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Onsager reaction-field theory for magnetic models on diamond and hcp lattices
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The Onsager reaction-fieldRPF theory is extended to apply to three-dimensional Bravais lattices with a
basis. The ORF calculation is used to predict the critical temperature for classicalX¥ngnd Heisenberg
magnetic models, in particular, on diamond and hexagonal close-packed lattices. Results are compared with
series extrapolations and other theoretical approaches where available. For the hcp lattice the ORF calculation
is seen to be equivalent to a Green’s-function approach by ABleysica B&C107B, 207 (1981)].

I. INTRODUCTION the low coordination numberz& 4). The diamond lattice is
not a Bravais lattice—all sites do not have the same sur-

The Onsager reaction fiel@®RF theory is an improved roundings, instead, the diamond lattice can be considered to
form of mean-field theory that includes at least partially thebe a fcc lattice with a two atom basis. Thus it is interesting to
effects of correlations between nearby atoms. It was origiunderstand how to apply the ORF procedure to such a sys-
nally applied in magnetism by Brout and Thonfamd more  tem.
recently to spin glassésitinerant electron systenfsHub- Recently there also is interest in ferromagnetic ordering of
bard model$, and anisotropic Heisenbérgnd XY (Ref. 77 hcp 3He at low temperature'$,assumed to be described by a
models. The procedure is versatile and has been used to ddeisenberg model. The hcp lattice with Ising variables has
timate specific heat, susceptibility, and correlations above thalso been considered as a model for roughening transitions
critical temperaturd;, as well asT, itself. A clear review on “He crystals®® The hcp lattice is another non-Bravais
of the ORF method applied to three-dimensio(&D) Ising  lattice; it can be considered as simple hexagadisécked
models is given by Whit& The method has been applied on triangular nets also with a two-atom basis. A simple analy-
the standard Bravais lattices, including simple cufgcg,  sis procedure such as ORF applied to the hcp system, includ-
body-centered cubidbcd, and face-centered cubigdcc), ing the possibility of anisotropic exchange interactions, may
with results given in terms of integrals over the associatede useful for the interpretation of He experiments at low
Brillouin zone (BZ). However, a modification of these cal- temperature. Here we show how to extend the standard ORF
culations is needed to consider other lattices which are not igalculation of T, to these two systems, however, our ap-
the Bravais classification. Here we show how to apply theproach will apply to any Bravais lattice with a basis, i.e., any
ORF procedure to any non-Bravais lattice that can be consystem with multiple atoms per unit cell.
sidered as an underlying Bravais lattice with a basis. In par-

ticular, the diamond and hexagonal close-packed lattices are Il. MODEL AND REACTION FIELD
analyzed, both of which have two-atom bases. o ) ]
In the usual mean field theory due to Welsa, chosen For simplicity we display formulas for Ising models on a

atom (or spin, for the magnetic problems we consjdir 3D lattice with sp|_n_sSn_= +S and coordination nu_mba.

viewed as interacting with the average, or mean field, of itd1owever, the modifications to treatcomponent spinfi.e.,

nearest neighbors. The exact Hamiltonian is replaced by th&Y (n=2), Heisenberg{=3), etc] are minimal and will

mean field one, in which the neighbors are introduced as thBe noted where they are appropriate. The Hamiltonian is

mean-field acting on the central atom. However, the central 1

atom itself influences the neighbors, and therefore the mean- __ - _

field usually includes a part directly attributed to the central To="73 ; % InmShSm 2n HnSh. @

atom. This means the mean-field includes a part that might ) . )

be considered a self-interaction effect, which should reallyvhere each sum is over all of the lattice sites, and the bond

be subtracted out. This results in an overestimate of the crit€0UPling strengthl, ., depends only on the neighbor dis-

cal temperaturd .. The ORF procedure is simply a way to Placementn—m, and is of the same strengdfor all near-

estimate and subtract out this self-interaction part, i.e., by€ighbor pairs. The factor &f cancels the double counting

adding a “reaction field” term that accomplishes this. In this Of bonds, andH,, is a spatially varying applied field.

