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Magnon dispersions in quantum Heisenberg ferrimagnetic chains at zero temperature
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Within the Dyson-Maleev boson formalism, we study the zero-temperature magnon dispersions in a family
of one-dimensional quantum Heisenberg ferrimagnets composed of two different SpjSs)(in the elemen-
tary cell. It is shown that the spin-wave theory can produce precise quantitative results for the low-energy
excitations. The spin-stifiness constgntand the optical magnon gap of different (S,,S,) ferrimagnetic
systems are calculated, respectively, to second and third order in the quasiparticle interaction. The spin-wave
results are compared with available numerical estimates.

[. INTRODUCTION diamond lattice in Fig. 1 represents another interesting class
of Heisenberg ferrimagnetic chains constructed of one kind
In the last decade a large variety of quasi-one-dimensionaif antiferromagnetically coupled site spins but with a differ-
(1D) mixed-spin compounds with ferrimagnetic propertiesent number of lattice sites in thé and B sublattices. It is
has been synthesizédviost of them are molecular magnets remarkable that only in the last few years interest in the
containing two different transition-metal magnetic ions physical properties of 1D quantum Heisenberg ferrimagnets
which are alternatively distributed on the lattidéig. 1). For  has considerably increas@dnost of the early efforts were
example, two families of such compounds read Aghi) concentrated on the chemistry of molecular magnets and a
X(H,0)5-nH,O0 and ACupbaOH)(H,0);-nH,O, where relatively small amount of work was devoted to physical
pba=1,3-propylenebigsoxamatg, pbaOH=2-hydroxo-1,3- properties.
propylenebis(oxamatg, and A=Ni, Fe, Co, and Mn. Pub- Since interactions in the models presented in Fig. 1 set up
lished experimental work implies that the magnetic properbipartite lattices, the Lieb-Mattis theoréris applicable. In
ties of these mixed-spin materials are basically described bparticular, for the mixed-spin system it predicts the existence
a quantum Heisenberg spin model with antiferromagneticallyf a ferrimagnetic ground state with the total-spin quantum

coupled nearest-neighbor localized spins: numberSy= (S, —S;)N. Thus the mode(1) exhibits long-
range ordered magnetic ground state characterized by the

N magnetization densiti ,=(S;—S,)/2a,, ay being the lat-
H=JZ [Si(n)+Si(n+1)]-Sy(n) tice constant. Such a magnetic phase may be referreddo as
n=1 quantized unsaturated ferromagnetic phagds character-
N ized by both the quantized ferromagnetic order paramdter

—ugH Y [0:84(n)+g,S4(n)], J>0. (1) (quantized in integral or half-integral multiples of the num-
n=1 ber of elementary celld = MyN) and the macroscopic sub-

_ lattice magnetizations M,=3N_,(S;(n)) and Mg
Here the mt_egersn num_ber th_eN elgmentary cells, each of =2,’}‘,1<Sz(n)>. What makes such a state and the related
them containing two site spins W|th_quantum numbgys transitions to magnetically disordered states interesting is the
>S,. The g factors, relateq to the ?p"ﬁl ands,, are de- 50t that the ferromagnetic order parameter is a conserved
noted l.)ygl andgy, respe_ctlvely,uB IS the 'Bohr magneton, quantity: in Heisenberg systems this is expected to imply
and H is the external uniform magnetic field applied along strong constraints on the critical behavior.
the z direction. As an example, the following values for the Consequences of the spontaneous symmetry breaking
parameters in Eq(1) have been extragted from_ magr)etic 0O(3)—S0(2) (related to the establishment of a ferrimag-
measurements on the.recently synthesized quasi-1D bimetglaye ground stadefor the structure of low-energy excitations
lic  compound  NiCupba)(D;0)s-2D,0:  (S1.S2)  gre dictated by the nonrelativistic version of Goldstone’s
E(SNinSCu):(]-’%)- Jkg=121 K,9:=0ni=2.22,9,=0cy  theorem: in the absence of long-range forces, a spontane-
=2.09:

