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Dissipative dynamics of four-site tunneling of H
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We investigate the dissipative properties of a quantum particle which can tunnel among four equivalent sites
on a plane. Our four-state system model is of experimental relevance to probe the quantum properties of H or
D being trapped by substitutional Zr in Nb. Upon performing a unitary transformation, the problem is reduced
to that of effective spin-boson systems. Numerical and analytical results for the population dynamics of the
four localized states are obtained. Intriguingdissipation-assistedquantum coherent oscillations are predicted to
occur even for strong damping.
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Low-mass interstitials in solids, such as H or D, may e
hibit pronounced quantum effects. These appear as a co
ent delocalization of the wave function overtwo or more
interstitial sites.1 Tunneling of H~D! trapped by an intersti-
tial impurity ~O, N, and C! in Nb and Ta has been the obje
of extensive investigations by specific heat, acoustic,
inelastic neutron scattering experiments.2 Most of the experi-
ments could be quantitatively interpreted by supposing
H tunnels between two equivalent tethraedral sites clos
the impurity, thus forming a two-state system~TSS!.3 By
taking into account the nonadiabatic interaction with cond
tion electrons, NbOxHy became an ideal test system to ver
the predicitions of the thoroughly investigated spin-bos
model with Ohmic dissipation.4,5

In contrast, very little is known about the dynamics
substitutional-H~-D! pairs in Nb or in semiconductor struc
tures. In these systems H can form a four-state system~FSS!
within the four tetrahedral sites of one face of the bcc cu
cell containing the substitutional impurity; cf. Figs. 1. Th
model has been proposed and found to be consistent
specific heat and anelastic relaxation measurements
substitutional Ti or Zn in Nb,6 as well as with substitutiona

FIG. 1. In a bcc cell containing, e.g., Nb atoms at the vertic
and a substitutional atom in the center, the H atom is suppose
tunnel among the four tetrahedral sites of the same face. In~a! these
four sites are shown. In~b! the parameters characterizing the resu
ing four-state system are depicted.
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Zn in GaAs.7 In this work we systematically investigate th
dissipative dynamics of a FSS described by the total Ham
tonianH5HFSS1H int1HB . We shall consider the case, pro
posed in Ref. 6, that the unperturbed~by the externally ap-
plied stress and by the environment! FSS iscentrosymmetric,
since its asymmetry is caused by the long-range strain in
actions with the other FSS’s present in the sample, and st
is a centrosymmetric tensor. To investigate tunneling pr
erties, in analogy to what is generally done for the TSS,
express the FSS Hamiltonian in thelocalizedrepresentation,
i.e., in terms of four H wave functions each localized in o
of the four sites. This yields the FSS Hamiltonian

HFSS5
1

2 S « D 0 D

D 2« D 0

0 D « D

D 0 D 2«

D , ~1!

where the basis vectors readu1&5@1000#T, u2&5@0100#T,
u3&5@0010#T, and u4&5@0001#T. Hence D represents the
tunneling element between adjacent sites, while« i /2(i
51,2,3,4) is the asymmetry energy of thei site. The case of
a perfectly symmetric multisite tunneling system corr
sponds to« i50. As mentioned before, this assumption is n
suitable to describe the substitutional-H pair.

It is well known that at low temperatures the quantu
dynamics of light interstitials in metals is strongly influenc
by nonadiabaticinteraction with conduction electrons. Whe
a charged particle moves in a metal, it drags behind a scr
ing cloud of electron-hole pairs which have bosonic char
ter. At low temperatures the bosonic spectral densityJ(v)
has an Ohmic form due to the constant electronic density
states around the Fermi surface. The Ohmic spin-bo
model has been successfully used to describe H tunnelin
NbOxHy .3,5 We extend the Ohmic spin-boson model to o
FSS situation. We consider the case in which the envir
ment effect is to modify the site energie
centrosymmetrically,8 yielding
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H5S HSB~D!
1

2
Dsx

1

2
Dsx HSB~D!

D , ~2!

with the s i being the 232 Pauli matrices, and~we set\
5kB51) where

HSB~D!52
1

2
@«sz1Dsx#2

1

2
szX1HB ~3!

is the well-known spin-boson Hamiltonian.4,5 Here HB

5( i@pi
2/2mi1miv i

2xi
2/2# represents the bath of bosons, a

the collective variableX5( icixi describes the bath polariza
tion as a result of the interaction HamiltonianH int . All ef-
fects of the boson bath on the FSS are captured by the s
tral density

J~v!5
p

2 (
i

ci
2

miv i
d~v2v i !.

