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Onsager reaction-field theory for magnetic models on diamond and hcp lattices

G. M. Wysin
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601
~Received 17 September 1999; revised manuscript received 17 February 2000!

The Onsager reaction-field~ORF! theory is extended to apply to three-dimensional Bravais lattices with a
basis. The ORF calculation is used to predict the critical temperature for classical Ising,XY, and Heisenberg
magnetic models, in particular, on diamond and hexagonal close-packed lattices. Results are compared with
series extrapolations and other theoretical approaches where available. For the hcp lattice the ORF calculation
is seen to be equivalent to a Green’s-function approach by Adler@Physica B&C107B, 207 ~1981!#.
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I. INTRODUCTION

The Onsager reaction field~ORF! theory1 is an improved
form of mean-field theory that includes at least partially t
effects of correlations between nearby atoms. It was or
nally applied in magnetism by Brout and Thomas,2 and more
recently to spin glasses,3 itinerant electron systems,4 Hub-
bard models,5 and anisotropic Heisenberg6 andXY ~Ref. 7!
models. The procedure is versatile and has been used t
timate specific heat, susceptibility, and correlations above
critical temperatureTc , as well asTc itself. A clear review
of the ORF method applied to three-dimensional~3D! Ising
models is given by White.8 The method has been applied o
the standard Bravais lattices, including simple cubic~sc!,
body-centered cubic~bcc!, and face-centered cubic~fcc!,
with results given in terms of integrals over the associa
Brillouin zone ~BZ!. However, a modification of these ca
culations is needed to consider other lattices which are no
the Bravais classification. Here we show how to apply
ORF procedure to any non-Bravais lattice that can be c
sidered as an underlying Bravais lattice with a basis. In p
ticular, the diamond and hexagonal close-packed lattices
analyzed, both of which have two-atom bases.

In the usual mean field theory due to Weiss,9 a chosen
atom ~or spin, for the magnetic problems we consider! is
viewed as interacting with the average, or mean field, of
nearest neighbors. The exact Hamiltonian is replaced by
mean field one, in which the neighbors are introduced as
mean-field acting on the central atom. However, the cen
atom itself influences the neighbors, and therefore the me
field usually includes a part directly attributed to the cent
atom. This means the mean-field includes a part that m
be considered a self-interaction effect, which should rea
be subtracted out. This results in an overestimate of the c
cal temperatureTc . The ORF procedure is simply a way t
estimate and subtract out this self-interaction part, i.e.,
adding a ‘‘reaction field’’ term that accomplishes this. In th
way, the estimate ofTc is brought down, indeed, usuall
ORF leads to an underestimate ofTc .

The standard ORF approach uses as input the spe
lattice structure, be it sc, fcc, bcc, etc. However, the us
approach and well-known formulas require the perfect p
odicity of a Bravais lattice—all atoms are taken as equi
lent. On the other hand, we have been interested in m
field and other calculations10 for diamond lattices because o
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the low coordination number (z54). The diamond lattice is
not a Bravais lattice—all sites do not have the same s
roundings, instead, the diamond lattice can be considere
be a fcc lattice with a two atom basis. Thus it is interesting
understand how to apply the ORF procedure to such a
tem.

Recently there also is interest in ferromagnetic ordering
hcp 3He at low temperatures,11 assumed to be described by
Heisenberg model. The hcp lattice with Ising variables h
also been considered as a model for roughening transit
on 4He crystals.12 The hcp lattice is another non-Brava
lattice; it can be considered as simple hexagonal~stacked
triangular nets!, also with a two-atom basis. A simple anal
sis procedure such as ORF applied to the hcp system, inc
ing the possibility of anisotropic exchange interactions, m
be useful for the interpretation of He experiments at lo
temperature. Here we show how to extend the standard O
calculation of Tc to these two systems, however, our a
proach will apply to any Bravais lattice with a basis, i.e., a
system with multiple atoms per unit cell.

II. MODEL AND REACTION FIELD

For simplicity we display formulas for Ising models on
3D lattice with spinsSn56S and coordination numberz.
However, the modifications to treatn-component spins@i.e.,
XY (n52), Heisenberg (n53), etc.# are minimal and will
be noted where they are appropriate. The Hamiltonian is

H052
1

2 (
n

(
m

Jn,mSnSm2(
n

HnSn , ~1!

where each sum is over all of the lattice sites, and the b
coupling strengthJn,m depends only on the neighbor dis
placement,n2m, and is of the same strengthJ for all near-
neighbor pairs. The factor of12 cancels the double countin
of bonds, andHn is a spatially varying applied field.