way, the estimate off, is brought down, indeed, usually !N the ORF calculatior(see Ref. 8 for more detajlsa

ORF leads to an underestimate T. spin at a cho_sen site interacts with the mean-fleld red'uced by
The standard ORF approach uses as input the speciffe “Teaction field” that depends on the spin at that Site.

lattice structure, be it sc, fcc, bee, etc. However, the usualhe real-space Hamiltonian the reaction term is an extra self-

approach and well-known formulas require the perfect perilntéraction:

odicity of a Bravais lattice—all atoms are taken as equiva-

lent. On the other hand, we have been interested in mean Hf:)\E S.S,. )

field and other calculation$for diamond lattices because of ' n "
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This is equivalently a delta-function exchange term ofThere is a relation similar to Eq(8) for the Fourier-
Strength)\ The constanf\ is the reaction fIE|d which is transformed app“ed field H H The Fourier-
determined self-consistently in the calculation, by a con+transformed exchange |nteract|on is
straint on the magnetic susceptibility, below.
J=2 J€l, (10)
Ill. ORF THEORY FOR BRAVAIS LATTICES r

WITH A BASIS . . .
i.e., a sum over displacements to nearest neighbyersn

We suppose that the lattice has an underlying sellof —n. Then we write theg-space Hamiltonian, including the
Bravais lattice point®, each of which has a two-atom basis reaction term and applied fields, as
{0,d}. (The generalization to a larger basis is straightfor-
ward) At each siten there is a double spin fiel§l, written as H=—= 2 ST .(J —-2\7)-S +( H +3T H H_g)l
a column vector: 24 a
11
- st S The factor of 2 on\ corresponds to the two-atom basis. This
- 3512> 1S.g) ) Hamiltonian is exact.

Now we consider the mean-field approximation dn
where the superscripts & label the spins on the two sepa- space, i.e., using a random-phase approximatieRA),
rate sublattices, and we use tildes to indicate matrix quantimagnetization components at different wave vectors are as-
ties. The exchange interaction occurs between neighboringumed to be independent. From the point of view of the
Bravais sites, via a 2 2 matrix,jn,m: negativeg components, the Hamiltonian is approximated as

Hex=— % 2 E ﬁé;mr'jn,m"émv 4 H= _2 ’ézq.[ﬁq—i_kq'(éq”’ (12)

where we use the shorthand notation for the shifted exchange

where it is stressed that the sums are over all Bravais Site?nteracuon

the factor of; cancels the double counting of bonds, and
Jll le Jn’m Jn’m_'_d KqEJq_Z)\Z (13)
n,m =
m

) The above Hamiltonian can alternatively be written in terms
of effective fieIdng, in components,

[

Tl q21 422 = .
J J Jn+d,m 'Jn+d,m+d

In fact, the matrixjn,m is taken as zero unless—m is a

near-neighbor displacement. The details of the specific lat- H=—2 [HEMSM+HEDSA), (14)
tice will determine which components Gfare nonzero. a
The reaction terms, two for each site can be written _
. N terms, | e HEW=HD+ KISy + K1Y D), (153
with a 2X 2 unit matrixZ,
Hg(z): Hff)+ Kgl( Sé”) + K§2< Sff)>. (15b
2 2 [21 6y mI] S“ ©) In the ORF approacli, is found by locating the singular

point of the magnetic susceptibility. Therefore we define the
which is equivalent to expressig®), and essentially shifts sublattice magnetizations's:é 1,2),
the original exchange matrix by 2\ 5n,m7.
Finally, for the purpose of the calculation, there is a sepa- < > (16)
rate applied field for each sublattice, so at a givensjtee  gnd related zero-field susceptlbllltles,
have fieldsH'" (acting onS,) andH{® (acting onS,, ).