In view of the recent developments in the physics of uni- t a t st t

form quasi-1D system&oncerning, in particular, the behav- 9) R ] I
ior of antiferromagnetic chains and ladders in external mag-
netic fields: see, e.g., Ref. 3, and references thgrein
ferrimagnetic chains and ladders open an interesting area.
The point is that the presence of two or more different quan-
tum spins in the elementary cell considerably increases the
number of situations of interest: the topology of spin ar- FIG. 1. Two types of ferrimagnetic chains on bipartite lattices:
rangements plays an essential role in the structure of th@) mixed-spin chain with alternating site spir® and S, (S;
ground-state and low-energy excitatidhBor example, the >S,); (b) uniform-spin diamond chain with a site sp
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ous symmetry breaking leads to low-energy excitationgions for the spin-stiffness constant and the optical magnon
whose energy tends to zero for wave vectors0. In con-  gap. Third-order self-energy diagrams and the respective cor-
trast to the relativistic version, the theorem does neitherections for the optical magnon gap are also considered here.
specify the exact form of the dispersion relation for snkall In Sec. IV the results are summarized and a comparison with
nor does it determine the number of different Goldstoneavailable numerical estimates is made.
modes: these features are not fixed by symmetry consider-
ations alone—rather, they depend on the specific properties Il. DYSON-MALEEV FORMALISM
of the system. )

Turning to the case of Heisenberg ferromagnets, in a hy- T0 develop a spin-wave theofgee, e.g., Refs. 24,25 and

drodynamic description the quadratic form of the magnorfeferences therejn one first transforms the original spin
energies Hamiltonian (1) to an equivalent boson Hamiltonian. We

adopt the following Dyson-MaleeyDM) representation of
spin operators:

St()=12s,

Ekzl\’/’l—sok2+ O(k%) @)

1 T
aj— Z_Sla.i a;q;

, S/ (i)=\2S,a],

results entirely from the symmetry of the ferromagnetic state
and the fact that the order parameter is itself a constant of the
motion! Here M, and p, are, respectively, the magnetiza- Si(i)=S,-a/a;,
tion density and the spin-stiffness constant of the Heisenberg
ferromagnet. This form of the Goldstone modeehich is . 1 .
just the Landau-Lifshitz formu)acan rigorously be obtained S ()= JE( blT_ Eb;bﬁbi v S ()= \/Ebj '
by simple sum-rule argumentsee, e.g., Ref. 12 Similar
arguments are applicable to Heisenberg ferrimagnets as Sé(j)szb»—Sz, (3)
well.®* An alternative approach, relying on the suggested I
conformal invariance of the related ferrimagnetic XXZ whereS, =S.*1S),, @=1,2. a; and b; are boson operators
model, also predicts the quadratic form of E8).™> Due to  defined on the lattice sités=.4 andj e B, respectively.
the doubling of the elementary cell in the ferrimagnetic Substituting the latter expressions in Et), one finds the
ground state, there appears a second spin-wave branch in tf@lowing boson representation @{ in terms of the Fourier
ferrimagnetic caséoptical magnonswith a finite energy gap transformsa, andb, of a; andb;:
A atk=0: A~Mg/y, wherey| is the magnetic suscepti-
bility parallel to M.%® At intermediate temperatures, it is the Hg=—20S’NJI+Hy+Vpy, (4)
optical magnon branch which produces a number of specific h
thermodynamic properties characteristic especially for the "¢
ferrimagnetic systenfs!’~20

