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Nodal liquids in extended t-J models and dynamical supersymmetry
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In the context of extendedt-J models, with intersite Coulomb interactions of the form2V(^ i , j &ninj , with
ni denoting the electron number operator at sitei, nodal liquids are discussed. We use the spin-charge sepa-
ration ansatz as applied to the nodes of ad-wave superconducting gap. Such a situation may be of relevance to
the physics of high-temperature superconductivity. We point out the possibility of existence of certain points
in the parameter space of the model characterized by dynamical supersymmetries between the spinon and
holon degrees of freedom, which are quite different from the symmetries in conventional supersymmetrict-J
models. Such symmetries pertain to the continuum effective-field theory of the nodal liquid, and one’s hope is
that the ancestor lattice model may differ from the continuum theory only by renormalization-group irrelevant
operators in the infrared. We give plausible arguments that nodal liquids at such supersymmetric points are
characterized by superconductivity of Kosterlitz-Thouless type. The fact that quantum fluctuations around such
points can be studied in a controlled way, probably makes such systems of special importance for an eventual
nonperturbative understanding of the complex phase diagram of the associated high-temperature superconduct-
ing materials.
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I. INTRODUCTION

The study of strongly correlated electron syste
~SCES’s! is a major enterprise in modern condensed-ma
physics primarily due to high-temperature~planar! supercon-
ductors, fractional Hall conductors, and, more recently,
semiconductor quantum dots. Owing to various non-Fer
liquid features of SCES’s, many believe that the low-ene
excitations of these systems are influenced by the proxim
of a critical Hamiltonian in a generalized coupling-consta
space. In this scenario, known as spin-charge separat1

these excitations are spinons, holons, and gauge fields.
Important paradigms for SCES’s are the conventio

Hubbard model, or itst-j extension, both of which have bee
conjectured to describe the physics of high-temperature
perconducting doped antiferromagnets. Numerical simu
tions of such models,2 in the presence of very low doping
have provided evidence for electron substructure~spin-
charge separation! in such systems.

In Ref. 3, an extension of the spin-charge separation
resentation, allowing for a particle-hole symmetric formu
tion away from half filling, was introduced by writing

xab[S c1 c2

2c2
† c1

†D
i
S z1 2 z̄2

z2 z̄1
D

i

, ~1!

where the fieldsza,i obey canonicalbosoniccommutation
relations, and are associated with thespindegrees of freedom
~‘‘spinons’’!, while the fieldsc are Grassmann variable
which obey Fermi statistics, and are associated with the e
tric charge degrees of freedom~‘‘holons’’ !. There is a hidden
non-Abelian gauge symmetrySU(2)^ US(1) in the repre-
sentation~1!, which becomes a dynamical symmetry of t
pertinent planar Hubbard model, studied in Ref. 3.

The representation~1! is different from that of Refs. 4 and
5, where the holons are represented as charged bosons
PRB 620163-1829/2000/62~5!/3438~15!/$15.00
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the spinons as fermions. That framework, unlike ours, is
a convenient starting point for making predictions such
the behavior of the system under the influence of strong
ternal fields. As argued in Ref. 6, a strong magnetic fi
induces the opening of a second superconducting gap a
nodes of thed-wave gap, in agreement with recent expe
mental findings on the behavior of the thermal conductiv
of high-temperature cuprates under the influence of str
external magnetic fields.7

In Ref. 3 a single-band Hubbard model was used. Suc
model should not be regarded as merely phenomenolog
for cuprate superconductors since it can be deduced f
chemically realistic multiband models involving both Cu a
O orbitals and it has extra nearest-neighbor interactions
the form8

Hint52V(̂
i j &

ninj , ni[ (
a51

2

ca,i
† ca,i , ~2!

as well as longer finite-range hoppings.
What we shall argue below is that the presence of in

actions of the form~2! is crucial for the appearence of su
persymmetric points in the parameter space of the s
charge separated model. Such points occur for partic
doping concentrations. As we shall discuss, this supers
metry is adynamical symmetryof the spin-charge separation
and occurs between the spinon and holon degrees of free
of the ansatz~1!. Its appearance may indicate the onset
unconventional superconductivity of the Kosterlitz-Thoule
~KT! type9,10 in the liquid of excitations about the nodes
the d-wave superconducting gap~‘‘nodal liquid’’ !, to which
we restrict our attention for the purposes of this work.

It should be stressed that the supersymmetry characte
the continuumrelativistic effective- ~gauge-! field theory of
the nodal liquid. The progenitor lattice model is of coursenot
supersymmetricin general. What one hopes, however, is th
at such supersymmetric points the universality class of
3438 ©2000 The American Physical Society
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continuum low-energy theory is thesameas that of the lat-
tice model, in the sense that the latter differs from the c
tinuum effective theory only by renormalization-groupirrel-
evantoperators~in the infrared!. This remains to be checke
by detailed studies, which do not constitute the topic of t
article.

In general, supersymmetry provides a much more c
trolled way for dealing with quantum fluctuations about t
ground state of a field-theoretic system than a nonsupers
metric theory.11 In this sense, by working in such supersym
metric points in the parameter space of the nodal liquid
might obtain some exact results about the phase struc
which might be useful for a nonperturbative understand
of the complex phase diagrams that characterize the phy
of the ~superconducting! doped antiferromagnets. As w
shall discuss below, to obtain supersymmetric points
needs to make specific assumptions about the regime o
parameters of the model; from an energetics point of vie
such assumptions are retrospectively justified by the fact
supersymmetric ground states are characterized byzero
energy,11 and hence are acceptable ground states from
point of view.

Significant progress towards a nonperturbative und
standing of non-Abelian gauge-field theories, in four spa
time dimensions, based on supersymmetry has been mad
Seiberg and Witten.12 The fact that the spin-charge separ
tion representation~1! of the doped antiferromagnet i
known to be characterized by such non-Abelian gauge st
ture is an encouraging sign. However, it should be noted
in the case of Ref. 12 extended supersymmetries were
essary for yielding exact results. As we shall discuss bel
under special conditions for doped antiferromagnets, the
persymmetric points are characterized byN51 three-
dimensional supersymmetries. Under certain circumstan
the supersymmetry may be elevated toN52,13 for which it
is possible to obtain some exact results concerning the p
structure.14 In the present state of the understanding
SCES’s it is a pressing need to have relevant models
which we can extract nontrivial exact information. Howev
for a realistic condensed-matter system such as a h
temperature superconductor, even theN51 supersymmetry
of the supersymmetric points is expected to be broken
finite temperatures or under the influence of external elc
magnetic fields. Nevertheless, one may hope that by view
the case of broken supersymmetry as a perturbation abou
supersymmetric point, valuable nonperturbative informat
may still be obtained. As we shall see, a possible exampl
this may be the above-mentioned KT superconduct
properties9 that characterize such points.

II. MODEL AND ITS PARAMETERS

In Ref. 8 it was argued that BCS-like scenarios for hig
Tc superconductivity based on extendedt-J models yield
reasonable predictions for the critical temperatureTc

max at
optimum doping. There it was argued that a pivotal role w
played by next-to-nearest neighbor and third neighbor h
pings t8, and t9, respectively. In particular, the combinatio
t2[t822t9 determines the shape of the Fermi surface a
the nature of the saddle points and the associatedTc

max.
Our aim is to use the extendedt-J model studied in Ref.
-

s

-

m-

e
re,
g
ics

e
he
,
at

is

r-
-
by

-

c-
at
c-
,

u-

es

se
f
or
,
h-

at
-
g

the
n
of
g

-

s
-

d

8 in order to discuss the appearance of relativistic cha
liquids at the nodes of the associatedd-wave superconduct
ing gap. We will argue that the nodes characterize the mo
in a certain range of parameters. We will demonstrate tha
a certain regime of the parameters and doping concentra
the nodal liquid effective-field theory of spin-charge sepa
tion exhibits supersymmetry. This supersymmetry is dyna
cal and should not be confused with the nondynamical sy
metry under a graded supersymmetry algebra t
characterizes the spectrum of doped antiferromagnets at
special points of the parameter space.15 We shall also discuss
unconventional mechanisms for superconductivity in
nodal liquid similar to the ones proposed in Refs. 9 and

To start with, let us describe briefly the extendedt-J
model used in Ref. 8. The Hamiltonian is given by

H5P~Hhop1HJ1HV!P1PHmP, ~3!

where
~i!

Hhop52(̂
i j &

t i j cia
1 cj a2(

[ i j ]
t i j8 cia

1 cj a2(
$ i j %

t i j9 cia
1 cj a ,

~4!

and ^•••& denotes nearest-neighbor~NN! sites,@•••# next-
to-nearest neighbor~NNN!, and$•••% third nearest neighbor
Here repeated spin~or ‘‘color’’ ! indices are summed over
The Latin indicesi , j denote lattice sites and the Greek ind
cesa51,2 are spin components.

~ii !

