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Spin-lattice-relaxation-like model for superparamagnetic particles
under an external magnetic field
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Small monodomain magnetic particles of uniaxial magnetic anisotropy are considered. The superparamag-
netic relaxation is assumed to happen by coherent rotation of the spins. The results of existing models for the
calculation of superparamagnetic relaxation times are shortly reviewed. A different model based on phonon
interaction with the total spin of the particle under the presence of an external magnetic field is presented and
corresponding relaxation times are calculated and compared with the existing theories. The calculation of
Mossbauer superparamagnetic relaxation spectra in the low-temperature limit and for higher temperatures is
discussed.

[. INTRODUCTION space. With these assumptions and under the presence of an
Ultrafine single domain magnetic particles are often foundexternal field with inductiorB applied along thet z direc-
in soils, rocks, and living organisms or in artificially manu- tion, the anisotropy energi is given by
factured materials. They are of great interest in fundamental )
science and technology because of their nanometric size and E(©)=KVsir(®)—-MgVBcog0), 1.0

magnetic properties that differ from the corresponding bulkynere K is the anisotropy constany/ the volume,Mg the

materials. Many studies, like, e.g., of catalysts, high'de”Sit¥saturatiom magnetization per volume of the particles, @hd

recording media, ferrofluids, argiles, ceramics, paintingsenresents the angle between the magnetization and the
magnetic bacteria, ferritin, and others, in which ”anos'ze%irection.E() exhibits one minimum a® =0 (magnetiza-

magnetic particles are important, have been reported in thg, parallel to the external fieJdwith energy E(O)
literature. L ) ) .=—MgVB and another a® =1, with higher energye()

The magnetization at low temperatures in such particles is_ | M<VB (magnetization antiparallel to the external field
oriented near easy magnetization directions which COMeapove a limit field By, =2K/M ¢ only one minimum exists
spond to minima of .the magnetic an?sotropy energy, Sepdeq g0 poth mining are separated by an energy barrier of
rated by energy barriers of certain heights. An external fiel eight E(m/2)=KV. The probability f(®)d® to find the

changes the relative depths of the minima. As the tempera- agnetization oriented toward3 is given by the thermal

ture increases, the magnetization can overcome this barr!%rverage f(®)=g(®)/fgg(®)d® with 9(®)=exp

and turn over to near another easy direction with a certairi P \ .
magnetization reversal rate *. The particle is said to ex- EhisE(ig )/d(il;?:e?;ﬂtné)m onerrc:“?nh ttﬁénsvirggrfaggd I!oEw<f7|;eIds

hibit a superparamagnetic behavior if the characteristic tim . o .
of measurementtime window of the method used for the meaning that the magnetization can fluctuate between differ-
ent directions. It is our objective to attribute relaxation rates

determination of the magnetization is greater thaAmong to these fluctuations of the magnetization direction and to
various methods, Mgsbauer spectroscopy has been widely,” - - : 9
derive explicit expressions for them.

used for the investigation of iron-containing superparamag-

nets since its characteristic time of approximately 46 lies

in the range of superparamagnetic relaxation times at 100— Il. CLASSICAL MODELS

300 K of many species of magnetic nanosized particles. The classical theories of superparamagnetism are the
The overturn of the magnetization to a different orienta-models of Nel* and Brown® In both models coherent rota-

tion happens by rotation of the spins. In the rest of the papefion of the spins is assumed.

we consider only the case of “coherent rotation,” i.e., all  Ngel notes that at low temperature and in the presence of

spins remain in the initial mutualparalle) configuration  an external field directed along thez direction, the magne-

throughout the rotatioh This mode minimizes the exchange tization of P particles of a total ofN identical particles

interaction and is prevalent for sufficiently small part|cles.presem' at an instant is found near thet z direction and

Fc_)r bigger particles, whe_re the anisotropy energy IS MiNiypat of the remainingN — P) particles near the- z direction.

mized, other modeg‘buckling” or “curling” ) are possible  cqresponding time constants. and 7- are introduced by

(see, e.g., Ref.)1 _ o writing the balance equation
For simplicity, we presume the existence of uniaxial an-
isotropy, no size dispersiofll particles have the same size P=—Pl7,+(N=P)/7_, 2.1

and shapg and no interparticle interaction. We assume also

that the orientation of the easy direction of all particles iswhere 7, and 7- correspond to the passage of magnetiza-
along thez direction, i.e., when the anisotropy is due, e.g., totions from ®=0 [lower minimum of E(®)] to O=mx
uniaxial form anisotropy, all particles are equally oriented in[higher minimum ofE(®)] or vice versa, respectively. With
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the solution of Eq.(2.1) the total relative magnetization ries and derived an analytical expression for the smallest
M(t), which is proportional td®—(N—P)=2P—N, can be positive eigenvalue. An external field was not included in

written as their calculations. By comparing with numerical solutions an
agreement within 1% in the range &x<50 was estab-
M(t)/Ms=N(7,—7)/(74+7) lished. The corresponding relaxation rate, assuming again
— -1 ;
+2[P(0) = N7 /(74 +7_)]exp—t/7) 7=(70Ms) 7, is