These compose a column vector field, i aMi
= = . 1
e Xq~= 07H] ﬂ< q q> (17)
an( ?2)). (7) _ . L
Hy Using the RPA Hamiltoniari14), the susceptibility defi-

nitions become
It is convenient to transform into Fourier space, according

to ' aMiq JHg 8
. Xa™ aHg‘ gHl’
S\= N Eq S, (8)  and we get equations for the susceptibility components,

— gld-(n—m)
TN e © x,§2=ﬂ<sg”s&1&>o[l<élxéz+K” 22] (195
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X<242= 3(582)SG&>0[1+ K§2X§2+ Kél)(éz], (199  The suml (_jefined in this way again gives the correction to
the mean-field prediction foF .. The sum(24b) can also be
Xglz B( 582)59(;> o[K§2X31+ Kélxél], (19d)  expressed in the alternative form,
where () means the expectation value using the RPA 1 3 3
Hamiltonian. In the high-temperature limit, these expecta- T 0 " 0 . (26)
tions are 2N _q1 12 _q11_ [q12
a [Jo—J5+ Vg™ Jo—Jq J5
/3(381)3931)0: ﬂ(Séz)S(f%)o:éSZE Xo- (20) The above resul{24) also applies to Bravais lattices,

where the exchange matrix has only one eleméptgiving

Equations(19) can be solved in the general case for all fourthe familiar resuft
susceptibility components. We get

1 Jo
i 1- xoK&? o1 =25 @
q A0 11 22 21012021’
1—xoK)(1— xoKg) — xoK5K

(17 X0Kq) (1~ xoKg) ~xoKqKq In the continuum limit, (IX)Sq— (V/N)[d3q/(2m)3,
K2L 11 where V/N is the specific volume per lattice site. For ex-
Xe=xo——, (21  ample, V/IN=a% %a% ta® for sc, bcc, and fcc lattices, re-

1= XxoKgq spectively, wherea? is the cubic unit-cell volume. Ag=0

and similar equations foy2? and x22 by appropriately inter- W€ havelo=2J, which gives the energy scale in the mean-
changing the indices. For the lattices considered in this pafi€ld approximation. From integration over the appropriate
per, however, there are the symmetrit(%,lz Kéz and Kéz Brillouin zones, the valges dfare 1._516, 1.393, anq 1.345
= (Kél * . Therefore the solutions are seen to satisfy symme]jor s¢, bec, and fec Jattices, respectiveihen a%g"ed to
trieS)(ll:XZZ, X12: ()(21 * the 3D ISIng model m:].) one getS kBTC/J :le

Nov?/ conqside? how ?o determine the reaction fialdand =3.957,5.742,8.924 for sc, bce, and fcc lattices, considerable

. - 11 1) improvements over the standard mean-field results given

subsequently,T;. Using the definitions ofyq™ and Sy, o k,T./5%=2. These compare favorably with the exact
shows that there is the constraint, Ising model resulf§* from series: kgT /S

1 =4.5103,6.3508,9.794, respectively. For the Heisenberg
N D xe==S=y,. (220 model (1=3), the ORF predictkgT./JS*=1.319,1.914, for
a n sc and bcc lattices, whereas precise Monte Carlo estifiates

This equation implicitly determines the reaction coupling 9ive kgTc/JS'=1.443,2.054, respectively. Generally, the

for any T>T,. It is not clear how to get an explicit solution ORF estimates are all below the exact results.

for A from it; a solution for\(T) for a given lattice can be It is also possible to compare with the results of a

found numerically(below). Green’s-function approath with RPA for the quantum
The critical temperaturd, is the temperature at which Heisenberg modef, where Eq.(24) is replaced by

any of the susceptibility components, gt 0, diverges. The

XH are well defined on the high-temperature sidd of For T :JOS(S+ 1) 29

temperatures below. the ORF calculation gives negative Blc 3l '

susceptibility aig=0, signifying the presence of the ordered ] ) .