In the ORF calculation~see Ref. 8 for more details!, a
spin at a chosen site interacts with the mean-field reduce
a ‘‘reaction field’’ that depends on the spin at that site.1 In
the real-space Hamiltonian the reaction term is an extra s
interaction:

Hrf5l(
n

SnSn . ~2!
3251 ©2000 The American Physical Society
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3252 PRB 62G. M. WYSIN
This is equivalently a delta-function exchange term
strengthl. The constantl is the reaction field, which is
determined self-consistently in the calculation, by a co
straint on the magnetic susceptibility, below.

III. ORF THEORY FOR BRAVAIS LATTICES
WITH A BASIS

We suppose that the lattice has an underlying set oN
Bravais lattice pointsn, each of which has a two-atom bas
$0,d%. ~The generalization to a larger basis is straightf
ward.! At each siten there is a double spin fieldS̃n written as
a column vector:

S̃n5S Sn
(1)

Sn
(2)D 5S Sn

Sn1d
D , ~3!

where the superscripts onSn label the spins on the two sepa
rate sublattices, and we use tildes to indicate matrix qua
ties. The exchange interaction occurs between neighbo
Bravais sites, via a 232 matrix, J̃n,m :

Hex52
1

2 (
n

(
m

S̃n
T
• J̃n,m•S̃m , ~4!

where it is stressed that the sums are over all Bravais s
the factor of1

2 cancels the double counting of bonds, and

J̃n,m5S J11 J12

J21 J22D
n,m

5S Jn,m Jn,m1d

Jn1d,m Jn1d,m1d
D . ~5!

In fact, the matrixJ̃n,m is taken as zero unlessn2m is a
near-neighbor displacement. The details of the specific
tice will determine which components ofJ̃ are nonzero.

The reaction terms, two for each siten, can be written
with a 232 unit matrix Ĩ,

Hrf5
1

2 (
n

(
m

S̃n
T
•@2ldn,mĨ#•S̃m , ~6!

which is equivalent to expression~2!, and essentially shifts
the original exchange matrix by22ldn,mĨ.

Finally, for the purpose of the calculation, there is a se
rate applied field for each sublattice, so at a given siten, we
have fieldsHn

(1) ~acting onSn) and Hn
(2) ~acting onSn1d).

These compose a column vector field,

H̃n5S Hn
(1)

Hn
(2)D . ~7!

It is convenient to transform into Fourier space, accord
to

S̃n5
1

AN
(

q
S̃qe

iq•n, ~8!

J̃n,m5
1

N(
q

J̃qe
iq•(n2m). ~9!
f

-

-

ti-
ng
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t-

-

g

There is a relation similar to Eq.~8! for the Fourier-
transformed applied field H̃q5H̃2q . The Fourier-
transformed exchange interaction is

J̃q5(
r

J̃re
iq•r, ~10!

i.e., a sum over displacements to nearest neighbors,r[m
2n. Then we write theq-space Hamiltonian, including the
reaction term and applied fields, as

H52
1

2 (
q

@S̃2q
T

•~ J̃q22lĨ!•S̃q1~S̃2q
T

•H̃q1S̃q
T
•H̃2q!#.

~11!

The factor of 2 onl corresponds to the two-atom basis. Th
Hamiltonian is exact.

Now we consider the mean-field approximation inq
space, i.e., using a random-phase approximation~RPA!,
magnetization components at different wave vectors are
sumed to be independent. From the point of view of t
negative-q components, the Hamiltonian is approximated

H52(
q

S̃2q
T

•@H̃q1K̃q•^S̃q&#, ~12!

where we use the shorthand notation for the shifted excha
interaction,

K̃q[ J̃q22lĨ. ~13!

The above Hamiltonian can alternatively be written in ter
of effective fieldsHq

e , in components,

H52(
q

@Hq
e(1)S2q

(1)1Hq
e(2)S2q

(2)#, ~14!

