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Spin-lattice-relaxation-like model for superparamagnetic particles
under an external magnetic field

H.-D. Pfannes, A. Mijovilovich, R. Magalha˜es-Paniago, and R. Paniago
Departamento de Fı´sica, Universidade Federal de Minas Gerais, CP 702, 30123-970 Belo Horizonte, Brazil

~Received 22 November 1999!

Small monodomain magnetic particles of uniaxial magnetic anisotropy are considered. The superparamag-
netic relaxation is assumed to happen by coherent rotation of the spins. The results of existing models for the
calculation of superparamagnetic relaxation times are shortly reviewed. A different model based on phonon
interaction with the total spin of the particle under the presence of an external magnetic field is presented and
corresponding relaxation times are calculated and compared with the existing theories. The calculation of
Mössbauer superparamagnetic relaxation spectra in the low-temperature limit and for higher temperatures is
discussed.
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I. INTRODUCTION
Ultrafine single domain magnetic particles are often fou

in soils, rocks, and living organisms or in artificially man
factured materials. They are of great interest in fundame
science and technology because of their nanometric size
magnetic properties that differ from the corresponding b
materials. Many studies, like, e.g., of catalysts, high-den
recording media, ferrofluids, argiles, ceramics, paintin
magnetic bacteria, ferritin, and others, in which nanosiz
magnetic particles are important, have been reported in
literature.

The magnetization at low temperatures in such particle
oriented near easy magnetization directions which co
spond to minima of the magnetic anisotropy energy, se
rated by energy barriers of certain heights. An external fi
changes the relative depths of the minima. As the temp
ture increases, the magnetization can overcome this ba
and turn over to near another easy direction with a cer
magnetization reversal ratet21. The particle is said to ex
hibit a superparamagnetic behavior if the characteristic t
of measurement~time window! of the method used for the
determination of the magnetization is greater thant. Among
various methods, Mo¨ssbauer spectroscopy has been wid
used for the investigation of iron-containing superparam
nets since its characteristic time of approximately 1028 s lies
in the range of superparamagnetic relaxation times at 1
300 K of many species of magnetic nanosized particles.

The overturn of the magnetization to a different orien
tion happens by rotation of the spins. In the rest of the pa
we consider only the case of ‘‘coherent rotation,’’ i.e.,
spins remain in the initial mutual~parallel! configuration
throughout the rotation.1 This mode minimizes the exchang
interaction and is prevalent for sufficiently small particle
For bigger particles, where the anisotropy energy is m
mized, other modes~‘‘buckling’’ or ‘‘curling’’ ! are possible
~see, e.g., Ref. 1!.

For simplicity, we presume the existence of uniaxial a
isotropy, no size dispersion~all particles have the same siz
and shape!, and no interparticle interaction. We assume a
that the orientation of the easy direction of all particles
along thez direction, i.e., when the anisotropy is due, e.g.,
uniaxial form anisotropy, all particles are equally oriented
PRB 620163-1829/2000/62~5!/3372~9!/$15.00
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space. With these assumptions and under the presence
external field with inductionB applied along the1z direc-
tion, the anisotropy energyE is given by1–4

E~Q!5KV sin2~Q!2MSVB cos~Q!, ~1.1!

whereK is the anisotropy constant,V the volume,MS the
~saturation! magnetization per volume of the particles, andQ
represents the angle between the magnetization and the1z
direction.E(Q) exhibits one minimum atQ50 ~magnetiza-
tion parallel to the external field! with energy E(0)
52MSVB and another atQ5p, with higher energyE(p)
51MSVB ~magnetization antiparallel to the external field!.
Above a limit fieldBlim52K/MS only one minimum exists.
For B50 both minima are separated by an energy barrie
height E(p/2)5KV. The probability f (Q)dQ to find the
magnetization oriented towardsQ is given by the thermal
average f (Q)5g(Q)/*0

pg(Q)dQ with g(Q)5exp
@2E(Q)/(kBT)#sinQ.1,2 For high temperature and low field
this is different from zero in the whole range 0<Q<p,
meaning that the magnetization can fluctuate between dif
ent directions. It is our objective to attribute relaxation ra
to these fluctuations of the magnetization direction and
derive explicit expressions for them.

II. CLASSICAL MODELS

The classical theories of superparamagnetism are
models of Ne´el4 and Brown.5 In both models coherent rota
tion of the spins is assumed.

Néel notes that at low temperature and in the presenc
an external field directed along the1z direction, the magne-
tization of P particles of a total ofN identical particles
present, at an instantt, is found near the1z direction and
that of the remaining (N2P) particles near the2z direction.
Corresponding time constantst1 and t2 are introduced by
writing the balance equation

Ṗ52P/t11~N2P!/t2 , ~2.1!

wheret1 and t2 correspond to the passage of magneti
tions from Q50 @lower minimum of E(Q)] to Q5p
@higher minimum ofE(Q)] or vice versa, respectively. With
3372 ©2000 The American Physical Society
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the solution of Eq.~2.1! the total relative magnetizatio
M (t), which is proportional toP2(N2P)52P2N, can be
written as

M ~ t !/MS5N~t12t2!/~t11t2!