HJ5J(̂
i j &

S Ti ,abTj ,ba2
1

4
ninj D1J8(

[ i j ]
Ti ,abTj ,ba , ~5!

with ni5(a51
2 cia

1 cia , and Ti ,ab5cia
1 cib . The quantities

J,J8 denote the couplings of the appropriate Heisenberg
tiferromagnetic interactions. We shall be interested10 in the
regime whereJ8!J.

~iii !

Hm5m(
i

cia
1 cia , ~6!

andm is the chemical potential.
~iv!

HV52V(̂
i j &

ninj . ~7!

This is an effective static NN interaction which, in the ba
t-J model, is induced by the exchange term, because of
extra magnetic bond in the system when two polarons are
neighboring sites.8 Notice that this term, when combine
with the Coulomb interaction terms inHJ , yields in the ef-
fective action a total intersite Coulomb interaction term w
coupling

Vtotal5V10.25J. ~8!

In Ref. 8 the strength of the interaction~7! is taken to be

V'0.585J. ~9!
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This is related to the regime of the parameters used in Re
for which the NN hopping element satisfiest!J. In fact, for
the effectivet-j -V model of Ref. 8, viewed as an appropria
reduction of a single-band Hubbard model, one has the r
tion

J5
4t2

Ue f f1V8
1JSB, ~10!

whereUe f f is an effective Hubbard interaction, andJSB is a
ferromagnetic exchange Heisenberg energy for the sin
band model. We haveuV8uÞuVu in general, unlike the cas
of the standard Hubbard model with a supplementary in
site Coulomb interaction. However, one may consider m
general models, in which the above restriction is not i
posed, andV is viewed as an independent parameter of
effective theory, e.g.,

V'bJ, ~11!

whereb is a constant to be determined phenomenologica
Such a situation may arise, for instance, in effective mod
where one considers repulsive on-site Coulomb interactio8

~e.g., between holes and/or electrons! in addition to the
~electron-hole! attractions~7!. As we shall discuss below
such more general cases turn out to be useful for the e
tence of supersymmetric points in the parameter space o
model.

~v! The operatorP is a projector operator, expressing th
absence of double occupancy at a site.

We define the doping parameter 0,d,1 by

^ni&512d. ~12!

d-wave pairing, which seems to have been confirmed exp
mentally for high-Tc cuprates, was assumed in Ref. 8.
d-wave gap is represented by an order parameter of the f

D~kW !5D0~cos kxa2coskya!, ~13!

wherea is the lattice spacing. The relevant Fermi surface
characterized by the following four nodes where the gap v
ishes:

S 6
p

2a
,6

p

2aD . ~14!

We now consider the generalized dispersion relation3,16 for
the quasiparticles in the superconducting state:

E~kW !5A@«~kW !2m#21D2~kW !. ~15!

In the vicinity of the nodes it is reasonable3,16 to assume tha
m'0 or equivalently we may linearize aboutm, i.e., write
«(kW )2m'vDuqW u ~Ref. 9! wherevD is the effective velocity
at the node andq is the wave vector with respect to the nod
point.

III. NON-ABELIAN SPIN-CHARGE SEPARATION
IN THE t-J MODEL

As already mentioned in the introduction, it wasproposed
in Ref. 3 that for the large-U limit of the dopedHubbard
model the following‘‘particle-hole’’ symmetric spin-charge
8,
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separationrepresentation occurs ateach site i:

xab,i5cag,izgb,i[S c1 c2

c2
† 2c1

†D
i

5S c1 c2

2c2
† c1

†D
i
S z1 2 z̄2

z2 z̄1
D

i

, ~16!

where the fieldsza,i obey canonicalbosoniccommutation
relations, and are associated with thespindegrees of freedom
~spinons!, while the fieldsca,i , a51,2 havefermionic sta-
tistics, and are assumed tocreate holesat the sitei with spin
index a ~holons!. The ansatz~16! has spin-electric-charge
separation, since only the fieldsc carryelectriccharge. Gen-
eralization to the non-Abelian model allows for intersubla
tice hopping of holes which is observed experimentally.

It should be noticed that the anticommutation relations
the electron fieldsca , cb

† , do not follow from the ansatz~16!
without additional constraints. Indeed, assuming the can
cal ~anti-!commutation relations for thez (c) fields, one ob-
tains from the ansatz~16!

$c1,i ,c2,j%;2c1,ic2,id i j ,

$c1,i
† ,c2,j

† %;2c2,i
† c1,i

† d i j ,

$c1,i ,c2,j
† %;$c2,i ,c1,j

† %;0,

$ca,i ,ca, j
† %;d i j (

b51,2
@zi ,bz̄i ,b1cb,icb,i

† #,

a51,2 no sum overi , j . ~17!

To ensure thecanonicalanticommutation relations for thec
operators we must thereforeimposeat each lattice site the
~slave-fermion! constraints

c1,ic2,i5c2,i
† c1,i

† 50,

(
b51,2

@zi ,bz̄i ,b1cb,icb,i
† #51. ~18!

Such relations are understood to be satisfied when the h
and spinon operators act onphysical states. Both of these
relations are valid in the large-U limit of the Hubbard model
and encode the nontrivial physics of constraints behind
spin-charge separation ansatz~16!. They express the con
straint ofat most one electron or hole per site, which char-
acterizes the large-U Hubbard models we are considerin
here, and are similar to constraints used in the conventio
slave-representation methods.

There is a local phase~gauge! non-Abelian symmetry hid-
den in the ansatz~16! ~Ref. 3! G5SU(2)3US(1), where
SU(2) stems from the spin degrees of freedom,US(1) is a
statistics changing group, which is exclusive to two spa
dimensions and is responsible for transforming bosons
fermions and vice versa. As remarked in Ref. 3, theUS(1)
effective interaction is responsble for the equivalence
tween the slave-fermion ansatz~i.e., where the holons are
viewed as charged bosons and the spinons as electri
neutral fermions4! and the slave-boson ansatz~i.e., where the
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holons are viewed as charged fermions and the spinon
neutral bosons17,3!. This is analogous~but not identical! to
the bosonization approach of Ref. 18 for anyon systems

The application of the ansatz~16! to the Hubbard~or t-j
models! necessitates a ‘‘particle-hole’’ symmetric formul
tion of the Hamiltonian~3!, which, as shown in Ref. 3, is
expressible in terms of the operatorsx. In this way, for in-
stance, the NN Heisenberg interactions terms become

HJ52
J

8 (̂
i j &

Tr@x ix j
†x jx i

†#. ~19!

By making an appropriate Hubbard-Stratonovich transform
tion on HJ with Hubbard-Stratonovich fieldsD i j , we obtain
the effective spin-charge separated action for the dop
antiferromagnetic model of Ref. 3:

HHF5(̂
i j &

„Tr$~8/J!D i j
† D j i 1uA1u@2t i j ~11s3!

1D i j #c jVji U ji c i
†%1Tr@Kz̄iVi j Ui j zj #1H.C.…1 . . . ,

~20!

with the ••• denoting chemical potential terms and NN
hopping terms~the latter are essential for the model of Re
8; we shall discuss their effects below!.

This form of the action describes low-energy excitatio
about the Fermi surface of the theory. The fieldD i j is matrix
valued in color space; generically it may be expanded
components in a canonical basis of 232 matrices,
$1,sa%, a51,2,3, as follows:

~D i j !ab5A0dab1Aa~sa!ab , ~21!

where Greek indices denote 232 color indices.
The quantitiesVi j and Ui j denote lattice link variables

associated with elements of theSU(2) andUS(1) groups,
respectively. They are associated3 with phases of vacuum
expectation values of bilinearŝz̄izj& and/or ^c i

†@2t i j (1
1s3)1D i j #c j&. It is understood that, by integrating out in
path integral overz and c variables, fluctuations are incor
porated, which go beyond a Hartree-Fock treatment.

The quantityuA1u is the amplitude of the bilinear̂z̄izj&
assumed frozen.3 By an appropriate normalization of the re
spective field variables, one may setuA1u51, without loss of
generality. In this normalization, one may then parametr
the quantityK, which is the amplitude of the appropria
fermionic bilinears, as3,10

K[@JuDzu2~12d!2#1/2; 12d5K (
a51

2

caca
† L , ~22!

with d the doping concentration in the sample. The quan
uDzu is considered as an arbitrary parameter of our effec
theory, of dimensions@energy#1/2, whose magnitude is to b
fixed by phenomenological or other considerations~see be-
low!. To a first approximation we assume thatDz is doping
independent. However, from its definition, as a^•••& of a
quantum model with complicatedd dependences in its cou
plings, the quantityDz may indeed exhibit a doping depen
dence. For some consequences of this we refer the read
the discussion in Sec. VI, below. The dependence onJ andd
as

-
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s
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e
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in Eq. ~22! is dictated10 by the correspondence with the co
ventional antiferromagneticCP1s model in the limitd→0.