The existence of a macroscopic magnetic ground state Hy=2SJ>, [aja + oblb,+ Joy(albl+aby], (5)
also opens an interesting and rare opportunity to apply the K
spin-wave theory(SWT) to the low-dimensional quantum gpq
spin syster(1). Indeed, recently published analysis based on
the linear spin-wave approximatitif??qualitatively con-
firmed the expected structure of low-energy excitations in  Vpy=—
Heisenberg ferrimagnets. Moreover, the second-order SWT
was showf® to produce precise quantitative results for the 1
ground-state energf, and the on-site magnetizatioms; Thipt = oAt
=M, /N andm,=Mg/N even for the extreme quantum sys- " \/;)/1+274a3b2b1b4+ \/;y4a3a2alb4 - ©®
tem (S;,S,) =(1,3): the second-order SWT results differ by v, =coskap) is the lattice structure factor angf=5(1+2
less than 0'017.% fOEO.’ and by Ies_s than 0.18% fan, —3—4) is the Kroneckep function. We have used the con-
fror_n theél7dens_|ty-matr|x ren_ormallzanon-grogﬁDMRG) vention (;,ky,ks.k;)=(1,2,3,4) and the notationsr
estimates.’ In t_h|s respect, an interesting qut_asnon is to wha =5,/S,>1 andS,=S. Here and in what follows the exter-
extent the spin-wave approach can effectively be used R4l magnetic field i¢d=0.

describe the properties of the 1D modg) at zero tempera- In the above expressions,=O(S) is the quadratic bo-

ture. A purpose of the present paper is to demonstrate o . .
through an explicit study of the magnon-dispersion perturba-son Hamiitonian of the linear spin-wave thedtySWT) and

tion series, that the spin-wave approach can produce preci%leDM:,O(l) is the quartic Dysqn-MaIegv boson interaction.

quantitative results for the magnon dispersions as well. ~ Omitting completely the boson interactidfy,, , a number of
The paper is organized as follows. In Sec.ll, using the?uthors has recently used the quadratic LSWT Hamiltonian

Dayson-Maleev boson representation of spin operators, th€o for a qualitative description of the 1D ferrimagnetic

original spin Hamiltoniar(1) is transformed to an equivalent model (1) at zero temperatur€:***7, is easily diagonal-

boson Hamiltonian. The choice of an appropriate zerothized by use of the following Bogoliubov transformation to

order quadratic Hamiltonian for the perturbation series ighe quasiparticle boson operatatg and B

also discussed here. In Sec. lll we study the second-order N .

corrections for the magnon energies and the related correc- a= U(ax—XBi), b= Uk( B Xkay),

1244 833 2y1-4afasblb,
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[1+ey 7k ay(c—1)? o+l |y
U= L Xe= , 7 (+.=)— _ + 2
k 28y K1+ @) Vi Jo(o+1) 1 U—lsk)sk’ (14
wheree = \1- 7; and 7= 2Voy /(1+0). and the quartic normal-ordered Dyson-Maleev interaction
As a matter of fact, for the 1D ferrimagnetic mod#l the v, containing nine vertex functionsV®=V{) ., i
quadratic Hamiltoniart5) is not the most appropriate choice —71 ' 9.Explicit expressions fo¥/p), and the related ver-

of a starting zeroth-order approximation for perturbation setey functions are presented in the Appendix.

ries. Since we are also interested in systems with small site The quadratic Hamiltoniafl1) describes two branches of
spins, it is more appropriate from the very beginning to re-spin-wave excitationémagnons defined with the dispersion
defineH; by adding the first-order ®/ corrections to mag- relationsE(*# = 2SJn(*#) | Eq.(12). The  excitations are
non dispersion§ The latter corrections come entirely from gapless acoustical magnons in the subspace g (S,

a normal ordering of the quasiparticle boson operatefs _ g5 )N—1, whereas the3 excitations are gapful optical
and B, in the quartic interactioV/(,,, . It is important that magnons in the subspaceS,,=(S;—S)N+1: S,
these corrections(similar to Oguchi’s corrections in =3N_[Si(n)+S,(n)]. It is easy to show that the effect of
antiferromagnefd) renormalize the magnon excitation Spec-the external magnetic field in Eql) on the dispersions
tra (and the ground-state enejgyithout changing their ba- EE(a,B) reduces to the simple Substitutidﬁ(ka,ﬂ)'_)E(ka,ﬁ)
sic structure, i.e., the number of Goldstone modes. Unlik ; =

h £ Heisenb ” h o hf‘:gMBH provided thatg; =g,=g.

