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Numerical method for detecting incommensurate correlations in the Heisenberg zigzag ladder
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We study two Heisenberg spin-1/2 chains coupled by a frustrating ‘‘zigzag’’ interaction. We are particularly
interested in the regime of weak interchain coupling, which is difficult to analyze by either numerical or
analytical methods. Previous density matrix renormalization-group studies of the isotropic model with open
boundary conditions and sizable interchain coupling have established the presence of incommensurate corre-
lations and of a spectral gap. By using twisted boundary conditions with an arbitrary twist angle, we are able
to determine the incommensurabilities both in the isotropic case and in the presence of an exchange anisotropy
by means of exact diagonalization of relatively short finite chains of up to 24 sites. Using twisted boundary
conditions results in a very smooth dependence of the incommensurabilities on system size, which makes the
extrapolation to infinite systems significantly easier than for open or periodic chains.
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I. INTRODUCTION

In recent years several frustrated quasi-one-dimensi
~1D! magnetic compounds have been identified and stud
experimentally.1–4 In the one-dimensional phase, i.e., f
temperatures above the magnetic ordering transition, frus
tion is expected to lead to incommensurate correlations.
cisely how frustration gives rise to incommensurabilitites
the extreme ‘‘quantum’’ case of spinS51/2 is at present no
well understood.

A paradigm of a frustrated quantum magnet is the sp
1/2 Heisenberg antiferromagnetic chain with neare
neighbor exchangeJ1 and next-nearest-neighbor exchan
J2. This model is equivalent to a two-leg ladder~see Fig. 1!,
where the coupling along~between! the legs of the ladder is
equal toJ2 (J1).

The Hamiltonian is given by

H5(
i

FJ1~Si
xSi 11

x 1Si
ySi 11

y DSi
zSi 11

z !

1(
i

J2~Si
xSi 12

x 1Si
ySi 12

y 1DSi
zSi 12

z !G , ~1!

where we have allowed for an exchange anisotropyD.
The zigzag-ladder model is believed to describe the qu

tum magnet SrCuO2 ~Refs. 1 and 2! above the magnetic
ordering transition. The ratio of exchange constants is e
mated asuJ1 /J2u'0.1– 0.2,2 so that the interchain couplin
is significantly smaller than the exchange along the legs
the ladder. A second well-studied material with a zigz
structure is Cs2CuCl4.3 However, in Cs2CuCl4 the chains
appear to be coupled in an entire plane and no pronoun
ladder structure is present.

The model~1! in the regimeJ2*J1 has been studied pre
viously using both numerical7,8 and field-theoretical8–12

methods. The main density matrix renormalization-gro
~DMRG! results for the spin rotationally symmetric ca
(D51) and not too large values ofJ2 /J1 are the following.8
PRB 620163-1829/2000/62~5!/3259~5!/$15.00
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The ground state is doubly degenerate and is charac
ized by a nonzero dimerizationd5^SW 2n•(SW 2n212SW 2n11)&.

The equal-time correlation function̂SW n•SW 1& exhibits an
oscillating exponential decay at large spatial separations.
characteristic angle associated with these oscillations,
the incommensurability, is related to the correlation lengthj
by

u

p/2
215

1

2j
. ~2!

This connection of incommensurability and correlati
length also fits into the picture emerging from th
renormalization-group analysis~valid in the limit J2@J1) of
Ref. 9, which yields thesimultaneousdivergence, with fixed
ratio, of the related coupling constants.

The regimeJ2@J1 is very difficult to analyze numerically
as both the dimerization and the incommensurability beco
very small. In particular, the DMRG analysis of Ref. 8 d
not consider this regime. At the same time the field the
studies of Ref. 9 suggest that forJ2@J1 and uDu,1 a dif-
ferent type of physics may emerge: there are still incomm
surate correlations and dimerizations, but, in addition, th
is also ‘‘chiral’’ order

FIG. 1. Schematic representation of a zigzag ladder~top! and its
equivalent chain with first- and second-nearest-neighbor excha
interactions.
3259 ©2000 The American Physical Society
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^S2n
1 S2n12

2 2S2n
2 S2n12

1 &Þ0,

^S2n
1 S2n21

2 2S2n
2 S2n21

1 &Þ0. ~3!

Such type of order is forbidden in the isotropic caseD51. It
clearly would be interesting to numerically analyze wheth
or not such a new phase indeed exists. Given the difficult
mainly due to finite-size effects, in accessing the relev
parameter regime by numerical methods, we propose in
sence toutilize finite-size effects to extract information o
the incommensurability present in the system. This is d
by studying the effects of twisted boundary conditions on
energy levels. Our main purpose is to establish the viab
of our method by carrying out exact diagonalization of fin
clusters of up to 24 sites. In order to obtain definitive resu
on the zigzag chain in the most interesting parameter reg
larger systems need to be studied possibly by implemen
TBA into a DMRG algorithm.