12@P~0!2Nt1 /~t11t2!#exp~2t/t!

~2.2!

with t215t1
211t2

21 .
For the calculation oft6 Néel relates the vibrationa

strain energy of the particles to the thermal energy, calcul
the corresponding magnetostrictive energy, and from this
magnetic anisotropy field in which the magnetization p
cesses. The superparamagnetic relaxation ratest6

21 are then
calculated by multiplying the precession rates by the po
lation of the states near the top of the barrier and by
Arrhenius factor.4,6 Including also demagnetization effec
Néel obtains@a[bKV5KV/(kBT)#

t6Neel
21 5~2K/pG!1/2g0MS

21u3Gm1DMS
2ua1/2~12h2!1/2

3~16h!exp@2a~16h!2#, ~2.3!

where g0 is the gyromagnetic ratio (g05gmB /\'ge/m,
mB5Bohr magneton'9.27310224J/T, g5electronicg fac-
tor, e/m specific charge of the electron!, G is Young’s modu-
lus, m is the longitudinal magnetostriction constant,D the
demagnetization factor, andh is the reduced fieldh
5MSB/2K.

Brown5 considers a random walk of the magnetizati
direction similar to normal Brownian motion. From Gilbert
equation for the movement of the magnetization, in whic
dissipative termhdMW /dt and a random-field termdhW (t)/dt
is included, a Fokker-Planck-type equation is derived, wh
solution can be written as a series containing exponenti
decaying time-dependent terms. The corresponding de
rate constants are the eigenvalues of the Fokker-Planck e
tion. In the case of uniaxial symmetry the smallest posit
eigenvaluel, which determines the dominant~longest! re-
laxation time constantt, can then be calculated from th
solution of the following differential equation:

d

dt S ~12x2!
dF~x!

dx
exp@2E~Q!/~kBT!# D

1lF~x!exp@2E~Q!/~kBT!#50 ~2.4!

with l52aMS /(tg0K), where for the dissipation constan
h5(g0MS)21 is assumed. From this equation Brown d
duces assymptotic values of the relaxation rate for higha
!1) and low (a@1) temperature:

a!1:tBr
21'~g0K/MS!a21@12~2/5!a1~48/875!a2

1~2/5!h2a2# ~2.5!

and

a@1:t6Br
21 '~g0K/p1/2MS!a1/2~12h2!~16h!

3exp@2a~16h!2#. ~2.6!

Bessais, Ben Jaffel, and Dormann7 solved the Fokker-
Planck equation by introducing Fourier and Chebyshev
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ries and derived an analytical expression for the smal
positive eigenvalue. An external field was not included
their calculations. By comparing with numerical solutions
agreement within 1% in the range 0.5<a<50 was estab-
lished. The corresponding relaxation rate, assuming ag
h5(g0MS)21, is

tBBD
21 5t0BBD

21 exp~2a! ~2.7!

with

t0BBD
21 5Kg0MS~11a/4!5/2a21. ~2.8!

In the limit of high temperaturet0BBD approaches zero a
doestBrown from Eq. ~2.5!.

A different approach to superparamagnetic relaxation,
pecially adapted to the calculation of Mo¨ssbauer spectra o
superparamagnetic particles, has been proposed by Jone
Srivastava~‘‘many states’’ model8!. With this model also
’’collective excitations’’1 can be taken into account in a co
rect way. The Mo¨ssbauer spectrum~diagonal hyperfine inter-
action! I (v) for a pair of lines,~e.g., lines 1 and 6! of a
six-line spectrum with splitting proportional to thez compo-
nent of the magnetization is

I ~v!}22 Re~WW M211¢! ~2.9!

with the matrix

M5@ i ~v2v i !1G#12R, ~2.10!

where the row vectorWW consists of probabilities~Boltzmann
factors! of the different magnetization directions~attributing
‘‘states’’ Sz to them!, the diagonal matrix@ i (v2v i)1G#1
contains the line positionsv i according to the hyperfine
splitting,G is the natural linewidth of the Mo¨ssbauer isotope
and1¢ is a column vector with all elements equal to 1.R is a
relaxation matrix whose off-diagonal elementsr i j are the
transition probabilities per timewj

i between the statesi and j
( iÞ j ) and whose diagonal elements arer ii 52( jwi

j ( iÞ j ).
The complete Mo¨ssbauer spectrum is obtained by summi
up the separately calculated three two-line spectra from
~2.9!, weighted with the adequate intensity factors, in o
case, e.g., 3:0:1 when theg direction is parallel to thez
direction. A more exact expression, valid when off-diagon
hyperfine interactions are present, implies in the use of
peroperators like in Ref. 9.

