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Delocalization of two interacting particles in a random potential:
One-dimensional electric interaction
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We consider a continuous one-dimensional model of two charged interacting particles in a random potential.
The electric repulsion is strictly one dimensional and it inhibits Anderson localization. In fact, the spectrum is
continuous. The case of electrical attraction is briefly studied and it shows bounded states. So, the dynamics is
sign dependent for this model. We support our analytical results with numerical simulations where the effect
of repulsion breaking localization is clearly observed.
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The problem of one particle in a random potential h
been studied widely after the pioneer work by Anderson1–5

Now, it is accepted that exponential localization could ta
place in such disordered systems depending on the degr
disorder, the dimensionD, and the energy of the system. Th
role of internal spatial local correlations at the random p
tential has been considered as a mechanism of delocaliza
In fact, there is theoretical6–19 and experimental20 evidence
of delocalization due to correlations. Moreover, the role
no local correlation has been studied showing new phen
ena of delocalization.21 Also, the dynamics of some ope
random systems have been studied showing the breakin
Anderson localization.22 Recently, the role of interaction be
tween particles in disordered systems has been consid
~two interacting particles or TIP!. Nevertheless, here som
controversy exists.23–31 It seems that for on-site interactio
~discrete model!, the localization length is enhanced wi
independence on the interaction sign.

In this paper, and for strictly one-dimensional electric
pulsion, we show that Anderson localization is broken
two interacting particles. Moreover, the behavior of the s
tem is not sign independent. Our quantum model is conti
ous and different from the usual discrete TIP model found
the literature.

Consider Gauss’s theorem inD dimension, namely, a
chargeq producing an electric fieldE, and a hypersphere o
radiusr around the charge. The theorem establishes that
electric flux through the hypersphere is proportional to
charge enclosed. Namely,

ErD21;q. ~1!

So, the electric field produced by a charge is dependen
the dimensionD. In three dimensions we have the usualr 22

dependence and in strictly one dimension, the electric fiel
constant at the left and right of the chargeq. Namely, in one
dimension, the electric potential produced by one chargeq is
given by

V~x!52aquxu, D51, ~2!

wherea is a proportionality constant andx is a position.
A remark concerning the one-dimensional case. Since

a ‘‘sphere’’ in the one dimension we have problems defin
its surface, the result~2! is also obtained by solving th
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Poisson equationV9;qd(x) with the corresponding condi
tions of continuity V1(0)5V2(0), (d/dx)V1(0)
2(d/dx)V2(0);q and the symmetry conditionV(x)
5V(2x).

In order to consider two charged interacting particles
strictly one-dimensional disordered potential, we must c
sider the above electric potential in the Hamiltonian: lex
andy be the coordinate operator of two particles of chargq
and Q, respectively; then the Hamiltonian-operator of t
systems is given by

H52
1

2m

]2

]x22
1

2M

]2

]y2 1j~x!1j~y!2aqQuy2xu,

~3!

wherej denotes the random potential acting on every p
ticle. To study the above system we assume the followin

~i! Particles do not overlap. Namely, we assume
chargeQ is always on the right ofq.

~ii ! Particles are distinguishable (QÞq); however, by
simplicity, we assumeM5m.

~iii ! The random potential is bounded (j,jmax) and has
no internal correlation. Namely, ifj(x)5( f i(x2xi) then
every functionf i is independent~also the random variable
xi!. So, if there are extended states they are not relate
correlations at the random potential.6–19

~iv! No decoherence effects due to an external bath
measurement are considered, i.e., we always have a qua
pure state.

Let the stateCv(x,y) be a solution for the time-
independent Schro¨dinger equation, namely,

HCv5vCv , ~4!

wherev is the energy (\51). Condition~i! requires that

Cv~x,y!H 50, y<x

Þ0, y.x.
~5!

Since the chargeQ is on the right ofq, the electrical
interaction does not require the absolute value, i.e.,uy2xu
5y2x. The Schro¨dinger equation~4! becomes separabl
and related to the solution of
33 ©2000 The American Physical Society
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FIG. 1. ~a! Time evolution probability for two particles without disorder and electric interaction. The initial condition isC(x,y)
5dx,x0

dy,y0
. The dispersion is ballistic. For simplicity we do not consider antisymmetric states.~b! Time evolution probability with electric

field repulsion. The parameters are the same as in~a!. Still we have no disorder. Note the increasing separation between the wave pa
with time. ~c! The same situation as in~a! but with disorder and without electric interaction. Clearly, diffusion does not exist because o
Anderson localization.~d! Combined influence of electric repulsion and disorder. Disorder does not stop the repulsion process and
ization operates.
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1

2m

]2

]z2 f1@j~z!6aqQz#f5ef, ~6!

where the constante is the energy. Since we are assumi
electrical repulsion (Q.0,q.0), the sign minus~or plus! in
Eq. ~6! corresponds to the equation forQ ~or q!. So the
chargeQ, on the right ofq, experiences two forces: the ran
dom due to disorder, and the electrical repulsion directed
the right. The chargeq is repelled to the left.