(2.2 Ts8D= ToBBDEXP — @) 2.7

with 7~ t=7 1+ 771, with

For the calculation ofr. Neel relates the vibrational
strain energy of the particles to the thermal energy, calculates Toan=K YoM (1+ a/4)*2a 1, (2.9

the corresponding magnetostrictive energy, and from this the . _
magnetic anisotropy field in which the magnetization pre-In the limit of high temperaturerogsp approaches zero as
cesses. The superparamagnetic relaxation ratésre then  d€S7srown from Eq. (2.5.

calculated by multiplying the precession rates by the popu- A (?Ilﬁergntta%ptroa;ﬁh to Isur;etr_pararfr.llgggenc relaxa;uon, fes-
lation of the states near the top of the barrier and by ap€cially adapted to the calcuiation o auer spectra o

Arrhenius factof® Including also demagnetization effects superparamagnetic particles, has been proposed by Jones and
Néel obtains[ a= BKV=KV/(ksT)] Srivastava(“many states” modé)). With this model also

"collective excitations’® can be taken into account in a cor-
71 heo= (2KITG) Y2y Mg Y|3G u+ DMZ a¥3(1—h?) 2 rect way. The Mesbayer spectru(niiago_nal hyperfine inter-
action |(w) for a pair of lines,(e.g., lines 1 and Y60of a
X (1*+h)exd — a(1*h)?], (2.3)  six-line spectrum with splitting proportional to tlrecompo-

where vy, is the gyromagnetic ratio yp=gug/h~ge/m, nent of the magnetization is

g =Bohr magneton=9.27x 10~ 24J/T, g= electronicg fac-

tor, e/m specific charge of the electrpi is Young’s modu-

lus, u is the longitudinal magnetostriction constabt,the  with the matrix
demagnetization factor, andh is the reduced fieldh

=MgB/2K. M=[i(o—w;)+T']1-R, (2.10

Browr® considers a random walk of the magnetization _ ]

direction similar to normal Brownian motion. From Gilbert’s Where the row vectow consists of probabilitieBoltzmann
equation for the movement of the magnetization, in which dactorg of the different magnetization directiorattributing

dissipative termydM/dt and a random-field terrdf(t)/dt ~ States” S, to them), the diagonal matrii(w—wi) +I']1

is included, a Fokker-Planck-type equation is derived, Whosgor.]tf.iInS the line posmo_nsoi .accordlng"to the hyperﬂne
solution can be written as a series containing exponentiallyP!tting. I' is the natural linewidth of the Mssbauer isotope,
decaying time-dependent terms. The corresponding decadndl is a column vector with all elements equal toRLis a
rate constants are the eigenvalues of the Fokker-Planck equi@laxation matrix whose off-diagonal elements are the
tion. In the case of uniaxial symmetry the smallest positivetransition probabilities per time/; between the statésandj
eigenvalue\, which determines the dominafibngesj re- (i #j) and whose diagonal elements are= —ij{(i #]).
laxation time constant-, can then be calculated from the The complete Mesbauer spectrum is obtained by summing

|(w)oc—2 RgWM ~11) (2.9

solution of the following differential equation: up the separately calculated three two-line spectra from Eq.
(2.9, weighted with the adequate intensity factors, in our
d dd(x) case, e.g., 3:0:1 when the direction is parallel to the

Il P ) _
dt (1=x%) dx X ~E(0)/(keT)] direction. A more exact expression, valid when off-diagonal

hyperfine interactions are present, implies in the use of su-
+AP(x)exd —E(0)/(kgT)]=0 (24 peroperators like in Ref. 9.

with A\ =2aMg/(7y0K), where for the dissipation constant  Jones and Srivasta@as;ume that random fields give rise
7=(yoMg) ! is assumed. From this equation Brown de-t0 transitions between adjacent states, i.e., only matrix ele-

duces assymptotic values of the relaxation rate for high ( Ments(S;+1[S.|S;) and(S,|S_|S,+1)are different from

<1) and low (@>1) temperature: zero and hence the matrix is tridiagonal. It is shown that in

the continuum limit the Mesbauer line shape can be ob-

a<1:7-grl~(yoK/M sa Y1—(2/5) a+(48/875a° tained from the numerical solution of a differential equation.