Hq
e(1)5Hq

(1)1Kq
11^Sq

(1)&1Kq
12^Sq

(2)&, ~15a!

Hq
e(2)5Hq

(2)1Kq
21^Sq

(1)&1Kq
22^Sq

(2)&. ~15b!

In the ORF approach,Tc is found by locating the singula
point of the magnetic susceptibility. Therefore we define
sublattice magnetizations (i 51,2),

Mq
i 5^Sq

i &, ~16!

and related zero-field susceptibilities,

xq
i j 5

]Mq
i

]Hq
j

5b^Sq
i S2q

j &. ~17!

Using the RPA Hamiltonian~14!, the susceptibility defi-
nitions become

xq
i j 5

]Mq
i

]Hq
ei

]Hq
ei

]Hq
j

, ~18!

and we get equations for the susceptibility components,

xq
115b^Sq

(1)S2q
(1)&0@11Kq

11xq
111Kq

12xq
21#, ~19a!

xq
125b^Sq

(1)S2q
(1)&0@Kq

11xq
121Kq

12xq
22#, ~19b!
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xq
225b^Sq

(2)S2q
(2)&0@11Kq

22xq
221Kq

21xq
12#, ~19c!

xq
215b^Sq

(2)S2q
(2)&0@Kq

22xq
211Kq

21xq
11#, ~19d!

where ^ &0 means the expectation value using the R
Hamiltonian. In the high-temperature limit, these expec
tions are

b^Sq
(1)S2q

(1)&05b^Sq
(2)S2q

(2)&05
b

n
S2[x0 . ~20!

Equations~19! can be solved in the general case for all fo
susceptibility components. We get

xq
115x0

12x0Kq
22

~12x0Kq
11!~12x0Kq

22!2x0
2Kq

12Kq
21

, ~21a!

xq
215x0

Kq
21xq

11

12x0Kq
22

, ~21b!

and similar equations forxq
22 andxq

12 by appropriately inter-
changing the indices. For the lattices considered in this
per, however, there are the symmetries,Kq

115Kq
22 and Kq

12

5(Kq
21)* . Therefore the solutions are seen to satisfy symm

tries xq
115xq

22, xq
125(xq

21)* .
Now consider how to determine the reaction fieldl, and

subsequently,Tc . Using the definitions ofxq
11 and Sq

(1) ,
shows that there is the constraint,

1

N (
q

xq
115

b

n
S2[x0 . ~22!

This equation implicitly determines the reaction couplingl
for anyT.Tc . It is not clear how to get an explicit solutio
for l from it; a solution forl(T) for a given lattice can be
found numerically~below!.

The critical temperatureTc is the temperature at whic
any of the susceptibility components, atq50, diverges. The
xq

i j are well defined on the high-temperature side ofTc . For
temperatures belowTc the ORF calculation gives negativ
susceptibility atq50, signifying the presence of the ordere
state. SoTc is determined as the point at which the denom
nator of Eq.~21a! goes to zero, leading to a relation betwe
the critical temperature~via x0) and the critical reaction
field,

x0
2112l5J0

111AJ0
12J0

21. ~23!

Using this in the constraint Eq.~22! together with the resul
~21a! for xq

11, gives the general result when the symme
Jq

115Jq
22 holds,

kBTc5
J0S2

nI
, ~24a!

I 5
1

N (
q

J0~J02Jq
11!

~J02Jq
11!22Jq

12Jq
21

, ~24b!

whereJ0 is the effectiveq50 exchange strength,

J0[J0
111AJ0

12J0
21. ~25!
-

r

a-

-

-

The sumI defined in this way again gives the correction
the mean-field prediction forTc . The sum~24b! can also be
expressed in the alternative form,

I 5
1

2N
(

q
F J0

J02Jq
111AJq

12
1

J0

J02Jq
112AJq

12G . ~26!

The above result~24! also applies to Bravais lattices
where the exchange matrix has only one element,Jq , giving
the familiar result8

I 5
1

N (
q

J0

J02Jq
. ~27!