the case of Heisenberg antiferromagnets, where OQUChI's "o gnin stifness constant, (related to the acoustical

) ; . 1
corrections are numerlcally small even f(_)r sne_s;ﬁnsz, N branch plays a basic rolétogether with the magnetization

guantum 1D fer_nmagnets the magnon dispersions are S'gn'fHensity M) in the low-temperature thermodynamics of
cantly renormalizetf (see below. As a result of the normal- model (1),518282% and can be obtained from the Landau-

ordering procedu_re, the. boson Hamiltoni@ is recast to Lifshitz relation (2) and Eq.(12):

the following basic form:

l al o+ 1

——=—ay—=—
_ _ sVo ° So

The ground-state enerdsy calculated up to first order in &/

reads In the same free-quasiparticle approximation, the spectral

gap of optical magnons &t=0 read$®

Hg=Eo+Ho+A\V, V=V,+Vpy, A=1. (8 PgO)z‘Jaoslsz ) (15

Eo

7 2
TR +92oa;+(o+1)ay,] smonssl1 a, o
+1 i 1 Vo
2_2_ 9
Tay T aT —=aay, €) L _
Jo In the case $;,S,)=(1,5) Egs. (15 and (16) give
where p911a,$,S,=0.761 andA,=1.676. On the other hand,
the LSWT HamiltonianH,, produces the parameters of the
2 related classical systempl®/Ja,S;S,=1 andA,=J. The
o 1.« 1 1 1 : _ s
a;=— or D N E —, ay=-— §+ N E —. numerical estimate for the gap=1.759 (Ref. 30 clearly
(0+1) N5 e k' Ek demonstrates the importance of thé& Dorrections in Eq.
10 (1.
Expressed in terms of quasiparticle operators, the corrected N€Xt, let us consioler the maTcroscopic sublattice
LSWT Hamiltonian reads magnetizatiors  m;=(Si(i))=S,—(ala;) and m,
=(S§(j)):—82+<b}rbj), which are finite in the ferrimag-
(a) (8) netic state. In the case of small site spins and for small mag-
HOZZSJEK [og™ ayaxt ol BBl (11 netization densitied,, m;, andm, are strongly reduced as
compared to their classical valuésespectively,S; and
where -S):
wp) (1 a, \[o+1 _o—1 1— 97 m=S1—-a;, M+m=5,-5;. 17
o P = 1- ExF -a . (12
“ sfo/l 2 7 2 s 12 As an example, for$;,S,)=(1,}) Eq. (17) predicts a 61%

reduction of the small spi§,= 3. However, the off-diagonal
o ) quadratic interactiotV, in Eq. (8) produces important first-
The normal-ordered quasiparticle interactiontains @  order corrections for the sublattice magnetizations and

quadratic term, m,. Thus, to first order in B, Eq.(17) should be replaced by
the more precise expression
Vo= [V alBi+ Vi aBi, (13
K Jo o1 PN 7%
Mm=S-8- -y > (V). (18
where 2S(oc+1) K 2



3274 N. B.

;"_‘(\\\
v /7 s\, ViE) v v©
1 1]
d) e)

FIG. 2. Second-order self-energy diagrams giving the correc-

tions for the dispersion of acoustical magno:n‘g*). Solid and
dashed lines represent, respectively, the propagatoes ahd g
magnons. The Dyson-Maleev vertex functiol®, i=1,...,9 are
defined in the Appendix.

Now for the ferrimagnetic chain (1) the last expression
gives the resultm;=0.816 which differs by only 3% from
the DMRG numerical estimate 0.79248.
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FIG. 3. Second-order self-energy diagrams giving the correc-
tions for the dispersion of optical magnomﬁﬁ) (see also the nota-
tions in Fig. 2.