II. THE METHOD

We found the ground state of the system by Lanczos
agonalization of rings of sizeL512, 16, 20, and 24 sites in
the subspaces of total spin projectionSz50, 1, for each total
wave numberK. We used twisted boundary condition
~TBC! Si 1L

2 5eiFSi
2 . This means that each time a spin dow

traverses one particular link~usually that between site
L21 and 0!, it acquires a phase eiF (e2 iF)
if it moves to the right ~left!. In the fermionic
representation, after a Wigner-Jordan transformationSi

2

5ci
†exp(ip(j,icj

†cj), and a gauge transformationci
†

5eiF/L f i
† , the problem becomes equivalent to a system

N↓ fermions~f! on a ring threaded by a fluxF, whereN↓ is
the number of spins down. The advantage of the TBC for
purposes is that the allowed total wave vectors are

Kn~F!5
2p

L
n1

F

L
N↓ , ~4!

with n an integer. Thus, varyingF, we have access to
continuum of possible wave vectors, even if we are work
on a finite system.5 As an example, the ground state of E
~1! for N↓51 is known exactly. In the thermodynam
limit, for 1/4,a5J2 /J1,1/2, the ground state is twofold
degenerate with incommensurate wave vectorsK
56arccos@21/(4a)#.6 For small systems these wave ve
tors are only accessible for discrete particular values ofa if
PBC are used. Instead, for anya, the exactK ’s and ground-
state energies are reproduced, if the energy of a small rin
minimized as a function of fluxF and discrete wave numbe
(n).

For uDu<1, the transverse spin correlations dominate
large distances. We denote the ground state of the syste
ug&. It lies in theSz50 sector and its wave vector for PB
~or TBC if the energy is minimized overF) is alwaysK0
50 or p. For the transverse spin correlations we can wr

C~ l !5^guSi
1Si 1 l

2 ug&5
1

L (
e,q

e2 iql u^euSq
2ug&u2, ~5!

whereSq
2 is the Fourier transform ofSl

2 , and the sum over
ue& runs over all excited states.
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By symmetry, for eachq, only excited states withSz

521 andK15K01q have nonvanishing matrix elements
Eq. ~5!. We now assume that the large-distance asympto
of C( l ) is determined by the lowest excited state in theSz

521 sector. The difference in wave number between t
state and the ground state then gives the incommensurab
qmin .

For a finite system, in order to represent a continuum
wave vectors, we minimize the energy in theSz521 sector
E1(K1 ,F), as a function of flux and allowed discrete wav
vectors for this flux@see Eq.~4!#. The wave vector of the
excitation is taken as

qmin5u5K1~Fmin!2K0~Fmin!, ~6!

where Fmin is the flux which minimizesE1(K1 ,F), and
Ki(F) is the wave vector of the state of lowest energy in t
Sz521 sector at fluxF. The wave vectorqmin gives the
period of the oscillations of the spin correlations and cor
sponds to the pitch angleu of the classical spiral density
wave.7

We have also investigated the energy gap of the spectr
For a finite system we evaluate it as

Dg5E1~K1 ,Fmin!2E0~K0 ,Fmin8 !. ~7!

HereFmin8 is the flux that minimizes the ground-state ener
E0. There are alternative expressions toqmin and Dg that
converge to the same value in the thermodynamic limit. O
experience suggests that the ones we chose have the fa
convergence.

To test the method, we have studied a dimerized h
filled system of noninteracting spinless fermions. This mo
is the fermionic version of anXY model plus additional in-
teractions:

Ht52(
l 51

4

t l(
i

~ci 1 l
† ci1H.c.!

1
V

2 (
i

~21! i~ci 11
† ci1H.c.!. ~8!

We have taken the parameterst151, t250.4, t350, t4
520.2, V50.3, in such a way that the resulting tigh
binding upper~empty! band has its minimum at incommen
surate wave vectorsqmin560.2356p, and the lower~full !
band has its maximum atq50. There is an indirect gap
Dg50.12477.