- In the low-temperature regime and in the presence of an

+(2/5h%a’] (2.9 external field they derive a relaxation ratels,?
and
71 5s= A2 1-h?) (1= h)exd — a(1+h)?],
a>1:7. 5.~ (yoKI T Mg) aA(1—h?)(1+h) (2.11)
xexy — a(1+h)2]. (2.6) WhereA is a parameter proportional to the square of the

random field and could depend ¢qMg,T, etc. In a later
Bessais, Ben Jaffel, and Dormdnsolved the Fokker- publicatior? Jones and Srivastava questioned whether classi-
Planck equation by introducing Fourier and Chebyshev seeal fluctuations could be responsible for superparamagnetic
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relaxation since their correlation times, which are supposed
to be of the order of 10'® s are shorter than the precession m
time of =10 '?s that is needed for a magnetization oriented
at @ ~85 degrees to turn to the other side of the barrier. In
our model presented below the superparamagnetic relaxation
is supposed to be due to interaction of the spins with long-
wavelength(low-frequency phonons and therefore no corre-
lation problem arises.

For the case of magnetic molecules with a net spii® of
=10 Villain et al1° calculated a spin-relaxation rateithout
external field based on normal spin-phonon paramagnetic
relaxation theory and a Debye model. In the low-temperature
limit the rater, * [approximated from E¢(2.11) of Ref. 10|
is

AS*(1-hy’

7 1~ 3|BYAKV)3 (274 pvBasSh) ~lexy — a),
(2.12

where p and v is the density and sound velocity, respec-
tively, of the particle ancBg is a spin-phonon interaction
constant.

It is our main intention in the following to work out ex- —
pressions comparable to Eq2.3)—(2.7), (2.11), and(2.12 left | right [S>
based on a spin-phonon-interaction-like relaxation model. In Am=n | Am=k
contrast to Ref. 10 we include an external field in the calcu-
lations, take electronic matrix'elements'into account, angl al- f6 1 Anisotropy energ,, vs eigenvalues under an exter-
low for higher-order terms in the spin-phonon coupling nal field with B=2hASgug (see text The arrows indicate an

Hamiltonian. Finally we discuss the calculation of &4e example of transitio—S)—|S) via phonon anihilatior{left) and
bauer spectra of superparamagnetic samples. creation(right) with Am=n=k=2.

ll. MODEL are two energy minima up to a limit fiek}{;,,= AS whereas

: P - or higher fields only one minimum exists. Without external
With the simplified assumptions already made aboveffield (h'=0) the barrier height iEg—AS? and forh’ >0 it

(uniaxial anisotropy, coherent rotation, no interparticle inter- :
action we adopt now the picture for superparamagnetic refan be written as
laxation described in the followingsee also Ref.)3 . 2
The magnetization of the equally sizéshonodispersed Eg =AS(1=h)?, @4
particles is considered as arising from a large spinhose  \yhere O<h=h'/h};,<1 and the positivénegative sign re-
direction relative to the anisotropy axis fluctuates due to inferg to whethem is on the right(left)-hand side of the maxi-
teraction with phonons. In order to reach the opposite easy,ym in Fig. 1 m=—hS or m<—hS, respectively.
direction —z the spinS must pass through intermediate lev-  \ye calculate successive energy differenggs- E,p . or

els. . . . En—En_, that differ by Am=k or n on the right- or left-
By analogy with the classical anisotropy energyl), hand side of the maximum in Fig. 1, respectively,

E=KV-KV C0§9_ MSVB cosé Em_ Em+k:Ak2(1+2q) (353
=KV—A(Scosf)*~gueB(Scosd), (B ith m=—hSt+kq, gq=0,1,... S(1+h)/k—1, and

we write, up to a constant, a spin-Hamiltoniey, for the )
(anisotropy energy ofSin a field B, Em—Em-n=An°(1+20q) (3.5b

_ , with- m=-hS-nq, q=0,1,... S(1—h)/n—1, where
Hsp= —A§—2h Sz, 3.2 bothm andq are counted from top to bottom of the barrier
whereKV=AS’ (height of energy barrier without external potential. In order to obtain an expression for the transition
field), MgV=gugS, and 2h’=gugB (B along the+ z di- probabilities between different spin levels df, we write
rection. Energy eigenvectors dfis, are|S,)=|m) and ei- the Hamiltonian of the spin-phonon system as
genvalues are

H=Hgp+HpntHsp_pn, (3.6

Em=—Am?—2h'm (3.3 .
where the eigenstates of the phonon operaigy are the

with m=-S,—S+1,...,—h’A (top of barriej,... S usual phonon states, characterized by phonon occupation
—15S, where we have assumed thgtA is a positive inte-  numbersn;. The spin-phonon interactioHls,,, induces

ger. The functiorkE,, vs mis shown in Fig. 1. It exhibits a transitions in the spin and phonon subsystems and may be
maximum atm=—h'/A with E,,(—h'/A)=h’?/A. There described by a dynamic spin-Hamiltonfdr'2
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TABLE I. “Standard” values used in numerical calculatiora) is measured in energy units crh