Note that since the vertex functiond ), V&), Vi3,
V&, and Vi3, vanish at the zone centér=0 (see the
Appendix, the gapless structure oif(“) is preserved by each
of the second-order corrections, E¢§9)—(22).

The second-order corrections for the dispersion of optical

Summarizing, it may be stated that the free—quasiparticlenagnonsa)(kﬁ), Eq. (12), come from similar diagramésee
approximation based on the Hamiltonighl) gives a good  Fig. 3). The first diagram givessw(f)(a) = sw{?(a),

qualitative description of the ground-state properties ofyhereas the other four diagrams give the following contribu-
model (1). Further improvement of the SWT results may beijgns:

achieved by considering the role of quasiparticle interac-

tions.

(+)y(5) (=)y/(6)
5w(ﬁ)(bc)_ 1 E E Vo Vigpkt Ve Vigipk
k - 2 o L
Ill. ROLE OF THE QUASIPARTICLE INTERACTIONS (29N % wf+ off) 23
Since the first-order & corrections for the ground-state
energykE, and the dispersiorE(k“"B) have already been taken 1 2 v(?) kv(kS)
into account by the normal-ordering procedure, corrections su{?(d)= — > 53 49,2 k234

(292 N2 4 % P+ 0P + 0l + 0

to Egs.(9) and (12) arise only up from the second order of 24
24

the perturbation series M.

A. Second-order corrections for the magnon energies 5 (ﬁ,)( ) 1 2
w e)=—
The second-order corrections for the dispersion of acous-

tical magnonsw(® , Eq. (12), are connected with the self-
energy diagrams in Fig. 2. The respective analytic expres-

5 6
2y V.
(2S)2 N? 2-4 kz—w(kﬁ)-l-w(za)-i-w(aﬁ)-i-waﬁ) .
(25

sions read
1 Vv
Sui(a)= - , (19)
‘ (292 0@+ 0
(+)y(2) (=)y(3)
&o(a)(bc): ! E VP Vkp;pk+Vp Vkp;pk 20
“ (252N 5 oOraP
1 2 VERlaVidlss
sof(d)=-—— — 3 o 20 ,
<@ (2S)2 N2 224 < (@t 0l + 0P + o
(21)
1 2 Vslgé) 2kV(k22)' 34
5(0(‘1) [ = 534 : : .
Kk (e) (28)2 N2 224 kz_w(ka)+w(2/3)+wga)+wga)

(22

Note that in the present perturbation schemngH, as
a zeroth-order Hamiltonianin Egs.(19)—(25) there appear
the renormalized dispersions.*?) . The standard)(1/S?)
corrections to the magnon dispersions can easily be obtained
by substituting in Eqs(19)—(25) the bare excitation energies
(i.e., the functions»,ﬁ“'ﬁ) without the 15 correction$. Since
we are also interested in the extreme quantum systems which
are composed of small site spins and have small magnetiza-

tion densitiesM, [such as (%) and &,1)], it may be ex-
pected that the adopted perturbation scheme, where the qua-
siparticle interactiorV is treated as a small perturbation, is
more appropriate. Such a viewpoint is similar to Oguchi’'s
treatment of the Heisenberg antiferromagheind is sup-
ported by the following observationgi) the higher-order
corrections to the principle approximation foff“'ﬁ) are nu-
merically small(see below, and(ii) the third-order series in

V gives a somewhat better result for the gajn the extreme

quantum system (1). As a matter of fact, noticeable devia-
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FIG. 4. Dispersions of the acoustida{® and opticalE{® mag-

nons in the systemy;,S,) = (1,%) calculated up to second order in
the magnon interactioR. The points ¢ and ¢ ) denote, respec-
tively, guantum Monte Carlo and exact-diagonalization res&e.
30).

tions from the standard %/expansions appear only in the
above-mentioned extreme quantum cases.

The dispersion functiong(*? for the system (%), cal-
cutated up to second order ¥y are presented in Fig. 4. For

the optical magnon branch we find an excellent agreement

with the exact-diagonalization resuftsin the whole Bril-
louin zone. Recently, a very successful description of th
optical magnon branch of the system ¥} has also been
achieved through the variational matrix product apprddch.