state. SdT is determined as the point at which the denomi-With | given by Eq.(27), i.e., thesameas the classical val-

nator of Eq.(218 goes to zero, leading to a relation betweenUes. Therefore, at largg the correction to the mean-field,

the critical temperaturdvia y,) and the critical reaction IS the same factot for the RPA applied via the quantum

field, Green’'s-function approach as it is for the classical ORF ap-
proach.
Xo 1+ 2n =384+ \aT22L (23) Below we will use Eq.(24) to estimate the critical tem-

) o ) ) perature for diamond and hcp lattices. But first we verify that
Using this in the constraint Eq22) together with the result  the result is correct by using it for a bec lattice, considered as
(21a for x4', gives the general result when the symmetrya simple-cubic lattice with a basis, where we already know
Jg= 337 holds, the standard ORF result fdr, .

JoS?
kBTc:%r (249 IV. BCC LATTICE AS SC WITH BASIS
The bcc lattice points can be generated from the simple
1 Jo(Jo—J5) cubic primitive vectorsa, =ax, a,=ay, anda;=az, where
'ZN Eq: (Jo—Jihy2— 122l (24D ais the cubic cell lattice constant, together with the basis,
_ _ 0 "a a-a {0,d}, whered=(a/2)(x+y+2) is the displacement to the
whereJ is the effectiveq=0 exchange strength, body-centered point. The lattice can be thought of as a pair
of interpenetrating sc latticesublattices 1 and)2with dis-
Jo=35"+ V535" (25 placementd. The near neighbors of a ‘1’ site are all “2”
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sites, and vice versa, with the result that theé and J??
couplings are all zero. The nonzedf) ,=J; couplings de-
pend only on the near-neighbor displacemestm—n, as
follows:

I=30=0r={0a,8,8, &+ 2 +a,

a;+ay,a,+ag,a3+ay}, (29

where the terms for=0 correspond to the coupling within
the two-atom basis. The fact thaft,=J2% =0 simplifies
the determination ofl; considerably, as we only need to
know the product,]lzJ21

The Fourier- transformed interactions are found to be

Jff:Z Il = (32N, (30)
JéZzJ{l_l_efiqx_'_ e*iqy_l_ e*iqz_i_ efi(qurqy)
+e*i(qy+qz)+efi(qz+qx)+efi(qx+qy+qz)}. (31)

In this and the following equations,q, ,qd, are in units of

1/a. For the underlying sc lattice, the density of points is 1

for every volumea®, i.e.,V/N=a3. After a short calculation,

there results
J§PIZ=832{1+ cosq,+ cosqy+ cosq,
+ COosQy Cosqy+ €Osqy €COsq,
+ €0Ss(, COSqy+ COSQy COSqy €Osq,}, (32

and the determination df . relies on evaluation of the sim-
plified integral,

f J fﬂ ~dg,dgydg,
(277)3 D B J12321/JZ’

where Jy=J3?=J3'=8J=2J. The integral can be rewritten
using the periodicity and symmetry qispace, together with
variable changg/2—q, as

:(2;3ijwa;1

The integral has been evaluated by WatSoto be |

(33

da,daydq,
— €0SQy COs(, COSq;,

(39

=1.393D . ... Therefore the estimate of the critical tem-
perature that results is
- 8JF 1 574218 @ 3
Blc= " 139320 0 O (35

in exact agreement with the result from Eg7).

