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Magnon dispersions in quantum Heisenberg ferrimagnetic chains at zero temperature

N. B. Ivanov*
Theoretische Physik II, Universita¨t Augsburg, D-86135 Augsburg, Germany

~Received 31 January 2000!

Within the Dyson-Maleev boson formalism, we study the zero-temperature magnon dispersions in a family
of one-dimensional quantum Heisenberg ferrimagnets composed of two different spins (S1 ,S2) in the elemen-
tary cell. It is shown that the spin-wave theory can produce precise quantitative results for the low-energy
excitations. The spin-stiffness constantrs and the optical magnon gapD of different (S1 ,S2) ferrimagnetic
systems are calculated, respectively, to second and third order in the quasiparticle interaction. The spin-wave
results are compared with available numerical estimates.
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I. INTRODUCTION

In the last decade a large variety of quasi-one-dimensio
~1D! mixed-spin compounds with ferrimagnetic properti
has been synthesized.1 Most of them are molecular magne
containing two different transition-metal magnetic io
which are alternatively distributed on the lattice~Fig. 1!. For
example, two families of such compounds read ACu(pba)
3(H2O)3•nH2O and ACu(pbaOH)(H2O)3•nH2O, where
pba51,3-propylenebis~oxamato!, pbaOH52-hydroxo-1,3-
propylenebis~oxamato!, and A5Ni, Fe, Co, and Mn. Pub-
lished experimental work implies that the magnetic prop
ties of these mixed-spin materials are basically described
a quantum Heisenberg spin model with antiferromagnetic
coupled nearest-neighbor localized spins:

H5J(
n51

N

@S1~n!1S1~n11!#•S2~n!

2mBH (
n51

N

@g1S1
z~n!1g2S2

z~n!#, J.0. ~1!

Here the integersn number theN elementary cells, each o
them containing two site spins with quantum numbersS1
.S2. The g factors, related to the spinsS1 and S2, are de-
noted byg1 andg2, respectively.mB is the Bohr magneton
and H is the external uniform magnetic field applied alo
the z direction. As an example, the following values for th
parameters in Eq.~1! have been extracted from magne
measurements on the recently synthesized quasi-1D bim
lic compound NiCu(pba)(D2O)3•2D2O: (S1,S2)

[(SNi,SCu)5(1,1
2 ), J/kB5121 K, g1[gNi52.22, g2[gCu

52.09.2

In view of the recent developments in the physics of u
form quasi-1D systems~concerning, in particular, the behav
ior of antiferromagnetic chains and ladders in external m
netic fields: see, e.g., Ref. 3, and references there!,
ferrimagnetic chains and ladders open an interesting a
The point is that the presence of two or more different qu
tum spins in the elementary cell considerably increases
number of situations of interest: the topology of spin
rangements plays an essential role in the structure of
ground-state and low-energy excitations.4 For example, the
PRB 620163-1829/2000/62~5!/3271~8!/$15.00
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diamond lattice in Fig. 1 represents another interesting c
of Heisenberg ferrimagnetic chains constructed of one k
of antiferromagnetically coupled site spins but with a diffe
ent number of lattice sites in theA andB sublattices.5 It is
remarkable that only in the last few years interest in
physical properties of 1D quantum Heisenberg ferrimagn
has considerably increased:6 most of the early efforts were
concentrated on the chemistry of molecular magnets an
relatively small amount of work was devoted to physic
properties.7

Since interactions in the models presented in Fig. 1 se
bipartite lattices, the Lieb-Mattis theorem8 is applicable. In
particular, for the mixed-spin system it predicts the existen
of a ferrimagnetic ground state with the total-spin quant
numberSg5(S12S2)N. Thus the model~1! exhibits long-
range ordered magnetic ground state characterized by
magnetization densityM05(S12S2)/2a0 , a0 being the lat-
tice constant. Such a magnetic phase may be referred toa
quantized unsaturated ferromagnetic phase: it is character-
ized by both the quantized ferromagnetic order parameteM
~quantized in integral or half-integral multiples of the num
ber of elementary cells,M5M0N) and the macroscopic sub
lattice magnetizations MA5(n51

