gaps, which include a phase in
which there is only spin transport but not electric current
transport, as well as a phase in which there are Kosterlitz- It is a pleasure to acknowledge informative discussions
Thouless-type superconducting “islands” in a temperaturewith I. J. R. Aitchison, J. Betouras, K. Farakos, J. H. Jeffer-
doping phase diagram of the nodal liquid, upon the dynamison, and G. Koutsoumbas. A preliminary account of this
cal generation of holon-spinon mass gdp$ equal siz¢  work was presented by N.E.M. at the WorkshopGafmmon
The latter property is due to special properties of the superfrends in Particle and Condensed Matter Physics Corfu
symmetry, associated with the suppression of nonperturba999 Corfu (Greecg, 25-28 September 1999. We thank the
tive effects of the(compact gauge fields entering the spin- organizers and participants of this meeting for their interest
charge separation ansatk). This, of course, needs to be in our work. The work of N.E.M. is partially supported by
checked explicitly by carrying out the appropriate instantonP.P.A.R.C.(U.K.).
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