As to the acoustical branch, the agreement with the availabl

quantum Monte Carlo resuffis not so satisfactory, espe-
cially near the zone boundary lat 7/2a,. It is worth notic-

ing that in the above region the calculated second-order co

rections tow(® , Eq.(12), are very smallabout 0.5% of the
principal approximatioh In principle, it is not excluded that

MAGNON DISPERSIONS IN QUANTUM HEISENBERG . . .
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The above second-order correctionsdig"? can be used
to find the coefficientr, in the perturbation series for the

spin-stiffness constant
1
+0O g ,

and the coefficien®, in the series for the optical magnon
gap

Ps r )
———=1+_c+
JapS: S, 2S5 (292

(26)

A 8 &
=14 <+
2J($1—S) 2S5 (29)?

J’_

3 +O<i>
(25)3 st @D

Herer,=—2a,/\Jo—2a,(c+1)/c andd,= —2a, /o are
obtained from Eqs(15) and (16), respectively. The results
for r, and 6, are presented in Table I.

B. Third-order corrections for the optical magnon gap

The third-order corrections for the optical magnon dap

gre connected with the self-energy diagrams in Fig. 5. These

can be obtained by drawing all connected irreducible self-
energy diagrams containing three vertex functions and only
oppositely oriented 4, B8) pairs of internal magnon lines.
®he diagrams containing magnon lines closing on them-

selves vanish since the vertices have already been normal

ordered. In addition, the diagrams which have interaal
fines carrying the momenturk give zero contributions as
well, since all vertex functions containing in-going lines
with momentumk vanish atk=0 (see the Appendix

the spin-wave expansion partially fails to describe the acous- The analytic expressions related to the diagrams in Fig. 5

tical branch in the system (), as the latter is characterized
by the minimal magnetization densityl,=1/4a, (see be-

can easily be obtained by means of standard diagrammatic

rules(see, e.g., Ref. 31For example, the diagranas , d,,

low). To clarify the problem, further studies are needed inand e; in Fig. 5 give the following contributions for the

this direction.

dispersion of optical magnons:

TABLE I. Spin-wave results for the spin-stiffiness constagtand optical magnon gapp of quantum
Heisenberg ferrimagnetic chains containing two different s@ips S, in the elementary cell.rg,r,) and
(61,6,,85) are, respectively, the coefficients of the spin-wave series forp/JayS;S,, Eq. (26), and §
=A/2(S,—S,), Eq. (27). &' indicates numerical estimatéRef. 32 for the reduced excitation gaf rgo)

=pP18gS;S,.

(S1.5) 8 8, 83 ) s r r r” s
(1,%) 0.6756 0.1095 —-0.0107 1.7744 1.76 —0.2391 0.0283 0.7609 0.7892
(%,1) 1.0428 0.4262 0.0812 1.6381 1.63 —0.4907 0.0184 0.7546 0.7592
(%% 0.4013 0.0251 —-0.0047 1.4217 1.42 —0.0959 0.0160 0.9041 0.9201
(2,1) 0.6756 0.1279 —-0.0103 1.3685 1.37 —0.2391 0.0391 0.8804 0.8902
(2%) 0.2861 0.0095 —-0.0018 1.2938 1.29 —0.0517 0.0083 0.9483 0.9566




3276 N. B. IVANOV PRB 62

(Dy&) )
12 o VEIVERLWVG

swfflay)= - —— < P (28
l o 1
29°N T [0f+0{P]?
S (dy) = — 2 S 4SS VDV Ve 1 (29
! (253 N3 i~s 12 12[(1)(1“)-1-w(za)-%—w(f)-l—wgﬁ)][w(la)-l-w(za)-l—a)(kﬁ)-l—wgﬁ)]'
4 VEIVEL, VY
(ﬁ)(el) E 684 4 34;2k v 2k;43 (30)

(2S)® N? 2=4 [w4 )+w('8)][—w(kﬁ)+w(2a)+wgﬁ)-f-wgﬁ)].