In the continuum limit, (1/N)(q→(V/N)*d3q/(2p)3,
where V/N is the specific volume per lattice site. For e

ample, V/N5a3, 1
2 a3, 1

4 a3 for sc, bcc, and fcc lattices, re
spectively, wherea3 is the cubic unit-cell volume. Atq50
we haveJ05zJ, which gives the energy scale in the mea
field approximation. From integration over the appropria
Brillouin zones, the values ofI are 1.516, 1.393, and 1.34
for sc, bcc, and fcc lattices, respectively.15 When applied to
the 3D Ising model (n51) one gets kBTc /JS25z/I
53.957,5.742,8.924 for sc, bcc, and fcc lattices, considera
improvements over the standard mean-field results gi
from kBTc /JS25z. These compare favorably with the exa
Ising model results13,14 from series: kBTc /JS2

54.5103,6.3508,9.794, respectively. For the Heisenb
model (n53), the ORF predictskBTc /JS251.319,1.914, for
sc and bcc lattices, whereas precise Monte Carlo estima16

give kBTc /JS251.443,2.054, respectively. Generally, th
ORF estimates are all below the exact results.

It is also possible to compare with the results of
Green’s-function approach17 with RPA for the quantum
Heisenberg model,18 where Eq.~24! is replaced by

kBTc5
J0S~S11!

3I
, ~28!

with I given by Eq.~27!, i.e., thesameas the classical val-
ues. Therefore, at largeS, the correction to the mean-fieldTc
is the same factorI for the RPA applied via the quantum
Green’s-function approach as it is for the classical ORF
proach.

Below we will use Eq.~24! to estimate the critical tem
perature for diamond and hcp lattices. But first we verify th
the result is correct by using it for a bcc lattice, considered
a simple-cubic lattice with a basis, where we already kn
the standard ORF result forTc .

IV. BCC LATTICE AS SC WITH BASIS

The bcc lattice points can be generated from the sim
cubic primitive vectors,a15ax̂, a25aŷ, anda35aẑ, where
a is the cubic cell lattice constant, together with the bas

$0,d%, whered5(a/2)(x̂1 ŷ1 ẑ) is the displacement to the
body-centered point. The lattice can be thought of as a
of interpenetrating sc lattices~sublattices 1 and 2! with dis-
placementd. The near neighbors of a ‘1’ site are all ‘‘2’
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sites, and vice versa, with the result that theJ11 and J22

couplings are all zero. The nonzeroJn,m
i j [Jr

i j couplings de-
pend only on the near-neighbor displacement,r[m2n, as
follows:

Jr
215JÀr

12 5J,r5$0,a1 ,a2 ,a3 ,a11a21a3 ,

a11a2 ,a21a3 ,a31a1%, ~29!

where the terms forr50 correspond to the coupling within
the two-atom basis. The fact thatJn,m

11 5Jn,m
22 50 simplifies

the determination ofTc considerably, as we only need t
know the product,Jq

12Jq
21.

The Fourier-transformed interactions are found to be

Jq
125(

r
Jr

12eiq•r5~Jq
21!* , ~30!

Jq
125J$11e2 iqx1e2 iqy1e2 iqz1e2 i (qx1qy)

1e2 i (qy1qz)1e2 i (qz1qx)1e2 i (qx1qy1qz)%. ~31!

In this and the following equations,qx ,qy ,qz are in units of
1/a. For the underlying sc lattice, the density of points is
for every volumea3, i.e.,V/N5a3. After a short calculation,
there results

Jq
12Jq

2158J2$11 cosqx1 cosqy1 cosqz

1 cosqx cosqy1 cosqy cosqz

1 cosqz cosqx1 cosqx cosqy cosqz%, ~32!

and the determination ofTc relies on evaluation of the sim
plified integral,

I 5
1

~2p!3E2p

p E
2p

p E
2p

p dqxdqydqz

12Jq
12Jq

21/J0
2

, ~33!

whereJ05J0
125J0

2158J5zJ. The integral can be rewritten
using the periodicity and symmetry inq space, together with
variable changeq/2→q, as

I 5
1

~2p!3E2p

p E
2p

p E
2p

p dqxdqydqz

12 cosqx cosqy cosqz
. ~34!

The integral has been evaluated by Watson15 to be I
51.393 20 . . . . Therefore the estimate of the critical tem
perature that results is

kBTc5
8JS2

n

1

1.393 20
5

5.742 18

n
JS2, ~35!

in exact agreement with the result from Eq.~27!.

