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Numerical method for detecting incommensurate correlations in the Heisenberg zigzag ladder
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We study two Heisenberg spin-1/2 chains coupled by a frustrating “zigzag” interaction. We are particularly
interested in the regime of weak interchain coupling, which is difficult to analyze by either numerical or
analytical methods. Previous density matrix renormalization-group studies of the isotropic model with open
boundary conditions and sizable interchain coupling have established the presence of incommensurate corre-
lations and of a spectral gap. By using twisted boundary conditions with an arbitrary twist angle, we are able
to determine the incommensurabilities both in the isotropic case and in the presence of an exchange anisotropy
by means of exact diagonalization of relatively short finite chains of up to 24 sites. Using twisted boundary
conditions results in a very smooth dependence of the incommensurabilities on system size, which makes the
extrapolation to infinite systems significantly easier than for open or periodic chains.

I. INTRODUCTION The ground state is doubly degenerate and is character-
ized by a nonzero dimerizatioth= (S, (Son—1— Son+1))-
In recent years several frustrated quasi-one-dimensional 1,o equal-time correlation functio{énéﬁ exhibits an

(1D) magnetic compounds have been identified and studieflqjating exponential decay at large spatial separations. The

. _4 . . .
experimentally.™ In the one-dimensional phase, i.e., for oparacteristic angle associated with these oscillations, i.e.,
temperatures above the magnetic ordering transition, frustrqhe incommensurability, is related to the correlation length
tion is expected to lead to incommensurate correlations. Preg;

cisely how frustration gives rise to incommensurabilitites for
the extreme “quantum” case of splb=1/2 is at present not 0 1
well understood. 175z 2
. . . T I3
A paradigm of a frustrated quantum magnet is the spin-
1/2 Heisenberg antiferromagnetic chain with nearestThis connection of incommensurability and correlation
neighbor exchangd; and next-nearest-neighbor exchangelength also fits into the picture emerging from the
J,. This model is equivalent to a two-leg laddsee Fig. 1, renormalization-group analys{galid in the limitJ,>J,) of
where the coupling alonthbetween the legs of the ladder is Ref. 9, which yields thesimultaneouslivergence, with fixed
equal toJ, (J4). ratio, of the related coupling constants.
The Hamiltonian is given by The regimel,>J, is very difficult to analyze numerically
as both the dimerization and the incommensurability become
very small. In particular, the DMRG analysis of Ref. 8 did
H:Ei Ji(S{SY 1+ 55, ,ASS ) not consider this regime. At the same time the field theory
studies of Ref. 9 suggest that fdg>J; and|A|<1 a dif-
ferent type of physics may emerge: there are still incommen-
+2i IS8+ 85, T ASTS ) |, (D surate correlations and dimerizations, but, in addition, there
is also “chiral” order
where we have allowed for an exchange anisotrapy

The zigzag-ladder model is believed to describe the quan- J2, A
tum magnet SrCu® (Refs. 1 and 2 above the magnetic '\ ,’\ ,’\ »
ordering transition. The ratio of exchange constants is esti- /,J A
mated agJ;/J,|~0.1-0.2% so that the interchain coupling . . ' !

is significantly smaller than the exchange along the legs of
the ladder. A second well-studied material with a zigzag
structure is CgCuCl,.> However, in CsCuCl, the chains
appear to be coupled in an entire plane and no pronounced
ladder structure is present.

The model(1) in the regimel,=J; has been studied pre- T, A
viously using both numericaf and field-theoreticir*? b
methods. The main density matrix renormalization-group FIG. 1. Schematic representation of a zigzag ladtes) and its
(DMRG) results for the spin rotationally symmetric case equivalent chain with first- and second-nearest-neighbor exchange
(A=1) and not too large values d4/J; are the following  interactions.
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(S3:S5m4 29— SonSan 120 #0, By symmetry, for eachy, only excited states witl&?
=—1 andK;=Kgy+ g have nonvanishing matrix elements in
(S3nSon-1—SonSon_ 1) #0. (3)  Eq.(5). We now assume that the large-distance asymptotics
) ) ] . ) of C(I) is determined by the lowest excited state in ffe
Such type of order is forbidden in the isotropic cdse 1. It~ — _ 1 sector. The difference in wave number between this

clearly would be interesting to numerically analyze whethergate and the ground state then gives the incommensurability
or not such a new phase indeed exists. Given the difficulties,