N ^S1(n)& and MB

5(n51
N ^S2(n)&. What makes such a state and the rela

transitions to magnetically disordered states interesting is
fact that the ferromagnetic order parameter is a conser
quantity: in Heisenberg systems this is expected to im
strong constraints on the critical behavior.9

Consequences of the spontaneous symmetry brea
SO(3)→SO(2) ~related to the establishment of a ferrima
netic ground state! for the structure of low-energy excitation
are dictated by the nonrelativistic version of Goldston
theorem:10 in the absence of long-range forces, a sponta

FIG. 1. Two types of ferrimagnetic chains on bipartite lattice
~a! mixed-spin chain with alternating site spinsS1 and S2 (S1

.S2); ~b! uniform-spin diamond chain with a site spinS.
3271 ©2000 The American Physical Society
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3272 PRB 62N. B. IVANOV
ous symmetry breaking leads to low-energy excitatio
whose energy tends to zero for wave vectorsk→0. In con-
trast to the relativistic version, the theorem does neit
specify the exact form of the dispersion relation for smalk,
nor does it determine the number of different Goldsto
modes: these features are not fixed by symmetry consi
ations alone—rather, they depend on the specific prope
of the system.

Turning to the case of Heisenberg ferromagnets, in a
drodynamic description the quadratic form of the magn
energies

Ek5
rs

M0
k21O~k4! ~2!

results entirely from the symmetry of the ferromagnetic st
and the fact that the order parameter is itself a constant o
motion.11 Here M0 and rs are, respectively, the magnetiz
tion density and the spin-stiffness constant of the Heisenb
ferromagnet. This form of the Goldstone modes~which is
just the Landau-Lifshitz formula! can rigorously be obtained
by simple sum-rule arguments~see, e.g., Ref. 12!. Similar
arguments are applicable to Heisenberg ferrimagnets
well.13,14 An alternative approach, relying on the sugges
conformal invariance of the related ferrimagnetic XX
model, also predicts the quadratic form of Eq.~2!.15 Due to
the doubling of the elementary cell in the ferrimagne
ground state, there appears a second spin-wave branch i
ferrimagnetic case~optical magnons! with a finite energy gap
D at k50: D;M0 /x uu , wherex uu is the magnetic suscept
bility parallel to M .16 At intermediate temperatures, it is th
optical magnon branch which produces a number of spe
thermodynamic properties characteristic especially for
ferrimagnetic systems.2,17–20

The existence of a macroscopic magnetic ground s
also opens an interesting and rare opportunity to apply
spin-wave theory~SWT! to the low-dimensional quantum
spin system~1!. Indeed, recently published analysis based
the linear spin-wave approximation17,21,22qualitatively con-
firmed the expected structure of low-energy excitations
Heisenberg ferrimagnets. Moreover, the second-order S
was shown23 to produce precise quantitative results for t
ground-state energyE0 and the on-site magnetizationsm1
5MA /N andm25MB /N even for the extreme quantum sy

tem (S1 ,S2)5(1,1
2 ): the second-order SWT results differ b

less than 0.017% forE0, and by less than 0.18% form1,
from the density-matrix renormalization-group~DMRG!
estimates.17 In this respect, an interesting question is to wh
extent the spin-wave approach can effectively be used
describe the properties of the 1D model~1! at zero tempera-
ture. A purpose of the present paper is to demonstr
through an explicit study of the magnon-dispersion pertur
tion series, that the spin-wave approach can produce pre
quantitative results for the magnon dispersions as well.

The paper is organized as follows. In Sec.II, using
Dayson-Maleev boson representation of spin operators,
original spin Hamiltonian~1! is transformed to an equivalen
boson Hamiltonian. The choice of an appropriate zero
order quadratic Hamiltonian for the perturbation series
also discussed here. In Sec. III we study the second-o
corrections for the magnon energies and the related cor
s
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tions for the spin-stiffness constant and the optical mag
gap. Third-order self-energy diagrams and the respective
rections for the optical magnon gap are also considered h
In Sec. IV the results are summarized and a comparison w
available numerical estimates is made.

