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Inclusion of higher order anharmonic contributions in self-consistent phonon theory
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The ansatz method of infinite summation of higher order diagrams given in Shukla and Cowley, Phys. Rev.
B 58, 2596~1998!, is extended to the self-consistent phonon theory. We demonstrate the high accuracy of this
approach with respect to the first-order self-consistent and improved self-consistent~ISC! phonon theories, by
comparing the results from the ansatz method with their exact counterparts. The ISC theory is then extended to
include the remaining diagrams ofO(l4), which could not be included in its earlier formulation. This makes
the ISC theory consistent, at least toO(l4). This ISC theory offers a substantial improvement over the current
ISC theory. The results of the equation of state for a face centered cubic nearest neighbor interaction Lennard-
Jones solid from our ISC theory are shown to be in excellent agreement with the results of the classical Monte
Carlo method also obtained for the same model.
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I. INTRODUCTION

Anharmonic contributions to a physical property (a) arise
from an infinite set of terms in the Taylor series expansion
the potential energy. Normally these terms are ignored
making the harmonic approximation where the quadra
terms are retained in the above expansion.

One method of including the anharmonic contributions
a from this infinite set is via the first-order self-consiste
phonon theory~SC1! or the second-order self-consistent ph
non theory~SC2!. In the diagrammatic language the deriv
tions of SC1 and SC2 have been given earlier by Choqua1

SC1 has also been derived by the variational method2 and a
Zubarev-type Green’s function method.3 The essence of the
SC1 is that it contains only a partial sum of the infinite set
anharmonic contributions; i.e., only theeven terms in the
Taylor series of the potential energy are summed to infin
All the odd terms in the series are omitted from the summ
tion procedure. The SC2 contains these omitted terms bu
numerical implementation is very difficult. However, it ha
been implemented numerically for a Lennard-Jones~LJ!
solid by Kanney and Horton4 and found to be divergent. In
an earlier calculation, it was shown by Gilliset al.5 that the
numerical results obtained from SC1, again for a LJ so
were poor. However, it appears that the improved s
consistent~ISC! phonon theory,6 which is the SC1 free en
ergy plus the first important correction omitted from t
SC1, the cubic term in the free energy, yields results wh
are satisfactory except when the temperature is high.

In the numerical implementation of ISC theory the eige
values and eigenvectors are obtained from the SC1 th
and the third-rank tensor in the cubic term is averaged w
the same density matrix as in SC1. This type of calculat
using the SC1 theory was also done for the lattice ther
conductivity by Benin7 where the cubic term was average
with the SC1 density matrix. Recently we have shown8 that
if the averaging of the third-rank tensor in the cubic term
not done, the results of ISC and SC1 hardly differ from ea
other. However, in spite of the success of ISC theory ove
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considerable temperature range, in certain respects the th
is inconsistent. For example, four diagrams of orderl4 are
included in ISC theory, whereas four other diagrams
O(l4) of similar magnitude, which are given in our earlie
work,9 are left out. The diagrams included in the total IS
free energy are 2a, 2b, 2c, and 2d along with the SC1
energy. Diagram 2c is included via the averaging of the
bic tensor and 2d is included because the SC1 eigenva
and eigenvectors are employed in the calculation of the cu
free energy. Diagrams 2a and 2b are naturally containe
the calculation of the SC1 free energy through ring diagr
summation.