mainly due to finite-size effects, in accessing the relevant  gor 4 finite system, in order to represent a continuum of
parameter regime by numerical methods, we propose in egyave vectors, we minimize the energy in &&= —1 sector
sence toutilize finite-size effects to extract information on E,(K,,®), as a function of flux and allowed discrete wave

the incommensurability present in the system. This is dongqciors for this fluxsee Eq.(4)]. The wave vector of the
by studying the effects of twisted boundary conditions on the,yitation is taken as

energy levels. Our main purpose is to establish the viability

of our method by carrying out exact diagqnalizgtip_n of finite Umin= 0= K 1(P i) — Ko(P min)» (6)
clusters of up to 24 sites. In order to obtain definitive results ) ) S

on the zigzag chain in the most interesting parameter regimavhere ®p, is the flux which minimizest, (K, ®), and
larger systems need to be studied possibly by implementinfyi(®) is the wave vector of the state of lowest energy in the

TBA into a DMRG algorithm. ?=—1 sector at fluxd. The wave vectoq,,,, gives the
period of the oscillations of the spin correlations and corre-
II. THE METHOD sponds to the pitch anglé@ of the classical spiral density
) 7
wave!

We found the ground state of the system by Lanczos di- We have also investigated the energy gap of the spectrum.
agonalization of rings of size=12, 16, 20, and 24 sites in For a finite system we evaluate it as
the subspaces of total spin projecti®h=0, 1, for each total
wave numberK. We used twisted boundary conditions Ag=E1(Ky,Pmin) = Eo(Ko, P i) (7)
(TBC) S, =€'"S" . This means that each time a spin down
traverses one particular linkusually that between sites
L-1 and 0, it acquires a phasee'®(e '?)
if it moves to the right (left). In the fermionic
representation, after a Wigner-Jordan transformatin

ept s | ransiormatio! | COnvergence.
_ng?/)i‘;,(:w j<iCiC), and a gauge transformatiort; To test the method, we have studied a dimerized half-

i » the problem becomes equivalent to a system ofjjjeq system of noninteracting spinless fermions. This model

N, fermions(f) on a ring threaded by a fluk, whereN, is 5 the fermionic version of aXY model plus additional in-
the number of spins down. The advantage of the TBC for oufgractions:

purposes is that the allowed total wave vectors are

Here®d /. is the flux that minimizes the ground-state energy
Eo. There are alternative expressionsdg;, and A, that
converge to the same value in the thermodynamic limit. Our

experience suggests that the ones we chose have the fastest

M =

20 @ He=—> t ¢l ci+H.c.
Kn(q))zT”Jrwa (4) t “ IZ (Ciy(Ci )
with n an integer. Thus, varying®, we have access to a ! iAo
continuum of possible wave vectors, even if we are working * 2 2. (=D(CiacitHe). ®

on a finite system.As an example, the ground state of Eq.
(1) for N;=1 is known exactly. In the thermodynamic W€ have taken the parameters=1, t,=0.4, t3=0, t,
limit, for 1/4<a=J,/3,<1/2, the ground state is twofold =—0.2, V=0.3, in such a way that the resulting tight-
degenerate with incommensurate wave vectoks binding upper(empty band has its minimum at incommen-
— +arcco§— 1/(4a)].5 For small systems these wave vec- Surate wave vectorgy,=+0.2356 , and the lower(full)
tors are only accessible for discrete particular valueg df ~ band has its maximum a=0. There is an indirect gap
PBC are used. Instead, for any the exacK’s and ground-  A¢=0.12477. o
state energies are reproduced, if the energy of a small ring is N Fig. 2, we compare the results fag,i, andA, in finite
minimized as a function of flu® and discrete wave number Systems oL sites, with anl./4 integer, and 121 <64, be-
(n). tween PBC and TBC. The gap is calculatgd ag
For |A|<1, the transverse spin correlations dominate at=E1(P1) +E_1(P_1) —2Eq(Po), where Ej(Pj) is the
large distances. We denote the ground state of the system gjound-state energy for added particles. For TBC, the
|g). It lies in the S?=0 sector and its wave vector for PBC fluxes®; are those which minimiz&;(®;), while for PBC
(or TBC if the energy is minimized oveb) is alwaysK, ®i=0. Sinceqn, is nearw/4, and the latter is one of the

=0 or 7. For the transverse spin correlations we can write 8llowed wave vectors of PBC for dnmultiple of 8, small
periodic systems with ah/8 integer have the minimum en-