II. DYSON-MALEEV FORMALISM

To develop a spin-wave theory~see, e.g., Refs. 24,25 an
references therein!, one first transforms the original spi
Hamiltonian ~1! to an equivalent boson Hamiltonian. W
adopt the following Dyson-Maleev~DM! representation of
spin operators:

S1
1~ i !5A2S1S ai2

1

2S1
ai

†aiai D , S1
2~ i !5A2S1ai

† ,

S1
z~ i !5S12ai

†ai ,

S2
1~ j !5A2S2S bj

†2
1

2S2
bj

†bj
†bj D , S2

2~ j !5A2S2bj ,

S2
z~ j !5bj

†bj2S2 , ~3!

whereSa
65Sa

x 6ıSa
y , a51,2. ai andbj are boson operator

defined on the lattice sitesi PA and j PB, respectively.
Substituting the latter expressions in Eq.~1!, one finds the

following boson representation ofH in terms of the Fourier
transformsak andbk of ai andbj :

HB522sS2NJ1H081VDM8 , ~4!

where

H0852SJ(
k

@ak
†ak1sbk

†bk1Asgk~ak
†bk

†1akbk!#, ~5!

and

VDM8 52
J

N (
124

d12
34S 2g124a3

†a2b1
†b4

1Asg11224a3
†b2

†b1
†b41

1

As
g4a3

†a2a1b4D . ~6!

gk5cos(ka0) is the lattice structure factor andd12
34[d(112

2324) is the Kroneckerd function. We have used the con
vention (k1 ,k2 ,k3 ,k4)[(1,2,3,4) and the notationss
[S1 /S2.1 andS2[S. Here and in what follows the exter
nal magnetic field isH50.

In the above expressionsH085O(S) is the quadratic bo-
son Hamiltonian of the linear spin-wave theory~LSWT! and
VDM8 5O(1) is the quartic Dyson-Maleev boson interactio
Omitting completely the boson interactionVDM8 , a number of
authors has recently used the quadratic LSWT Hamilton
H08 for a qualitative description of the 1D ferrimagnet
model ~1! at zero temperature.17,21,22H08 is easily diagonal-
ized by use of the following Bogoliubov transformation
the quasiparticle boson operatorsak andbk :

ak5uk~ak2xkbk
†!, bk5uk~bk2xkak

†!,
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uk5A11«k

2«k
, xk5

hk

11«k
, ~7!

where«k5A12hk
2 andhk52Asgk /(11s).

As a matter of fact, for the 1D ferrimagnetic model~1! the
quadratic Hamiltonian~5! is not the most appropriate choic
of a starting zeroth-order approximation for perturbation
ries. Since we are also interested in systems with small
spins, it is more appropriate from the very beginning to
defineH08 by adding the first-order 1/S corrections to mag-
non dispersions.26 The latter corrections come entirely from
a normal ordering of the quasiparticle boson operatorsak

and bk in the quartic interactionVDM8 . It is important that
these corrections~similar to Oguchi’s corrections in
antiferromagnets27! renormalize the magnon excitation spe
tra ~and the ground-state energy! without changing their ba-
sic structure, i.e., the number of Goldstone modes. Un
the case of Heisenberg antiferromagnets, where Oguc
corrections are numerically small even for site spinsS5 1

2 , in
quantum 1D ferrimagnets the magnon dispersions are sig
cantly renormalized26 ~see below!. As a result of the normal-
ordering procedure, the boson Hamiltonian~4! is recast to
the following basic form:

HB5E01H01lV, V5V21VDM , l51. ~8!

The ground-state energyE0 calculated up to first order in 1/S
reads

E0

2NJ
52sS21S@2Asa11~s11!a2#

2a1
22a2

22
s11

As
a1a2 , ~9!

where

a152
As

2~s11!

1

N (
k

gk
2

«k
, a252

1

2
1

1

2N (
k

1

«k
.