V. DIAMOND LATTICE

The diamond lattice can be considered as an fcc lat
with a two-atom basis, i.e., sublattices 1 and 2. The
primitive vectors area15(a/2)(x̂1 ŷ),a25(a/2)(ŷ1 ẑ),a2

5(a/2)(ẑ1 x̂), wherea is the standard cubic cell lattice con
stant, and the basis is$0,d%, whered5(a/4)(x̂1 ŷ1 ẑ). The
nearest neighbors of a siten1d ~a 2-site! are $n,n1a1 ,n
e
c

1a2 ,n1a3% ~all 1 sites!. The nearest neighbors of a siten ~a
1 site! are at $n1d,n1d2a1 ,n1d2a2 ,n1d2a3% ~all 2
sites!. As a result, onlyJ12 andJ21 are nonzero. In terms o
the neighbor displacementsr5m2n, the only nonzero ex-
change couplings are

Jr
215J2r

12 5J,r5$0,a1 ,a2 ,a3%. ~36!

Then it is straightforward to evaluate

Jq
125(

r
Jr

12eiq•r5~Jq
21!* ~37a!

5J@11e2 iq•a11e2 iq•a21e2 iq•a3#, ~37b!

and what is needed for theTc integral:

Jq
12Jq

2154J2F11 cos
qx

2
cos

qy

2
1 cos

qy

2
cos

qz

2

1 cos
qz

2
cos

qx

2 G , ~38!

where q’s are in units of 1/a. Clearly we also have once
again,J05J0

125J0
2154J5zJ. The specific volume per lat

tice point on the underlying fcc lattice isV/N5 1
4 a3. ThenTc

will be evaluated using Eq.~24!, with the continuum limit, as

I 5
1

4EBZ

d3q

~2p!3 H 12
1

4 F11 cos
qx

2
cos

qy

2

1 cos
qy

2
cos

qz

2
1 cos

qz

2
cos

qx

2 G J 21

. ~39!

The BZ for the fcc lattice is a bcc Wigner-Seitz cell, wit
lattice constant 4p/a. We can change the integration regio
to the cube, 22p<qx<2p,22p<qy<2p,22p<qz
<2p, which contains two copies of the BZ, and include
factor of 1

2 . We also make the variable change,q/2→q,
which gives a factor of 23, to get

I 54
1

~2p!3E2p

p E
2p

p E
2p

p

dqxdqydqz$32 cosqx cosqy

2 cosqy cosqz2 cosqz cosqx%
21. ~40!

The integral was also evaluated by Watson15 to be I 54
30.448 220 4 . . .51.792 88 . . . . Thus the critical tempera
ture is estimated as

kBTc5
4JS2

n

1

1.792 88
5

2.231 05

n
JS2. ~41!

The exact result forTc ~Ising model,n51) as estimated
from series expansions, is known to bekBTc52.7040JS2.
Thus the ORF calculation, as is usual, underestimatesTc but
is a considerable improvement over the simple mean-fi
result,kBTc54JS2.
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VI. SIMPLE HEXAGONAL BRAVAIS LATTICES
AND HCP LATTICES

Another example of a lattice with a basis is the hcp s
tem, which can be considered as interpenetrating simple
agonal Bravais lattices14 ~i.e., stacked triangular nets!. The
primitive vectors of the simple hexagonal Bravais lattice c

be taken asa15ax̂,a25a@ 1
2 x̂1(A3/2)ŷ#,a35cẑ, where a

and c are the lattice constants. For the hcp system, a t
atom basis of$0,d% is used, whered5 1

3 (a11a2)1 1
2 a3, and

one triangular net is stacked on top of the previous one,
shifted to be over the centers of one set of the triangular c
below, in what is usually referred to as theABAB . . . pack-
ing. For the lattice constant ratioc/a5A8/3, the highest den
sity packing is obtained, however, for the calculation h
this ratio does not directly enter, and need not be specifi
Instead, it is interesting to consider that the near-neigh
exchange interactions within the triangular nets (xy plane!
have one strength,Jxy , while there is a different strength
Jz , for the bonds between the planes. In general we
consider the calculation ofTc as a function of the ratio,D
[Jz /Jxy .

We present first the calculation ofTc(D) for the simple
hexagonal Bravais lattice, using the standard ORF the
which acts as an introduction to the corresponding calc
tion for the hcp system, because they both rely on the s
information concerning the Brillouin zone.