Jones and Srivastava8 assume that random fields give ris
to transitions between adjacent states, i.e., only matrix
ments^Sz11uS1uSz& and ^SzuS2uSz11&are different from
zero and hence the matrix is tridiagonal. It is shown that
the continuum limit the Mo¨ssbauer line shape can be o
tained from the numerical solution of a differential equatio
In the low-temperature regime and in the presence of
external field they derive a relaxation ratet6JS

21 ,8

t6JS
21 5Ap1/2a3/2~12h2!~16h!exp@2a~16h!2#,

~2.11!

where A is a parameter proportional to the square of t
random field and could depend onK,MS ,T, etc. In a later
publication6 Jones and Srivastava questioned whether cla
cal fluctuations could be responsible for superparamagn
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relaxation since their correlation times, which are suppo
to be of the order of 10213 s are shorter than the precessi
time of >10212 s that is needed for a magnetization orient
at Q'85 degrees to turn to the other side of the barrier.
our model presented below the superparamagnetic relaxa
is supposed to be due to interaction of the spins with lo
wavelength~low-frequency! phonons and therefore no corr
lation problem arises.

For the case of magnetic molecules with a net spin oS
510 Villain et al.10 calculated a spin-relaxation rate~without
external field! based on normal spin-phonon paramagne
relaxation theory and a Debye model. In the low-temperat
limit the ratetV

21 @approximated from Eq.~2.11! of Ref. 10#
is

tV
21'3uB1

0u2~KV!3~2p\4rv5aS4!21exp~2a!,
~2.12!

where r and v is the density and sound velocity, respe
tively, of the particle andB1

0 is a spin-phonon interaction
constant.

It is our main intention in the following to work out ex
pressions comparable to Eqs.~2.3!–~2.7!, ~2.11!, and~2.12!
based on a spin-phonon-interaction-like relaxation model
contrast to Ref. 10 we include an external field in the cal
lations, take electronic matrix elements into account, and
low for higher-order terms in the spin-phonon coupli
Hamiltonian. Finally we discuss the calculation of Mo¨ss-
bauer spectra of superparamagnetic samples.

III. MODEL

With the simplified assumptions already made abo
~uniaxial anisotropy, coherent rotation, no interparticle int
action! we adopt now the picture for superparamagnetic
laxation described in the following~see also Ref. 3!.

The magnetization of the equally sized~monodispersed!
particles is considered as arising from a large spinS whose
direction relative to the anisotropy axis fluctuates due to
teraction with phonons. In order to reach the opposite e
direction2z the spinS must pass through intermediate le
els.

By analogy with the classical anisotropy energy~1.1!,

E5KV2KV cos2u2MSVB cosu

5KV2A~Scosu!22gmBB~Scosu!, ~3.1!

we write, up to a constant, a spin-HamiltonianHsp for the
~anisotropy! energy ofS in a field B,

Hsp52ASz
222h8Sz , ~3.2!

whereKV5AS2 ~height of energy barrier without externa
field!, MSV5gmBS, and 2h85gmBB (B along the1z di-
rection!. Energy eigenvectors ofHsp are uSz&5um& and ei-
genvalues are

Em52Am222h8m ~3.3!

with m52S,2S11, . . . ,2h8A ~top of barrier!, . . . S
21,S, where we have assumed thath8/A is a positive inte-
ger. The functionEm vs m is shown in Fig. 1. It exhibits a
maximum atm52h8/A with Em(2h8/A)5h82/A. There
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are two energy minima up to a limit fieldhlim8 5AS whereas
for higher fields only one minimum exists. Without extern
field (h850) the barrier height isEB5AS2 and forh8.0 it
can be written as

EB
65AS2~16h!2, ~3.4!

where 0<h[h8/hlim8 <1 and the positive~negative! sign re-
fers to whetherm is on the right~left!-hand side of the maxi-
mum in Fig. 1 (m>2hS or m<2hS, respectively!.

We calculate successive energy differencesEm2Em1k or
Em2Em2n that differ by Dm5k or n on the right- or left-
hand side of the maximum in Fig. 1, respectively,

Em2Em1k5Ak2~112q! ~3.5a!

with m52hS1kq, q50,1, . . . ,S(11h)/k21, and

Em2Em2n5An2~112q! ~3.5b!

with m52hS2nq, q50,1, . . . ,S(12h)/n21, where
both m andq are counted from top to bottom of the barri
potential. In order to obtain an expression for the transit
probabilities between different spin levels ofHsp we write
the Hamiltonian of the spin-phonon system as

H5Hsp1Hph1Hsp2ph , ~3.6!

where the eigenstates of the phonon operatorHph are the
usual phonon states, characterized by phonon occupa
numbersnj . The spin-phonon interactionHsp2ph induces
transitions in the spin and phonon subsystems and may
described by a dynamic spin-Hamiltonian9,11,12

FIG. 1. Anisotropy energyEm vs eigenvaluesm under an exter-
nal field with B52hAS/gmB ~see text!. The arrows indicate an
example of transitionu2S&→uS& via phonon anihilation~left! and
creation~right! with Dm5n5k52.
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TABLE I. ‘‘Standard’’ values used in numerical calculations.Bl
p is measured in energy units cm21.

