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Inclusion of higher order anharmonic contributions in self-consistent phonon theory
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The ansatz method of infinite summation of higher order diagrams given in Shukla and Cowley, Phys. Rev.
B 58, 2596(1998, is extended to the self-consistent phonon theory. We demonstrate the high accuracy of this
approach with respect to the first-order self-consistent and improved self-condiS@nphonon theories, by
comparing the results from the ansatz method with their exact counterparts. The ISC theory is then extended to
include the remaining diagrams 6f(\*), which could not be included in its earlier formulation. This makes
the ISC theory consistent, at least@¢\+). This ISC theory offers a substantial improvement over the current
ISC theory. The results of the equation of state for a face centered cubic nearest neighbor interaction Lennard-
Jones solid from our ISC theory are shown to be in excellent agreement with the results of the classical Monte
Carlo method also obtained for the same model.

I. INTRODUCTION considerable temperature range, in certain respects the theory
is inconsistent. For example, four diagrams of ordérare

Anharmonic contributions to a physical property)(arise  included in ISC theory, whereas four other diagrams of
from an infinite set of terms in the Taylor series expansion ofO(\*) of similar magnitude, which are given in our earlier
the potential energy. Normally these terms are ignored iwork,® are left out. The diagrams included in the total ISC
making the harmonic approximation where the quadratidree energy are 2a, 2b, 2c, and 2d along with the SC1 free
terms are retained in the above expansion. energy. Diagram 2c is included via the averaging of the cu-

One method of including the anharmonic contributions tobic tensor and 2d is included because the SC1 eigenvalues
« from this infinite set is via the first-order self-consistent and eigenvectors are employed in the calculation of the cubic
phonon theorySC1) or the second-order self-consistent pho-free energy. Diagrams 2a and 2b are naturally contained in
non theory(SC2. In the diagrammatic language the deriva- the calculation of the SC1 free energy through ring diagram
tions of SC1 and SC2 have been given earlier by Choguardsummation.

SC1 has also been derived by the variational metlaod a Our objective in this paper is to include the remaining
Zubarev-type Green's function methddhe essence of the four diagrams ofO(A?) in the implementation of the I1SC
SC1 is that it contains only a partial sum of the infinite set oftheory so that the theory is consistent to at leags?). In
anharmonic contributions; i.e., only theventerms in the the notation of the earlier wotkR%these diagrams are labeled
Taylor series of the potential energy are summed to infinityas 2e, 2f, 2g, and 2h. Once again the total free energy now
All the oddterms in the series are omitted from the summa-consists of the SC1 free energy, the correction from the cubic
tion procedure. The SC2 contains these omitted terms but tHerm evaluated from the SC1 eigenvalues and eigenvectors
numerical implementation is very difficult. However, it has and averaged cubic force constants, and the correction from
been implemented numerically for a Lennard-Joried)  the 2e, 2f, 2g, and 2h diagrams evaluated by averaging the
solid by Kanney and Hortdnand found to be divergent. In vertices and employing the SC1 eigenvalues and eigenvec-
an earlier calculation, it was shown by Gilks al® that the  tors. We note here that diagram 2e was included in an earlier
numerical results obtained from SC1, again for a LJ solidcalculation to improve the results of the traditional ISC
were poor. However, it appears that the improved selftheory by Koehlet:! Because of the extreme complexity in-
consistentISC) phonon theory, which is the SC1 free en- herent in these calculations largely due to the tensorial char-
ergy plus the first important correction omitted from the acter of the anharmonic force constants, their Fourier trans-
SC1, the cubic term in the free energy, yields results whicforms, multiple Brillouin zone(BZ) summations restricted
are satisfactory except when the temperature is high. by numerousA functions, and finally neighbor summations,

In the numerical implementation of ISC theory the eigen-we have followed the ansatz approach which was success-
values and eigenvectors are obtained from the SC1 theorfully employed in our recent worR in the summations of
and the third-rank tensor in the cubic term is averaged witHree energy diagrams. In this approach the higher order dia-
the same density matrix as in SC1. This type of calculatiorgrams, e.g., many diagrams 6f(\°), O(\®), etc., can be
using the SC1 theory was also done for the lattice thermaleduced to a simple product of the lower order diagrams, i.e.,
conductivity by Benifh where the cubic term was averaged O(\?) and O(\*). A comparison of the numerical results,
with the SC1 density matrix. Recently we have shdwmat  for many diagrams, from this approach with their exact nu-
if the averaging of the third-rank tensor in the cubic term ismerical values shows that the ansatz approach yields very
not done, the results of ISC and SC1 hardly differ from eachaccurate answers, even better than the ISC theory in the clas-
other. However, in spite of the success of ISC theory over aical limit®
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Il. ANSATZ FOR SC1, ISC, AND OUR ISC THEORY publicatio? and there is no need to reproduce them here.