The model of Ref. 8 differs from that of Ref. 3 in th
existence of NNN hoppingt8 and triple neighbor hoppingt9,
which were ignored in the analysis of Ref. 3. For the p
poses of this work, which focuses on the low-energy~infra-
red! properties of the continuum field theory of Eq.~20!, this
can be taken into acount by assuming that

ut i j u5t18 [t12t1 , t1[t812t9 ~23!

in the notation of Ref. 8. The relation stems from the obs
vation that in the continuum low-energy field-theory lim
such NNN and triple hopping terms can be Taylor expand
~in derivatives!. It is the terms linear in derivatives that yiel
the shift ~23! of the NN hopping elementt. Higher deriva-
tives terms, of the form]x]y are suppressed in the low
energy~infrared! limit.

It is important to note that the model of Ref. 3, as well
its extension~20!, in contrast to that discussed in Ref.
involves only asingle latticestructure, with nearest-neighbo
hopping (̂ i j &) being taken into account,t i j . The antiferro-
magnetic nature is then viewed as a property of a color
gree of freedom, expressed via the non-Abelian gauge st
ture of the spin-charge separation ansatz~16!. As we shall
discuss later, this is very important in yielding the corre
number of fermionic~holonsC) degrees of freedom in the
continuum low-energy field theory to match the bosonic d
grees of freedom~spinonsz) at the supersymmetric point.

IV. EFFECTIVE LOW-ENERGY GAUGE THEORY

It is instructive to discuss in some detail the derivation
a conventional lattice gauge theory form of the action~20!.
One first shifts theD i j field: D i j →D i j8 5D i j 1t i j s3, and then
assumes that the fluctuations of theD i j8 field are frozen in
such a way that only thêA08& component is nontrivial in the
corresponding expansion in terms of the Pauli matrices~21!.
This is a variational ansatz that can be justified in the reg
of the parameters of the statistical modelJ@t18 , in which
case the dominantD i j configurations~in the path integral!
may be taken to be of orderJ, and thus any effect of thes3
color structure in the action~20! is safely negligible. As we
shall discuss in what follows, the elimination of thes3 terms
from the action~20! results in canonical Dirac kinetic term
for the fermionic parts of the nodal liquid effective~low-
energy! action.

However, in view of Eq.~23!, in the model of Ref. 8, such
an assumption is not valid, given that the renormalized h
ping parameter, due to NNN and triple neighbor hoppin
is of similar order asJ. Nevertheless, for our generic pu
poses in this work we shall work in a model whereJ@t18 .
Alternatively, we can assume that the effects of thes3 color
structures can be safely neglected even for the case of
model of Ref. 8. Such assumptions are retrospectively ju
fied by the fact that the model of Ref. 8 cannot yield sup
symmetric points even under the above assumption, for o
reasons to be discussed below. Thus our approach in
paper is to identify the circumstances under which deform
tions of the model presented in Ref. 8 can yield such po
in the parameter space.
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Notably, the situationJ@t18 may be met in the models o
Dagotto et al.,8 where NNN hoppingt8 is neglected, but
where the Coulomb attraction~7! is present, in order to guar
antee the existence ofd-wave superconducting gaps.19 More-
over, in the context of generalizations of thet-V-J models of
Feiner et al.,8 such a situation@cf. Eq. ~10!# is met if one
assumes an appropriate attractiveV8, of opposite sign to the
repulsionUe f f , but close to it in magntitude@notice that, on
account of Eq.~23!, in our generalization fo thet-V-j model,
one should replacet in Eq. ~10! by t18 #. In such a case one
has an additional large dimensionful scaleUe f f , like in the
case of the conventional Hubbard model of Ref. 3.

We next remark that in conventional non-Abelian gau
theories the fermionic fields are usually spinors in the fun
mental representation of the gauge group. Let us exam
under what condition this is feasible in our case. To this e
we assemble the fermionic degrees of freedom into two t
component Dirac spinors:3

C̃1,i
† 5~c1 2c2

†! i , C̃2,i
† 5~c2 c1

†! i , ~24!

wherea in C̃a,i
† is the color index. We also consider ve

weakly coupled SU(2) gauge groups, with coupling
gSU(2)[g2!1. In the weak gauge-field approximatio
where the gauge group element~link! along them space-time
direction is Ui j ;m;11gs* i

j ;mBm
a sa1O(g2

2) ~with sa,a
51,2,3 the Pauli matrices!, one observes the following
mathematical identities:

Tr~c ic i 1m
† !5C̃ i

†C̃ i 1m , Tr~c is1c i 1m
† !5C̃ i

†t1C̃ i 1m ,

Tr~c is3c i 1m
† !5C̃ i

†t3C̃ i 1m ,

Tr~c is2c i 1m
† !5 i S 2C̃ i

†s3

1

2
~t11 i t2!C̃ i 1m

1C̃ i
† 1

2
~11t3!C̃ i 1mD , ~25!

where the Pauli matricesta,a51,2,3 refer to color space
and should be distinguished from thes3 matrices, which
although are color matrices, they refer to the action~20!, in
which the fermionic degrees of freedom consist of Gra
mann variables assembled in 232 matrices. From the last o
Eqs. ~25!, therefore, it becomes evident that the action~20!
may be mapped to a conventional lattice action, with spin
~24! in the fundamental representation of the color gro
provided that the couplingg2!1 is weak, and in addition
there is agauge fixing@Note that the requirement for wea
g2 coupling is essential, given the fact that due to the n
Abelian nature of the gauge field, the local gauge fixingBm

2

50 alone is not sufficient to eliminate dangerous terms p
portional to s2; this can be easily seen from the Bake
Hausdorff identity:

eig2(a51,3s
aBm

a
5~Pa51,3e

ig2* i
jsaBm

a
!e1/2~g2!2@s1,s3#Bm

1 Bm
3

1•••,

with the commutator being proportional tos2; however,
such terms are of higher order ing2, and hence restriction to
e
-

ne
d
-

-

rs
,

-

-

weak couplings suffices to yield the conventional relativis
gauge form of the effective action upon the appropri
gauge fixing.#: * i

jdxmBm
2 50.

The weakness of theSU(2) coupling guarantees that
mass gap in the problem is only generated by theUS(1)
group.3 In the context of the Hubbard model of Ref. 3, th
couplingg2 of the gaugedSU(2) interactions, pertaining to
the spin degrees of freedom in the problem, is natura
weak, since it is related to the Heisenberg exchange energJ.
Given that in three space-time dimensions the gauge c
plings are dimensionful, with dimensions of energy, one m
define dimensionless couplings by dividing them with t
ultraviolet scale of the low-energy theory, which in th
model of Ref. 3 is the~strong! Hubbard interactionU@J.
Thus a dimensionless couplingg2;J/U!1 is naturally
small in this context. A similar situation arises in the conte
of the effective single-bandt-V-j model of Ref. 8, in the
large Ue f f@J limit @cf. Eq. ~10!#. On the other hand, the
strongUS(1) couplingg1, responsible for mass gap gener
tion for the holons, may be assumed to be of orderUe f f ,
since this is the highest energy scale. However, in genera
t-j models that we consider these relations may not be va
Still as we shall see below, the ultraviolet cutoff of the e
fective theory, in the regime relevant for supersymmet
points, we are interested here, may be up to two order
magnitude higher thanJ, thereby allowing theUS(1) inter-
actions to be considerably stronger than theSU(2) ones, if
one wishes so.

To generate the conventional Diracg-matrix structure for
the fermionic action one may redefine the spinors in the p

integral C̃→C, where C are two-componentcolored
spinors, related to the spinors in Eq.~24! via a Kawamoto-
Smit transformation,20

Ca~r !5g0
r 0
•••g2

r 2C̃a~r !,

C̄a~r !5C̃̄a~r !~g2
†!r 2

•••~g0
†!r 0, ~26!

wherer is a point on the Euclidean lattice, anda51,2 is a
color index, expressing the initial antiferromagnetic nature
the system. We notice that as a result of theg-matrix algebra

fermion bilinears of the formC̄ i ,aC i ,b ( i 5lattice index! sat-
isfy

C̄ i ,aC i ,b5C̃̄ i ,aC̃ i ,b ~27!

on a Euclidean lattice. As we shall see later on, this l
identity will be crucial in yielding a relativistic form of the
effective action for the interacting nodal liquid of excitation
in generalized Hubbard models.