Our objective in this paper is to include the remaini
four diagrams ofO(l4) in the implementation of the ISC
theory so that the theory is consistent to at leastO(l4). In
the notation of the earlier work9,10 these diagrams are labele
as 2e, 2f, 2g, and 2h. Once again the total free energy
consists of the SC1 free energy, the correction from the cu
term evaluated from the SC1 eigenvalues and eigenvec
and averaged cubic force constants, and the correction f
the 2e, 2f, 2g, and 2h diagrams evaluated by averaging
vertices and employing the SC1 eigenvalues and eigen
tors. We note here that diagram 2e was included in an ea
calculation to improve the results of the traditional IS
theory by Koehler.11 Because of the extreme complexity in
herent in these calculations largely due to the tensorial c
acter of the anharmonic force constants, their Fourier tra
forms, multiple Brillouin zone~BZ! summations restricted
by numerousD functions, and finally neighbor summation
we have followed the ansatz approach which was succ
fully employed in our recent work10 in the summations of
free energy diagrams. In this approach the higher order
grams, e.g., many diagrams ofO(l6), O(l8), etc., can be
reduced to a simple product of the lower order diagrams,
O(l2) and O(l4). A comparison of the numerical result
for many diagrams, from this approach with their exact n
merical values shows that the ansatz approach yields
accurate answers, even better than the ISC theory in the
sical limit.8
3232 ©2000 The American Physical Society
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II. ANSATZ FOR SC1, ISC, AND OUR ISC THEORY

In the context of the summation of free energy diagra
which are of the same order of magnitude, i.e.,O(l4), we
have developed a simple approximation scheme or ans
This has enabled us to include the contributions of an infin
set of diagrams ofO(l6), O(l8), etc., in the free energy
sum. In the same spirit, here, we apply the ansatz proce
in the development of the ISC theory andall the corrections
to this theory arising from theO(l4) diagrams which are no
included in the ISC theory.

The SC1 eigenvalues and eigenvectors are determ
self-consistently from the three equations~1!–~3! in a recent
s

tz.
e

re

ed

publication8 and there is no need to reproduce them he
However, for the implementation of the ansatz procedure
necessary equations can be derived by the method prese
in Ref. 10. Once again we start with the expression for
one phonon Green’s function3

Gqq8
j j 8 ~v!5

2vqjdqq8d j j 8

2p@v22Vqj
2 #

, ~1!

where the renormalized phonon frequencyVqj for the wave
vector (q) and branch indexj is given by
e

s

Vqj
2 5vqj

2 1
24vqj

\ (
q1 j 1

V~2qj ,q1 j 1 ,2q1 j 1 ,qj !Nq1 j 1
1

180vqj

\ (
q1 j 1

(
q3 j 3

V~2qj ,q1 j 1 ,2q1 j 1 ,q3 j 3 ,2q3 j 3 ,qj !Nq1 j 1
Nq3 j 3

1
1680vqj

\ (
q1 j 1

(
q3 j 3

(
q5 j 5

V~2qj ,q1 j 1 ,2q1 j 1 ,q3 j 3 ,2q3 j 3 ,q5 j 5 ,2q5 j 5 ,qj !3Nq1 j 1
Nq3 j 3

Nq5 j 5
1•••. ~2!

For further details of the derivation and the meaning of the various symbols arising in Eq.~2!, we refer to Ref. 3, where

Nqj5
vqj

Vqj
cothS 1

2
b\Vqj D . ~3!

In the high temperature limit (T.QD), whereQD is the Debye temperature, and with the help of Eqs.~3! and~4! of Ref. 3,
the above expression forVqj reduces to

Vqj
2 5vqj

2 1
1

2bN (
q1 j 1

F~2qj ,q1 j 1 ,2q1 j 1 ,qj !

Vq1 j 1

2
1

1

8~bN!2 (
q1 j 1

(
q2 j 2

F~2qj ,q1 j 1 ,2q1 j 1 ,q2 j 2 ,2q2 j 2 ,qj !

Vq1 j 1

2 Vq2 j 2

2

1
1

48~bN!3 (
q1 j 1

(
q2 j 2

(
q3 j 3

F~2qj ,q1 j 1 ,2q1 j 1 ,q2 j 2 ,2q2 j 2 ,q3 j 3 ,2q3 j 3 ,qj !

Vq1 j 1

2 Vq2 j 2

2 Vq3 j 3

2
1•••. ~4!