The results fords in systems with different site spins Since in the extreme quantum cases the constructed per-
(S;,S,) are collected in Table 1. It is seen that the third-orderturbation expansions basically rely on the suggested small-
corrections forA are numerically smallas compared to the ness of the quasiparticle interactiaf it is instructive to
second-order correctipreven for the extreme quantum sys- check the self-consistency of the theory by writing the series

tem (S;,S,) =(1,%). for ps andA in terms of the formal parametar=1, Eq.(8).
Using the results from Table I, the series for the system
IV. SUMMARY OF THE RESULTS AND DISCUSSION (S1,82)=(1,3) read
The spin-wave results for the spin-stiffness constant Ps 0 ) 3
and the magnon gap for a number of combinations 3 3182—07609\ +0.0283 7+ O()”), (31)

(S1,S,) are summarized in Table I. The results fvrare
compared with available DMRG estimat&s’® We find an A
excellent agreement with the numerical estimitder a 2J(S S) ——————=1.6756"+0.1095.2— 0.010A 3+ O(\*%).

number of systems, the largest deviatiabout 0.88%) be- 1 (32)

ing connected with the system §1, ) o )
9 y & The above expansions explicitly demonstrate that the quasi-

particle interactiorV in Eq. (8) introduces numerically small
corrections to the zeroth-order principle approximation based
on the quadratic quasiparticle Hamiltoniaty=O(\%), Eq.

o) ;) b) (11). Of course, the smallness of corrections by itself does
P not ensure a good quality of the spin-wave expansion. The
7 2 T main weakness of the spin-wave theory is connected with the
\\5 6 assumption that the long-range order is well established: it
-ba) - ) - mcl_udes o_nIy transve_rse spin fluctuations, whereas the Iongl—
1 AN A tudinal spin fluctuations are completely neglected. In this
91/ Ng 7/ \ig 7 respect, a typical example arises when spin-wave expansions
ey & R are used for magnetic systems near the order-disorder critical
point where the transverse and longitudinal fluctuations
I/:/)T\ ﬁg\\\ AN AN should be treated on equal ground. In spite of the fact that the
54 2 3 6 o s s/ 6 corrections are small, the spin-wave series give unsatisfac-
ds) de) ) ds) tory quantitative result?® On the other hand, as the distance
. - - from the critical point increases the spin-wave description
5/ 1\4 4/: N6 5 __f_lg_)_ __9_{__:_1@_ becomes more and more reliable. The indicated discrepancy
‘\\ 1\\ /,' _,f’ N ’,/' for the acoustical branch in the extreme quantum system
er) e) es) es) (1,3) (although the second-order corrections to the principle
g > e N approximation are numerically smpalimay reflect the
702 368 & "\/8 ~%t----4%-  discussed weakness of the SWT. As a matter of fact, taking
et the parameteM, as a measure of the distance from the
es) es) er) es) disordered phase, such a behavior of the spin-wave series in

_ o ] . the (5;,S,) family of 1D quantum Heisenberg ferrimagnets
FIG. 5. _Self-energy diagrams giving the third-order correct_lonscan also be indicated for the magnon gagsee Table)land
for thg optical magnon gap. The vertices are denoted by their SUhe parameter&, andm, (see Ref. 28 the largest devia-
perscripts. The diagramis,, b, ¢, d7, anddg represent groups o from the DMRG results appear in the cases with mini-

of diagrams which can be obtained by the following vertex subs-
titutions: (b)) (4,8.7)>(6,68): ®3) (52.7)>(6.3.8): (0) mal magnetization densityyl,=1/4a,. However, even in