A. Simple hexagonal Bravais lattice

Here there are six neighbor displacements from some
bitrary site to neighbors in the same plane$6a1 ,6a2 ,
6(a12a2)%, with exchange strengthJxy . The remaining two
neighbors, with displacements,6a3, have exchange
strengthsJz . A short calculation shows that theq-space ex-
change@Eq. ~10!# is

Jq52Jxy@cosq•a11 cosq•a21 cosq•~a12a2!#

12Jz cosq•a3 ~42a!

52JxyFcosqxa12 cos
1

2
qxa cos

A3

2
qyaG12Jz cosqzc,

~42b!

and J056Jxy12Jz52(31D)Jxy will determine the mean-
field critical temperature.

The area of one triangle in the net is12 a3(A3/2)a
5(A3/4)a2, and there is1

2 site per triangle per layer. Thu
the specific volume per site isV/N5(A3/2)a2c. The primi-
tive vectors of the reciprocal space are

b15
4p

A3a
SA3

2
x̂2

1

2
ŷD , ~43a!

b25
4p

A3a
ŷ, ~43b!

b35
2p

c
ẑ. ~43c!
-
x-

n

-

ut
lls

e
d.
or

n

y,
-
e

r-

The reciprocal space is another simple hexagonal latt
with lattice constants 4p/A3a in the xy plane and 2p/c in
the z direction, rotated by 30° from the real-space lattic
The Brillouin zone Wigner-Seitz cell is a hexagonal cylinde
however, for the purpose of the integral needed here@Eq.
~27!# it is more convenient to do the summation inside a c
bounded in thexy plane by a rhombus formed byb1 andb2
~see Fig. 1!. The hexagonal cylinder and rhombical cylind
cells have equal areas and are equivalent to each othe
appropriate symmetry operations. This rhombical cylind
cell is very convenient for evaluation of the integralI, espe-
cially with the variable change onq:

q5xb11yb21zb3 , ~44!

where the dimensionless parametersx,y,z all range from 0
to 1, mapping out the entire cell. This leads to

d3q5b1•~b23b3!dxdydz5~2p!3
N

V
dxdydz, ~45!

and the integral is simplified to

I 5E
0

1

dxE
0

1

dyE
0

1

dzH 12
1

31D
@cos 2px1 cos 2py

1 cos 2p~x2y!1D cos 2pz#J 21

. ~46!

The integral gives the correction to the mean-field predicti
i.e.,

kBTc5
kBTc

MF

I
, kBTc

MF5
2~31D!JxyS

2

n
. ~47!

The integral I was evaluated numerically by samplin
x,y,z uniformly on a cubic grid, with a constant increme
1/Nx , and then using an extrapolation of the results in
limit that the increment goes to zero. A plot ofI versus 1/Nx
results in a straight line whose extrapolation to 1/Nx→0
gives a very accurate estimate of the integral.~Errors in the
integral estimate clearly go as 1/Nx .) Results obtained for a
range of anisotropy parameter 0,D<2 are shown in Fig. 2.
At the isotropic limit,D51, we getI 51.449 30 andnkBTc
55.5199JS2. In the limit D→0, the system becomes tw
dimensional, the integralI diverges logarithmically due to
small-q contributions, and ORF is not applicable.

FIG. 1. Wigner-Seitz cells~solid line hexagons! for the simple
hexagonal Bravais lattice reciprocal space, compared with
equivalent rhombic cell~dot dash! used for integrals. Segments la
beleda,b,c,dare equivalent by symmetry operations.
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B. Hexagonal close-packed lattices

Again there are six neighbor displacements from an a
trary site to neighbors in the same plane$6a1 ,6a2 ,6(a1
2a2)%, with exchange strengthJxy . The difference from the
simple hexagonal lattice is that there are three neighbors
layer above and three neighbors in a layer below the
being considered, with exchange couplingsJz , giving 12
neighbors in all. However, to evaluate the matrix eleme
Jr

i , j , we need to consider these couplings from the poin
view of the simple hexagonal Bravais lattice with a basis~see
Fig. 3!. The two sites for a given Bravais lattice point can
considered as belonging to two sublattices, 1 and 2. An
bitrary 1 site has the six neighbor displacements to othe
sites in the samexy plane: $6a1 ,6a2 ,6(a12a2)%. which
will give nonzeroJ11 coupling terms. The neighbors in ad
jacent planes are 2 sites, leading to nonzeroJ12 terms. Fur-
ther consideration leads to the nonzero coupling elemen

Jr
115Jr

225Jxy ,r5$6a1 ,6a2 ,6~a12a2!%, ~48a!