V. DIAMOND LATTICE

The diamond lattice can be considered as an fcc lattice

e., sublattices 1 and 2. The fCCThe exact result fofT. (Ising model,n=1) as estimated

with a two-atom basis,
pr|m|t|ve vectors area;=(a/2)(x+Yy),a,=(a/2)(y+2),a,

G. M. WYSIN
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+a,,n+as} (all 1 sites. The nearest neighbors of a sitéa
1 site are at{n+d,n+d—a;,n+d—a,,n+d—ag} (all 2
siteg. As a result, onlyJ*? and J?! are nonzero. In terms of
the neighbor displacements=m—n, the only nonzero ex-
change couplings are

JTZl:JlZ :Jlr:{olal 1a2!a'3}' (36)
Then it is straightforward to evaluate
IP=2 = (32" (37a
r
=J[1+e 9t e 9%t e %], (37b)
and what is needed for thE; integral:
9 9 q q;
12921_ 412 y Y cos2
Jgdg =497 1+ cosfcos§+ 0052 cos2
dz  Ox
+ S
0052 0032 (39

where g’s are in units of 1&. Clearly we also have once
again, Jo=Jg?=J3'=4J=2J. The specific volume per lat-
tice point on the underlying fcc lattice W N=za3. ThenT,

will be evaluated using Ed24), with the continuum limit, as

1( d% { 1 d« 4y
=—| ——=11——|1+ cos;cos=
4[52(277)3 4 27772
a, 9, 9@ o]t
+ cos2 cos2 + 0052 cos2 ] . (39

The BZ for the fcc lattice is a bcc Wigner-Seitz cell, with
lattice constant 4/a. We can change the integration region
to the cube, —27<q,<27,—27<q,<2m, —27<(,
<2, which contains two copies of the BZ, and include a
factor of 3. We also make the variable changg2—q,
which gives a factor of , to get

:4(277)3f_ f_ f_ dayday,dq,{3— cosqy cosq,

— €0s(], C0s(,— €0sq, cosq, L. (40
The integral was also evaluated by WatSoto be |=4
X0.4482204 ..=1.79288 . ... Thus the critical tempera-

ture is estimated as

1 2.23105

43S
1.79288 n IS

KgTc= n

(41)

from series expansions, is known to kgT,=2.7040 2.

= (a/2)(z+x), whereais the standard cubic cell lattice con- Thus the ORF calculation, as is usual, underestiniagesut
stant, and the basis {§,d}, whered=(a/4)(x+y+Z). The is a considerable improvement over the simple mean-field
nearest neighbors of a sitet+d (a 2-sitg are {n,n+ay,n result,kgT,=4JS%.
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VI. SIMPLE HEXAGONAL BRAVAIS LATTICES o
AND HCP LATTICES i

Another example of a lattice with a basis is the hcp sys- @
tem, which can be considered as interpenetrating simple hex- @
agonal Bravais latticé$ (i.e., stacked triangular neétsThe o
primitive vectors of the simple hexagonal Bravais lattice can o)

be taken asy;=ax,a,=a[ix+(\3/2)y],a3=cz wherea
and c are the lattice constants. For the hcp system, a two-
atom basis 0f0,d} is used, wherel=3(a,+a,) + 3a;, and
one triangular net is stacked on top of the previous one, but
shifted to be over the centers of one set of the triangular cells FIG. 1. Wigner-Seitz cellgsolid line hexagonsfor the simple
below, in what is usually referred to as tABAB. .. pack- hexagonal Bravais lattice reciprocal space, compared with the
ing. For the lattice constant rat@a= /8/3, the highest den- equivalent rhombic celidot dash used for integrals. Segments la-
sity packing is obtained, however, for the calculation herebeleda,b,c,dare equivalent by symmetry operations.
this ratio does not directly enter, and need not be specified.
Instead, it is interesting to consider that the near-neighbofhe reciprocal space is another simple hexagonal lattice,
exchange interactions within the triangular nexy (plane with lattice constants #/+/3a in the xy plane and 2r/c in
have one strengthl,,, while there is a different strength, the z direction, rotated by 30° from the real-space lattice.
J,, for the bonds between the planes. In general we caihe Brillouin zone Wigner-Seitz cell is a hexagonal cylinder,
consider the calculation df, as a function of the raticA ~ however, for the purpose of the integral needed hé&g.
=J,13yy. (27)] it is more convenient to do the summation inside a cell
We present first the calculation a@f,(A) for the simple  bounded in thexy plane by a rhombus formed liy; andb,
hexagonal Bravais lattice, using the standard ORF theorysee Fig. 1L The hexagonal cylinder and rhombical cylinder
which acts as an introduction to the corresponding calculacells have equal areas and are equivalent to each other by
tion for the hcp system, because they both rely on the sam@ppropriate symmetry operations. This rhombical cylinder
information concerning the Brillouin zone. cell is very convenient for evaluation of the integrakspe-
cially with the variable change oq:

A. Simple hexagonal Bravais lattice g=xb;+yb,+zbs, (44

Here there are six neighbor displacements from some ar- . :

. . ; : where the dimensionless parameterg,z all range from 0
bitrary site to neighbors in the same plafea;,*a,, to 1. mapbind out the entire cell. This leads to

* (a;— &)}, with exchange strength,, . The remaining two » mapping '
neighbors, with displacementsta;, have exchange N
strengths),. A short calculation shows that tliespace ex- d3g=b;- (b,x bg)dxdydz:(27r)3vdxdydz (45)
changgEg. (10)] is

and the integral is simplified to
Jq=2Jyycosq-a; + cosq-a,+ cosq- (g —ay) ]

1 1 1 1
+2J,c0s(- a; (429 I=JO de’0 dyJOdz 1—m[005277x+ cos 2wy
1 V3 -1
= 2Jyy COSQ,@+ 2 COS; (xa COS—-0ya| +2J, COSq,C, + €0 2m(x—Yy)+A cos 2772]] : (46)
(42b

The integral gives the correction to the mean-field prediction,
and Jo=6J,,+2J,=2(3+A)J,, will determine the mean- i.e.,
field critical temperature.
The area of one triangle in the net fsax(\/3/2)a KeTe'™ we 2(3+A)3,, S
=(y/3/4)a?, and there is; site per triangle per layer. Thus KeTe=—"—» keTc = n :
the specific volume per site 1/N=(\/3/2)a%c. The primi-

tive vectors of the reciprocal space are The integrall was evaluated numerically by sampling
X,Y,z uniformly on a cubic grid, with a constant increment

(47)

4r (3. 1. 1/N,, and then using an extrapolation of the results in the
bi=—— X 5Y ] (433 limit that the increment goes to zero. A plot lofersus 1N,
V3a results in a straight line whose extrapolation tiNt~0
gives a very accurate estimate of the integf@trors in the
4 integral estimate clearly go asN,/.) Results obtained for a
b2=Ty, (43D range of anisotropy parameterd <2 are shown in Fig. 2.
3a At the isotropic limit,A=1, we getl =1.449 30 anchkgT,
=5.5199%. In the limit A—0, the system becomes two
b3=2—772. (430 dimensional, the integrdl diverges logarithmically due to

C smallq contributions, and ORF is not applicable.
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150 ' ' ' Jg=35=2J,,[cosq-a; + cosq- a,+ cosq- (& — az)](,49)

IF=(5h = [1+e Tate da oo
+e 10 (@ta) 4 gmia(ata)] (50)
and what is needed for evaluation Bf:
J§I5=02{6+4[cosq- a; + cOSQ- @+ COSq- (8 —ay) ]}

X[1+ cosq-ag]. (51)

The g=0 exchange strengthEq. (25)] is seen to bel,
. . . =6(JxytJ,)=6J,,(1+A) and determines tha-dependent
0.0 0.5 1.0 15 5.0 mean-field critical temperature. The specific volume per site
A (for the underlying simple hexagonal Bravais latfids
V/N= (y/3/2)a%c. The reciprocal space is that of the simple
FIG. 2. ORF results fofT; on the simple hexagonal Bravais hexagonal Bravais lattice as described in Sec. VI A. There-
lattice (hex and the hexagonal close-packed lattibep), as func-  fore using the rhombical cylinder Brillouin zone cell, the
tions of the exchange anisotropy=J;/Jy, . sum| of Eq. (24) is transformed into an integral using Egs.
(44) and (45) over a cubic region,