B o 1 “igl e ergy for one added particle, when this particle has a wave
C(h=(gls SI+I|9>_E Za e ' elSy19)1%, (B vector + w/4. As long as /L is larger thanm/4—|q|
' (small systems the results for PBC are betterlifis a mul-
whereS; is the Fourier transform of, , and the sum over tiple of 8. However, the oscillations with increasithgfor
|e) runs over all excited states. PBC make a finite-size scaling difficult. Although,;, also
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incommensurability. This is probably a finite-size effect,
1/L since ford,/J;=0.7, we obtaind= = for L=12, but incom-
mensurate values of for L>12. We have disregarded the
FIG. 2. Incommensurate wave veci(éop) and gapbottom) as  ygJye forL=12 in the extrapolation whed, /J;=0.7.
a function of system size, obtained using periodic and twisted Eqp J,/3;<1 and J,/J,=1.8 our results are in better
boundary conditions, for the toy model E@). agreement with those of White and Afflédhan with those

. . _— of Bursill et al.” In the remaining region both DMRG results
oscillates withL for TBC, the oscillations are smaller and the _ very similar. In general, the difference between the near-

convergence to the thermodynamic limit is much faster. Us—est of the results of the three calculations fief 90° is of the

ing TBC, for L=52, Fhe EITOrS IMmin and A, are belqw order of 20%. For example, fal,/J;=0.7 our results and
0.01%. For the maximum size of the system used in OUf ice of Refs. 8 and 7 are respectively, 31°, 28°, and 21°

Lanczos diagonalization of E{L) (L =24), the error i, ForJ,/J;=2 the corresponding values are 1.00°, 1.19°, and

is ~2% and that ofA is of the order of 10%. 1.36°. In general, comparison with DMRG results and the
difference between different extrapolation methods suggest
l. RESULTS that the error ing—90° using TBC is roughly of the order of

20%. In view of the simplicity of our method compared to

: . . . DMRG calculations, we believe that our results are satisfac-
_The Incommensurate spin correlations and spin gap fc’fory. Note that to detect an incommensurability of 1° with-

a=1 %%d J2/J;<3 have been studied previously by g using TBC, the size of the system should be of the order

DMRG."® In this section, we compare our results with theseof L ~360.

apq extend the stgdy 10s8J,/J,=<30, a region that is very In Fig. 4, we show the angle as a functionbf/J,, for

difficult to reach W'th other methods_. . 2<J,/J;=<30 on a logarithmic scale. In this region the in-
We have used a linear extrapolation in. 1f the data for commensurability is very small, and therefore, as explained

the anglef= gy, for L =12, 16, 20, and 24. We have chosSen 4,6 very hard to obtain by alternative numerical methods.

L/4 to be an integer in order to avoid frustration of antifer- For largeJ,/J;, the deviation of the angle fromr/2 is ex-

romagnetic interactions for largé#. A quadratic fit gives pected to be o% the forfr®

smaller values of), which underestimate the DMRG results.

The comparison of available DMRG results and those ob- 6—90°=exp(—a—bJ,/J;). 9

tained using TBC as described in the previous section is

included in Fig. 3. ForJ,/J;<0.7 we do not obtain any A linear fit of In(6—90°) as a function 08,/J, in the inter-
val [15,30 gives within a few percera=2, andb= 1/20.

A. Isotropic case

35 . . . . . We have also used E@7) to study the gap\y. Due to
= 30| . » Twisted BC | the smallness of the gap, the finite-size effects for the rela-
o o Bursill et al. tively small system sizes we consider are too large to allow
5 251 o  White-Affleck us to obtain reliable values fax,. Figure 5 shows the size
T 20} o 1 dependence od4. From the difference between linear and
S sl 1 quadratic extrapolation, we estimate the error in the extrapo-
o . lated gap to be of the order of @4, while for any value of
101 ] J3/31, Ag<<0.53;. Within this error, our results agree with
5 =3 ] those reported by White and Affleék.
.y "5
%.o 05 10 15 20 25 3.0 B. Anisotropic case
I,

In Ref. 9 the zigzag ladder was studied by means of a

FIG. 3. Incommensurate angle as a functionJefJ, for A  field theory approach in the regindg>J;. A mechanism for
=1, obtained using twisted boundary conditions. The DMRG re-generating incommensurabilities was identified and analyzed
sults of Refs. 7 and 8 are also shown. guantitatively for the case of two coupleédX chains A
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1
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=0). It was found that spin correlations exhibit a very slow Js (D

ower-law decay and are incommensurate, o . I
P y This is in disagreement with the prediction of Ref. 9.