The solutions forVqj from this equation are to be obtained self-consistently becauseVqj arises in the various terms in th
denominator on the right hand side of Eq.~4!. An approximate self-consistent solution can be obtained by substituting

Vqj
2 5vqj

2 ~11X! ~5!

in Eq. ~4!, where the quantityX is defined by

X5
1

3N (
qj

Xqj , ~6!

whereXqj is defined as the sum of the second, third, and fourth terms of the right hand side of Eq.~4! divided byvqj
2 .

The final expression forX can then be expressed in terms of the following expressions for the free energy diagramF1a ,
F2a , andF3a :

F1a5
1

8Nb2 (
q1 j 1

(
q2 j 2

F~q1 j 1 ,2q1 j 1 ,q2 j 2 ,2q2 j 2!

vq1 j 1

2 vq2 j 2

2
, ~7!

F2a5
1

48N2b3 (
q1 j 1

(
q2 j 2

(
q3 j 3

F~2q2 j 2 ,q1 j 1 ,2q1 j 1 ,q3 j 3 ,2q3 j 3 ,q2 j 2!

vq1 j 1

2 vq2 j 2

2 vq3 j 3

2
, ~8!

F3a5
1

384N3b4 (
q1 j 1

(
q2 j 2

(
q3 j 3

(
q4 j 4

F~2q2 j 2 ,q1 j 1 ,2q1 j 1 ,q3 j 3 ,2q3 j 3 ,q4 j 4 ,2q4 j 4 ,q2 j 2!

vq1 j 1

2 vq2 j 2

2 vq3 j 3

2 vq4 j 4

2
. ~9!
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Therefore, in terms ofF1a , F2a , F3a , etc., the expression
for X is given by

X5
4b

3N

F1a

11X
1

6b

3N

F2a

~11X!2
1

8b

3N

F3a

~11X!3
, ~10!

X5
4b

3N S F1a

11XD F11
1

2

C

11X
1•••G , ~11!

where

C5
3F2a

F1a
. ~12!

The series on the right hand side of Eq.~11! can be summed
approximately in closed form, and the final expression foX
is given by

X5
2b

3N S 2F1a

11XD S 11X

C D @eC/(11X)21#, ~13!

from which the solution forX is obtained iteratively from the
knowledge of only two free energy diagramsF1a andF2a .

Since the Green’s function, given by Eq.~1!, is of the
same mathematical structure as the Green’s function der
in the harmonic approximation, the Helmholtz free ener
~F! can be written as

F5Ustatic1
1

b (
qj

lnF2 sinhS 1

2
b\Vqj D G , ~14!

whereUstatic is the static energy contribution toF. We note
here that it has been possible to write the above expres
from the standard harmonic expression forF with vqj re-
placed byVqj becauseVqj is independent of the applie
frequencyv. For yet another method of the derivation of E
~14! see Ref. 3. However, compared to a simple harmo
vertex ~representing the force constant! here we have a
renormalized vertex or force constant with ambiguities in
interpretation of the ring and the insert in the ring in t
renormalization process for the lowest order diagrams wh
happens to be of first order in the SC1 theory. Therefo
certain contributions of the first-order free energy likeF1a ,
F2a , etc., with appropriate numerical factors have to be s
tracted from the above expression forF. Hence, the correc
free energy in the SC1 theory is given by

F5Ustatic1
1

b (
qj

lnF2 sinhS 1

2
b\Vqj D G2G~X!, ~15!

where

G~X!5
F1a

~11X!2
1

2F2a

~11X!3
1

3F3a

~11X!4
1•••. ~16!