In Fig. 2, we compare the results forqmin andDg in finite
systems ofL sites, with anL/4 integer, and 12<L<64, be-
tween PBC and TBC. The gap is calculated asDg
5E1(F1)1E21(F21)22E0(F0), where Ei(F i) is the
ground-state energy fori added particles. For TBC, th
fluxesF i are those which minimizeEi(F i), while for PBC
F i50. Sinceqmin is nearp/4, and the latter is one of the
allowed wave vectors of PBC for anL multiple of 8, small
periodic systems with anL/8 integer have the minimum en
ergy for one added particle, when this particle has a w
vector 6p/4. As long as 2p/L is larger thanp/42uqminu
~small systems!, the results for PBC are better ifL is a mul-
tiple of 8. However, the oscillations with increasingL for
PBC make a finite-size scaling difficult. Althoughqmin also
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oscillates withL for TBC, the oscillations are smaller and th
convergence to the thermodynamic limit is much faster. U
ing TBC, for L>52, the errors inqmin and Dg are below
0.01%. For the maximum size of the system used in
Lanczos diagonalization of Eq.~1! (L524), the error inqmin
is ;2% and that ofDg is of the order of 10%.

III. RESULTS

A. Isotropic case

The incommensurate spin correlations and spin gap
D51 and J2 /J1,3 have been studied previously b
DMRG.7,8 In this section, we compare our results with the
and extend the study to 3<J2 /J1<30, a region that is very
difficult to reach with other methods.

We have used a linear extrapolation in 1/L of the data for
the angleu5qmin for L512, 16, 20, and 24. We have chos
L/4 to be an integer in order to avoid frustration of antife
romagnetic interactions for largeJ2. A quadratic fit gives
smaller values ofu, which underestimate the DMRG result
The comparison of available DMRG results and those
tained using TBC as described in the previous section
included in Fig. 3. ForJ2 /J1,0.7 we do not obtain any

FIG. 2. Incommensurate wave vector~top! and gap~bottom! as
a function of system size, obtained using periodic and twis
boundary conditions, for the toy model Eq.~8!.

FIG. 3. Incommensurate angle as a function ofJ2 /J1 for D
51, obtained using twisted boundary conditions. The DMRG
sults of Refs. 7 and 8 are also shown.
-
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incommensurability. This is probably a finite-size effe
since forJ2 /J150.7, we obtainu5p for L512, but incom-
mensurate values ofu for L.12. We have disregarded th
value forL512 in the extrapolation whenJ2 /J150.7.

For J2 /J1<1 and J2 /J1>1.8 our results are in bette
agreement with those of White and Affleck8 than with those
of Bursill et al.7 In the remaining region both DMRG result
are very similar. In general, the difference between the ne
est of the results of the three calculations foru290° is of the
order of 20%. For example, forJ2 /J150.7 our results and
those of Refs. 8 and 7 are, respectively, 31°, 28°, and 2
For J2 /J152 the corresponding values are 1.00°, 1.19°, a
1.36°. In general, comparison with DMRG results and t
difference between different extrapolation methods sugg
that the error inu290° using TBC is roughly of the order o
20%. In view of the simplicity of our method compared
DMRG calculations, we believe that our results are satisf
tory. Note that to detect an incommensurability of 1° wit
out using TBC, the size of the system should be of the or
of L;360.

In Fig. 4, we show the angle as a function ofJ2 /J1, for
2<J2 /J1<30 on a logarithmic scale. In this region the in
commensurability is very small, and therefore, as explain
above, very hard to obtain by alternative numerical metho
For largeJ2 /J1, the deviation of the angle fromp/2 is ex-
pected to be of the form8,9

u290°5exp~2a2bJ2 /J1!. ~9!

A linear fit of ln(u290°) as a function ofJ2 /J1 in the inter-
val @15,30# gives within a few percenta52, andb51/20.

We have also used Eq.~7! to study the gapDg . Due to
the smallness of the gap, the finite-size effects for the re
tively small system sizes we consider are too large to al
us to obtain reliable values forDg . Figure 5 shows the size
dependence ofDg . From the difference between linear an
quadratic extrapolation, we estimate the error in the extra
lated gap to be of the order of 0.1J1, while for any value of
J2 /J1 , Dg,0.5J1. Within this error, our results agree wit
those reported by White and Affleck.8

B. Anisotropic case

In Ref. 9 the zigzag ladder was studied by means o
field theory approach in the regimeJ2@J1. A mechanism for
generating incommensurabilities was identified and analy
quantitatively for the case of two coupledXX chains (D

d

-

FIG. 4. Same as Fig. 2 forJ2 /J1.2 in logarithmic scale.
Dashed line is the functione2220.05J2 /J1.
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50). It was found that spin correlations exhibit a very slo
power-law decay and are incommensurate,

^S1
1~x!Sj

2~0!&;
~21!x/a0

uxu1/4
exp@2 ikx/a0#, ~10!