We assume the Ohmic formJ(v)52pave2v/vc, with vc
being a high-frequency cutoff anda the dimensionless cou
pling to the conduction electrons. We observe that Eq.~2!
captures also the effects of anexternally appliedodd exten-
sional mode6 upon substituing«→«1«1, with u«1u being the
external field amplitude. Hence, in the following,« in Eq. ~3!
will be interpreted as the total asymmetry energy result
from internal stresses as well as from externalodd exten-
sional modes.

Suppose that the FSS has been prepared at time ze
the stateu1& with the bath in thermal equilibrium. The dy
namical quantities of interest are then the diagonal elem
r i i (t) of the reduced density matrix~RDM! describing the
population of the sitei at time t.

The symmetry of the system is better visualized upon u
tary transformation of the HamiltonianH, yielding

H̃5SHS5S HSB~2D! 0

0 HSB~D50!
D , ~4!

where

S5S†5
1

A2
S I 2 I 2

I 2 2I 2
D ~5!

and I 2 the 232 unit matrix. The effect of this rotation is to
decouplethe total Hamiltonian into two unconnected block
The new basis reads

Su1&[ua&5~ u1&1u3&)/A2, Su2&[ub&5~ u2&1u4&)/A2,

Su3&[ug&5~ u1&2u3&)/A2, Su4&[ud&5~ u2&2u4&)/A2.

The diagonal elementsr i i (t) of the RDM in the localized
basis$u i &% can now be expressed in terms of the matrix e
ments of the RDM in the transformed basis$um&% (m
5a,b,g,d), yielding for the populationsPiªr i i of the lo-
calized states

P1~ t !5@raa~ t !12Rerag~ t !11/2#/2,
ec-

g

in

ts

i-

.

-

P3~ t !5@raa~ t !22Rerag~ t !11/2#/2,

P2~ t !5P4~ t !5rbb~ t !/2. ~6!

Asymptotically (t→`) ~cf. below!, the coherence
2Rerag(t) vanishes. This yields, as expected from symme
arguments, the relationP1

`5P3
` , with Pi

`
ªPi(t5`). Upon

observing that

raa~ t !1rbb~ t !51/2, ~7!

the problem is reduced to the evaluation of the RDM elme
raa(t) and rag(t). Because of the block-diagonal form o
the transformed HamiltonianH̃, a solution for raa(t) is
readily found upon solving the spin-boson problem describ
by the HamiltonianHSB(2D) for a particle tunneling be-
tween the statesua& and ub& and with the constraint~7!. In
other words, the relation

raa~ t !5~11^sz& t!/4 ~8!

holds, where the operatorsz evolves with respect to
HSB(2D) and with the initial condition^sz& t5051. Note
that the resulting TSS has adoubledtunneling matrix ele-
ment 2D as compared to the original FSS Hamiltonian. F
zero dissipation one finds

raa~ t !5@11~«/E!21~2D/E!2 cos~Et!#/4,

with the energy splittingE5A«214D2. For finite dissipa-
tion, raa decays towards an asymptotic equilibrium valu
Upon observing that̂sz& t5`→0 when«→0 and ^sz& t5`

→1 in the opposite limit«→`, we find

P1
`→3/8, P2

`→1/8, «!D,

P1
`→1/2, P2

`→0, «@D, T!E. ~9!

Note that these results are independent of the details of
dissipative mechanism. This tendency is confirmed in F
2, 3, and 4 where the population behavior is shown for t
different bias strengths«51.5D and«50.5D. To make pre-
dictions at intermediate times, the full dynamics must
solved. For finite dissipation, results for^sz& t covering the
whole regimes of temperature and dissipation strength h
been reported in the literature.5 Quite generally,9 ^sz& t obeys
the exact generalized master equation

^ṡz& t5E
0

t

dt8@Ka~ t2t8!2Ks~ t2t8!^sz& t8#, ~10!

where the kernelsKs/a are expressed in power series ofD2.
In the following, we focus on the regime of high temper
tures T and/or strong damping, where the so-term
noninteracting-blip approximation~NIBA ! correctly de-
scribes the dynamics.4,5 The kernels assume the form

Ks~ t !5~2D!2e2Q8(t)cos@Q9~ t !#cos~«t !,

Ka~ t !5~2D!2e2Q8(t)sin@Q9~ t !#sin~«t !. ~11!