However, for the implementation of the ansatz procedure the

In the context of the summation of free energy diagrams , .
which are of the same order of magnitude, I®(\), we necessary equations can be derived by the method presented

. LI in Ref. 10. Once again we start with the expression for the
have developed a simple approximation scheme or ansatahe honon Green’s functidn
This has enabled us to include the contributions of an infinite’ © ©

set of diagrams oD(A%), O(\?), etc., in the free energy

sum. In the same spirit, here, we apply the ansatz procedure - 2wqj8qq Sjj
in the development of the ISC theory aalil the corrections Gy (@)=———"——, (1)
to this theory arising from th®(\*%) diagrams which are not 2ml 0= Q5]

included in the ISC theory.
The SC1 eigenvalues and eigenvectors are determineslhere the renormalized phonon frequeriey; for the wave
self-consistently from the three equatioii$—(3) in a recent  vector () and branch indexis given by

240 o o 180wy, o o o
QF= g+ —" 2 V(=) Gaj1,~Gaj1.0)Ngy, + —5— 2 2 V(—0j.Gai1,~ Gaj1.Gais. ~ i3, Ngyj,Nog,
Qi1 dil1 G3l3
1680w, o o o o
2 2 2 V(—0j,0aj1, a1, Gsi3.~ Gaf 5. sls, — Gsjs,0i) X Noyj, Nogj Nagjg =+ 2)

d1j1 dzi3 dsis
For further details of the derivation and the meaning of the various symbols arising {@)Ewge refer to Ref. 3, where

: ()

. wqj 1
qu _Q_qjCOt EIBﬁqu

In the high temperature limitT>0), where® is the Debye temperature, and with the help of E§sand(4) of Ref. 3,
the above expression fél; reduces to

2 2 1 ®(—dj,d1j1,—A1j1.9]) 1 ®(—dj,d1j1,—A1j1,92] 2, —2j2,0])
04=04" 35y 2 2 - 2 2 (2
ZBN qul qujl B(BN) qul QZJZ qujIQqZJZ
. 1 i E 2 2 q’(‘QLQlj1,—ClljgYQ2J'§’_q2212:Q313’_Q313:Qj)+“._ 4
48(BN)* a1i1 92i2 dsiz qujlﬂqzjzﬂ%h

The solutions for); from this equation are to be obtained self-consistently becBysearises in the various terms in the
denominator on the right hand side of Ed). An approximate self-consistent solution can be obtained by substituting

0G =05 (1+X) (5
in Eq. (4), where the quantit is defined by

1
X=3y % Xej » (6)

whereX; is defined as the sum of the second, third, and fourth terms of the right hand side @) Biyided bngj .
The final expression foX can then be expressed in terms of the following expressions for the free energy di&grams
Foa, andFay:

1 ®(qj1,—d1j1,92)2, — 02 2)
Fla: 2 - - 2 2 ) (7)
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Therefore, in terms oF 1,, F,,, F3a, €tc., the expression +Dg(qj)+Dg(qj). The symbolsD,(qj), Dg(qj), and
for X'is given by Dg(qj) introduced here represent the second, third, and
fourth terms, respectively, on the right hand side of &.
4B Fia 6B Foa 88 Faa

_abk L 2P Lok (10) The above procedure yields
3N 1+X 3N (1+Xx)2 3N (1+Xx)3

3N
F=Ugpict =IN(1+X)—G(X). 1
4 Eull 1 C saict 55 N(1+X)=G(X) (17
X= == St (11) , _
3N11+X 21+X Now we replace in the expression f&(X) every 1+ X by
where a+X, wherea is a positive parameter. The derivative of
G(X) with respect toX yields the following:
3Fsa
C=+— (12) dG(X) —2F, C
la = +... (18
. . . dX (a+X)® a+X '
The series on the right hand side of Efyl) can be summed
approximately in closed form, and the final expressionXor which can be approximately summed in the form
is given by
dG(X) —2F4, C
2B [ 2F 1)\ [1+X) = ex . (19
=—— —_— (A+X) dX 3 +X
an|Tex) | ¢ )te 1, (19 (a+X)® "\

