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Delocalization of two interacting particles in a random potential:
One-dimensional electric interaction
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We consider a continuous one-dimensional model of two charged interacting particles in a random potential.
The electric repulsion is strictly one dimensional and it inhibits Anderson localization. In fact, the spectrum is
continuous. The case of electrical attraction is briefly studied and it shows bounded states. So, the dynamics is
sign dependent for this model. We support our analytical results with numerical simulations where the effect
of repulsion breaking localization is clearly observed.

The problem of one particle in a random potential hasPoisson equatiov”~qdJ(x) with the corresponding condi-
been studied widely after the pioneer work by Anderkoh. tions of continuity V*(0)=V~(0), (d/dx)V*(0)
Now, it is accepted that exponential localization could take— (d/dx)V~(0)~qg and the symmetry conditionV(x)
place in such disordered systems depending on the degree efvV(—x).
disorder, the dimensioD, and the energy of the system. The In order to consider two charged interacting particles in
role of internal spatial local correlations at the random po-strictly one-dimensional disordered potential, we must con-
tential has been considered as a mechanism of delocalizatiosider the above electric potential in the Hamiltonian: xet
In fact, there is theoretical'® and experiment&! evidence andy be the coordinate operator of two particles of chayge
of delocalization due to correlations. Moreover, the role ofand Q, respectively; then the Hamiltonian-operator of the
no local correlation has been studied showing new phenomnsystems is given by
ena of delocalizatioR® Also, the dynamics of some open

random systems have been studied showing the breaking of 1 62 1 62
Anderson localizatioR? Recently, the role of interaction be-  H=—5———>— o— ——5 +&(X)+ £&(y) — aqQly—x|,
. S . 2m gxc 2M dy
tween particles in disordered systems has been considered @)

(two interacting particles or TIP Nevertheless, here some

controversy exist$?" It seems that for on-site interaction where ¢ denotes the random potential acting on every par-

(discrete mode| the localization length is enhanced with ticle. To study the above system we assume the following.

independence on the interaction sign. (i) Particles do not overlap. Namely, we assume the
In this paper, and for strictly one-dimensional electric re-chargeQ is always on the right ofy.

pulsion, we show that Anderson localization is broken for (ji) Particles are distinguishableQ¢ q); however, by

two interacting particles. Moreover, the behavior of the syssimplicity, we assumél=m.

tem is not sign independent. Our quantum model is continu-  (jii) The random potential is bounded< £,,,,) and has

ous and different from the usual discrete TIP model found img internal correlation. Namely, if(x)=3f;(x—x;) then

the literature. o . every functionf; is independentalso the random variable
Consider Gauss's theorem i dimension, namely, a ) So, if there are extended states they are not related to

chargeq producing an electric fielé, and a hypersphere of cqrrelations at the random potentiat?

radiusr around the charge. The theorem establishes that the (i) No decoherence effects due to an external bath or

electric flux through the hypersphere is proportional to theneasurement are considered, i.e., we always have a quantum
charge enclosed. Namely, pure state.

Let the stateWV,(x,y) be a solution for the time-
independent Schdinger equation, namely,
So, the electric field produced by a charge is dependent on
the dimensiorD. In three dimensions we have the usuaf HY,=oV¥,, (4)
dependence and in strictly one dimension, the electric field is ) o ]
constant at the left and right of the chargeNamely, in one  Wherew is the energy £ =1). Condition(i) requires that
dimension, the electric potential produced by one charige

ErP1~q. )

given by =0, y=x
VY| Lo ey (5)

V(x)=—-aq|x|, D=1, 2 ' '
wherea is a proportionality constant andis a position. Since the charg&) is on the right ofq, the electrical

A remark concerning the one-dimensional case. Since fointeraction does not require the absolute value, jyesX|
a “sphere” in the one dimension we have problems defining=y—x. The Schrdinger equation(4) becomes separable
its surface, the resulf2) is also obtained by solving the and related to the solution of
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FIG. 1. (a) Time evolution probability for two particles without disorder and electric interaction. The initial conditioki(isy)
= Sx x,0y.y,- The dispersion is ballistic. For simplicity we do not consider antisymmetric si@e$ime evolution probability with electric
field repulsion. The parameters are the same dg)irsStill we have no disorder. Note the increasing separation between the wave packets
with time. (c) The same situation as {@) but with disorder and without electric interaction. Clearly, diffusion does not exist because of the
Anderson localization(d) Combined influence of electric repulsion and disorder. Disorder does not stop the repulsion process and delocal-

ization operates.