The dissipative effects are encapsulated in the functionsQ8
andQ9, being the real and imaginary parts, respectively,
the bath correlation function
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Q~ t !5E
0

`

dv
J~v!

v2 F ~12cosvt !cothS v

2TD1 i sinvt G .
~12!

The Markovian limit of Eq.~10! yields the decaying behav
ior

^sz& t5e2gst@12P`#1P` , ~13!

towards the asymptotic equlibrium valueP`5ga /gs

5tanh(«/2T) and wheregs/aª*0
`dtKs/a(t).

The evaluation of the coherencerag(t) is not standard.
The initial condition r(t50)5u1&^1u implies rag(t50)
51/2, yielding, in the absence of the bath, the result

FIG. 2. Dynamics of the populationsPi of a FSS in the presenc
of weak Ohmic dissipationa50.05 and asymmetry«51.5D. Here
and in the following figures we choose a temperatureT5D, a cutoff
frequencyvc550D, and we depictP1 with a solid curve,P25P4

with a dash-dotted line, andP3 with a dashed curve. The two popu
lationsP2 andP4 exhibit a much faster~oscillatory! decay towards
equilibrium thanP1 andP3. Large amplitude oscillations ofP1 and
P3 which decay on quite a long time scale are observed.

FIG. 3. Population decay for strong Ohmic couplinga50.5 at
bias «51.5D. The large amplitude oscillations of the occupati
probabilities P1 and P3 exist also at such strong damping. Th
oscillation frequency is smaller than in the weak coupling c
shown in Fig. 2.
2Rerag~ t !5cosS Et

2 D cosS «t

2 D1S «

ED sinS Et

2 D sinS «t

2 D .

It describes the quantum coherent motion of the FSS
tween the states (a,g) and (b,g) of the RDM in the trans-
formed basis$um&%. The dissipative effects of the bath resu
in a damping of the quantum coherent motion. To evalu
the latter we employ a real time path integral approach~cf.,
e.g., Ref. 5! which allows an exact evaluation of the trac
over the bath degrees of freedom. Then,rag(t) is expressed
as a double path integral over forward and backward s
pathss(t) ands8(t), respectively. The piecewise consta
forward paths(t) describes a sequence of transitions b
tween the statesua&(s51) and ub&(s521). On the con-
trary, the backward path is constant,s8(t)51, as it corre-
sponds to a permanence of the system in the stateug&. It is
convenient to switch to the path combinationsh(t)
5@s(t)1s8(t)#/2 and j(t)5@s(t)2s8(t)#/2. Then,
rag(t) is expressed in terms of a double path sum

rag~ t !5E DjDhA@j,h#exp$FFV8 @j#1 iF FV9 @j,h#%,

whereA is the path weight in the absence of the bath co
pling and the influence function is

FFV@j,h#5E
0

t

dt2E
0

t2
dt1j̇~ t2!

3@Q8~ t22t1!j̇~ t1!1 iQ9~ t22t1!ḣ~ t1!#.

~14!

In this way the expression~14! formally resembles the solu
tion for a TSS, with the ‘‘sojourn’’ pathh(t)50 if in the
RDM state (b,g), andh(t)51 if in (a,g). Likeways, the
‘‘blip’’ path is j(t)50 if in (a,g), and j(t)521 if in
(b,g). Upon generalizing9 to our case, we obtain an exa
master equation for the vectorXª(Rera,g ,Imrag)T, i.e.,

e

FIG. 4. Population dynamics at strong couplinga50.5 and
weak asymmetry«50.5D. The decay rate of the populationsP1

andP3 is strongly enhanced with decreasing asymmetry, as see
comparison with Fig. 3. Note also the increase in the asympt
population of states 2 and 4.
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Ẋ~ t !52E
0

t

dt8Y~ t2t8!X~ t8!, ~15!

where the matrix elements of the rate matrixY are expressed
in power series ofD2. Quite generally, this implies tha
Rerag

` 50. Within the NIBA, the kernel matrix readsY(t)
5SR(t)I 22 iS I(t)sy , whereSR(t) and S I(t) are the real
and imaginary parts, respectively, of the bath correlat
function

S~ t !5D2e2Q(t)2 i«t. ~16!

