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A structural model of a one-componeamtphase crystal has been constructed by means of molecular dy-
namics simulation. The phonon dispersion curves and the vibrational density of states were computed for this
model. The dependence of the vibrational properties on the thermodynamical parameters was investigated. The
vibrational density of states of the-phase structure is found to be similar to that of a one-component glass
with icosahedral local order. On the basis of this comparison it is concluded thatgthase can be considered
to be a good crystalline reference structure for this glass.

[. INTRODUCTION ando-phase crystals that are stable for a wide range of ther-
modynamical parametet3.Of these two crystalline struc-
The local atomic order in disordered condensed materialtures, thes phase is expected to be a good reference struc-
is well defined and governs many physical properti€aiite  ture for the IC glass because of the following reasons. The
often, for a disordered marerial, it is possible to find a cor-supercooled IC liquidwhere the interactions between atoms
responding crystal with similar local and even intermediate-are described by the same potertfiaindergoes a transition
range order which give rise to similarities in many structuraleither to the IC glass or to a dodecagonal quasicrysta-
and dynamical features of these two solids. Such a crystgiending on the quench raté This quasicrystal has similar
can be regarded as a reference crystalline structuystal-  local structural properties with the IC gla¥sHowever, the
line counterpaitfor the corresponding disordered substanceabsence of global periodic order in the quasicrystalline phase
In some cases, the reference structure can be uniquely deakes the analysis of its vibrational properties a task of com-
fined. The simplest examples are toy structural models wittparable complexity to that for the glass itself. Thghase is
force-constant and/or mass disorder. In these toy models, thane of the closest low-order crystalline approxim&htsr
atoms occupy their equilibrium positions at the sites of athis dodecagonal quasicrystdiwhich means that these two
crystalline lattice(e.g., simple cubig which can be consid- (crystalline and quasicrystallinstructures are built up from
ered to be a reference orsee e.g., Ref.)2 Another related the same structural units. This implies that the IC glass and
example is a binary substitutional alloy, the reference systerthe o phase, being both tetrahedrally closed-packed
for which is a periodic point lattice with one of the two structures, are nearly isomorphous in terms of local order.
atomic species placed at the lattice sitéEhe disorder in Knowledge of the vibrational properties of thephase
such models does not influence the equilibrium positions ofrystal allows for a direct comparison with those of the IC
the atoms arranged in an ideal crystalline lattice. This makeglass. The apparent similarity in the vibrational densities of
possible the use of approximate analytical approa¢bes, states of these two structures gives stronger support for the
the coherent potential approximatiio treat the vibrational ~choice of this crystalline counterpart for the IC glass.
properties of the models, provided that the vibrational prop- The o-phase structure, used in our computations, has
erties of the counterpart crystal are known. been obtained by means of molecular dynamics simulation
In amorphous solids, or glasses, the atoms do not occupyith the use of an interatomic pair potenttiThe vibra-
the sites of a crystalline lattice, which results in positionaltional properties have been investigated by using both the
disorder. For these materials, a choice of a reference structormal-mode analysis and by computing the spectra of ap-
ture becomes problematic. Good counterparts can usually f@opriate time-correlation functions.
found among the crystalline polymorphs having the séone The paper is arranged as follows. Téhehase structure is
similar) chemical composition as the corresponding glassdescribed in Sec. Il. The model and technical details of the
For example cristobalite appears to be a good crystallinecalculations are presented in Sec. Ill. In Sec. IV we present
counterpart for vitreous silica.® The main purpose of this the results of the simulations. Some concluding remarks are
paper is to investigate numerically the vibrational propertiescontained in Sec. V.
of a one-component phasé® crystal which is conjectured
to be a good crystalline counterpart for a one-component Il. THE o PHASE
glass with icosahedral local orddC glass.?%!t
The motivation for this choice of a crystalline counterpart
of the IC glass is the following. The computational model of
the IC glass is based on a simple empirical pair interatomic
potential® resembling the effective interionic potentials con-
jectured for simple metallic glass-forming alloy/sThe use The o phase belongs to an important class of tetrahedrally
of the same potential allows us to construct models of bcelose-packed crystallographic structufesiz., the Frank-

In this section, we review the known structural and dy-
namical properties of the phase.

A. Structure
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space(geometrical frustratio® There exist statistical me-
chanical arguments in favor of this scenario of glass
formation'® based on a Landau free-energy analysis. The av-

erage Cogrdination numbet in the Frank-Kasper phases
(13.333<Z=13.5) is very close to that of a sphere-packed

“ideal glass” modef® (Z 4= 13.4). In a sense, this “ideal
glass” could be regarded as a Frank-Kasper phase with an
infinitely large unit cel®?° Thus the class of Frank-Kasper
phases is a natural choice for reference crystalline structures
for metallic glasses of simple constitution.

From a structural point of view, the phase can be also
regarded as a crystalline low-order approximant for dode-
cagonal quasicrystaf§. Such quasicrystafs, morphologi-
cally close to Frank-Kasper phases, represent an alternative
class of noncrystallographic structures which combine icosa-
hedral local order with nontranslational long-range order
manifested by infinitely sharp diffraction peaks.