0.0

B. Hexagonal close-packed lattices

trary site to neighbors in the same plahea;,*a,,*(a; (52

—ay)}, with exchange strengthy, . The difference from the , .
simple hexagonal lattice is that there are three neighbors in A€ integrand depends on the transformed quantities
layer above and three neighbors in a layer below the one
being considered, with exchange couplingis giving 12
neighbors in all. However, to evaluate the matrix elements
Jfr" , we neeq to consider these cogplings fro'm the pgint of Jéz\]élz 23, A[1+ cos 2r7]

view of the simple hexagonal Bravais lattice with a bdsee

Fig. 3. The two sites for a given Bravais lattice point can be X{3+2[cos 2mx+ cos 2wy + cos 2m(x—Yy)]}.
considered as belonging to two sublattices, 1 and 2. An ar-

. . . - .- 1 1 l 1
Again there are six neighbor displacements from an arbi - D _}f dxf dyf dz.
q 0 0 0

J5=2J,,[ cos 2mx+ cos 2ry+ cos 2m(x—y)],

(533

bitrary 1 site has the six neighbor displacements to other 1 (530
sites in the samay plane:{*a,,*a,,* (a,—a,)}. which  The correction to the mean-field prediction is
will give nonzeroJ*! coupling terms. The neighbors in ad- ME )
jacent planes are 2 sites, leading to nonzEroterms. Fur- :kBTc MF:6(1+A)‘JXVS
. . ) kgTe , kgTe . (54)
ther consideration leads to the nonzero coupling elements, I n
J=02=0 r={*a,*a, = (a—a)}, (483 | was evaluated by the numerical techniques described

above (Sec. VI A), including theN,— o« extrapolation. At

J2=32=], r={0,a,,8,,83,83+2;,83+a,}. (48D  the isotropic limit, A=1, we getl=1.34466, andnksT,
=8.92418%. It is interesting to note that the same value of
| results for the fcc latticEq. (27)], when evaluated to the
same precision. Thus the ORF corrections to the mean-field
T. for fcc and hcp lattices, both with 12 nearest neighbors,
are the same. Some other hcp results in a limited range of
anisotropyA are shown in Fig. 2. Once again, in the limit
A—0 there is a weak divergence of the integral as the sys-
tem crosses over into a two-dimensional one, with—0
over a very narrow range d&. ORF is not applicable in this
limit; T. should pass over to the finite value for the 2D
triangular lattice modet®

There are a few theoretical results to compare with for the
hcp system. In a series of papers, Domany, Gubernatis, and
AuerbaclR®~??analyzed a Lifshitz tricritical point for the hcp
Ising model, which occurs at a negative valueAofAs part

FIG. 3. XY projection of some nearest-neighbor bonds betweerPf their analysis they applied Monte Carlo calculatiort
1 sites(solid circleg and 2 sitesiopen circley in an hcp lattice.  determine the phase diagram; very roughly for-1 they
Double solid lines connect 1, 2 sites at the same Bravais lattic@btainedksT,~10JS?. Values of T, at other anisotropies
point. Solid lines show 1-1 bondsvithin the planes dotted lines  also can be estimated from their Fig. 1 but with poor preci-
show 1-2 bonds. sion. Monte Carlo simulations by Hashiben al!? demon-

It is notable that it is the first example where the diagonal
elements are nonzero. The terms whrere) are the coupling
within the basis.

The q space couplingfEg. (10)] are found to be

A8y a0
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stratedkg T,~10JS? with greater precision for the isotropic
hcp Ising system. Therefore it does appear that the Onsager
results fall below the Monte Carlo estimates of, as ex-
pected.