~10!

Expressed in terms of quasiparticle operators, the corre
LSWT Hamiltonian reads

H052SJ(
k

@vk
(a)ak

†ak1vk
(b)bk

†bk#, ~11!

where

vk
(a,b)5S 12

a1

SAs
D S s11

2
«k7

s21

2 D2a2

12gk
2

«kS
. ~12!

The normal-ordered quasiparticle interactionV contains a
quadratic term,

V25J(
k

@Vk
(1)ak

†bk
†1Vk

(2)akbk#, ~13!

where
-
ite
-

e
i’s

fi-

ed

Vk
(1,2)52

a2~s21!2

As~s11!
S 16

s11

s21
«kDgk

«k
, ~14!

and the quartic normal-ordered Dyson-Maleev interact
VDM containing nine vertex functions:V( i )5V12;34

( i ) , i
51, . . . ,9.Explicit expressions forVDM and the related ver-
tex functions are presented in the Appendix.

The quadratic Hamiltonian~11! describes two branches o
spin-wave excitations~magnons! defined with the dispersion
relationsEk

(a,b)52SJvk
(a,b) , Eq. ~12!. Thea excitations are

gapless acoustical magnons in the subspace withStot5(S1
2S2)N21, whereas theb excitations are gapful optica
magnons in the subspaceStot5(S12S2)N11: Stot

5(n51
N @S1(n)1S2(n)#. It is easy to show that the effect o

the external magnetic field in Eq.~1! on the dispersions
Ek

(a,b) reduces to the simple substitutionEk
(a,b)°Ek

(a,b)

6gmBH provided thatg15g2[g.
The spin-stiffness constantrs ~related to the acoustica

branch! plays a basic role~together with the magnetizatio
density M0) in the low-temperature thermodynamics
model ~1!,6,18,28,29 and can be obtained from the Landa
Lifshitz relation ~2! and Eq.~12!:

rs
(0)5Ja0S1S2F12

a1

SAs
2a2

s11

Ss G . ~15!

In the same free-quasiparticle approximation, the spec
gap of optical magnons atk50 reads26

D052J~S12S2!S 12
a1

SAs
D . ~16!

In the case (S1 ,S2)5(1,1
2 ) Eqs. ~15! and ~16! give

rs
(0)/Ja0S1S250.761 andD051.676J. On the other hand

the LSWT HamiltonianH08 produces the parameters of th
related classical system:rs

(0)/Ja0S1S251 and D05J. The
numerical estimate for the gapD51.759J ~Ref. 30! clearly
demonstrates the importance of the 1/S corrections in Eq.
~12!.

Next, let us consider the macroscopic sublatt
magnetizations6 m15^S1

z( i )&5S12^ai
†ai& and m2

5^S2
z( j )&52S21^bj

†bj&, which are finite in the ferrimag-
netic state. In the case of small site spins and for small m
netization densitiesM0 , m1, andm2 are strongly reduced a
compared to their classical values~respectively,S1 and
2S2):

m15S12a2 , m11m25S12S2 . ~17!

As an example, for (S1 ,S2)5(1,1
2 ) Eq. ~17! predicts a 61%

reduction of the small spinS25 1
2 . However, the off-diagona

quadratic interactionV2 in Eq. ~8! produces important first-
order corrections for the sublattice magnetizationsm1 and
m2. Thus, to first order in 1/S, Eq.~17! should be replaced by
the more precise expression

m15S12a22
As

2S~s11!2

1

N (
k

~Vk
11Vk

2!
gk

«k
2

. ~18!
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Now for the ferrimagnetic chain (1,1
2 ) the last expression

gives the resultm150.816 which differs by only 3% from
the DMRG numerical estimate 0.79248.17

Summarizing, it may be stated that the free-quasipart
approximation based on the Hamiltonian~11! gives a good
qualitative description of the ground-state properties
model ~1!. Further improvement of the SWT results may
achieved by considering the role of quasiparticle inter
tions.