JÀr
12 5Jr

215Jz ,r5$0,a1 ,a2 ,a3 ,a31a1 ,a31a2%. ~48b!

It is notable that it is the first example where the diago
elements are nonzero. The terms wherer50 are the coupling
within the basis.

The q space couplings@Eq. ~10!# are found to be

FIG. 2. ORF results forTc on the simple hexagonal Brava
lattice ~hex! and the hexagonal close-packed lattice~hcp!, as func-
tions of the exchange anisotropyD5Jz /Jxy .

FIG. 3. XY projection of some nearest-neighbor bonds betw
1 sites~solid circles! and 2 sites~open circles! in an hcp lattice.
Double solid lines connect 1, 2 sites at the same Bravais la
point. Solid lines show 1-1 bonds~within the planes!, dotted lines
show 1-2 bonds.
i-

a
e

s
f

r-
1

,

l

Jq
115Jq

2252Jxy@cosq•a11 cosq•a21 cosq•~a12a2!#,
~49!

Jq
125~Jq

21!* 5Jz@11e2 iq•a11e2 iq•a21e2 iq•a3

1e2 iq•(a31a1)1e2 iq•(a31a2)#, ~50!

and what is needed for evaluation ofTc :

Jq
12Jq

215Jz
2$614@cosq•a11 cosq•a21 cosq•~a12a2!#%

3@11 cosq•a3#. ~51!

The q50 exchange strength@Eq. ~25!# is seen to beJ0
56(Jxy1Jz)56Jxy(11D) and determines theD-dependent
mean-field critical temperature. The specific volume per s
~for the underlying simple hexagonal Bravais lattice! is
V/N5(A3/2)a2c. The reciprocal space is that of the simp
hexagonal Bravais lattice as described in Sec. VI A. The
fore using the rhombical cylinder Brillouin zone cell, th
sum I of Eq. ~24! is transformed into an integral using Eq
~44! and ~45! over a cubic region,

1

N (
q

→E
0

1

dxE
0

1

dyE
0

1

dz. ~52!

The integrand depends on the transformed quantities

Jq
1152Jxy@cos 2px1 cos 2py1 cos 2p~x2y!#,

~53a!

Jq
12Jq

2152JxyD@11 cos 2pz#

3$312@cos 2px1 cos 2py1 cos 2p~x2y!#%.

~53b!

The correction to the mean-field prediction is

kBTc5
kBTc

MF

I
, kBTc

MF5
6~11D!JxyS

2

n
. ~54!

I was evaluated by the numerical techniques descri
above ~Sec. VI A!, including theNx→` extrapolation. At
the isotropic limit, D51, we get I 51.344 66, andnkBTc
58.924 18JS2. It is interesting to note that the same value
I results for the fcc lattice@Eq. ~27!#, when evaluated to the
same precision. Thus the ORF corrections to the mean-fi
Tc for fcc and hcp lattices, both with 12 nearest neighbo
are the same. Some other hcp results in a limited rang
anisotropyD are shown in Fig. 2. Once again, in the lim
D→0 there is a weak divergence of the integral as the s
tem crosses over into a two-dimensional one, withTc→0
over a very narrow range ofD. ORF is not applicable in this
limit; Tc should pass over to the finite value for the 2
triangular lattice model.19

There are a few theoretical results to compare with for
hcp system. In a series of papers, Domany, Gubernatis,
Auerbach20–22analyzed a Lifshitz tricritical point for the hcp
Ising model, which occurs at a negative value ofD. As part
of their analysis they applied Monte Carlo calculations21 to
determine the phase diagram; very roughly forD51 they
obtainedkBTc'10JS2. Values of Tc at other anisotropies
also can be estimated from their Fig. 1 but with poor pre
sion. Monte Carlo simulations by Hashibonet al.12 demon-

n
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stratedkBTc'10JS2 with greater precision for the isotropi
hcp Ising system. Therefore it does appear that the Ons
results fall below the Monte Carlo estimates ofTc , as ex-
pected.