Diameterd5931029 m590 Å VolumeV5pd3/653.82310225 m3

Anisotropy constantK573104 Jm23 Anisotropy energyKV5AS252.67310220 J
Densityr55000 kgm23 Sound velocityv53000 ms21

Lattice constanta58.4310210 m58.4 Å SpinS53222 ~five spins pera3)
C[3(Bl

p)2/p\4rv551.2631069 (Bl
p/cm21)2 J23 s21 C85C(AS2)352.431010(Bl

p/cm21)2 s21

lmin52a516.8 Å lmax5d590 Å
Ephmax52p\v/lmin51.18310221 J Ephmin52p\v/lmax52.21310222 J
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Hsp2ph5(
l ,p

Bl
pOl

p~«an1«an
2 1••• !, ~3.7!

where«av is an angle-averaged lattice strain operator giv
by (M5crystal mass,v j andkW j5frequency and wave vecto
of phonon modej )

«an5(
j

S \

2Mv j
D 1/2

kj@aj
1exp~2 ikW rW j !1ajexp~ ikW rW j !#.

~3.8!

Ol
p are dynamical crystal-field operators of order l in t

spin variables andBl
p the corresponding coupling constan

to the phonons.11,12 For the present we do not restrict th
order of theOl

p since the superparamagnetic spin-strain
teraction may be described by higher order thanl 518 or l
5210. The phonon creation and annihilation operatorsaj

1

and aj act on the combined spin-phonon statesum, j &
5um&u•••nj•••& leading to phonon matrix elemen
^•••nj11•••uaj

1u•••nj•••&5(nj11)1/2 and ^•••nj

21•••uaj u•••nj•••&5nj
1/2 with the thermal averagenj

5^nj&5$exp@hvj /(kBT)#21%21 ~Bose-Einstein factor!. The

transition rate wm
m8[w(um, j &→um8, j 8&) of a transition

um, j &→um8, j 8& induced byHsp2ph can then be calculate
by the golden rule

wm
m85~2p/\!u^m8, j 8uHsp2phum, j &u2d~Em82Em6\v j !,

~3.9!

where thed function accounts for energy conservation, t
‘‘ 2 ’’ sign is valid for Em8.Em ~phonon annihilation! and
the ‘‘1’’ sign for Em.Em8 ~phonon creation!. In calculating
the matrix elementswm8

m , in principle, one has to invert th
sign of the magnetic field,13 but also the sign of the spin
numbers has to be inverted, so thatHsp2ph remains unal-
tered. Introducing Eqs.~3.8! in ~3.9!, restricting«av to first
order ~one-phonon process! and taking for simplicity only
one term (l ,p) in the electronic matrix element into accoun
results for phonon annihilation in

wm
m85

p

M
~Bl

p!2u^m8uOl
pum&u2(

j

kj
2

v j

d~Em82Em2\v j !

exp~\v j /kBT!21
.

~3.10!

We introduce the Debye model in the long-waveleng
limit ~acoustic branch with dispersion relationv5vq,
v5weighted average of transverse and longitudinal so
velocities! by replacing the sum by an integratio
n

-

d

*0
vDg(v)dv, whereg(v) is the Debye distribution function

g(v)5(3V/2p2v3)v2 and vD5(6p2/V)1/3v, and obtain
~densityr5M /V)

wm
m85

3~Bl
p!2u^m8uOl

pum&u2

2p\4rv5

~Em82Em!3

exp@~Em82Em!/~kBT!#21
,

~3.11!

where Em8.Em for phonon annihilation andEm.Em8 for
phonon creation.

For the ratio of up and down transitions follow

wm
m8/wm8

m
5exp@2(Em82Em)/(kBT)# in accordance with a

Boltzmann population of the levels.
It may be interesting to observe that in the framework

the Debye model the transition probability for small spi
energy differences tends to zero and not to infinity as o
would take for granted intuitively. The reason of this is t
cubic dependence on energy in the transition probabili
which stems from the depletion of low-energy phono
@g(v)}v2# in the Debye model. For small isolated particl
however the minimum one-phonon energy is of the order
2p\v/l. This could be greater than the energy differenc
~3.5! for low k or n values, so that no energy conservin
spin-transition could occur. Nevertheless, for the followi
we presume the presence of sufficient low-energy phon
which stem, e.g., from the matrix in what the superparam
netic particles are embedded.

In order to extract later on concrete values for relaxat
times from the theoretical expressions developed below
fix the numerical values related to the superparamagn
particle listed in Table I. These values correspond to
values used in Ref. 14 for a ferrofluid~powder!, but are also
typical for other superparamagnetic particles.

IV. THREE-LEVEL SYSTEM

With the intention of delineating the basic ideas for c
culating relaxation times we start with a simple three-le
system wherepS , p2hS, andp2S are the fractional popula
tions of the corresponding levels. We have then, by deta
balance, the rate equations

ṗS5w2hS
S p2hS2wS

2hSpS , ~4.1a!

ṗ2S5w2hS
2S p2hS2w2S

2hSp2S , ~4.1b!