(5,44)—(6,4-), (6,8+) (two diagramy (5,7, (two diagram the extreme quantum system %),the discrepancies are
(d7) (4,8,7)~(7,8,4),(7,4,9; (dg) (5.6,4)~(6,6,8),(5,5,7 (see small and the spin-wave expansion produces precise gquanti-
also the notations in Fig.)2 tative results. Concerning the dispersion of the acoustical
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branch w(k“) in the system(1,3) (and the related spin-stiffness constag}, more numerical results are needed to make a
statement about the accuracy of spin-wave description in this case. We believe, however, that at least for the systems with

M o> 1/4a, the reported results fgs; closely approximate the true spin-stiffness constants at zero temperature.
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APPENDIX:

DYSON-MALEEV VERTICES FOR THE FERRIMAGNETIC MODEL

Using the symmetric form adopted in Ref. 35, the normal-ordered Dyson-Maleev quasiparticle intevagfipeg. (8),

reads

J
Vpm=— N 12:4 ﬁiVﬁlz);sﬂIaEasaﬁ 2V(122);34a1132<13a4+ 2V(132);34‘1J{a£,3;a4+4V(1?;34“I‘13BZ,32

+ 2V(152);343:r1a3/32[31+ 2V(1%);343juﬁga£/31+ V(172);3

The explicit form of the symmetric vertex functions for the
ferrimagnetic Heisenberg modél) is

Vg_iz);34:U1U2U3U4vg_iZ);34, i:1,2, PR ,9, (AZ)

where
1) _
V5= + ¥1-3%1Xa+ Y1-aX1Xa T Vo aXoXat Ya—aXoXs
1
— YAy 3 X1 XaXat Vo3 aXoXgXa)

— o Y y1xa+ yaXa),

2) _
V(lZ);34_ — Y1-3X1XoX3 ™ Y1-4X1XoXg T Y2-3X3 T V2-4Xyg
12
+ 07 y1-3- aX1XoX3Xa T V23— 4X3Xs)

—12
+ o T (yiXaXet v2),

3) _
v(12);34— — Y1-3X17 Y1-4X1X3Xg T Y2-3X2 T Y2-4X2X3Xy
1
+ 0 y1-3-4X1Xa T Voo 3-aXoXa)

—1/2
+ o7 T (y1XaXa T ¥2X2X3),
Vi, =+ X1 XoXaXa+ X1Xo+ XX+
12;34 Y1-3X1XoX3X4 T Y1 -4X1 X2 T V2 -3X3X4T Y24

12
— 0 y1-3-4X1XoX3+ Y2 _3-4X3)

—12
— 0 (Y1 X XoXat Y2Xa),

alalBlpl+ Vg.%);3481:32a3a’4+ V(lg);343118:’£:82131] .

(A1)

v _ _ _
Vi2i34= = Y1-3XoXaXa ™ Y1-4X2— Y2 3X1X3Xa— Y2-4X1

12
+ 07 y1-3-aXoX3t Y2 3-4X1X3)

—1
+ 0 Y2y XoXat+ yaXaXa),

6) _
v(12);34— T Y1-3X47 Y1-4X37 Y2-3X1XoXy
172
— Y2 aX1 XXzt (Y134t Y2 3-4X1X2)

—1p2
+ 07 T y1XaXa Tt Y2X1XoX3Xa),

7 _
v(12);34— T y1-3X1XgF y1-4X1 X3+ Yo 3XoXy
12
+ Vo aXoX3, — 0 Y1-3-4X1F Y2_3-4X2)

~12
— 0 T Y1X1X3Xa T Y2XoX3X4a),

8) _
V(12);34— T ¥1-3XoX3 T Y1-aXoXgt Y2 3X1X3F Y2 4X1X4
12
=0 y1-3-4X2X3Xa+ Y2 3-4X1X3X4)
~112
—o T y1Xot y2Xa),

9) _
V(lz);sr + y1-3XoXg T Y1-4XoXzt Y2 3X1Xy

112
+ Y2 aX1Xzg— 0 Y1-3-4XoF Yo _3-4%1)

—12
— 0 T y1XoXaXa T VX1 X3Xa).
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