from which the solution foX is obtained iteratively from the 'ntégration of this equation with the boundary conditian

knowledge of only two free energy diagrarfis, and Fo, . —0 as a— determines the consta}lnt .of integr_ation. The
Since the Green’s function, given by E¢f), is of the resulting sum foiIG(X), correct toO(\™), is then given by

same mathematical structure as the Green'’s function derived
in the harmonic approximation, the Helmholtz free energy G(X)= 2F1a ex C
a+X
Thus by settingr=1 in Eq.(20), the ansatz for the SC1 free

(F) can be written as Cc2
(1
2sinf| 5 SRy ||, (14 energy is

1]+1]. (20

at+X

1
F=Usgtaict 5 E In

B q
whereU g ¢ is the static energy contribution . We note 3N
here that it has been possible to write the above expression F=Ustaict ﬁln(ler)
from the standard harmonic expression fowith wg; re-
placed by, because()y; is independent of the applied 2F 1, C
frequencyw. For yet another method of the derivation of Eq. T x|\ Toax 1/t @D

(14) see Ref. 3. However, compared to a simple harmonic
vertex (representing the force constarttere we have a

lized vert ¢ tant with ambiquities in th We have evaluated the equation of state using E3.
renormalized vertéx or force constant with ambiguities in eand(21), and find that it is indeed a very good approximation

Interpretation of the ring and the insert in th_e fing n th_eto the full SC1 results. This is not in itself important since
renormalization process for th_e lowest order diagrams WhICI?he SCl1 calculation is not particularly demanding, but it does
happ_ens to .be Qf first order_ in the SC1 theory. Thereforeshow that the type of approximation used here is valid. We
certain contributions of the first-order free energy like,, can also sum the effect of adding any number of loops to the
F2a, etc., with appropriate numerical factors have to be subg,, yertices in diagram 1b. Diagram 2c is the lowest order
tracted from the above expression fer Hence, the correct example. We can write the result as

free energy in the SC1 theory is given by

1 1 Fip exp( D
where whereD=F,./F,,. We can expect that, if we add this con-
tribution to the SC1 free energy, given by Eg1), but leave
Fia 2F 54 3Fs, the equation folX, Eq. (13), unchanged, we shall mimic the

G(X)= >+ 3 2t (16 equations of the ISC approximation, and this turns out to be
(1+X)% (1+X)7 (1+X) the case. The equation of state calculated in this way is in
We note here that in the usual expression for the SC1 freexcellent agreement with the results of the full ISC calcula-

energy, the sum total of all these subtracted terms is reprdion.

sented by the average by~ (7 /4)coth(%,8ﬁﬂqj). f Fo(rj_the new IZSCZt?ezory, Wg ggd the following corrections
In the high temperature or the classical limit the terms rom diagrams <€, 21, 29, an :
independent ofi in the second term of Eql5) can be

isolated with the help of the standard product representation Foe [exp{ c

of sinhx/x, with x=384Q;, where QO =wZ+D,(aj) (1+X)* 1+X

2

aj
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FIG. 1. Specific heat at constant volum@,j. Symbols arex,

SC1; A, ansatz SC1+, ISC; O, ansatz ISC.
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When these contributions are added to the previous ISC
equations, withX given by Eq.(13), we have our ISC theory.
As a final point, we can add to the expression ¥orl

D
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FIG. 3. Specific heat at constant volum@,j. Symbols are®,
Monte Carlo;[1, ISCX; +, ISC.

rather different type of calculation which should have been
equivalent to SC2 and also found a divergetfc&he diffi-
culties arise from the inclusion of the cubic shift contribution
in the the quantityX, which is physically equivalent to in-
cluding it in the calculation of the smearing width. The cubic
shift is negative and this reduces the value of-(1). This,

in turn, increases the effect of the smearing and this makes
the cubic shift even more negative. Above a certain tempera-
ture the effects escalate and the iteration process diverges.
While we have used an apparently crude set of numerical
approximations, we believe the conclusion to be correct.