III. ROLE OF THE QUASIPARTICLE INTERACTIONS

Since the first-order 1/S corrections for the ground-stat
energyE0 and the dispersionsEk

(a,b) have already been take
into account by the normal-ordering procedure, correcti
to Eqs.~9! and ~12! arise only up from the second order
the perturbation series inV.

A. Second-order corrections for the magnon energies

The second-order corrections for the dispersion of aco
tical magnonsvk

(a) , Eq. ~12!, are connected with the self
energy diagrams in Fig. 2. The respective analytic exp
sions read

dvk
(a)~a!52

1

~2S!2

Vk
(1)Vk

(2)

vk
(a)1vk

(b)
, ~19!

dvk
(a)~bc!5

1

~2S!2

2

N (
p

Vp
(1)Vkp;pk

(2) 1Vp
(2)Vkp;pk

(3)

vp
(a)1vp

(b)
, ~20!

dvk
(a)~d!52

1

~2S!2

2

N2 (
224

dk2
34

V43;2k
(8) Vk2;34

(7)

vk
(a)1v2

(a)1v3
(b)1v4

(b)
,

~21!

dvk
(a)~e!52

1

~2S!2

2

N2 (
224

dk2
34

V43;2k
(3) Vk2;34

(2)

2vk
(a)1v2

(b)1v3
(a)1v4

(a)
.

~22!

FIG. 2. Second-order self-energy diagrams giving the corr
tions for the dispersion of acoustical magnonsvk

(a) . Solid and
dashed lines represent, respectively, the propagators ofa and b
magnons. The Dyson-Maleev vertex functionsV( i ), i 51, . . . ,9 are
defined in the Appendix.
le

f

-

s
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Note that since the vertex functionsVk
(2) , Vkp;pk

(2) , Vkp;pk
(3) ,

V43;2k
(8) , and V43;2k

(3) vanish at the zone centerk50 ~see the
Appendix!, the gapless structure ofvk

(a) is preserved by each
of the second-order corrections, Eqs.~19!–~22!.

The second-order corrections for the dispersion of opt
magnonsvk

(b) , Eq. ~12!, come from similar diagrams~see
Fig. 3!. The first diagram givesdvk

(b)(a)5dvk
(a)(a),

whereas the other four diagrams give the following contrib
tions:

dvk
(b)~bc!5

1

~2S!2

2

N (
p

Vp
(1)Vkp;pk

(5) 1Vp
(2)Vkp;pk

(6)

vp
(a)1vp

(b)
,

~23!

dvk
(b)~d!52

1

~2S!2

2

N2 (
224

dk2
34

V43;2k
(7) Vk2;34

(8)

vk
(b)1v2

(b)1v3
(a)1v4

(a)
,

~24!

dvk
(b)~e!52

1

~2S!2

2

N2 (
224

dk2
34

V43;2k
(5) Vk2;34

(6)

2vk
(b)1v2

(a)1v3
(b)1v4

(b)
.

~25!

Note that in the present perturbation scheme~usingH0 as
a zeroth-order Hamiltonian!, in Eqs.~19!–~25! there appear
the renormalized dispersionsvk

(a,b) . The standardO(1/S2)
corrections to the magnon dispersions can easily be obta
by substituting in Eqs.~19!–~25! the bare excitation energie
~i.e., the functionsvk

(a,b) without the 1/S corrections!. Since
we are also interested in the extreme quantum systems w
are composed of small site spins and have small magne

tion densitiesM0 @such as (1,12 ) and (3
2 ,1)#, it may be ex-

pected that the adopted perturbation scheme, where the
siparticle interactionV is treated as a small perturbation,
more appropriate. Such a viewpoint is similar to Oguch
treatment of the Heisenberg antiferromagnet27 and is sup-
ported by the following observations:~i! the higher-order
corrections to the principle approximation forvk

(a,b) are nu-
merically small~see below!, and~ii ! the third-order series in
V gives a somewhat better result for the gapD in the extreme

quantum system (1,1
2 ). As a matter of fact, noticeable devia

- FIG. 3. Second-order self-energy diagrams giving the corr
tions for the dispersion of optical magnonsvk

(b) ~see also the nota
tions in Fig. 2!.
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tions from the standard 1/S expansions appear only in th
above-mentioned extreme quantum cases.