We next notice that on a lattice, in the path integral ov
the fermionic degrees of freedom in a quantum theory,

variablesC̄ and C are viewed asindependent. In view of

this, the spinorsCa
† in Eq. ~24! may be replaced byC̄a , as

being path-integral variables on a Euclidean lattice appro
ate for the Hamiltonian system~3!. This should be kept in
mind when discussing the microscopic structure of
theory in terms of the holon creation and annihilation ope
tors ca

† ,ca ,a51,2.
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The fermionic part of the long-wavelegth Lattice L
grangian, then, reads

S5
1

2
K8(

i ,m
@C̄ i~2gm!Ui ,mVi ,mC i 1m

1C̄ i 1m~gm!Ui ,m
† Vi ,m

† C i #1Bosonic CP1 parts,

~28!

where the Bosonic CP1 parts denote magnon-fiel
z-dependent terms, and are given in Eq.~20!. The coefficient
K8 is a constant which stems from thet i j - and D i j - depen-
dent coefficients in front of the fermion terms in Eq.~20!. An
order of magnitude estimate of the modulus of~the shifted!
D i j8 then, which determines the strength of the coefficientK8,
may be provided by its equations of motion. Assuming t
the modulus of~the dimensionless! fermionic bilinears is of
order unity, then, we have as an order of magnitude

K8;S t18 1
J

8D . ~29!

Note that in the regime of the parameters of Ref. 8t!t1 and

t1. 3
2 J for momenta close to a node in the Fermi surface

interest to us here. Thus

K8.25J/8. ~30!

However, one may even consider more general models
which K8 and the Coulomb intersite interactionV are treated
as independent phenomenological parameters.

At this stage we would like to make a remark concern
the relativistic form of the action~28!. Although in Eq.~28!
we did not give explicitly theCP1 parts, however, we hav
tacitly assumed theequality of the effective velocitiesfor spin
vS and chargevF ~Fermi velocity of holes! degrees of free-
dom. If such an assumption is not made, then the relativi
invariant form of the effective Lagrangian is spoiled.9 How-
ever, at the supersymmetric points of the nodal liquid, whe
as we shall discuss later on, the dynamically generated m
gaps between spinons and holons must be equal, the equ
vS5vF is essential, otherwise there would be different d
persion relations, leading to a difference in mass gaps. Th
comments should be understood in what follows. From n
on we shall work in units of the Fermi velocityvF .

Moreover, it should be stressed once again that the r
tivistic form of the action ~28! is derived for a weakly
coupledSU(2) gauge group, and under a specific gauge
ing. However, in view of the gauge invariance characteriz
Eqs. ~20! and ~28!, the physical results based on the abo
effective actions, in particular the existence of supersymm
ric points in the parameter space, which is of interest to
here, are independent of the gauge chosen.

As discussed in Ref. 13, supersymmetrization
CP1-type models, like the ones considered here, requ
that theCP1 constraint be of the form(a51

2 uzau251. In our
case, however, the no-double occupancy constraint, w

expressed in terms of thez andC̃a , a51,2, ~spinor! fields,
with a a color index, is written as
t

f

in
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ss
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-
se
w

a-

-
g
e
t-
s

f
s

en

(
a51

2

@ z̄aza1bC̃̄as3C̃a#51, ~31!

whereb51/K82, K8 is given by Eq.~30!, the 232 matrix

s3 acts in spinor space, and the fermionsC̃ are thetwo-
componentspinors ~24!. Equivalently the fermion bilinear
terms in Eq.~31! can be expressed in terms of the spinorsC
~26!, which have conventional Dirac kinetic terms. It is u
derstood that appropriate rescalings can be made in the
nition of the spinors so as to ensure the canonical kin
~Dirac! term. We have also taken into account that in a E
clidean path integral the variablesC† andC are viewed as

independent, which implies that one may redefineC†→C̄

whereC̄ in later analysis will nevertheless be considered
the conventional way, i.e., asC†g0. Consequently, we can
interpret the fermion term in the constraint~31! asC†C the
fermion number term.

The presence of theC†C ~nonrelativistic! fermion num-
ber term in the constraint~31! appears at first sight to com
plicate things, since the conventionalCP1 constraint uzu2

51 is no longer valid. In fact, supersymmetry is compatib
with the following form of the constraints:

uzau251, z̄aCa50, ~32!

arising from the superfield version of theCP1 constraint.13,23

The fermionic counterpart of Eq.~32! can be solved by
means of a colorless fermion fieldX that satisfies@on ac-
count of the bosonicCP1 parts of Eq.~32!#:

Ca5eabz̄bX, X5eabzaCb , ~33!

whereCa are the Dirac spinors defined above. To ensure
conventionalCP1 form of the bosonic part of the supersym
metric constraints~32! from ~31! we should demandb,
,1, which is satisfied in a regime of the parameters of
theory for which

K8@K5AJuDzu~12d!, 0,d,1. ~34!

For the model of Ref. 8, for instance, on account of Eq.~30!,
this condition implies that

AJ/uDzu@0.32 ~12d!, 0,d,1. ~35!

By appropriately rescaling the fermion fieldsC to C8, so
that in the continuum they have a canonical Dirac term,
may effectively constrain thez fields to satisfy theCP1 con-
straint:

uzau21
1

K8
~C82bilinear terms!51,

where now the fieldsC are dimensionful, with dimension
of @energy#. A natural order of magnitude of these dime
sionful fermion bilinear terms is of the order ofK2, which
plays the role of the characteristic scale in the theory, be
related directly to the Heisenberg exchange energyJ. In the
limit K8@K @Eq. ~34!# therefore the fermionic terms in th
constraint can be ignored, and the constraint assumes
standardCP1 form involving only thez fields ~this being
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also the case for the model of Refs. 9 and 10, in a spe
regime of the microscopic parameters!.

As we shall see later, however, the condition~35! alone,
although necessary, is not sufficient to guarantee the e
tence of supersymmetric points. Supersymmetry imposes
ditional restrictions, which in fact rule out the existence
supersymmetric points for the model of Ref. 8 compati
with superconductivity. We note in passing that in realis
materials superconductivity occurs for doping concentrati
above 3%, and is destroyed for doping concentrations la
than dmax;10%. However, this does not prevent one fro
considering more general models in whichK8 is viewed as a
phenomenological parameter, not constrained by Eq.~30!. In
that case, supersymmetric points may occur for a certain
gime of the respective parameters.

However, as a result of the spin-charge separation form
ism, there is a different way to treat the constraints in a p
integral, which however takes into account the coupling
the system to an external elelctromagnetic field, and as s
is not a priori relevant to the supersymmetric regime. Ne
ertheless, as we shall discuss in Sec. VI, this will be relev
for electric charge transport in the model for which sup
symmetry~in the absence of external fields! will be argued to
play a rather crucial but subtle role.

Indeed, the fermion number terms in Eq.~31! may be
absorbed in a rescaling of the~quantum fluctuations of the!
temporal component of the electromagnetic fieldA0(xW ,t),
which couples~relativistically! only to the spinorsC ~see
Sec. VI B below!. Explicitly, by implementing the constrain
~31! in a path integral via the introduction of a Lagran
multiplier field l(x)

d~ uzau21bC̄as3Ca21!

5E Dl~x!eil(x)(zaz̄a1bC̄as3Ca21), ~36!

and on absorbingl(x) in a shift of A0(xW ,t), one obtains
from the Maxwell terms in the electromagnetic part of t
effective action the following combination:

Lem{2
1

4~e2/c2!
@2] ilF0i1~] il!2#

1standard Maxwell terms, ~37!

where F0i is the appropriate components of the Maxw
tensor of the~redefined! electromagnetic field, the indexi is
a spatial index, and repeated indices denote summation,
equations of motion forl in the effective action obtained
after integrating out, say, thez degrees of fredom yield the
standardCP1 model terms,21 but also terms of the form
¹ i

2l12¹ iF0i . One therefore may consider a phase in wh
^l(x)&5constÞ0, provided that the electromagnetic field
chosen as an external one, satisfying Maxwell’s equatio
which is our case.

The bosonic part of the constraint, then, implies a m
for the spinonsmz}^l(x)&.21 The fermionic part, on the
other hand, has the form of a temporal component of
electric current ~see Sec. VI B below!. The coefficient
b^l(x)& may be absorbed in a shift of the quantum fluctu
c
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tions of A0(xW ,t). Quantum fluctuations of the electroma
netic field will not be of further interest to us here, given th
we shall treat it only as external background.

From the above discussion it becomes clear, then, tha
either case one maps the double occupancy constraint~31!
into the standardCP1 constraint:

(
a51

2

uzau251. ~38!

However, as we have explained above, the restriction gi
in Eq. ~35! cannot be avoided if supersymmetric points are
exist. Any alternative treatment would require coupling t
system to ~supersymmetry-breaking! external electromag-
netic fields, since otherwise the fermionic parts of Eq.~31!
would be present. As we shall see in Sec. VI, though,
alternative treatment of the constraint leads to interes
phases of the theory characterized by superconduc
electric-charge transport. Any supersymmetry that mi
have existed before coupling to electromagnetism wo
then play an important~but subtle! role in ensuring the exis-
tence of superconductivity.

In addition to theCP1 constraint, one also encounters th
remaining constraints~18!. These may be treated in a simila
way, using appropriate Lagrange multiplier field
l2(x),l3(x). It can be easily seen that such a treatment le
to structures in the effective low-energy action which i

volve ‘‘electric current’’ operatorsJi5C̄g iC, i 51,2 ~see
Sec. VI B!, and as such can be absorbed in the quan
fluctuations of the spatial components of the electromagn
field AW (xW ,t).