IIl. RESULTS AND DISCUSSION

contribution proportional to the smeared 1b and include thi%h Itis clear irom the ansaiz-type theory presented in Sec. Il

in the iteration procedure. This approximatesegond-order
self-consistent phonon schert®C2. However, we find that

at the calculations for the SC1, ISC, and our ISC theory
require knowledge of the twa? free energy diagrams, viz.,

. 4 . .
the iterative procedure diverges for temperatures above abolf? andFy,, and the sbO(L) free energy diagrams, viz.,

half of the melting temperaturéi.e., above about 0.25

2a» Fac, Faes For, Fog, andFy, as a function of the

There have been other indications that this is a correct resulttgmperaturg) %nd yolu:1e V)'dlhe other TWO :jre(_e eln(zrgé/
Kanney and Horton implemented a version of SC2 and alséi'agr""mS 0fO(A"), viz,, Foq andFyy,, are already include

reported a divergencdeCowley, Horton, and Leese made a
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FIG. 2. Specific heat at constant pressug)( Symbols are as

in Fig. 1.

through the normalization of phonon lines ky, and the
SC1 free energy. Hence as a first step in the calculation, we
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50 not provide an adequate representation for the real solid. We
have found a slight error in the previous calculatiorCgfat
the reduced temperature ®f =0.5 for the exact ISC. The
new value is 2.60 rather than 2.65 as reported in our earlier
work 2 This value is used in both the Figs. 1 and 3 for ISC.
Clearly theC, results show a considerable improvement
from this ISC theory because @& approaches 0.5, our ISC
results keep up with the MC results whereas the ISC results
B fall below the MC values.
In the case ofC, the results from our ISC theory are in
exact agreement with the MC values right uprto=0.4 and
then deviate slightly fol* =0.45 and 0.5 where they move

45 —

40

35

30 —

Adiabatic Bulk Modulus Bg

higher than the MC values. On the other hand,@evalues
25 , , ‘ | = from the ISC theory first start falling below the MC values
0o 01 02 03 04 08 06 from T*=0.25, and then go through a slight dip around
Temperature (¢/kg) T*=0.45, and finally creep up to approach the MC value at
T*=0.5.

FIG. 5. Adiabatic bulk modulusBs). Symbols as in Fig. 3. . .
f9)- Sy 9 As we see from the results presented in Fig. 5 Bie

have evaluated these diagrams for a range of volumes, anglues from our ISC theory are in exact agreement with the
then evaluated the thermal properties for each of the aboveMC up to T* =0.4 and show a very slight deviation &t
listed theories by suitable interpolations and differentiations=0.45 andT* =0.5. On the other hand, tH&; values from
Because our calculations are done in the high temperaturthe ISC theory show a consistent trend of falling below the
limit, the free energies 0®(\?) and O(A*) have tempera- MC values in the entire temperature range.
ture factors ofT? and T3, respectively.

We have calculated all the thermodynamic properties IV. CONCLUSIONS
from the ansatz procedure presented in Sec. Il and for com-
parison purposes the same properties from the exact formu- We have accomplished the goal set out in this paper of
lations of the SC1 and ISC theories. How successful thextending the ansatz for summing the contributions of the
ansatz approach is in reproducing the exact results for thBigher order diagrams in SC1 and ISC theories. The ISC
SC1 and ISC theories can be seen from the resultCfor theory now includes the contributions to the free energy from
(the zero pressure specific heat at constant vojume C,  all the self-energies in the Green’s function of\% and
(the specific heat at constant press$ypseesented in Fig. 1 beyond through the propagator and vertex renormalizations.
and 2, respectively. Clearly the ansatz results are in excellefithe results of the ansatz calculations agree extremely well

agreement for both the SC1 and ISC theories. with the exact SC1 and ISC results. For most of the thermo-
Another check of the ansatz for our ISC theory is obtaineddynamic properties in the entire temperature range, the re-
by adding the correction of only one diagram®f\*), viz.,  sults from our ISC theory are substantially in better agree-

the 2e free energy diagram. An exact calculation for this casenent with the classical MC results than the existing I1SC
was done by Koehlét and our ansatz results for this case theory.
are in excellent agreement with that of Ref. 11.

The results from our ISC theo§abeled as ISCXfor C, ACKNOWLEDGMENTS
andC, and the adiabatic bulk moduluB{) are presented in
Fig. 3-5, respectively, along with the exact ISC and Monte One of us(R.C.S) wishes to acknowledge the support of
Carlo (MC) resultst® instead of the real experimental data the Natural Sciences and Engineering Research Council of
because we recognize that the Lennard-Jones potential m&anada.
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