Diameterd=9x10"° m=90 A VolumeV=7d%6=3.82x10" % m®
Anisotropy constanK=7x10* Jm 3 Anisotropy energyKV=AS=2.67x10 2°J
Density p=5000 kgm 3 Sound velocityy = 3000 ms *

Lattice constana=8.4x10 *®m=8.4 A SpinS= 3222 (five spins pem®)
C=3(BP)%mh*pv°=1.26x10° (BP/cm )2 J3s?  C'=C(AS)3=2.4x10"YBP/cm )2 s7?
Amin=2a=16.8 A Amax=0=90 A

Ephmar= 27AV/ N\ yin=1.18< 10721 J Ephmin=2TA0/\ pay=2.21X 10722 ]

_E DD 2 S’Dg(w)dw, whereg(w) is the Debye distribution function

Hep-pn= 2 BIOT(eatew, o) BD  g04)— (3vi2r2?)w? and wp=(672V)¥%, and obtain
(densityp=M/V)

whereeg,, is an angle-averaged lattice strain operator given

by (M =crystal masse, andk; =frequency and wave vector W = 3(BP)?|(m’|OF|m)|? (Em —Em)®
of phonon modg) m 2mwh*pv® exf (Em—Em)/(kgT)]—1"
o ) ) (3.1
Eoy= 2 (—Zij) kj[afexp(—ikrj)+ajexqikrj)]. where E,,,>E,, for phonon annihilation andt,,>E,, for

J phonon creation.
(3.8 For the ratio of up and down transitions follows

OP are dynamical crystal-field operators of order | in the W /Wm':exq_(Em’_Em)/(an] in accordance with a
spin variables an®P the corresponding coupling constants Boltzmann population of the levels.
to the phonond!!2 For the present we do not restrict the |t May be interesting to observe that in the framework of
order of theO} since the superparamagnetic spin-strain in—the Deby_e model the transition probability fo_r S_”Fa” spin-
teraction may be described by higher order thar® or | energy differences teno_ls t(_)_zero and not to |nf|n|ty as one
—219 The phonon creation and annihilation operatafs wou_ld take for granted mtumve_ly. The reason of this |s.t_he
and a; act on the combined spin-phonon states, |) cubic dependence on energy in the transition probabilities

—|m))| lead ¢ h i | N which stems from the depletion of low-energy phonons
=[m)[---n;-- >+ eading 1o phonon - matrix €ements rq ) w?] in the Debye model. For small isolated particles
<...n.-|—]_...|a.|...nj...>:(nj+l) and <...nj

] i ! however the minimum one-phonon energy is of the order of
—1--|ay|---nj-)=n; Y"l'th the thermal average;  5.7,/)\. This could be greater than the energy differences
=(n;)={exho; /(lfBT)]_l} (Bose-Einstein factor The (3.5 for low k or n values, so that no energy conserving
transition rate wj =w(|m,j)—|m’,j’)) of a transition spin-transition could occur. Nevertheless, for the following
|m,j)—|m’,j’") induced byHs, on can then be calculated we presume the presence of sufficient low-energy phonons

by the golden rule which stem, e.g., from the matrix in what the superparamag-
netic particles are embedded.
wi =2/ h)[(M’,j [Hsp— pnl M, i) 28(Epy = En*fiw)), In order to extract later on concrete values for relaxation

(3.9 times from the theoretical expressions developed below we
fix the numerical values related to the superparamagnetic

where theé function accounts for energy conservation, theparticle listed in Table |. These values correspond to the
“ —" sign is valid for E,,>E,, (phonon annihilationand values used in Ref. 14 for a ferrofluigowdey), but are also
the “+" sign for E,,>E,, (phonon creation In calculating  typical for other superparamagnetic particles.
the matrix eIementsv"m", , In principle, one has to invert the
sign of the magnetic fielt but also the sign of the spin IV. THREE-LEVEL SYSTEM
numbers has to be inverted, so th#f, ., remains unal-
tered. Introducing Eq93.8) in (3.9), restrictinge,, to first
order (one-phonon procegsnd taking for simplicity only
one term (,p) in the electronic matrix element into account
results for phonon annihilation in

With the intention of delineating the basic ideas for cal-
culating relaxation times we start with a simple three-level
system wher@g, p_ps, andp_g are the fractional popula-

' tions of the corresponding levels. We have then, by detailed
balance, the rate equations