It should be stressed again that the situation in which
Lagrange multiplier fields acquire nonzero vacuum expec
tion values ~VEV’s!, ^l(x)&, ^l i(x)&Þ0, i 52,3, corre-
sponds to the selection of a specific ground state of the
tem ~phase!, about which one considers quantu
fluctuations. There is always the phase in which such VE
are zero, in which case one implements the constraints
rectly on the path-integral correlators, e.g., correlation fu
tions proportional toc1c2 are set to zero in this phase. I
what follows, we shall first resolve the constraints in th
latter phase, and later on~Sec. VI! we shall discuss the othe
phases of the model. As we shall discuss later, this phas
characterized by spin transport but not electric-charge tra
port, a situation that should be compared with the case of
nodal liquids of Ref. 5, where the electrically neutral fermi
representation for spinons is used. On the contrary, as
shall show in Sec. VI, the phase in which the Lagrange m
tiplier VEV’s are nontrivial may yield unconventional supe
conductivity of Kosterlitz-Thouless type.9,3

We will consider from now on the standardCP1 con-
straint involving onlyz fields. By an appropriate normaliza
tion of z to z85z/A12d the constraint then acquires th
familiar normalizedCP1 form uzau251 form. This implies a
rescaling of the normalization coefficientK in Eq. ~20!:

K→ 1

g
[K~12d!.AJuDzu~12d!2. ~39!
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In the naive continuum limit, then, the effective Lagrangi
of spin and charge degrees of freedom describing the l
energy dynamics of the Hubbard~or t-j ) model~20! of Ref.
3 is then

L2[
1

g
Tru~]m1 ig2taBm

a 1 ig1am!zu21C̄DmgmC,

~40!

wherez denotes the 232 CP1 matrix appearing in Eq.~1!,
and the~complex! fields za , a51,2 satisfy the constrain
~38!. The trace Tr is over group indices,Dm5]m2 ig1am

S

2 ig2taBa,m2(e/c)Am , Bm
a is the gauge potential of the lo

cal ~‘‘spin’’ ! SU(2) group, andam is the potential of the
US(1) group. It should be remarked that we are working
units of the Fermi velocityvF(5vD) of holes, which plays
the role of the limiting velocity for the nodal liquid.

V. NN INTERACTION TERMS H V

We will now discuss the Coulomb-interaction~attractive!
terms

HV52Vtotal(̂
i j &

ninj ~41!

introduced in Ref. 8, whereVtotal is given in Eq.~8!. Using
the ansatz~16! at a sitei, the electron number operatorni
may be expressed through the determinant~det! of the x
matrix in Eq. ~16!, and consequently in terms of the sp
operator,za , a51,2, and charge operatorca , a51,2, as

ni[ (
a51

2

ca,i
† ca,i

5det xab,i

5det ẑab,i1det ĉab,i

5 (
a51

2

~caca
†1uzau2!. ~42!

We may express the quantum fluctuations for the Grassm
fields ca ~which now carry a color indexa51,2, unlike in
abelian spin-charge separation models! via

ca,ica,i
1 5^ca,ica,i

1 &1:ca,ica,i
1 : no sum over i , ~43!

where :•••: denotes normal ordering of quantum operato
and repeated indices are summed over, from now on un
explicitly stated otherwise. Since

^ca,ica,i
1 &[12d, no sum overi ,

d the doping concentration in the sample~12!, we may re-
write ni as

ni5@ uzau21~12d!1:caca
† :# i

which in terms of the spinorsC̃ is given by@cf. Eq. ~24!#:

ni522d1
1

2
~C̃a

†s3C̃a! i ~44!

where

s35S 1 0

0 21D
-

nn

,
ss

acts in ~space-time! spinor space, and theCP1 constraint
~38! has been taken into account.

Consider now the attractive interaction termHV ~41!, in-
troduced in Ref. 8. We then observe than the terms linea
(22d) in the expression forHV can be absorbed by an ap
propriate shift in the chemical potential, about which we li
earize to obtain the low-energy theory. We can theref
ignore such terms from now on.

Next, we make use of the fact, mentioned earlier, that i

lattice path integral the spinorsC̃a
† may be replaced byC̃̄a .

From the structure of the spinors~24!, then, we observe tha
we may rewrite theHV termeffectivelyas a Thirring vector-

vector interaction among the spinorsC̃

HV51
Vtotal

4 (̂
i j &

~ C̃̄agmC̃a! i~ C̃̄bgmC̃b! j , ~45!

wherem50,1,2, withm50 a temporal index. To arrive a
Eq. ~45! we have expresseds3 as2 ig0, and used the Clif-
ford algerba and the off-diagonal nature of theg1,25 is1,2
matrices, as well as the constraints~18!. In particular the
latter imply that any scalar product between Grassmann v
ablesca ~or cb

†) with different color indicesvanish.
Taking the continuum limit of Eq.~45!, and ignoring

higher derivative terms involving four-fermion interaction
which by power counting are irrelevant operators in the
frared, we obtain after passing to a Lagrangian formalism

LV52
Vtotal

4K82
~ C̃̄agmC̃a!2, ~46!

where we have used rescaled spinors, with the canon
Dirac kinetic term with unit coefficient, for which the ca
nonical form of theCP1 constraint~38! is satisfied. For no-

tational convenience we use the same notationC̃ for these
spinors as the unscaled ones. Although this is called the
ive continuum limit, it actually captures correctly the leadin
infrared behavior of the model.

We then use a Fierz rearrangement formula for theg
matrices:

gab
m gm,cd52daddbc2dabdcd ,

where Latin letters indicate spinor indices, and Greek lett
space-time indices. The Thirring~four-fermion! interactions
~45! then become

~ C̃̄agmC̃a!2523~ C̃̄aC̃a!224 (
a,b

~ C̃̄aC̃bC̃̄bC̃a!.

~47!

Notice that this form permits us to use, on account of
identity ~27!, either of the forms~26! or ~24! for the spinors

C or C̃ in the expression ofHV . It should be noted, though
that the canonical Dirac form of the kinetic terms for th
spinors is valid only in the form~26!, which we stick to from
now on.

As mentioned above, in the model of Ref. 3, due to t
first of the constraints~18!, the mixed color terms vanish
thereby leaving us with pure Gross-Neveuattractive interac-
tion terms of the form
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LV51
3Vtotal

4K82
~C̄aCa!2 ~48!

which describe the low-energy dynamics of the interact
~41! in the context of the non-Abelian spin-charge separat
~16!. It should be stressed that Eq.~48! is specific to our
spin-charge separation model.

Moreover, in the context of the spinors~24!, a condensate

of the form ^C̄aCa& on the latticevanishesbecause of the
constraints~18!. Such condensates would violate parity~re-
flection! operation on the planar spatial lattice, which on t

spinorsC̃ is defined to act as follows:

C̃1~x!→s1C̃2~x!, C̃2~x!→s1C̃1~x!,

or equivalently, in terms of the~microscopic! holon operx-
tors ca , a51,2:

c1~x!→c2
†~x!, c2~x!→2c1

†~x!.

To capture correctly this fact in the context of our effe
tive continuum Gross-Neveu interaction~48! the coupling
strengthmustbe subcritical, i.e., weaker than the critical co
pling for mass generation. The critical coupling of the Gro
Neveu interaction is expressed in terms of a high-ene
cut off scaleL as:22

154gc
2E

SL

d3q

8p3q2 5
2gc

2L

p2 , ~49!

whereq is a momentum variable andSL is a sphere of radius
L. The divergentq integral is cut off at a momentum scaleL
which defines the low-energy theory of interest. For the c
of interest g253Vtotal/4K82; on using Eq.~30!, then, the
condition of subcriticality requires that

L&77 J. ~50!

which is in agreement with the fact that in all effective mo
els for doped antiferromagnets used in the literature
Heisenberg exchange energyJ;1000 K serves as an uppe
bound for the energies of the excitations of the effect
~continuum! theory. However, as mentioned above, to obt
a relativistic gauge theory from the lattice action~20! one
needs theSU(2) interactions to be considerably weaker th
the US(1) interactions, responsible for mass generation:
above condition~50! is also compatible with this, provide
one identifies the~dimensionful! coupling of theUS(1) in-
teractions with a~high-energy! cutoff scaleL;77 J. In the
context of the effective single-bandt-V-j models~10!, for
instance,L may be identified with aUe f f@J.