In the Markovian limit Eq.~15! with Eq. ~16! yields the
solution

Rerag~ t !5D2e2gt cos~Vt !, ~17!

with g and V being the real and imaginary parts, respe
tively, of *0

`dtS(t). Equation~17! is quite intriguing, and
shows that the coherencerag(t) exhibits damped coheren
oscillations, whose amplitude and frequency are determi
by the details of the bath. Upon comparison of Eq.~17! with
Eq. ~13!, and with the use of the relationga /gs
5tanh(«/2T), we find

gs52g@11exp~2«/T!#>2g, ~18!

implying that the coherencerag decays with asmaller rate
than the diagonal elementraa . Up to here we did not need
to specify the dissipative mechanism. In the case of Oh
dissipation and in the scaling limitvc@T, D, the function
Q(t) in Eq. ~12! takes the form5

Q8~ t !52a ln@~vc /pT!sinh~pTt!#,

Q9~ t !5pa sgn~ t ! with Q9~0!50. ~19!

This yields for the decay rategs of raa the result5

gs5
D2

vc
S bvc

2p D 122a uG~a1 ib«/2p!u2

G~2a!
cosh~be/2!, ~20!

with G(z) being the gamma function. The decay rateg of the
coherencerag immediately follows from Eq.~20! together
with Eq. ~18!. Numerical results, obtained upon solving t
dissipative dynamics described by the FSS Hamiltonian~2!
within the noninteracting-blip approximation, are shown
Figs. 2, 3, and 4. In Figs. 2 and 3 the time evolution of t
i
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populations is investigated for two different valuesa50.05
anda50.5, respectively, of the Ohmic coupling strength. A
expected, the two populationsP25P4 decay towards equi-
librium with a much faster decay rate than the two oth
populationsP1 andP3. In fact, in virtue of Eq.~6!, these two
latter probabilities turn out to be characterized bytwo differ-
ent decay times. The faster onegs , being the same as that o
the P2 andP4 populations, determines the transient dyna
ics at short times. The smaller oneg dominates the transien
dynamics at longer times. In Fig. 2, where a small value
the coupling constant is chosen, the decay towards equ
rium determined byg is very slow. In this regime the two
occupation probabilitiesP1 andP3 exhibit characteristic un-
derdamped quantum coherent oscillations, with freque
V(a,T); cf. Eq. ~17!. Upon increasing the damping streng
~cf. Fig. 3!, the oscillations persist. Interestingly enough, t
amplitude and period 2p/V of the oscillationincreaseswith
a. In Fig. 4 the effects of the asymmetry variation are inve
tigated. We observe that aweakerasymmetry strongly en-
hances the decay rateg. As expected from Eq.~9!, the
asymptotic occupation of states 2 and 4 increases in the m
symmetric situation corresponding to smaller«.

In conclusion, we solved the dissipative dynamics o
dissipative centrosymmetric four-state system~FSS! with pe-
riodic boundary conditions upon mapping the problem
that of two effective spin-boson systems. Analytical and n
merical results were presented. The peculiar symmetries
centrosymmetric FSS~cf. Fig. 1! are reflected nicely in the
properties of the populations of the four localized states
particular, for a FSS initially localized at the site 1~cf. Fig.
1, the relationP2(t)5P4(t) holds at any time. These two
populations are characterized by a much faster decay tow
equilibrium than the two occupation probabilitiesP1(t) and
P3(t). In particular,P1 and P3 undergo damped coheren
oscillations even at relatively strong damping strengths. I
two-state system characterized by the same asymmetry
ergy and tunneling matrix element, quantum coherent os
lations are damped away by the environment at much lo
temperatures and/or smaller damping strengths.5

We hope that our results will contribute to a better und
standing of the tunneling dynamics of H in Nb or in sem
conductor structures.
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