: k? \—E.—ho : -

wp =%(BP)2|<m’|O|p|m>|22 w_J Zif(r;iw 5; T?wll)' Ps=W® h P hs—Ws "*ps, (4.19
] O] j/keT)—

(3.10 Pos=W Sp_pns—W 15p_sg, (4.1b

We introduce the Debye model in the long-wavelength
limit (acoustic branch with dispersion relation=uvq,
v =weighted average of transverse and longitudinal sound
velocities by replacing the sum by an integration and the condition

.o ns “h s -5
P_hs=W_ 2% _s+wg"Sps— (WS W H)p_ps

(4.10
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PstP-phstpP-s=1. (4.2
With Egs.(4.2) and(4.1b one can eliminat® _,s from the
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ps—p_s=—2J=—(2/A)(ps—Tp_s) (4.108

and

first equation and obtains a second-order linear differential

equation forpg
Pst Ps{[1+exp — a ) WS ot [1+exp —a_) w_ig

+paw® WP 1+exp —a.)]

X[1+exp —a_)]—1}

=wS o Fexpla), (4.3
wherea. =Eg/kgT. The solution is
Ps=CiseXP(— Aqt) +CogeXp( —N2t) +exp —a_)
X{[1+exp—ay)][1+exp—a)]-1} 4
(4.4

where the constants,; s andc,s depend on the initial condi-
tions, and the two characterisitic frequencies are

Tr3=N1o= (AT +A) 2% [WS | W pet (AT —A7)%/4]2

(4.9

with Ai=[1+exp(—ai)]wfﬁs. For p_g one deduces an
identic homogeneous equation and thus the same character- X

istic frequencieSrl’é. The rate Eqs(4.1) and consequently
r[j are invariant under a simultaneous change $fhj
—(—=S,—h). It is not possible from Eq(4.1) to define re-

laxation times liker, andr_ and also not a single relaxation

time unless one characteristic timg, in Egs.(4.5 and(4.4)
is predominant. In general, the returnmf andp_g to equi-

ps—I'p_g=—JI-T.J=[(1+T)/2](ps—p-9)
(4.10b

which results, up to a constant, ips—I'p_g=[(1+T)/

2)(ps—p-g) and ps—p_s=(—2/A)[(1+I)/2](ps—p-s)-
Thus we obtain a relaxation rate

T 1=(1+T)/A. (4.11

Sincep_,,s=0 we can regargs andp_g as belonging to a
two-level system and obtain, in analogy with Eg.1) from
Egs. (4.6) and (4.9 ps=p_s/7_—ps/7.=—J=—ps/A
+I'p_g/A and thus

r,=A, 7_=A/T andr t=7 1471

(4.12

with 71 in accordance with Eq4.11). For the three-level
system, suppressing the electronic matrix elements, the result
is thus

T 1=CE3 ES_

exp—a<+)
E3_[1-exp(—a,)]+E3 [1-exp(—a )]
(4.13
Forh=0
. C' exp—a)
T Tmep—a) (414

librium after release of a transient is determined by both
times7, andr,. _ o _ where a=Eg/(kgT)=AS/(kgT) and C'=C(AS)® (cf.
Another possibility to define relaxation times, in the caseTable |). An equivalent formula has been given in Ref. 14. In
of small perturbations, is to focus on a pair of levels, in ourthe limit of high temperatured—0), =~ * from Eq. (4.14
case especiallyS) and|—S), under the assumption that the tends to infinity, which intuitively is physically suggestive.
occupation of all other levels remains constéstationarity  AssumingBP=10 cni * the pre-exponential factaZ’/2 in
condition. In this case, in fact, we deal with a pseudo-two-gq. (4.14) is approximately 18 s ! which is within the

state relaxation system. Then hs=0 in EQ.(4.19 and from
this we obtaif

J=-ps
_..—hS S
=Wg "Ps=WIdP-hs

— S —h
=W_hdP-hs™ W—ssp—s

=p_s (4.6)
and can therefore exprepg by p_s,
ps=JA+Ip_s, (4.7
with
A=(wg") T+ (ws Jws"H(WF9 Tt (4.9
and

I=(wS, dws"S) (W iw= P9 =exp e, )expa_).
(4.9

We have thereford=(ps—I'p_g)/A and the equations

correct order of magnitude. However, as we will see below,
respecting the suppressed electronic matrix elements leads to
completely unrealistically fast relaxation rates. We must
therefore consider the multilevel system according to the
“real spin” S,

V. MULTILEVEL SYSTEM

In general, instead of three levels a multilevel system with
2S+1 levels is presen(6445 levels in our example We
calculate now the relaxation times. under the stationarity
conditionsp;=0,i #S,—S. For simplicity we only consider
spin transitions with constant quantum number differences
Am (variable energy differenceswhere Am=k on the
right-hand side in Fig. 1 andm=n on the left-hand side.
The corresponding energy differences are given by(E®).