92 =0] is satisfied automatically from the antisymmetric condi-
~5m (9?¢+[§(Z)i aqQzlp=¢€d, (6)  tion for the wave function. Then, for repulsion, localization

is inhibited for two charged interacting particles in strictly
where the constant is the energy. Since we are assumingone dimension. Moreover, the spectrunis continuous and
electrical repulsion@>0,g>0), the sign minugor plus in determined asymptotically by the electric interaction.
Eq. (6) corresponds to the equation f€ (or g). So the Namely, no periodidor quasiperiodit motion exists in the
chargeQ, on the right ofg, experiences two forces: the ran- system.
dom due to disorder, and the electrical repulsion directed to Numerical time-evolution calculations confirm our con-
the right. The charge is repelled to the left. jecture about delocalization in the repulsive case: Figiag 1
The continuous Schrdinger equatiori6) has been studied shows the time dispersion for two wave packg@iarticles
in the literature and it corresponds to a particle in a disorwhen interaction and disorder do not exist. The initial con-
dered potential with a dc electric field. For bounded disor-dition is the localized stat# (x,y,t=0)= 5x,x05y,y0 and the
dered potentialiii ), the stategp are extended in the direction regime is ballistic. It shows the probabilifjdx| ¥ (x,y,t)|?
of the field and the spectrumis continuous?>*This can ;g dy|W(x,y,t)|? to find the particleQ and q r’es,pec-
be understood intuitively when we consider that for a dis'tively, at timét;&o. Figure 1b) shows two partiéles under
tance |z|> {max/adQ, the electric dc field dominates the ,ne gimensional electric repulsion and the same initial con-
asymptotic behavior of the system and produces extendegions of Fig. 1a). Note the time separation of the center of
states. W(_a remark that our model is contlnuous,. W|.thmaSS for every particle because of repulsion. Figu® 1
bounded disorder, as required by the theory of delocalizatiogpos the evolution when only disorder is present, and one
with electric dc field? _ _ notes the absence of dispersion for the wave packets. Finally,
In this way, the solution of Eq4) can be written as Fig. 1(d) shows the combined effects of repulsion and local-
_ ization. Clearly, disorder does not stop the separation due to
VoY) ={dX) bo-c(y) = ¢y) bo-X)} X<V, @) repulsion of both particles. The numerical calculations were
carried out by solving the Schiinger equation related to
where ¢, denotes the extended solution of eneeggf Eq.  Eq. (3) with a simple procedur€inite differences The po-
(6). We remark that the conditiofi) [not overlapW (x,x) tential ¢ was constructed using a random number generator.
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dom potential. Figure (&) shows the repulsive behavior re-
lated to delocalization. Figurg® shows the evolution when
one changes the parameter of repulsion by attraction and
keeping the same initial conditions and disorderQ(

— —(Q). Clearly the behavior between repulsion and attrac-
tion is different. Since we are assuming attraction between
both particles, the chardg@ is pushed by the field to the left
againstg; but from (i) the wave function vanishes when

=x. From an analytical point of view, our result can be
understood when we consider no disorder and the usual co-
r sosition ordinate change to the center of mass. Namel=X+y

. ! and the relative coordinater 2x—y. The nonoverlap con-

@ dition atr =0 and the constant attractive electric field gives
origin to bounded state§.The finite disorder §< £,,5,) does

not change the behavior of the system governed asymptoti-
cally by the electric field. Discrete spectrum and bounded
states exist in the system in this case.

Finally, we notice that the one-dimensional electric case
studied here is formally similar to two infinite parallel planes
separated by a distandg—x| where the electric force is
constant. This tells us that plane charged molecules are good
candidates to test our results. Also quantum wire with one-
dimensional directed electric flux, seems an interesting can-
didate to explore our conjectures.

. . _position In conclusion, we have presented theoretical evidence that
(b) strict one-dimensional electrical repulsion, which is long
range, breaks Anderson localization for two interacting

FIG. 2. (a) shows the repulsion for two electric charges in a charged particles. This result is different from the discrete
random potential(b) shows the attractive case with the same pa-on-site interaction that only enhances the localization length,
rameter of disorder and initial conditions. Clearly the behavior isbut does not break localization. In our case, the attraction
different in both cases. and repulsion behavior are sign dependent. These results

i ) S ~were confirmed numerically.
The spatial boundary was avoided by considering a finite

number of iterations. This number was found by using the | thank Professor S. N. Evangelou who explained the TIP

iteration procedure related to Fig(kl, the fastest motion. problem (International Workshop on Disordered Systems

All figures have the same parameténsimber of iterations, with Correlated Disorder, Arica’98, PELICAN and FDI-

step, disorder, etg. UTA Projects. Interesting comments were furnished by Pro-
On the other hand, when electrical attraction is considerefessor Chumin Wang Chen, Professor V. BelléfDI-UTA

in our one-dimensional systems, the numerical results shownd PELICAN Projectsand Professor E. Laz@JTA). This

the existence of bounded states. Figurés and Zb) show  work was partially completed at Pavia Univers{ICOPS,

the temporal evolution for two interacting particles in a ran-and partially supported by FONDECY(Proyecto 1000439
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