The dispersion functionsEk
(a,b) for the system (1,12 ), cal-

cutated up to second order inV, are presented in Fig. 4. Fo
the optical magnon branch we find an excellent agreem
with the exact-diagonalization results30 in the whole Bril-
louin zone. Recently, a very successful description of

optical magnon branch of the system (1,1
2 ) has also been

achieved through the variational matrix product approac20

As to the acoustical branch, the agreement with the availa
quantum Monte Carlo results30 is not so satisfactory, espe
cially near the zone boundary atk5p/2a0. It is worth notic-
ing that in the above region the calculated second-order
rections tovk

(a) , Eq. ~12!, are very small~about 0.5% of the
principal approximation!. In principle, it is not excluded tha
the spin-wave expansion partially fails to describe the aco

tical branch in the system (1,1
2 ), as the latter is characterize

by the minimal magnetization densityM051/4a0 ~see be-
low!. To clarify the problem, further studies are needed
this direction.

FIG. 4. Dispersions of the acousticalEk
(a) and opticalEk

(b) mag-

nons in the system (S1 ,S2)5(1,1
2 ) calculated up to second order i

the magnon interactionV. The points (1 and L) denote, respec-
tively, quantum Monte Carlo and exact-diagonalization results~Ref.
30!.
nt

e

le

r-

s-

The above second-order corrections tovk
(a,b) can be used

to find the coefficientr 2 in the perturbation series for th
spin-stiffness constantrs

rs

Ja0S1S2
511

r 1

2S
1

r 2

~2S!2
1OS 1

S3D , ~26!

and the coefficientd2 in the series for the optical magno
gap

D

2J~S12S2!
511

d1

2S
1

d2

~2S!2
1

d3

~2S!3
1OS 1

S4D . ~27!

Herer 1522a1 /As22a2(s11)/s andd1522a1 /As are
obtained from Eqs.~15! and ~16!, respectively. The results
for r 2 andd2 are presented in Table I.

B. Third-order corrections for the optical magnon gap

The third-order corrections for the optical magnon gapD
are connected with the self-energy diagrams in Fig. 5. Th
can be obtained by drawing all connected irreducible s
energy diagrams containing three vertex functions and o
oppositely oriented (a, b) pairs of internal magnon lines
The diagrams containing magnon lines closing on the
selves vanish since the vertices have already been no
ordered. In addition, the diagrams which have internala
lines carrying the momentumk give zero contributions as
well, since all vertex functions containing in-goinga lines
with momentumk vanish atk50 ~see the Appendix!.

The analytic expressions related to the diagrams in Fig
can easily be obtained by means of standard diagramm
rules ~see, e.g., Ref. 31!. For example, the diagramsa1 , d1,
and e1 in Fig. 5 give the following contributions for the
dispersion of optical magnons:
TABLE I. Spin-wave results for the spin-stiffness constantrs and optical magnon gapD of quantum
Heisenberg ferrimagnetic chains containing two different spinsS1.S2 in the elementary cell. (r 1 ,r 2) and
(d1 ,d2 ,d3) are, respectively, the coefficients of the spin-wave series forr s5rs /Ja0S1S2, Eq. ~26!, andd
5D/2(S12S2), Eq. ~27!. d8 indicates numerical estimates~Ref. 32! for the reduced excitation gapd. r s

(0)

5rs
(0)/Ja0S1S2.