where j 51,2 and the deviation of the pitch angle fromp is
k}(J1 /J2)2. The analysis of Ref. 9 also implies the exi
tence of local magnetization currents around the elemen
triangular plaquettes of the ladder. The findings of Ref
were questioned in Ref. 13, where the squares of the l
magnetization currents and the Binder parameter were c
puted numerically and found to decrease with the system
for open chains of up to 20 sites. However, these calculat
in small systems with open or periodic boundary conditio
are not conclusive to exclude small incommensurabilities

In an attempt to resolve this controversy we have
J2 /J1510 and studied the variation of the incommensur
angle with the anisotropy parameterD. As shown in Fig. 6,
we find thatu290° increases considerably asD is decreased
from the isotropic caseD51. This is in agreement with the
field-theory prediction of Ref. 9.

We futhermore have determined the dependence of
incommensurability onJ2 /J1. The results are shown in Fig
7. For large values ofJ2 /J1 our numerical results are we
fitted by

FIG. 5. Size dependence of the gap forD51 and several values
of J2 /J1. Dashed~full ! lines are quadratic~linear! fits of the data.

FIG. 6. Incommensurate angle as a function ofD for J2 /J1

510.
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u290°52.785°
J1

J2
. ~11!

This is in disagreement with the prediction of Ref. 9.
The disagreement between the predictions of Ref. 9

the numerical results of Eq.~11! and Ref. 13 could either be
due to a defect in the mean-field solution of Ref. 9 or be d
to an artifact of the limited system sizes used in the num
cal computations. In fact, the analysis of Ref. 9 predict
gapless phase atD50 so that it is conceivable that numeric
results for small clusters are plagued by finite-size effect

There is indeed evidence suggesting that finite-size eff
are still significant forL524. We find that the ground stat
in the Sz51 sector has a lower energy than the first exci
state in theSz50 sector forL524 and J2*2J1. On the
other hand, the DMRG studies of Ref. 8 show that in t
isotropic case and for long lattices the two lowest levels
both in the Sz50 sector~degenerate ground states corr
sponding to different signs of the dimerization!.

We note that the presence of such finite-size effects d
not necessarily imply that the extrapolated results for
incommensurability are incorrect. In order to resolve this
sue it is necessary to study significantly longer lattices.

IV. SUMMARY AND DISCUSSION

We have calculated the incommensurate wave numbe
the next-nearest-neighbor Heisenberg model with anisotr
D, by exact diagonalization of rings of up to 24 sites. W
have used twisted boundary conditions and assumed tha
incommensurate spin fluctuations foruDu<1 are determined
by the lowest excited state for total spin projectionSz561.

The method is able to detect incommensurate angleu
;0.03°. This corresponds to a wave length of the order
10 000 sites and is impossible to detect by using alterna
numerical methods. However, for certain paramet
(J2 /J1,0.7 in the model!, our method is unable to detect th
incommensurability although it is rather large. On the oth
hand, the method does not predict incommensurabilities
cases where it is known that none exist. Also, in general,
extrapolated vales ofu seem to be underestimations, as co
pared with known DMRG results. This is also the case
the toy model@Eq. ~8!#, represented in Fig. 2, where a line
extrapolation gives an underestimation ofqmin by ;30% if
the results are limited to 24 sites.

FIG. 7. Incommensurate angle as a function ofJ2 /J1 for D
50. Dashed line is the function 2.785°J1 /J2.
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The advantage of using TBC for facilitating a finite-si
scaling analysis has been noted previously in e.g., Ref.
but their use for detecting incommensurabilities is to the b
of our knowledge novel.

In spite of the limitations of the size of the cluster, th
values of u obtained with our method are in reasonab
agreement with the known DMRG results in the isotrop
case. For this case, we have also studied the regionJ2 /J1
.3, which is very difficult to reach by alternativ
methods. For sufficiently largeJ2 /J1 , u2p/2 decays as
exp(2b J2 /J1) as predicted by field theory.8 We obtain that
constantb;1/20.

In the anisotropic case, we obtain thatu increases with
decreasingD, in agreement with Ref. 9. However, we find
linear dependence ofu2p/2 on J1 /J2 for J2@J1, in con-
trast to the quadratic behavior predicted in Ref. 9. This d
crepancy may be due to finite-size effects.

In summary, we have shown that incommensurabilit
can be detected by diagonalizing finite-size clusters w
d
.

,
a,

r-

.
-

4,
st

-

s
h

TBC. The main advantage of the method is that the dep
dence of the incommensurability on system size is v
smooth and allows extrapolation from results for relative
short chains.

It would be very interesting to implement our TB
method in a DMRG algorithm and study the anisotropic z
zag chain for much larger sizes.
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