The continuous Schro¨dinger equation~6! has been studied
in the literature and it corresponds to a particle in a dis
dered potential with a dc electric field. For bounded dis
dered potential~iii !, the statesf are extended in the directio
of the field and the spectrume is continuous.32–35 This can
be understood intuitively when we consider that for a d
tance uzu@jmax/aqQ, the electric dc field dominates th
asymptotic behavior of the system and produces exten
states. We remark that our model is continuous, w
bounded disorder, as required by the theory of delocaliza
with electric dc field.32

In this way, the solution of Eq.~4! can be written as

Cv~x,y!5$fe~x!fv2e~y!2fe~y!fv2e~x!% x<y,
~7!

wherefe denotes the extended solution of energye of Eq.
~6!. We remark that the condition~i! @not overlapC(x,x)
to
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-
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h
n

50# is satisfied automatically from the antisymmetric con
tion for the wave function. Then, for repulsion, localizatio
is inhibited for two charged interacting particles in strict
one dimension. Moreover, the spectrumv is continuous and
determined asymptotically by the electric interactio
Namely, no periodic~or quasiperiodic! motion exists in the
system.

Numerical time-evolution calculations confirm our co
jecture about delocalization in the repulsive case: Figure 1~a!
shows the time dispersion for two wave packets~particles!
when interaction and disorder do not exist. The initial co
dition is the localized stateC(x,y,t50)5dx,x0

dy,y0
and the

regime is ballistic. It shows the probability*dxuC(x,y,t)u2

and *dyuC(x,y,t)u2 to find the particleQ and q, respec-
tively, at time tÞ0. Figure 1~b! shows two particles unde
one-dimensional electric repulsion and the same initial c
ditions of Fig. 1~a!. Note the time separation of the center
mass for every particle because of repulsion. Figure 1~c!
shows the evolution when only disorder is present, and
notes the absence of dispersion for the wave packets. Fin
Fig. 1~d! shows the combined effects of repulsion and loc
ization. Clearly, disorder does not stop the separation du
repulsion of both particles. The numerical calculations w
carried out by solving the Schro¨dinger equation related to
Eq. ~3! with a simple procedure~finite differences!. The po-
tential j was constructed using a random number genera
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The spatial boundary was avoided by considering a fin
number of iterations. This number was found by using
iteration procedure related to Fig. 1~b!, the fastest motion
All figures have the same parameters~number of iterations,
step, disorder, etc.!.

On the other hand, when electrical attraction is conside
in our one-dimensional systems, the numerical results s
the existence of bounded states. Figures 2~a! and 2~b! show
the temporal evolution for two interacting particles in a ra

FIG. 2. ~a! shows the repulsion for two electric charges in
random potential.~b! shows the attractive case with the same p
rameter of disorder and initial conditions. Clearly the behavior
different in both cases.
V.
e
e

d
w

-

dom potential. Figure 2~a! shows the repulsive behavior re
lated to delocalization. Figure 2~b! shows the evolution when
one changes the parameter of repulsion by attraction
keeping the same initial conditions and disorder (qQ
→2qQ). Clearly the behavior between repulsion and attr
tion is different. Since we are assuming attraction betwe
both particles, the chargeQ is pushed by the field to the lef
againstq; but from ~i! the wave function vanishes wheny
5x. From an analytical point of view, our result can b
understood when we consider no disorder and the usua
ordinate change to the center of mass. Namely, 2X5x1y
and the relative coordinate 2r 5x2y. The nonoverlap con-
dition at r 50 and the constant attractive electric field giv
origin to bounded states.36 The finite disorder (j,jmax) does
not change the behavior of the system governed asymp
cally by the electric field. Discrete spectrum and bound
states exist in the system in this case.

Finally, we notice that the one-dimensional electric ca
studied here is formally similar to two infinite parallel plan
separated by a distanceuy2xu where the electric force is
constant. This tells us that plane charged molecules are g
candidates to test our results. Also quantum wire with o
dimensional directed electric flux, seems an interesting c
didate to explore our conjectures.

In conclusion, we have presented theoretical evidence
strict one-dimensional electrical repulsion, which is lo
range, breaks Anderson localization for two interacti
charged particles. This result is different from the discr
on-site interaction that only enhances the localization leng
but does not break localization. In our case, the attrac
and repulsion behavior are sign dependent. These re
were confirmed numerically.
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