(S1 ,S2) d1 d2 d3 d d8 r 1 r 2 r s
(0) r s

(1,1
2 ) 0.6756 0.1095 20.0107 1.7744 1.76 20.2391 0.0283 0.7609 0.7892

( 3
2 ,1) 1.0428 0.4262 0.0812 1.6381 1.63 20.4907 0.0184 0.7546 0.7592

( 3
2 , 1

2 ) 0.4013 0.0251 20.0047 1.4217 1.42 20.0959 0.0160 0.9041 0.9201

(2,1) 0.6756 0.1279 20.0103 1.3685 1.37 20.2391 0.0391 0.8804 0.8902

(2,1
2 ) 0.2861 0.0095 20.0018 1.2938 1.29 20.0517 0.0083 0.9483 0.9566
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dvk
(b)~a1!52

1
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The results ford3 in systems with different site spin
(S1 ,S2) are collected in Table I. It is seen that the third-ord
corrections forD are numerically small~as compared to the
second-order correction! even for the extreme quantum sy

tem (S1 ,S2)5(1,1
2 ).

IV. SUMMARY OF THE RESULTS AND DISCUSSION

The spin-wave results for the spin-stiffness constantrs
and the magnon gapD for a number of combinations
(S1 ,S2) are summarized in Table I. The results forD are
compared with available DMRG estimates.32,33 We find an
excellent agreement with the numerical estimates32 for a
number of systems, the largest deviation~about 0.88%) be-

ing connected with the system (1,1
2 ).

FIG. 5. Self-energy diagrams giving the third-order correctio
for the optical magnon gap. The vertices are denoted by their
perscripts. The diagramsb1 , b3 , c, d7, and d8 represent groups
of diagrams which can be obtained by the following vertex su
titutions: (b1) (4,8,7)°(6,6,8); (b3) (5,2,7)°(6,3,8); ~c!
(5,4,1)°(6,4,2), ~6,8,1! ~two diagrams!, ~5,7,-! ~two diagrams!;
(d7) (4,8,7)°(7,8,4), ~7,4,8!; (d8) (5,6,4)°(6,6,8), ~5,5,7! ~see
also the notations in Fig. 2!.
r
Since in the extreme quantum cases the constructed

turbation expansions basically rely on the suggested sm
ness of the quasiparticle interactionV, it is instructive to
check the self-consistency of the theory by writing the ser
for rs andD in terms of the formal parameterl51, Eq.~8!.
Using the results from Table I, the series for the syst

(S1 ,S2)5(1,1
2 ) read

rs

Ja0S1S2
50.7609l010.0283l21O~l3!, ~31!

D

2J~S12S2!
51.6756l010.1095l220.0107l31O~l4!.

~32!

The above expansions explicitly demonstrate that the qu
particle interactionV in Eq. ~8! introduces numerically smal
corrections to the zeroth-order principle approximation ba
on the quadratic quasiparticle HamiltonianH05O(l0), Eq.
~11!. Of course, the smallness of corrections by itself do
not ensure a good quality of the spin-wave expansion. T
main weakness of the spin-wave theory is connected with
assumption that the long-range order is well established
includes only transverse spin fluctuations, whereas the lo
tudinal spin fluctuations are completely neglected. In t
respect, a typical example arises when spin-wave expans
are used for magnetic systems near the order-disorder cri
point where the transverse and longitudinal fluctuatio
should be treated on equal ground. In spite of the fact that
corrections are small, the spin-wave series give unsatis
tory quantitative results.34 On the other hand, as the distan
from the critical point increases the spin-wave descript
becomes more and more reliable. The indicated discrepa
for the acoustical branch in the extreme quantum sys

(1,1
2 ) ~although the second-order corrections to the princi

approximation are numerically small! may reflect the
discussed weakness of the SWT. As a matter of fact, tak
the parameterM0 as a measure of the distance from t
disordered phase, such a behavior of the spin-wave serie
the (S1 ,S2) family of 1D quantum Heisenberg ferrimagne
can also be indicated for the magnon gapD ~see Table I! and
the parametersE0 and m1 ~see Ref. 23!: the largest devia-
tions from the DMRG results appear in the cases with m
mal magnetization density,M051/4a0. However, even in

the extreme quantum system (1,1
2 ) the discrepancies ar

small and the spin-wave expansion produces precise qu
tative results. Concerning the dispersion of the acoust

s
u-

-
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branchvk
(a) in the system~1, 1