ṗ2hS5w2S
2hSp2S1wS

2hSpS2~w2hS
S 1w2hS

2S !p2hS
~4.1c!

and the condition
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pS1p2hS1p2S51. ~4.2!

With Eqs.~4.2! and ~4.1b! one can eliminatep2hS from the
first equation and obtains a second-order linear differen
equation forpS

p̈S1 ṗS$@11exp~2a1!#w2hS
S 1@11exp~2a2!#w2hS

2S %

1pSw2hS
S w2hS

2S $@11exp~2a1!#

3@11exp~2a2!#21%

5w2hS
S w2hS

2S exp~a2!, ~4.3!

wherea65EB
6/kBT. The solution is

pS5c1Sexp~2l1t !1c2Sexp~2l2t !1exp~2a2!

3$@11exp~2a1!#@11exp~2a2!#21%21,

~4.4!

where the constantsc1S andc2S depend on the initial condi
tions, and the two characterisitic frequencies are

t1,2
215l1,25~A11A2!/26@w2hS

S w2hS
2S 1~A12A2!2/4#1/2

~4.5!

with A65@11exp(2a6)#w2hS
6S . For p2S one deduces an

identic homogeneous equation and thus the same chara
istic frequenciest1,2

21 . The rate Eqs.~4.1! and consequently
t1,2

21 are invariant under a simultaneous change of (S,h)
→(2S,2h). It is not possible from Eq.~4.1! to define re-
laxation times liket1 andt2 and also not a single relaxatio
time unless one characteristic timet1,2 in Eqs.~4.5! and~4.4!
is predominant. In general, the return ofpS andp2S to equi-
librium after release of a transient is determined by b
timest1 andt2.

Another possibility to define relaxation times, in the ca
of small perturbations, is to focus on a pair of levels, in o
case especiallyuS& and u2S&, under the assumption that th
occupation of all other levels remains constant~stationarity
condition!. In this case, in fact, we deal with a pseudo-tw
state relaxation system. Thenṗ2hS50 in Eq.~4.1c! and from
this we obtain10

J[2 ṗS

5wS
2hSpS2w2hS

S p2hS

5w2hS
2S p2hS2w2S

2hSp2S

5 ṗ2S ~4.6!

and can therefore expresspS by p2S ,

pS5JL1Gp2S , ~4.7!

with

L5~wS
2hS!211~w2hS

S /wS
2hS!~w2hS

2S !21 ~4.8!

and

G5~w2hS
S /wS

2hS!~w2S
2hS/w2hS

2S !5exp~a1!exp~a2!.
~4.9!

We have thereforeJ5(pS2Gp2S)/L and the equations
al

ter-

h

e
r

-

ṗS2 ṗ2S522J52~2/L!~pS2Gp2S! ~4.10a!

and

ṗS2G ṗ2S52J2G.J5@~11G!/2#~ ṗS2 ṗ2S!
~4.10b!

which results, up to a constant, inpS2Gp2S5@(11G)/
2#(pS2p2S) and ṗS2 ṗ2S5(22/L)@(11G)/2#(pS2p2S).
Thus we obtain a relaxation rate

t215~11G!/L. ~4.11!

Sinceṗ2hS50 we can regardpS andp2S as belonging to a
two-level system and obtain, in analogy with Eq.~2.1! from
Eqs. ~4.6! and ~4.9! ṗS5p2S /t22pS /t152J52pS /L
1Gp2S /L and thus

t15L, t25L/G andt215t1
211t2

21 ~4.12!

with t21 in accordance with Eq.~4.11!. For the three-level
system, suppressing the electronic matrix elements, the re
is thus

t6
215CEB1

3 EB2
3

3
exp~2a6!

EB2
3 @12exp~2a1!#1EB1

3 @12exp~2a2!#
.

~4.13!

For h50

t215
C8

2

exp~2a!

12exp~2a!
, ~4.14!

where a5EB /(kBT)5AS2/(kBT) and C85C(AS2)3 ~cf.
Table I!. An equivalent formula has been given in Ref. 14.
the limit of high temperature (a→0), t21 from Eq. ~4.14!
tends to infinity, which intuitively is physically suggestive
AssumingBl

p510 cm21 the pre-exponential factorC8/2 in
Eq. ~4.14! is approximately 1012 s21 which is within the
correct order of magnitude. However, as we will see belo
respecting the suppressed electronic matrix elements lea
completely unrealistically fast relaxation rates. We mu
therefore consider the multilevel system according to
‘‘real spin’’ S.