We note here that in the usual expression for the SC1
energy, the sum total of all these subtracted terms is re

sented by the average ofUstatic2(\Vqj /4)coth(12b\Vqj ).
In the high temperature or the classical limit the ter

independent of\ in the second term of Eq.~15! can be
isolated with the help of the standard product representa
of sinhx/x, with x5 1

2 b\Vqj , where Vqj
2 5vqj

2 1D4(qj )
ed
y

on

ic

e

h
,

-

e
e-

s

n

1D6(qj )1D8(qj ). The symbols D4(qj ), D6(qj ), and
D8(qj ) introduced here represent the second, third, a
fourth terms, respectively, on the right hand side of Eq.~4!.
The above procedure yields

F5Ustatic1
3N

2b
ln~11X!2G~X!. ~17!

Now we replace in the expression forG(X) every 11X by
a1X, wherea is a positive parameter. The derivative
G(X) with respect toX yields the following:

dG~X!

dX
5

22F1a

~a1X!3 F11
C

a1X
1•••G , ~18!

which can be approximately summed in the form

dG~X!

dX
5

22F1a

~a1X!3
expS C

a1XD . ~19!

Integration of this equation with the boundary conditionG
→0 as a→` determines the constant of integration. T
resulting sum forG(X), correct toO(l4), is then given by

G~X!5
2F1a

C2 FexpS C

a1XD S C

a1X
21D11G . ~20!

Thus by settinga51 in Eq.~20!, the ansatz for the SC1 fre
energy is

F5Ustatic1
3N

2b
ln~11X!

2
2F1a

C2 FexpS C

11XD S C

11X
21D11G . ~21!

We have evaluated the equation of state using Eqs.~13!
and~21!, and find that it is indeed a very good approximati
to the full SC1 results. This is not in itself important sinc
the SC1 calculation is not particularly demanding, but it do
show that the type of approximation used here is valid. W
can also sum the effect of adding any number of loops to
two vertices in diagram 1b. Diagram 2c is the lowest ord
example. We can write the result as

F1b

~11X!3
expS D

11XD ,

whereD5F2c /F1b . We can expect that, if we add this con
tribution to the SC1 free energy, given by Eq.~21!, but leave
the equation forX, Eq. ~13!, unchanged, we shall mimic th
equations of the ISC approximation, and this turns out to
the case. The equation of state calculated in this way is
excellent agreement with the results of the full ISC calcu
tion.

For the new ISC theory, we add the following correctio
from diagrams 2e, 2f, 2g, and 2h:

F2e

~11X!4 FexpS C

11XD G2

,
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F2 f

~11X!6 FexpS D

11XD G2

,

F2g

~11X!5
expS C

11XDexpS D

11XD ,

F2h

~11X!6 FexpS D

11XD G2

.

When these contributions are added to the previous
equations, withX given by Eq.~13!, we have our ISC theory

As a final point, we can add to the expression forX a
contribution proportional to the smeared 1b and include
in the iteration procedure. This approximates asecond-order
self-consistent phonon scheme~SC2!. However, we find that
the iterative procedure diverges for temperatures above a
half of the melting temperature~i.e., above about 0.25!.
There have been other indications that this is a correct re
Kanney and Horton implemented a version of SC2 and a
reported a divergence.4 Cowley, Horton, and Leese made

FIG. 1. Specific heat at constant volume (Cv). Symbols are3,
SC1;n, ansatz SC1.1, ISC; s, ansatz ISC.

FIG. 2. Specific heat at constant pressure (Cp). Symbols are as
in Fig. 1.
C
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ut

lt.
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rather different type of calculation which should have be
equivalent to SC2 and also found a divergence.12 The diffi-
culties arise from the inclusion of the cubic shift contributio
in the the quantityX, which is physically equivalent to in-
cluding it in the calculation of the smearing width. The cub
shift is negative and this reduces the value of (11X). This,
in turn, increases the effect of the smearing and this ma
the cubic shift even more negative. Above a certain tempe
ture the effects escalate and the iteration process diver
While we have used an apparently crude set of numer
approximations, we believe the conclusion to be correct.