For the hcp Heisenberg model, AdiestimatedT, by a
Green’s-function approach together with a random-phase ap-
proximation. It is surprising to see thatat=1 Alder found
the correction to the mean-field, to be by a factorF
(—1)=1.34+0.005, wherd-(—1) is a certain sum over the
Brillouin zone. Making a more accurate evaluation by the
techniques described here, we §€t—1)=1.34466, i.e., a
value exactly equal to the correction integralbtained from
the ORF procedure. In order to compare carefully to the
Adler result(for spin 1/3, we should note that a factor of 210
2S(S+1), implicitly included there in the expression fog, T/T
must be replaced b§? here, to cancel the double counting of ¢
bonds and to compare quantum and classical results. Then, it G, 4. The reaction field for T>T, for the diamond lattice
is easy to show that the expression #6(—1) given by  and isotropic hexagonal close-packed lattide=(1).

Adler is exactly equivalent to our expressi@®6) for I, in-
cluding the anisotropic casé&# 1, Therefore the Green'’s-
function approach used there is exactly equivalent to th
ORF procedure presented here; they are different approach
to impose the random-phase approximation.

Furthermore, in this level of approximation, the question
posed by Domb and Syk&sand investigated by Adler is
answered:T. for fcc and hcp Ising models are the same,
even though the hcp lattice is more densely packed an
might be expected to have a highEr. Apparently a more
precise procedure is needed to determine whether there is
true difference in their critical temperatures.

10 |
A

05 r

1.5 25 3.0 35

Results forA(T) for the diamond lattice and hcp lattice

A=1) are shown in Fig. 4. As a function @/ T, \ does
not depend on the number of spin componamt§he hcp
lattice, which has higher coordination number, also has the
stronger reaction field &t.. As the temperature is increased,
the reaction fields diminish and become of comparable sizes

r T>2T,. It is also expected that the slope relates to the
specific heaf. The graph then reasonably demonstrates a
I%rger specific heat for hcp compared to diamond figarin
contrast to more similar specific heats at higher temperatures.

VIl. REACTION FIELD AND THERMODYNAMIC VIIl. CONCLUSIONS
QUANTITIES AT T>T¢

. - o We have reviewed the standard Onsager reaction field ap-
It is clear that any quantities such as specific heat, mal ve review g on 1 P

netization, etc., can be evaluated via the RPA Hamiltoniagg

for temperatures away from, provided that the reaction
field N has been determined. Thus we take a few sentences
examine howh can be calculated.

At the critical temperature, the reaction field as deter
mined from EQq.(23) is seen to be

1 L1 ,
MEMTC)=§(Jo—Xo )=§(Jo—ﬂksTc/S)- (59

For higher temperatures, the constraining E2p) to deter-
mine \ is equivalent to

V[ d% 1- xo(3E-20)

=1
NJez(27)% [1- xo(J5'—2N) 12— x53520%

(56)

Considering the left-hand side as a function\gfone can
apply Newton’s method to search for the at which the

function passes through 1. This search can be aided by the

roximation for estimatingl,, and have shown how it can

e extended to apply to a Bravais lattice with a basis. The
Fcc lattice was used as a test case because it can be calcu-
Rted either by the standard approach or our method, when
considered as sc with a two-atom basis. We used our method
to get T, for diamond and anisotropic hcp lattice systems,
however, it certainly can be extended to more complex sys-
tems with a greater number of atoms per unit cell. For the
hcp lattice system, the ORF procedure used here was found
to be exactly equivalent to a Green’s functiguius RPA
approach used by AdI&. This equivalence of the
Green-functioh’'® and ORF approaches also is known to
hold for the sc, bcc, and fcc lattices. While it is an approxi-
mate method, ORF is very physically motivated, and does
give reasonable estimates ©f and other quantities where
other methods may be more cumbersome or time consuming

to apply.
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