V. MULTILEVEL SYSTEM

In general, instead of three levels a multilevel system w
2S11 levels is present~6445 levels in our example!. We
calculate now the relaxation timest6 under the stationarity
conditionsṗi50,iÞS,2S. For simplicity we only consider
spin transitions with constant quantum number differen
Dm ~variable energy differences!, where Dm5k on the
right-hand side in Fig. 1 andDm5n on the left-hand side.
The corresponding energy differences are given by Eq.~3.5!.
In analogy to Eq.~4.1! the master equations in the differe
regions ofm in Fig. 1 read: at the right-hand side in Fig. 1

ṗS5wS2k
2S pS2k2wS

S2kpS ~5.1a!

with stationarity conditionṗm50⇒
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wm
m2kpm2wm2k

m pm2k5wm1k
m pm1k2wm

m1kpm[Jk ,
~5.1b!

m5S2k,S22k, . . . ,2hS1k; ~5.1c!

at the top of barrier 05 ṗ2hS⇒

w2hS1k
2hS p2hS1k2w2hS

2hS1kp2hS

5w2hS
2hS2np2hS2w2hS2n

2hS p2hS2n[J2hS;

~5.2!

at the left-hand side in Fig. 1,

ṗ2S5w2S1n
2S p2S1n2w2S

2S1np2S ~5.3a!

with stationarity conditionṗm50⇒

wm
m2npm2wm2n

m pm2n5wm1n
m pm1n2wm

m1npm[Jnm52hS

2n, . . . ,2S1n. ~5.3b!

From these recursion formulas one obtains

pS5JkLk1JnLn1Gp2S ~5.4!

with

Lk5~wS
S2k!211~wS2k

S /wS
S2k!~wS2k

S22k!211~wS2k
S /wS

S2k!

3~wS22k
S2k /wS2k

S22k!~wS22k
S23k!211•••1~wS2k

S /wS
S2k!

3~wS22k
S2k /wS2k

S22k!•••~w2hS1k
2hS12k/w2hS12k

2hS1k !~w2hS1k
hS !21,

Ln5~wS2k
S /wS

S2k!•••~w2hS
2hS1k/w2hS1k

2hS !

3@~w2hS
2hS2n!211~w2hS2n

2hS /w2hS
2hS2n!~w2hS2n

2hS22n!21

1•••1~w2hS2n
2hS /w2hS

2hS2n!•••~w2S1n
2S12n/w2S12n

2S1n !

3~w2S1n
2S !21# ~5.5!

and

G5~wS2k
S /wS

S2k!•••~w2hS
2hS1k/w2hS1k

2hS !~w2hS2n
2hS /w2hS

2hS2n!

3~w2S
2S1n/w2S1n

2S !

5exp~a1!exp~2a2!. ~5.6!

In the calculation ofLk andLn we have now to include
the electronic matrix elements. Because of Eqs.~5.1!–~5.3!,
Jk5Jn and thereforepS - Gp2S5Jk(Lk1Ln). With Eq.
~5.5! and in complete analogy to Eqs.~4.6!–~4.12! we obtain

Lk1Ln5
exp@a1#

C~Ak2!3 (
i 50

S(11h)/k21

exp@2Ak2~11 i !2/~kBT!#

3
exp@Ak2~112i !/~kBT!#21

~112i !3u^2hS1kiuS2
k u2hS1k~ i 11!&u2

1
exp~a1!

C~An2!3 (
i 50

S(12h)/n21

exp@2An2i 2/~kBT!#
3
12exp@2An2~112i !/~kBT!#

~112i !3^2hS2n~ i 11!uS2
n u2hS2ni&u2

.

~5.7!

With C8[C(AS2)3 ~cf. Table I! this leads to a genera
expression fort6 ,

t65
exp~2a6!

C8 HS S

kD 6

(
i 50

S(11h)/k21

expF2aS k

SD 2

i 2G

3

12expF2aS k

SD 2

~112i !G
~112i !3u^2hS1kiuS2

k u2hS1~k~ i 11!&u2

1S S

nD 6

(
i 50

S(12h)/n21

expF2aS n

SD 2

i 2G

3

12expF2aS n

SD 2

~112i !G
~112i !3^2hS2n~ i 11!uS2

n u2hS2ni&u2J .

~5.8!
The electronic matrix elements contained in Eq.~5.8! depend
strongly on the involved quantum numbers. Because
S2uS,m&5@S(S11)2m(m21)#1/2uS,m21& and S(S11)
2m(m21)5(S1m)(S2m11) we can write for the matrix
elements

u^2hS1kiuS2
k u2hS1k~ i 11!&u2

5
@S~11h!2ki#! @S~12h!1k~ i 11!#!

@S~11h!2k~ i 11!#! @S~12h!1ki#!

~5.9a!
and

u^2hS2n~ i 11!uS2
n u2hS2ni&u2

5
@S~12h!2ni#! @S~11h!1n~ i 11!#!

@S~12h!2n~ i 11!#! @S~11h!1ni#!
.

~5.9b!

VI. RESULTS AND DISCUSSION

In order to analize the general expression~5.8! we treat
first the case of zero external field. Forh50, assumingk
5n and introducing Eq.~5.9! in Eq. ~5.8! we find

t5
2 exp~a!

C8
S S

kD 6

3 (
i 50

S/k21 ~112i !23expF2aS k

SD 2

i 2G
$~S2ki !~S2ki21!•••@S2ki2~k21!#%

3

12expS 2aS k

SD 2

~112i ! D
@~S1ki1k!~S1ki1k21!•••~S1ki11!#

. ~6.1!