III. RESULTS AND DISCUSSION

It is clear from the ansatz-type theory presented in Sec
that the calculations for the SC1, ISC, and our ISC the
require knowledge of the twol2 free energy diagrams, viz.
F1a andF1b , and the sixO(l4) free energy diagrams, viz.
F2a , F2c , F2e , F2 f , F2g , and F2h as a function of the
temperature (T) and volume (V). The other two free energy
diagrams ofO(l4), viz., F2d andF2b , are already included
through the normalization of phonon lines inF1b and the
SC1 free energy. Hence as a first step in the calculation,

FIG. 3. Specific heat at constant volume (Cv). Symbols ared,
Monte Carlo;h, ISCX; 1, ISC.

FIG. 4. Specific heat at constant pressure (Cp). Symbols as in
Fig. 3.
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have evaluated these diagrams for a range of volumes,
then evaluated the thermal properties for each of the ab
listed theories by suitable interpolations and differentiatio
Because our calculations are done in the high tempera
limit, the free energies ofO(l2) and O(l4) have tempera-
ture factors ofT2 andT3, respectively.

We have calculated all the thermodynamic propert
from the ansatz procedure presented in Sec. II and for c
parison purposes the same properties from the exact for
lations of the SC1 and ISC theories. How successful
ansatz approach is in reproducing the exact results for
SC1 and ISC theories can be seen from the results forCv
~the zero pressure specific heat at constant volume! and Cp
~the specific heat at constant pressure! presented in Fig. 1
and 2, respectively. Clearly the ansatz results are in exce
agreement for both the SC1 and ISC theories.

Another check of the ansatz for our ISC theory is obtain
by adding the correction of only one diagram ofO(l4), viz.,
the 2e free energy diagram. An exact calculation for this c
was done by Koehler11 and our ansatz results for this ca
are in excellent agreement with that of Ref. 11.

The results from our ISC theory~labeled as ISCX! for Cv
andCp and the adiabatic bulk modulus (Bs) are presented in
Fig. 3–5, respectively, along with the exact ISC and Mo
Carlo ~MC! results,13 instead of the real experimental da
because we recognize that the Lennard-Jones potential

FIG. 5. Adiabatic bulk modulus (BS). Symbols as in Fig. 3.
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not provide an adequate representation for the real solid.
have found a slight error in the previous calculation ofCv at
the reduced temperature ofT* 50.5 for the exact ISC. The
new value is 2.60 rather than 2.65 as reported in our ea
work.8 This value is used in both the Figs. 1 and 3 for IS

Clearly theCv results show a considerable improveme
from this ISC theory because asT* approaches 0.5, our ISC
results keep up with the MC results whereas the ISC res
fall below the MC values.

In the case ofCp the results from our ISC theory are i
exact agreement with the MC values right up toT* 50.4 and
then deviate slightly forT* 50.45 and 0.5 where they mov
higher than the MC values. On the other hand, theCp values
from the ISC theory first start falling below the MC value
from T* 50.25, and then go through a slight dip arou
T* 50.45, and finally creep up to approach the MC value
T* 50.5.

As we see from the results presented in Fig. 5 theBs
values from our ISC theory are in exact agreement with
MC up to T* 50.4 and show a very slight deviation atT*
50.45 andT* 50.5. On the other hand, theBs values from
the ISC theory show a consistent trend of falling below t
MC values in the entire temperature range.

IV. CONCLUSIONS

We have accomplished the goal set out in this pape
extending the ansatz for summing the contributions of
higher order diagrams in SC1 and ISC theories. The I
theory now includes the contributions to the free energy fr
all the self-energies in the Green’s function ofO(l4) and
beyond through the propagator and vertex renormalizatio
The results of the ansatz calculations agree extremely
with the exact SC1 and ISC results. For most of the therm
dynamic properties in the entire temperature range, the
sults from our ISC theory are substantially in better agr
ment with the classical MC results than the existing IS
theory.
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