In analogy to Eq(4.1) the master equations in the different
regions ofmin Fig. 1 read: at the right-hand side in Fig. 1,
(5.1a

.S S—k
Ps=WgyPs—k—Ws Ps

with stationarity conditiorp,,,=0=
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Wi Pm— Wi P k= Wi iPm- kWi Pm=Jk, y 1—exgd —An?(1+2i)/(KgT)]
5.1b .
.19 (1+2i)3(—hS—n(i+1)|S"|—hS—ni)|?
m=5—k,5—2k, ... —hS+k; (5.10 5.7
_ . With C'=C(AS?)2 (cf. Table ) this leads to a general
at the top of barrier & p_p<= expression forr, ,
-hS —hS+k
w_ _ —w_ _ _
hs+kP—hs+k hs P-ns Cexp—a.) | (S 65(1+§/k 1 K 2.2
=wW_ 22 "P_pns—W_ rr:s—np hs—n=J-hs; == c’ k = e alg)!
(5.2
at the left-hand side in Fig. 1, 1—exp[—a<5 2(1+2i)
S —-S+
P-s=W s nP-s+n~W-s "P-s (539 (1+2i)3(—hS+ki|S* | —hS+ (k(i +1))|?
with stationarity conditiorp,,=0= g 6S(t-h/mn-1 n\2
+| = > exp{—a S iz}
pm m nPm-n Wm+npm+n nH—npm_‘J m=—hS =0
2
n
-n,..., —S+n. (5.3b 1—ex;{—a(§ (1+2i)
F th ion f I btai
rom these recursion formulas one obtains (1+20)%—hS—n(i+1)[S"|—hS—ni)?
pS:‘]kAk+JnAn+Fp—S (54)
. (5.8
with The electronic matrix elements contained in E18) depend
S—kn—1 s S 2Ky —1 Sk strongly on the involved quantum numbers. Because of
A= (W) 7 (W2 wg ) (W R T (W /wg S_|S,m)y=[S(S+1)-m(m—1)]*4S,m—1) and S(S+1)
_ a3k _ —m(m—1)=(S+m)(S—m+1) we can write for the matrix
X(WS 2k —ﬁk)(wg—gb l+' ”+(WS—k/WS k) e|er~r(]ents) ( )( )
X (WS 3/ WS ) - (W RSTRIW RS 5 (W Ss ) 2, [(—hS+Ki|S|~hS+k(i+1))|?
- - - S(1+h)—KiJ'[S(1—h)+k(i+1)]!
Ap= (W ) (W B S S ZNSI ) )
. s . s [S(1+h)—=k(i+1)[S(1—h)+ki]!
X[(wZps )t (Wips p/wops M(wopsah 7t (5.99
o (WORS WIRST ) - (WIS WSS, and
X(W S+n) 1] (55) |<—hS—n(|+1)|Srl|—hS—n|>|2

[S(1—h)—nill[S(A+h)+n(i+1)]!
T[S(1-h)—n(i+D)[S(L+h)+ni]t
I'=(wg /wg -~ (wpg™Mwig, p(wopg /w g (5.90

X(w_3 "w_3, ,

and

VI. RESULTS AND DISCUSSION

=expla.)exp—a-). (5.6 In order to analize the general expressiém) we treat

] ) first the case of zero external field. For=0, assumingk
In the calculation ofA, and A, we have now to include —p ang introducing Eq(5.9) in Eq. (5.8) we find

the electronic matrix elements. Because of E§sl)—(5.3),

J=J, and thereforeps - I'p_s=J (A +A,). With Eq. _2expla) (S ®
(5.5 and in complete analogy to Eq¢..6)—(4.12 we obtain ™ c’ k
— k 2
S(1+h)/k—1 -3 .2
ex 1+2 —al =
AR e AR ) (ks T)) 5 (2 ex’{ “(S) ! }
ClAKD)™ i=0 A [(S—K)(S—Ki—1)-- [S—Ki— (k=D
AK3(1+2i)/(kgT)]—1 k)2
exp Ak Di(ksT)] 1—ex;{— (1+2i)
(1+20)3(—hS+ki|S | —hS+k(i +1))|? o S 6.0
SA—hyn-1 [(S+Ki+k)(S+ki+k=1)---(S+ki+1)]"
M 2 exf] —An%i2/(kgT)] We estimate this for severklvalues. For higtk or n values,

C(An%)® =0 e.g., forn=k=S (three-level model aboyehe denomina-
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tors are of the order (8! and thusr tends to zero. The case
k#n is not fundamentally different fronk=n. We start
therefore considering=n=1 and estimate at

2exga) l—exp—alS?) 2a
™ C' S8 S5+1) ~Fszexqa).
(6.2)
|
_2exga) (S 652 1
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In the usual temperature rangje= 1— 1000 K, and withKV
from Table |, « varies from approximately 2000 to 2 and
alS? from 2x 104 to 2X 10 7 so that we can estimate a
lower limit for 7, using the values of Table |, a&=8.66
X10* s (Bi/cm™) ~2a-exp(@). In a wide range oB1 this
is far too long compared to the experimental values.