2! ~and the related spin-stiffness constantrs), more numerical results are needed to mak
statement about the accuracy of spin-wave description in this case. We believe, however, that at least for the syst
M0.1/4a0 the reported results forrs closely approximate the true spin-stiffness constants at zero temperature.
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APPENDIX: DYSON-MALEEV VERTICES FOR THE FERRIMAGNETIC MODEL

Using the symmetric form adopted in Ref. 35, the normal-ordered Dyson-Maleev quasiparticle interactionVDM , Eq. ~8!,
reads

VDM52
J

2N (
124

d12
34@V12;34

(1) a1
†a2

†a3a412V12;34
(2) a1

†b2a3a412V12;34
(3) a1

†a2
†b3

†a414V12;34
(4) a1

†a3b4
†b2

12V12;34
(5) b4

†a3b2b112V12;34
(6) b4

†b3
†a2

†b11V12;34
(7) a1

†a2
†b3

†b4
†1V12;34

(8) b1b2a3a41V12;34
(9) b4

†b3
†b2b1#. ~A1!
e
The explicit form of the symmetric vertex functions for th
ferrimagnetic Heisenberg model~1! is

V12;34
( i ) 5u1u2u3u4V̄12;34

( i ) , i 51,2, . . . ,9, ~A2!

where

V̄12;34
(1) 51g123x1x31g124x1x41g223x2x31g224x2x4

2s1/2~g12324x1x3x41g22324x2x3x4!

2s21/2~g1x11g2x2!,

V̄12;34
(2) 52g123x1x2x32g124x1x2x42g223x32g224x4

1s1/2~g12324x1x2x3x41g22324x3x4!

1s21/2~g1x1x21g2!,

V̄12;34
(3) 52g123x12g124x1x3x42g223x22g224x2x3x4

1s1/2~g12324x1x41g22324x2x4!

1s21/2~g1x1x31g2x2x3!,

V̄12;34
(4) 51g123x1x2x3x41g124x1x21g223x3x41g224

2s1/2~g12324x1x2x31g22324x3!

2s21/2~g1x1x2x41g2x4!,
V̄12;34
(5) 52g123x2x3x42g124x22g223x1x3x42g224x1

1s1/2~g12324x2x31g22324x1x3!

1s21/2~g1x2x41g2x1x4!,

V̄12;34
(6) 52g123x42g124x32g223x1x2x4

2g224x1x2x31s1/2~g123241g22324x1x2!

1s21/2~g1x3x41g2x1x2x3x4!,

V̄12;34
(7) 51g123x1x41g124x1x31g223x2x4

1g224x2x3 ,2s1/2~g12324x11g22324x2!

2s21/2~g1x1x3x41g2x2x3x4!,

V̄12;34
(8) 51g123x2x31g124x2x41g223x1x31g224x1x4

2s1/2~g12324x2x3x41g22324x1x3x4!

2s21/2~g1x21g2x1!,

V̄12;34
(9) 51g123x2x41g124x2x31g223x1x4

1g224x1x32s1/2~g12324x21g22324x1!

2s21/2~g1x2x3x41g2x1x3x4!.
g

-

*Permanent address: Institute of Solid State Physics, Bulgaria
Academy of Sciences, Tzarigradsko chaussee-72, 1784 Sofi
Bulgaria.

1Y. Pei, M. Verdaguer, O. Kahn, J. Sletten, and J.P. Renard, Inor
Chem.26, 138 ~1987!; O. Kahn, Y. Pei, and Y. Journaux, in
Inorganic Materials~Wiley, New York, 1992!; O. Kahn,Mo-
lecular Magnetism~VCH, New York, 1993!.

2M. Hagiwara, K. Minami, Y. Narumi, K. Tatani, and K. Kindo, J.
Phys. Soc. Jpn.67, 2209~1998!.

3T. Giamarchi and A.M. Tsvelik, Phys. Rev. B59, 11 398~1999!.
4T. Fukui and N. Kawakami, Phys. Rev. B55, R14 709~1997!.
n
a,

.
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