We estimate this for severalk values. For highk or n values,
e.g., for n5k5S ~three-level model above! the denomina-
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tors are of the order (2S)! and thust tends to zero. The cas
kÞn is not fundamentally different fromk5n. We start
therefore consideringk5n51 and estimatet at

t.
2 exp~a!

C8
S6

12exp~2a/S2!

S~S11!
'

2a

C8
S2exp~a!.

~6.2!
f
4

il-
i

th

of
In the usual temperature rangeT5121000 K, and withKV
from Table I, a varies from approximately 2000 to 2 an
a/S2 from 231024 to 231027 so that we can estimate
lower limit for t, using the values of Table I, ast>8.66
31024 s•(B1

1/cm21)22a•exp(a). In a wide range ofB1
1 this

is far too long compared to the experimental values.
For k52 we obtain from Eq.~6.1!
t5
2 exp~a!

C8
S S

2D 6

(
i 50

S/221

exp~24a i 2/S2!
12exp@24a~112i !/S2#

~112i !3@~S22i !~S22i 21!~S12i 12!~S12i 11!#
. ~6.3!
cor-

x-
14.

on-
ical

.

g

or
As an upper limit oft we estimate

t,~1.6/8C8!a exp~a! ~6.4a!

and thus, with the values of Table I,

t'@8.33310212 s/~B2
2/cm21!2#•a exp~a!. ~6.4b!

If we concisely writet21 in the form~6.5! as it is often done
assuming a weakly varying prefactort0

21 we obtain in the
temperature range 121000 K

t21[t0
21exp~2a!

5~63107•••10! s21@B2
2/cm21#2)•exp~2a!

~6.5!

or, e.g., forT5300 K (a56.45), where the transition o
slow to fast relaxation in the Mo¨ssbauer spectra of Ref. 1
occurs,t21'2.943107 s21(B2

2/cm21)2, which for B2
2<1

cm21 would correspond to a completely static Mo¨ssbauer
pattern.

We have no detailed information on the value ofB2
2. The

value k52 , i.e., a second-order dynamical spin Ham
tonian, describes normal spin-orbit coupling treated
second-order perturbation theory for which a value of
coupling parameterB2

2 in the range of 0.2 cm21 for S-state
ions, e.g., Fe31, may be adequate.12 This results int0

21

'2.43106•••9 s21 in contrast to the experimental range
n
e

(1010•••13) s21. However, for Fe21 the coupling constantB2
2

could be considerably higher, e.g., forB2
2'13 cm21, which

seems to be in a reasonable range, we would obtain the
rect order of magnitude oft0

21. In this caset21(a56.45)
553109 s21 which corresponds to an intermediate rela
ation Mössbauer pattern as experimentally found in Ref.

For comparison we also consider the case ofk53 and
obtain from Eq.~6.3! the approximation

t'~1/27C8S2!a exp~a!

'1.5310219 s~B3
3/cm21!22a exp~a!. ~6.6!

It seems to be reasonable that the value of the coupling c
stants decreases strongly with the order of the dynam
spin Hamiltonian involved. If we take, e.g.,B3

351024
•B2

2

with B2
2513 cm21 we obtain for the relaxation ratet0

21

'1.831010•••13 s21, i.e., the correct order of magnitude
However, fork.3 the values ofBl

p needed for obtaining
reasonablet0 values are unrealistically small. Considerin
the differentBl

p values above we adoptk52 as a probable
value for the order of the dynamical spin Hamiltonian.

An external field is easily included in the calculations. F
k5n52 we obtain from Eqs.~5.8! and~5.9! the final result,

t65C821exp~a6!~S/2!6@s~1h!1s~2h!# ~6.7!

with
s~6h!5 (
i 50

(S/2)(16h)21 expF2aS 2

SD 2

i 2G
~112i !3@S~16h!22i #@S~16h!22i 21#

12expF2aS 2

SD 2

~112i !G
@S~17h!12i 12#@S~17h!12i 11#

. ~6.8!
In complete analogy to the caseh50 and in good approxi-
mation up toh'0.95 we estimatet6 as

t6'~0.2C821!a~12h2!22exp~a6!. ~6.9!

In terms of a relaxation rate, withC8 from Table I andB2
2

513 cm21 this results in our final estimation
t6
21'231013 s21a21~12h2!2exp~2a6!. ~6.10!

Comparing Eqs.~6.4!–~6.10! with the formulas ~2.3!,
~2.6!, ~2.11!, and ~2.12! given by Néel, Brown, and others,
we state that the most prominent feature int21, namely the
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presence of an Arrhenius-like factor exp(2a) is also found
in our formula. Moreover, since in Eqs.~6.4! and ~6.9! t is
proportional toa, the asymptotic behavior at high temper
ture (t→0 for a→0) is the same as in Eqs.~2.5!, ~2.7!, and
~2.12!, but different from Eqs.~2.3! and ~2.6!. Though in
principle we can define a singlet only in the low-
temperature limit, the formulas that we deduced are me
ingful also at higher temperatures.