VI. DYNAMICAL SPINON-HOLON SYMMETRY
„SUPERSYMMETRY … IN THE NODAL LIQUID AND

POTENTIAL PHENOMENOLOGICAL IMPLICATIONS

A. Conditions for NÄ1 supersymmetry in the nodal
liquid

We turn now to conditions for supersymmetrization of t
above continuum theory, i.e., conditions for dynamical sy
metries between the spinon~boson! and holon~fermion! de-
grees of freedom. Below we shall only outline the main
n
n

-
y

e

e

e
n

e

-

-

sults. Technical details of the formalism are given in Re
13 and 23 where we refer the interested reader. Since it
been argued thatUS(1) is responsible for dynamical mas
generation~and superconductivity! in the model of Ref. 3 we
shall ignore the non-AbelianSU(2) interactions, keeping
only the Abelian. However, since the latter argument is
rigorous, it would be desirable to supersymmetrize the
group in order to check the phenomenon of dynamical m
generation. The extension to supersymmetrizing the
gauge multipletSU(2)3US(1) will be the topic of a forth-
coming work. However we shall still maintain the colo
structure in the spinors, which is important for the ans
~16!. Ignoring theSU(2) interactions implies, of course, tha
the color structure becomes a ‘‘flavor’’ index; however, th
is essential for keeping track of the correct degrees of fr
dom required by supersymmetry in the problem at hand.13.

As discussed in detail in Refs. 13 and 23, the conditio
for N51 supersymmetric extensions of aCP1 s model is
that the constraint is of the standardCP1 form ~38!, supple-
mented byattractive four-fermion interactions of the Gross
Neveu type~48!, whose coupling is related to the couplin
constant of the kineticz-magnon terms of thes model in a
way such as to guarantee the balance between bosonic
fermionic degrees of freedom. Specifically, in terms of co
ponent fields, the pertinent Lagrangian reads

L5g1
2@Dmz̄aDmza1 i C̄D” C1F̄aFa

12i ~ h̄Caz̄a2C̄ahza!#, ~51!

whereDm here denotes the gauge covariant derivative w
respect to theUS(1) field. The analysis of Refs. 13 and 2
shows that, upon using the equations of motion,

F̄aFa5 (
a51

2
1

4
~C̄aCa!2. ~52!

We thus observe that theN51 supersymmetric extension o
the CP1s model necessitatesthe presence ofattractive
Gross-Neveu type interactions among the Dirac fermions
each sublattice, in addition to the gauge interactions.

In the context of the effective theory~40! and ~46!, dis-
cussed in this article, theN51 supersymmetric effective La
grangian ~51! is obtained under the following restriction
among the coupling constants of the statistical model:

g1
25

3Vtotal

K82
5g5

1

AJuDzu~12d!2
, 0,d,1. ~53!

Note that in the context of the model of Ref. 8, for whic
Eqs.~9! and~30! are valid, the relation~53! gives the super-
symmetric point in the parameter space of the model at
particular doping concentrationd5ds :

~12ds!
2.3.89A J

uDzu
, 0,ds,1. ~54!

As discussed in Sec. IV, unbroken supersymmetry~which is
valid only in the absence of external electromagnetic fiel!
imposes an additional restriction~35!. Then we observe tha
compatibility of Eq.~54! with Eqs. ~34! and ~35! requires:
12ds@1.25, which implies that the model of Ref. 8 does n
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have supersymmetric points. However, one may cons
more general models in whichV and K8;t18 1J/8 are
treated as independent phenomenological parameters@cf.
~11!#; in such a case one can obtain regions of parame
that characterize the supersymmetric points~53! and ~54!
compatible with superconductivity.

It is quite important to remark that in the model of Ref.
where the antiferromagnetic structure of the theory is
coded in a color~non-Abelian! degree of freedom of the
spin-charge separated composite electron operator~1! with-
out the need for sublattice structure, there is a matching
tween the bosonic (z spinon fields! and fermionic (C holon
fields! physical degrees of freedom, as required by sup
symmetry, without the need for duplicating them by intr
ducing ‘‘unphysical’’ degrees of freedom.13

The gauge multiplet of theCP1 s model also needs a
supersymmetric partner which is a Majorana fermion cal
the gaugino. As shown in Ref. 13, such terms lead to eff
tive electric-charge violating interactions on the spa
planes, given that the Majorana gaugino is a real field, an
such cannot carry electric charge~which couples as a phas
to a Dirac field!. These terms can be interpreted as the
moval or addition of electrons due to interlayer hoppin
which, in fact, can be shown to be suppressed by term
order 1/AJ.

Another important point we wish to make concerns t
four-fermion attractive Gross-Neveu interactions in Eqs.~51!
and~52!. As discussed in detail in Ref. 24, if the coupling
such terms is supercritical, then a parity-violating fermi
~holon! mass would be generated in the model. However,
condition ~50!, which is valid in the statistical model of in
terest to us here, implies that the respective coupling is
ways subcritical, and thus there is no parity-violating d
namical mass gap for the holons, induced by the con
Gross-Neveu interactions. This leaves one with the poss
ity of parity conservingdynamical mass generation, due
the statistical gauge interactions in the model.3,24

A detailed analysis of such phenomena in the contex
our CP1 model is left for future work. For the present, how
ever, we note that inN51 supersymmetric gauge model
supersymmetry-preserving dynamical mass is possible.13,25,26

In fact, as discussed in Ref. 26, although by supersymm
the potential is zero, and thus there would naively seem
there is no obvious way of selecting the nonzero m
ground state over the zero mass one, however, there ap
to be instabilities in thequantum effective actionin the mass-
less phase, which manifest themselves through instabil
of the pertinent running coupling. The opening of such
fermion mass gap has been associated with the existence
nontrivial infrared fixed point of the renormalization-grou
flow, which implies non-Fermi-liquid behavior.27

From a physical point of view, such a phenomenon wo
imply that, for sufficiently strong gauge couplings, the ze
temperature liquid of excitations at the nodes of ad-wave
superconducting gap would be characterized by the dyna
cal opening of mass gaps for the holons. At zero tempe
ture, and for the specific doping concentrations correspo
ing to the supersymmetric points, as advocated above,
nodal gaps between spinon and holons would be equa
agreement with the assumed equality of the respective pr
er

rs

-

e-

r-

d
c-
l
as

-
,
of

e

l-
-
ct
il-

f

ry
at
s
ear

es
a
f a

d
-

i-
a-
d-
he
in
a-

gation velocitiesvF5vS , which yielded the relativistic form
of the effective continuum action~40! of the nodal excita-
tions at the supersymmetric points. The opening of a no
mass gap, due to theUS(1) gauge interactions, would imply
a breaking of the fermion number@global U(1)# symmetry,
and thus superconductivity upon coupling the system to
ternal electromagnetic fields, according to the scenario
Refs. 9 and 3, which is reviewed briefly below for the bene
of the nonexpert reader.

B. Kosterlitz-Thouless realization of superconductivity
in the SU„2…‹US„1… model

This section is mainly a review of results that appear
the literature regarding the model.3,9,24 It mainly serves as a
comprehensive account of the various delicate issues
volved, which play a very crucial role in the underlyin
physics. It is primarily addressed to the nonexperts in
area. Only the basic results will be presented; the intere
reader may then find the relevant details in the publish
literature.

An important issue in the effective gauge theorySU(2)
^ US(1) model is the existence of aglobal conserved sym
metry, namely the fermion number, which is due to the ele
tric charge of the fermionsC. The corresponding current i
given by

Jm5 (
a51

2

C̄agmCa , m50,1,2. ~55!

This current generates a globalUE(1) symmetry, which after
coupling with external electromagnetic fields isgauged. In
this sense the holon current~55! coincides with the charge
transport properties of the system.

Some discussion is in order at this point. The associa
of the currentJm ~55! with an electric current for holons
comes about due to the similarity of the form of the spino
~24! with the conventional Nambu spinors appearing in t
BCS Hamiltonian for superconductivity. Indeed, for the be
efit of the reader we remind that in such a case the elec
operatorscs are assemblied, in a particle-hole formalism
into two component spinors (c↑ ,c↓

†), and the resulting
Hamiltonian couples in a gauge invariant way to an exter
electromagnetic potentialAW by making the standard substitu
tion of the momentum operatorpW →pW 2(e/c)AW . The only
difference in our nodal liquid case is that the holon spin
~24! come in two colors and, as contrasted to the gene
BCS case, the problem is relativistic due to the restriction
the nodal excitations. Thus, at the level of the continu
effective action of the nodal excitations, the coupling to ele
tromagnetic potentials is straightforward by extending
~statistical! gauge covariant derivatives in the Dirac kinet
terms~40! to incorporate the electromagnetic potential co
pling terms

E d3x
e

c (
a51

2

C̄agmAmCa , ~56!

wherec is the light velocity ande is the absolute value of the
electron charge~for holon excitations the charge is1e, for
electron2e; in our problem here we concentrate in the h



is

y

ic

y
r
.
l f

ad
o

on
th

t

-
hi
a

cta

e
th
y
o

tis
u

s
in

pe
m

c

la
g
e
c-
s

iv

n

le

the

ou-

ca-
e

ct,

. 2.
ty.

ter
om
vity,

er

ing

gap

f the

t

nt-

of

3448 PRB 62NICK E. MAVROMATOS AND SARBEN SARKAR
lon current!. The resulting nodal holon electric current
given by differentiation with respect toAm , i.e., by the ex-
pression~55!.