For k=2 we obtain from Eq(6.1)

1—exd —4a(1+2i)/S?]

T

> exp—4ai¥S?)

c \2

As an upper limit ofr we estimate

7<(1.6/8C")a exp @)

and thus, with the values of Table |,

(6.43

7~[8.33x107*? s/(B5/cm 1)?]- aexpa). (6.4b

If we concisely writer~ ! in the form(6.5) as it is often done
assuming a weakly varying prefacteg ! we obtain in the
temperature range-11000 K

_lE

T To lexp(— )

=(6x10"""1% s B2/cm 1% -exp —a)

(6.5

or, e.g., forT=300 K («=6.45), where the transition of
slow to fast relaxation in the Misbauer spectra of Ref. 14
occurs, 7 1~2.94x10° s }(B3/cm™1)?, which for B5<1
cm ! would correspond to a completely static”Stauer
pattern.

We have no detailed information on the valueB3t The
value k=2 , i.e., a second-order dynamical spin Hami
tonian, describes normal spin-orbit coupling treated

(1420)3[(S—2i)(S—2i—1)(S+2i+2)(S+2i+1)]

(6.3

(10*% 13 s71. However, for Fé" the coupling constari3
could be considerably higher, e.g., B6~13 cm *, which
seems to be in a reasonable range, we would obtain the cor-
rect order of magnitude ofgl. In this caser” *(«=6.45)
=5x10° s~ which corresponds to an intermediate relax-
ation Mcssbauer pattern as experimentally found in Ref. 14.

For comparison we also consider the casekef3 and
obtain from Eq.(6.3) the approximation

7~(1/27C"' S?) o expl @)

~1.5x10"%° s(BYcm ) 2aexpa). (6.6

It seems to be reasonable that the value of the coupling con-
stants decreases strongly with the order of the dynamical
spin Hamiltonian involved. If we take, e.gB3=10"%.B3

with B5=13 cm * we obtain for the relaxation rate,*
~1.8x101% ¥ g1 je., the correct order of magnitude.
However, fork>3 the values ofB needed for obtaining
reasonablery values are unrealistically small. Considering
the differentBf values above we adopt=2 as a probable

| value for the order of the dynamical spin Hamiltonian.

in An external field is easily included in the calculations. For

second-order perturbation theory for which a value of thek=n=2 We obtain from Eqs(5.8) and(5.9) the final result,

coupling parameteB% in the range of 0.2 cm' for S-state
ions, e.g., F&", may be adequafé. This results inrgl

7.=C' lexpla.)(S2)¥ o(+h)+a(—h)] (6.7

~2.4x10°° s71 in contrast to the experimental range of with

22
_>i2

exp{_“(s

(S/2)(1+h)—1

2
(1+2i)

1 2
—exXp —« é

o(+h)=

=0 (1+2)¥[S(1=h)—2i][S(1

In complete analogy to the cabe=0 and in good approxi-
mation up toh~0.95 we estimate.. as
7.~(0.2C" " Ha(1-h?) 2expa.). (6.9

In terms of a relaxation rate, wit6’ from Table | andB3
=13 cni ! this results in our final estimation

+h)—2i—1] [S(1Fh)+2i+2][S(1Fh)+2i + 1] (6.9

2 1=2x108% s7la Y (1-h?)%exp—a.). (6.10

Comparing Egs.(6.4—(6.10 with the formulas(2.3),
(2.6), (2.11), and(2.12 given by Nel, Brown, and others,
we state that the most prominent featurerin', namely the
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presence of an Arrhenius-like factor expg) is also found interaction is larger than the electric quadrupole interaction
in our formula. Moreover, since in Eqé.4) and (6.9 7is  and then in calculating a spectrum the simplified expression
proportional toa, the asymptotic behavior at high tempera- (2.9) can be used. With this the inversion of a matrix whose
ture (r—0 for a—0) is the same as in Eq&.5), (2.7), and  order is only 5+1 is required and this is feasible on a
(2.12), but different from Egs(2.3 and (2.6). Though in  Workstation. _ _
principle we can define a single only in the low- In real samples most of the assumptions made in the be-

temperature limit, the formulas that we deduced are mear@inning are not fulfilled, but in some cases the simulation of
ingful also at higher temperatures. spectra can be easily adapted to the real conditions by sum-