The field dependence in our formulas is similar to that
Brown’s expression. Ourt6

21 is proportional to (12h2)(1
1h)(12h) whereast6Br

21 from Eq. ~2.6! is proportional to
(12h2)(16h). For t2

21 the field dependent prefactor term
differ by a factor 2, at most~for h→1), and fort1

21 our
expression tends slightly faster to zero as Brown’s. Howe
t6

21(h51) calculated without approximations directly fro
Eq. ~5.8! remains finite, which seems to be more corre
physically.

The phonon energies (h50) involved in the spin-
transitions range fromE6S722E6S53.3310223J ~step at
minimum of barrier potential! to E02E6251.03310226J
~step near to the top of the barrier!. The minimum phonon
energy isEphmin52.21310222J ~cf. Table I!. Thus for ~di-
rect! transitions near to the top of the barrier phonons with
energy of approximately 531025

•Ephmin are necessary. We
postulated the presence of such low energy phonons.
frequency of these phonons would be of the order of7

2531010 s21. We also believe that there is no correlatio
problem present as it was raised in Ref. 6. However, wit
the scope of the above developed model no superparam
netic relaxation would occur in nanosized magnetic partic
that are ideally isolated from each other or from a heat b

Once disposing ont6
21 from Eqs.~6.8! or ~6.10!, one is

able, at least in the low-temperature regime, to calculate
corresponding superparamagnetic Mo¨ssbauer relaxation pat
tern. The only ‘‘free’’ parameter is the coupling constantB2

2.
This can be done in the simplest case by using the form
isms described in Refs. 9 and 15–17 with an effective s
S5 1

2 . Depending on the absolute values oft1 andt2 , both
slow and fast relaxation can be present in the spectrum a
same temperature.18 When the characteristic time of th
Mössbauer method is longer thant6 , a static~six-line! spec-
trum is observed whose splitting is reduced by the fac
(t12t2)/(t11t2). Since ourt6 from Eq. ~6.10! depends
stronger onh than Brown’s expression~2.6! and is propor-
tional to a this effect should manifest itself more distinct
than hitherto supposed.

For somewhat higher temperatures the fluctuations oS
around the anisotropy directions can be approximately ta
into account by diminishing the magnetic splitting as a fun
tion of the temperature according to the thermal aver
value~collective excitations, Ref. 1!. The correct way, how-
ever, to simulate a Mo¨ssbauer spectrum for arbitrary tem
perature and hyperfine interaction would consist in using
‘‘real’’ spin S in a superoperator formalism like in Refs. 9
17, where the relaxation supermatrix would contain the tr
sition probabilities ~3.11!. Unfortunately, this straightfor-
ward procedure is not feasible since the method involves
inversion of a non-Hermitian complex matrix of huge ord
vis. 3.33108 in our case (S53222, isotope57Fe). However,
for most superparamagnetic materials the magnetic hype
n-
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interaction is larger than the electric quadrupole interact
and then in calculating a spectrum the simplified express
~2.9! can be used. With this the inversion of a matrix who
order is only 2S11 is required and this is feasible on
workstation.

In real samples most of the assumptions made in the
ginning are not fulfilled, but in some cases the simulation
spectra can be easily adapted to the real conditions by s
ming up discrete spectra, e.g., to obtain powder average
to introduce size dispersion. However, the presence of v
ous easy directions is more difficult to take into accou
Other difficulties remain also, like the influence of the su
face and surface-near regions in the particles which may
sult in different anisotropy constants, hyperfine fields, e
Particle interaction has been discussed by Mo”rup and
Tronc19 in terms of magnetic dipole interaction between t
particles.

At very low temperature, in principle, there exists the po
sibility that the spinS fluctuates between states on oppos
sides of the barrier, without surmounting it, by ‘‘spin tunne
ing,’’ e.g., by phonon assisted ‘‘macroscopic quantum tu
neling’’ ~MQT!.20,21 It seems, however, that MQT is onl
present in very small (S'102100) ideal clusters, such a
crystals consisting of magnetic molecules.22,23

VII. CONCLUSION

The thermally activated superparamagnetic relaxation
the magnetization of small noninteracting identical partic
under the influence of an external magnetic field can be
scribed by a spin-phonon-interaction-like model in which t
total spinS of the monodomain particle interacts with stra
fields of the crystal. Transition probabilities between theSz
levels are calculated on the basis of a dynamical spin Ha
tonian and the Debye model. For low temperatures a tw
state relaxation system is considered, where the relaxa
occurs between the statesuS& and u2S& and relaxation rates
t6

21 are introduced and calculated for transitions with co
stantDSz . It is found thatDSz52 and a spin-phonon cou
pling constant of 13 cm21 reproduces the experimental va
ues of t6

21 . The so deduced expression exhibits the sa
Arrhenius-like factor and a similar, but somewhat stee
dependence on the external field, as the classical formula
Néel and Brown, derived on the ground of completely d
ferent models. The temperature dependence of the
exponential factor of our expression is meaningful also
high temperatures. It is possible, on the basis of the s
transition probabilities introduced, to calculate Mo¨ssbauer
spectra valid at arbitrary temperatures.
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