Before discussing superconducting properties of the s
tem we should remark that, as a result of the constraints~18!
and the nondiagonal nature of theg i ,i 51,2 matrices, the
spatial components of the current~55! vanish, but the tem-
poral component~charge density! is nontrivial. Moreover,
given that the constraints~18! do not concern the spinonsz,
this means that there is a phase of the nodal liquid in wh
there isno charge transport, but only spin transport. The
nontrivial ‘‘spin current’’ may be thought of as given b
Jm

spin; z̄]mz. This situation should be compared with the co
responding phase in nodal liquids in the approach of Ref
where the spinons are represented as electrically neutra
mions.

However, in our model there are other possibilities, le
ing to more complicated phases, as we shall discuss n
These possibilities are realized by implementing the c
straints~18! via appropriate Lagrange multipliers in the pa
integral over the fermionic variablesc†,c, as we discussed
in Sec. IV @cf. Eq. ~36!#. Expressing the productsc1c2 ~and
their conjugates! as spatial components of the current~55!,
then, one may assume a specific ground state in which
appropriate Lagrange multipliers for the constraintc1c2
;0 ~and Hermitean conjugate! acquire nonzero vacuum ex
pectation values that may be absorbed by appropriate s
of the corresponding spatial components of the electrom
netic potentialAW (xW ,t) coupled to the currentJW . As we have
already discussed in Sec. IV, a nontrivial vacuum expe
tion value for the Lagrange multiplierl(x) of the last of the
constraint ~18! will yield mass terms for thez magnons,
while the fermionic part of the constraint may be absorb
by an appropriate shift of the temporal component of
electromagnetic potential. This procedure breaks supers
metry explicitly but, as we shall argue now, the existence
supersymmetry before coupling to external electromagne
is crucial in implying superconducting properties after co
pling to external fields.

In this framework, the constraints~18! no longer apply in
the path integral, and nonvanishing spatial compontent
the electric currentJW appear. It should be remarked that
such a case the mixed color terms in Eq.~47! do not vanish,
and hence the resulting effective Lagrangian breaks su
symmetry explicitly. This was to be expected, anyhow, fro
the very presence of external~nonsupersymmetric! electro-
magnetic fields. However, given that the coupling of su
contact four fermion interactions issubcritical @cf. Eqs.~48!
and ~50!#, such interactions are irrelevant operators in
renormalization-group sense, and hence the universality c
of the theory~in the infrared! can still be determined usin
the supersymmetric version of the theory in the absenc
any external fields@which also satisfies the additional restri
tion ~35!#. As we shall argue below, this more general pha
is important in that it yields unconventional superconduct
ity for the nodal liquid.

To this end, we remark that in the absence of exter
electromagnetic potentials, the symmetryUE(1) is broken
spontaneouslyin the massive phase for the fermionsC. This
can be readily seen by considering the following matrix e
ment ~see Fig. 1!:
s-

h

-
5,
er-

-
w.
-

he

fts
g-

-

d
e
m-
f
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-

of
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e
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S a5^Bm
a uJnu0&, a51,2,3; Jm5C̄gmC. ~57!

As a result of the color group structure only the masslessBm
3

gauge boson of theSU(2) group, corresponding to thes3
generator in two-component notation, contributes to
graph. The result is9,28

S5^Bm
3 uJnu0&5~sgnM !emnr

pr

Ap0

, ~58!

whereM is the parity-conserving fermion mass~or the holon
condensate in the context of the doped antiferromagnet!. In
our case this mass is generateddynamicallyby means of the
US(1) interactions, as we discussed above, provided its c
pling constant is sufficiently strong. The result~58! is exact
in perturbation theory, in the sense that the only modifi
tions coming from higher loops would be a multpilicativ
factor 1/@12P(p)# on the right-hand side, withP(p) the
Bm

3 -gauge-boson vacuum polarization function.28

As discussed in Refs. 9 and 28, theBm
3 color component

plays the role of theGoldstone bosonof the spontaneously
broken fermion-number symmetry. If this symmetry is exa
then the gauge bosonBm

3 remainsmassless. This is crucial
for the superconducting properties,9 given that this leads to
the appearance of amassless polein the electric-current two-
point correlators, the relevant graph being depicted in Fig
This is the standard Landau criterion for superconductivi

It can be shown9 that in the massive-fermion@broken
SU(2)# phase, the effective low-energy theory obtained af
integrating out the massive fermionic degrees of freed
assumes the standard London action for superconducti
the massless excitationf being defined to be thedual of Bm

3 :

]mf[emnr]nBr
3 . ~59!

All the standard properties of superconductivity, Meissn
effect @strongly type II~Ref. 9!#, flux quantization and infi-

FIG. 1. Anomalous one-loop Feynman matrix element, lead
to a Kosterlitz-Thouless-like breaking of the electromagneticUE(1)
symmetry, and thus superconductivity, once a fermion mass
opens up. The wavy line represents theSU(2) gauge bosonBm

3 ,
which remains massless, while the blob denotes an insertion o

fermion-number currentJm5C̄gmC. Continuous lines represen
fermions.

FIG. 2. The lowest-order contribution to the electric curre
current correlator^0uJm(p)Jn(2p)u0&. The blob in the prop-
agator for the gauge bosonBm

3 indicates fermion loop~resummed!
corrections. The blob in each fermion loop indicates an insertion
the currentJm .
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nite conductivity, follow then in a standard way after co
pling to external elelctromagnetic potentials, provided
excitationf ~and henceBm

3 ) is exactly massless.
However, it is known9,10,3 that superconductivity is of a

Kosterlitz-Thouless~KT!-type superconductivity, not charac
terized by a local order parameter. Let us briefly review
arguments leading to this.9 The neutral parity-invariant con

densatê C̄1C12C̄2C2&, generated by the strongUS(1) in-
teraction, isinvariant under theU(1)^ UE(1), as aresult of
the t3 coupling of Bm

3 in the action, and hence does n
constitute an order parameter for the spontaneous brea
of any of these symmetries@the groupU(1) denotes the
SU(2) subgroup associated with theBm

3 gauge boson#. This
is a characteristic feature of our gauge interactions. Puta
charge 2e or 22e order parameters, like the pairing intera
tions among opposite spins in the statistical model of Ref

and 3, e.g.,̂ C1C2&,^C̄1C̄2& @in four-component notation

such fermionic bilinears correspond to^Cg5C&,^C̄g5C̄&,
considered in Ref. 9# will vanish at any finite temperature, i
the sense that strong phase fluctuations will destroy
vacuum expectation values of the respective operators,
to the Mermin-Wagner theorem. Even at zero temperatu
however, such VEV’s yield zero result to any order in pe
turbation theory trivially, due to the fact that in the context
the effectiveBm

3 gauge theory of the brokenSU(2) phase,
the gauge interactions preserve flavor. For a more deta
discussion on the symmetry breaking patterns
(211)-dimensional gauge theories, and the proper defini
of order parameter fields, we refer the reader to
literature.28,9 Thus, from the above analysis, it becomes cl
that gap formation, pairing and superconductivity can oc
in the above model without implying any phase coherenc

C. Instantons and the fate of superconductivity
in the SU„2…‹US„1… model

An important feature of the non-Abelian model is tha
due to the non-Abelian symmetry breaking patternSU(2)
→U(1), theAbelian subgroupU(1)PSU(2), generated by
the s3 Pauli generator ofSU(2), is compact, and may con-
tain instantons,29 which in three space-time dimensions a
like monopoles, and are known to be responsible for givin
small but nonzero massto the gauge bosonBm

3 ,

mB3;e2(1/2)S0, ~60!

whereS0 is the one-instanton action, in a dilute gas appro
mation. Its dependence on the coupling constantg2[gSU(2)
is well known:29

S0;
const

g2
2

. ~61!

For weak couplingg2 the induced gauge-boson mass can
very small. However, even such a small mass is sufficien
destroy superconductivity, since in that case there is
massless pole in the electric current-current correlator
Ref. 24 a breakdown of superconductivity due to instan
effects has been interpreted as implying a ‘‘pseudoga
phase: a phase in which there is dynamical generation
e
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mass gap for the nodal holons, which, however, is not ch
acterized by superconducting properties.