The field dependence in our formulas is similar to that inMNg up dlscr_ete spectra, e.g., to obtain powder averages or
’ H -1 H 2 . ’ -
Brown’s expression. Our- ! is proportional to (1 h?)(1 to introduce size dispersion. However, the presence of vari

h Y wh 1 g i ional ous easy directions is more difficult to take into account.
+h)(1—h) whereasr. g, from Eq.(2.6) is proportional 1o ey gifficulties remain also, like the influence of the sur-

(1-h?)(1=h). For r_* the field dependent prefactor terms face and surface-near regions in the particles which may re-

differ by a factor 2, at mostfor h—1), and for=;* our  sult in different anisotropy constants, hyperfine fields, etc.

expression tends slightly faster to zero as Brown’s. HoweveParticle interaction has been discussed by riyo and

T;l(hzl) calculated without approximations directly from Tronc™® in terms of magnetic dipole interaction between the

Eg. (5.8 remains finite, which seems to be more correctparticles.

physically. At very low temperature, in principle, there exists the pos-
The phonon energiesh&0) involved in the spin-  sibility that the spinS fluctuates between states on opposite

transitions range fronkE.s-,—E.s=3.3x10 23] (step at sides of the barrier, without surmounting it, by “spin tunnel-

minimum of barrier potentialto E,—E.,=1.03x10"2%J  ing,” e.g., by phonon assisted “macroscopic quantum tun-

(step near to the top of the barfielThe minimum phonon neling” (MQT).?%%! It seems, however, that MQT is only

energy isE pnmin=2.21x 10" %4 (cf. Table ). Thus for(di-  present in very small§~10-100) ideal clusters, such as

rech transitions near to the top of the barrier phonons with arcrystals consisting of magnetic molecufés?

energy of approximately 810 °- Ephmin @re necessary. We

postulated the presence of such low energy phonons. The

frequency of these phonons would be of the order of 10

—5x10 s 1. We also believe that there is no correlation VIl. CONCLUSION

problem present as it was raised in Ref. 6. However, within

the. scope OT the above devgloped ”?Ode' no superparamagy, magnetization of small noninteracting identical particles

netic relaxation would occur in nanosized magnetic partlcle%

that deally isolated f h oth f heat bath nder the influence of an external magnetic field can be de-
at are jgeatly 1Sola eilrom €ach other orirom a neat bathyq ipeq by a spin-phonon-interaction-like model in which the
Once disposing o~ ~ from Egs.(6.8) or (6.10, one is

. ) total spinS of the monodomain particle interacts with strain
able, at least in the low-temperature regime, to calculate thgegs of the crystal. Transition probabilities between Se
corresponding superparamagneticddbauer relaxation pat- eye|s are calculated on the basis of a dynamical spin Hamil-
tern. The only “free” parameter is the coupling const&}t  tonjan and the Debye model. For low temperatures a two-
This can be done in the simplest case by using the formalate relaxation system is considered, where the relaxation
|sm§ descrlbe_d in Refs. 9 and 15-17 with an effective spiyccurs between the statk®) and|—S) and relaxation rates
S=z. Depending on the absolute valuesrafand 7, both ;-1 5r6 introduced and calculated for transitions with con-
slow and fast relaxation can be present in the spectrum at ”Eq_antASZ. It is found thatAS,=2 and a spin-phonon cou-
same temperaturé. When the characteristic time of the pling constant of 13 cm' reproduces the experimental val-

Mossbauer method is longer than, a statidsix-line) spec- ues of 7;1. The so deduced expression exhibits the same

trum is observed whose splitting is reduced by the factor P .
(.~ 7_)/(r.+7.). Since ourr, from Eq, (6.10 depends Arrhenius-like factor and a similar, but somewhat steeper

. g nden n the external fiel he classical formul
stronger onh than Brown’s expressiof.6) and is propor- dependence on the external field, as the classical formulas by

. . X ) S Neel and Brown, derived on the ground of completely dif-
tional to « this effect should manifest itself more distinctly ferent models. The temperature dependence of the pre-
than hitherto supposed. )

; . exponential factor of our expression is meaningful also for
For somewhat higher temperatures the fluctuation$ of b P g

) L . high temperatures. It is possible, on the basis of the spin-
.5“0“”0' the anisotropy d|_rect|ons can be_ app_ro_X|mater takePfansition probabilities introduced, to calculate” $4bauer
mto account by diminishing the magnenc splitting as a func—Spectra valid at arbitrary temperatures.
tion of the temperature according to the thermal average
value (collective excitations, Ref.)1The correct way, how-
ever, to simulate a Mesbauer spectrum for arbitrary tem-
perature and hyperfine interaction would consist in using the ACKNOWLEDGMENTS
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