(—1)¥% The disagreement between the predictions of Ref. 9 and
(Sf(x)sj‘(O))~ Wexq—ixx/ao], (100  the numerical results of Eq11) and Ref. 13 could either be
|| due to a defect in the mean-field solution of Ref. 9 or be due

to an artifact of the limited system sizes used in the numeri-
cal computations. In fact, the analysis of Ref. 9 predicts a
pless phase at=0 so that it is conceivable that numerical

wherej=1,2 and the deviation of the pitch angle framis
k*(J;/J,)%. The analysis of Ref. 9 also implies the exis-

tence of local magnetization currents around the elemental A
triangular plaquettes of the ladder. The findings of Ref. esults for small clusters are plagued by finite-size effects.

were questioned in Ref. 13, where the squares of the local There is indeed evidence suggesting that finite-size effects

magnetization currents and the Binder parameter were conft'® stillzs_ignificant for. =24. We find that the ground state
puted numerically and found to decrease with the system siZ8 the S°=1 sector has a lower energy than the first excited
for open chains of up to 20 sites. However, these calculationStat€¢ In theS’=0 sector forL =24 andJ,=2J,. On the

in small systems with open or periodic boundary conditionCther hand, the DMRG studies of Ref. 8 show that in the
are not conclusive to exclude small incommensurabilities. 'SOtropic case and for long lattices the two lowest levels are
In an attempt to resolve this controversy we have sePOth in theS’=0 sector(degenerate ground states corre-

J,13,=10 and studied the variation of the incommensurate>Ponding to different signs of the dimerizatjon
angle with the anisotropy parametér As shown in Fig. 6 We note that the presence of such finite-size effects does

we find thatd— 90° increases considerably Ass decreased 1Ot necessarily imply that the extrapolated results for the
from the isotropic casa =1. This is in agreement with the incommensurability are incorrect. In order to resolve this is-
field-theory prediction of Réf 9 sue it is necessary to study significantly longer lattices.

We futhermore have determined the dependence of the

incommensurability o, /J;. The results are shown in Fig. IV. SUMMARY AND DISCUSSION
7.' For large values of,/J; our numerical results are well We have calculated the incommensurate wave number in
fitted by . : . )
the next-nearest-neighbor Heisenberg model with anisotropy
0.85 A, by exact diagonalization of rings of up to 24 sites. We
| = have used twisted boundary conditions and assumed that the
& 080F . incommensurate spin fluctuations fdf|<1 are determined
3 o5l " by the lowest excited state for total spin projecti®i+ = 1.
05)) | . J,JJ,=10 The method is able to detect incommensurate angles
S 020} - _ ~0.03°. This corresponds to a wave length of the order of
Z; - . 10000 sites and is impossible to detect by using alternative
CP 015 T numerical methods. However, for certain parameters
S . - i (J2/3:<0.7 in the modsl our method is unable to detect the
I . incommensurability although it is rather large. On the other
0.05 [ . . hand, the method does not predict incommensurabilities in
000 L T cases where it is known that none exist. Also, in general, the

02 00 02 04 06 08 10 T2 14 18 extrapolated vales af seem to be underestimations, as com-
A pared with known DMRG results. This is also the case for
the toy mode[Eqg. (8)], represented in Fig. 2, where a linear

FIG. 6. Incommensurate angle as a functionfoffor J,/J;  extrapolation gives an underestimationgpf, by ~30% if
=10. the results are limited to 24 sites.
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The advantage of using TBC for facilitating a finite-size TBC. The main advantage of the method is that the depen-
scaling analysis has been noted previously in e.g., Ref. 14lence of the incommensurability on system size is very
but their use for detecting incommensurabilities is to the bestmooth and allows extrapolation from results for relatively
of our knowledge novel. short chains.

In spite of the limitations of the size of the cluster, the |t would be very interesting to implement our TBC
values of # obtained with our method are in reasonablemethod in a DMRG a|gorithm and Study the anisotropic Zig_

case. For this case, we have also studied the redjdd,
>3, which is very difficult to reach by alternative
methods. For sufficiently largd,/J,, 60— w/2 decays as
exp(—b J,/J;) as predicted by field theofyWe obtain that
constantb~ 1/20.

In the anisotropic case, we obtain thatincreases with
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