The presence ofmasslessfermions, with zero modes
around the instanton configuration, is known29 to suppress
the instanton effects on the mass of the photon, and un
certain circumstances, to be specified below, the Abe
gauge boson may remain exactly masslesseven in the pres-
ence of nonperturbative effects, thus leading to superconduc
tivity, in the context of our model. This may happen29 if
there are extra global symmetries in the theory, whose c
rents connect the vacuum to the one-gauge-boson state
thus they break spontaneously. This is precisely the cas
the fermion number symmetry considered above.29,28 In such
a case, the massless gauge boson is the Goldstone bos
the ~nonperturbatively! spontaneously broken symmetr
However, in ourSU(2)^ US(1) model,3,24 as a result of the
~strong! US(1) interaction, a mass for the fermions is gene
ated, and hence there is no issue of fermion zero mode
this case. The analysis of the low-energy effective the
presented in Refs. 3 and 24 is based on a Wilsonian tr
ment, where massive degrees of freedom are integrated
in the path integral. This includes the gapful fermions a
the massiveSU(2) gauge bosons. The resulting effectiv
theory, then, which encodes the dynamics of the gap
phase, is a pure gauge theoryU(1)PSU(2), and theinstan-
ton contributions to the mass ofBm

3 are present, given by Eq
~60!, in the one-instanton case. Thus, it seems that, gen
cally, in the context of theSU(2)^ US(1) of Ref. 3, the
nodal gap is actually a pseudogap.

D. Instantons and supersymmetry

We now remark that supersymmetry is known29 to sup-
press instanton contributions. For instance, in certainN51
supersymmetric models with massless fermions, conside
in Ref. 29 the instanton-induced mass of the Abelian ga
boson is given by

mgauge boson;e2S0 ~62!

which is suppressed compared to the nonsupersymm
case~60!.

N52 supersymmetric theories in three space-time dim
sions constitute additional examples of theories where
Abelian gauge boson remains exactly massless, in the p
ence of instantons.29,30Such theories have complex represe
tation for fermions, and hence are characterized by extra
bal symmetries~like fermion number!. In view of our
discussion above, such models will then lead to Kosterl
Thouless superconductivity upon gauging the fermion nu
ber symmetry.

In this respect, the supersymmetric points~53! and ~35!
for which such instanton effects are argued24 to be strongly
suppressed in favor of KT superconductivity, as review
above, would constitute ‘‘superconducting stripes’’ in th
temperature-doping phase diagram of the nodal liquid~see
Fig. 3! It should be stressed that the term ‘‘stripe’’ here
meant to denote a certain region of the temperature-dop
phase diagram of the nodal liquid and should not be c
fused with the stripe structures in real space which cha
terizes the cuprates at special doping concentrations. T
retically, the stripes should have zero thickness, given
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they occur for specific doping concentrations~53! and ~35!.
However, in practice, there may be uncertainties~due to dop-
ing dependences! in the precise value for the parameterDz
entering Eqs.~53! and ~35! which might be responsible fo
giving the superconducting stripe a certain~small! thickness.
A detailed analysis of such important issues is still pendi
It is hoped that due to supersymmetry one should be abl
discuss some exact analytic results at least for zero temp
tures.

We also remark that in supersymmetric theories of
type considered here and in Ref. 13, it is known29 that su-
persymmetry cannot be broken, due to the fact that the W
ten index (21)F, whereF is the fermion number, is alway
nonzero. Thus in supersymmetric theories the presenc
instantons should give a small mass, if at all, inboth the
gauge boson and the associated gaugino. However, in th
dimensional supersymmetric gauge theories it is possible
supersymmetry is broken by having the system in a ‘‘fals
vacuum, where the gauge boson remains massless, ev
the presence of nonperturbative configurations, while
gaugino acquires a small mass, through nonperturbative
fects. The lifetime, though, of this false vacuum is ve
long,29 and hence superconductivity can occur, in the se
that the system will remain in that false vacuum for a ve
long period of time, longer than any other time scale in
problem.

E. Some comments on supersymmetry breaking
at finite temperatures

So far, our discussion was restricted to zero temperat
At any finite temperature, no matter how small, supersy
metry is explicitly broken, and thus the supersymmet
points should be viewed asquantum critical points. How-
ever, the breaking of supersymmetry is associated with

FIG. 3. A possible scenario for the temperature-doping ph
diagram of a charged, relativistic, nodal liquid in the context
spin-charge separation. At certain doping concentrations (dSS) there
are dynamical supersymmetries among the spinon and holon
grees of freedom, responsible for yielding thin ‘‘stripes’’ in th
phase diagram~shaded region! characterized by Kosterlitz-Thoules
~KT! superconductivity without a local order parameter. The d
gram is conjectural at present. It pertains strictly to the nodal liq
excitations about thed-wave nodes of a superconducting gap, a
hence should not be confused with the phase diagram of the e
~high-temperature! superconductor.
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ferent boundary conditions between fermionic and boso
degrees of freedom, and, although the vacuum energy i
longer zero, however a detailed analysis should be mad
order to determine whether the equality of mass gaps
tween the nodal spinons and holons at the supersymm
points is lifted by temperature-dependent corrections. In
context of a supersymmetric theory this issue can be tac
by means of ‘‘thermal superspace’’ methods, which ha
been developed recently in the context of particle-phys
models.31 The generic result of such analyses seems to
that the mass degeneracy among the superpartners is lift
the level of the mass of the various thermal modes, the c
responding lifting being proportional to the temperature. T
thermal superspace method can be applied to the pre
model as well, however, this falls beyond the scope of
present article and is thereby left for a future work.

Moreover, as the crude analysis of Ref. 6 indicates,
nodal gaps would disappear at temperatures which are m
lower than the critical temperature of the~bulk! d-wave su-
perconducting gap. For instance, for a typical set of the
rameters of thet-j model used in Ref. 6, the nodal critica
temperature is of order of a fewmK, which is much smaller
than the 100-K bulk critical temperature of the hig
temperature superconductors. The application of an exte
magnetic field in the strongly type-II high-temperautre sup
conducting oxides, which is another source for expli
breaking of the potential supersymmetry, enhances the c
cal temperature6 up to 30 K, thereby providing a potentia
explanation for the recent findings of Ref. 7, according
which plateaux in the thermal conductivity as a function
the external magnetic field indicate the opening of a gap
the d-wave nodes.

We now remark that, if such situations with broken sup
symmetry are viewed as cases of perturbed supersymm
points, then one might hope of obtaining nonperturbative
formation on the phase structure of the liquid of nodal ex
tations in spin-charge separating scenaria of~gauge! high-
temperature superconductors. This may also prove usefu
a complete physical understanding of the entire pheno
enon, including excitations away from the nodes.

VII. CONCLUSIONS

From the above discussion it is clear that supersymm
can be achieved in the effective continuum field theories
doped antiferromagnetic systems exhibiting spin-cha
separation only forparticular doping concentrations@cf.
Eqs. ~54! and ~35!#. One’s hope is that the ancestor lattic
model will lie in the same universality class~in the infrared!
as the continuum model, in the sense that it differs from
only by the action of renormalization-group irrelevant ope
tors. This remains to be checked by explicit lattice calcu
tions. We should note at this stage that this is a very diffic
problem; in the context of four-dimensional particle-phys
models it is still unresolved.32 However, in view of the ap-
parent simpler form of the three-dimensional lattice mod
at hand, one may hope that these models are easier to ha

By varying the doping concentration in the sample, o
goes away from the supersymmetric point and breaks su
symmetry explicitly at zero temperatures. At finite tempe
tures, or under the influence of external electromagn
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fields at the nodes of thed-wave gap, supersymmetry wi
also be broken explicitly. Therefore realistic systems o
served in nature will be characterized by explicitly brok
supersymmetries even close to zero temperatures. How
there is value in deriving such supersymmetric results in
at such points in the parameter space of the conden
matter system it is possible to obtain analytically some ex
results on the phase structure of the theory. Supersymm
may allow for a study of the quantum fluctuations abo
some exact ground states of the spin-charge separated
tems in a controlled way. Then one may consider perturb
around such exact solutions to get useful information ab
the nonsupersymmetric models.

We have argued that such special points will yield n
phases for the liquid of excitations about nodal points of
d-wave superconducting gaps, which include a phase
which there is only spin transport but not electric curre
transport, as well as a phase in which there are Koster
Thouless-type superconducting ‘‘islands’’ in a temperat
doping phase diagram of the nodal liquid, upon the dyna
cal generation of holon-spinon mass gaps~of equal size!.
The latter property is due to special properties of the sup
symmetry, associated with the suppression of nonpertu
tive effects of the~compact! gauge fields entering the spin
charge separation ansatz~1!. This, of course, needs to b
checked explicitly by carrying out the appropriate instan
.
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calculations in the spirit of the nonperturbative mode
framework of Ref. 12. At present, such nonperturbative
fects can only be checked explicitly in three dimensions
highly extended supersymmetric models.30 It is, however,
possible that some exact results could be obtained at leas
theN52 supersymmetric models which may have some
evance for the effective theory of the nodal liquid at t
supersymmetric points.13 Then, one may get some useful in
formation for theN51 models studied here by viewing the
as supersymmetry-breaking perturbations of theN52 mod-
els. Such issues remain for future investigations, but we h
that the speculations made in the present work provide
ficient motivation to carry out research along these dir
tions.
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