For the hcp Heisenberg model, Adler23 estimatedTc by a
Green’s-function approach together with a random-phase
proximation. It is surprising to see that atD51 Alder found
the correction to the mean-fieldTc to be by a factorF
(21)51.3460.005, whereF(21) is a certain sum over th
Brillouin zone. Making a more accurate evaluation by t
techniques described here, we getF(21)51.344 66, i.e., a
value exactly equal to the correction integralI obtained from
the ORF procedure. In order to compare carefully to
Adler result ~for spin 1/2!, we should note that a factor o
2S(S11), implicitly included there in the expression forTc ,
must be replaced byS2 here, to cancel the double counting
bonds and to compare quantum and classical results. The
is easy to show that the expression forF(21) given by
Adler is exactly equivalent to our expression~26! for I, in-
cluding the anisotropic case,DÞ1, Therefore the Green’s
function approach used there is exactly equivalent to
ORF procedure presented here; they are different approa
to impose the random-phase approximation.

Furthermore, in this level of approximation, the questi
posed by Domb and Sykes24 and investigated by Adler is
answered:Tc for fcc and hcp Ising models are the sam
even though the hcp lattice is more densely packed
might be expected to have a higherTc . Apparently a more
precise procedure is needed to determine whether there
true difference in their critical temperatures.

VII. REACTION FIELD AND THERMODYNAMIC
QUANTITIES AT TÌTC

It is clear that any quantities such as specific heat, m
netization, etc., can be evaluated via the RPA Hamilton
for temperatures away fromTc , provided that the reaction
field l has been determined. Thus we take a few sentenc
examine howl can be calculated.

At the critical temperature, the reaction field as det
mined from Eq.~23! is seen to be

lc[l~Tc!5
1

2
~J02x0

21!5
1

2
~J02nkBTc /S2!. ~55!

For higher temperatures, the constraining Eq.~22! to deter-
mine l is equivalent to

V

NEBZ

d3q

~2p!3

12x0~Jq
1122l!

@12x0~Jq
1122l!#22x0

2Jq
12Jq

21
51. ~56!

Considering the left-hand side as a function ofl, one can
apply Newton’s method to search for thel at which the
function passes through 1. This search can be aided by
requirement that the denominator of this integrand must
positive everywhere in the BZ, including atq50. This leads
to the inequality forT.Tc ,

1

2
~J02nkBT/S2!,l~T!,lc . ~57!
er
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Results forl(T) for the diamond lattice and hcp lattic
~at D51) are shown in Fig. 4. As a function ofT/Tc , l does
not depend on the number of spin componentsn. The hcp
lattice, which has higher coordination number, also has
stronger reaction field atTc . As the temperature is increase
the reaction fields diminish and become of comparable s
for T.2Tc . It is also expected that the slope relates to
specific heat.7 The graph then reasonably demonstrates
larger specific heat for hcp compared to diamond nearTc , in
contrast to more similar specific heats at higher temperatu

VIII. CONCLUSIONS

We have reviewed the standard Onsager reaction field
proximation for estimatingTc , and have shown how it can
be extended to apply to a Bravais lattice with a basis. T
bcc lattice was used as a test case because it can be c
lated either by the standard approach or our method, w
considered as sc with a two-atom basis. We used our me
to get Tc for diamond and anisotropic hcp lattice system
however, it certainly can be extended to more complex s
tems with a greater number of atoms per unit cell. For
hcp lattice system, the ORF procedure used here was fo
to be exactly equivalent to a Green’s function~plus RPA!
approach used by Adler.23 This equivalence of the
Green-function17,18 and ORF approaches also is known
hold for the sc, bcc, and fcc lattices. While it is an appro
mate method, ORF is very physically motivated, and do
give reasonable estimates ofTc and other quantities wher
other methods may be more cumbersome or time consum
to apply.
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FIG. 4. The reaction fieldl for T.Tc for the diamond lattice
and isotropic hexagonal close-packed lattice (D51).
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Gouvêa and A. S. T. Pires, Phys. Rev. B54, 14 907~1996!; M.
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