B. Dynamics

Similarities in the local structure of metallic glasses and
Frank-Kasper phases are reflected in the dynamical proper-
ties of these materials. The available data about the vibra-
tional dynamics of Frank-Kasper phases is limited to some of

FIG. 1. Projection down the axis of theo-phase structurga)  the Laves phases, a subclass of the Frank-Kasper pttases.
32,4,3,4 nef[the numerical symbols are Scfilasymbols (Ref. 7,  For instance, the similarity between the phonon-dispersion
specifying the number and sequence of various polygons aroungklations of the MgyZns, gIaS§2‘23 and those of the Laves
each vertek The dashed square outlines a unit cétly Atomic phase MgZn (Ref. 24 was emphasized by Hafn&r?°
arrangement in one unicubig cell. ¢: z=0, 4: z=0.5, =z Another interesting aspect of the dynamics of Frank-
=0.2499. X: z=0.2501, o: z=0.7499, [1: z=0.7501, O: Z12  kagper phases is related to the appearance of soft vibrational
atoms,[J: Z15 atoms. The rest of atoms are Z14. Multiplyiny  mpdes in these materials. Such a soft low-frequency optic
the properc/a ratio gives a tetragonal unit cell wit=1. mode at thd™ point (the origin of the reciprocal lattigehas

been found numerically in the same Laves phase MdZn
Kasper phases® The first coordination shells of the con- The frequency of this mode decreases with increasing pres-
stituent atoms in these structures form triangula@@nk-  sure (accompanied by volume compressi@nd eventually
Kaspey polyhedra composed entirely of slightly distorted becomes negative, indicating a structural phase
tetrahedra. The four possible coordination numbets i transition?®~° The authors of Ref. 24 applied a group-
these structures ae=12, 14, 15, and 16. The least distorted theoretical analysis and demonstrated that the polarization
tetrahedra are found in icosahedi&1@ polyhedra Struc-  vector of the soft optic mode in Mgaris determined by the
tures of small clusters of atoms interacting via pairwise censtructure symmetry and is independent of interatomic inter-
tral potentials favor icosahedral ordexrs having the lowest actions. This suggests that the soft-mode character of some
energy. The prototype phase structures agg-U (Ref. 17 vibrations is a generic property of Frank-Kasper phases.
and CygFes,.'® There are 30 atoms per tetragonal unit cellHowever, no soft-mode behavior was observed in the isos-
(tP30) with c/a~0.52, wherec anda are the dimensions of tructural CaMg (Ref. 31 where the mass ratio of the con-
the cell(lattice parametejs The space group of this phase is stituent elements is reversed with respect to MgHuafner2
P4,/mnm There are 10 atoms with the coordination num-suggested that the soft modes in Mgzmould be attributed
ber 12,712 or icosahedra, 1614 atoms, and £15 atoms.  to the relatively large mass of the Zn atoms. This is an ex-
The —72° disclination line$form a network(a major skel-  ample of the chemical composition of the materials introduc-
eton, in the parlance of Frank and Kasjgér where rows of  ing considerable difficulties into the analysis of the interplay
Z14 atoms parallel to the tetragorabxis thread planar net- of the structure and the dynamics.
works of Z14 andZ15 atoms. A projection of ther-phase A numerical simulation of a one-component Frank-
structure down the axis is shown in Fig. 1. Kasper phase allows us to eliminate this uncertainty. We

The Frank-Kasper phases share their significant geometrinvestigate the behavior of the lowest-frequency optic modes
cal property of icosahedral local order with simple metallicin the one-component phase with variable pressure in Sec.
glasses:*?> Some liquid alloys which form Frank-Kasper IV B 3.
phases have a tendency to freeze into metastable amorphous
structures (metallic glasses when quenched sufficiently
rapidly1? It is now generally well accepted that, at least in
the case of metallic alloys of simple constitution, glass for- We have constructed a thermodynamically stable struc-
mation is caused by the incompatibility of local icosahedraltural model of the one-componeatphase by means of clas-
coordination with the translational symmetry in Euclideansical molecular dynamics simulation. In this case, success

IIl. METHODS OF COMPUTATION
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with n,, n,, andn, being integers, compatible with periodic
- ®© boundary conditions are multiples of the three fundamental
wave vector, o= (2m/L,)(1,0,0),Qy 0= (27/L)(0,1,0),
and Q,0=(27/L,)(0,0,1), whereL,, L,, andL, are the
dimensions of thetetragonal simulation box. In order to
have a sufficient number of allowed wave vectors within the
Brillouin zone, the sample dimensions must be sufficiently
--------- large. The time-correlation functions resulted from the mo-
LT lecular dynamics simulation reported below were obtained
.7 for a system of 20 580 particles K77 X 14 unit cells with 30

L’ 1 atoms per unit cell This relatively large system size also
\ R4 gives sufficient statistical accuratyWhere necessary, we

v . performed simulations in other ensembles by modifying the
-1 12 12 e s 5 equations of motioA’8 _ _

r The arrangement of atoms in a unit cell of the model
o-phase structure used in our computer simulations is shown
in Fig. 1(b). The optimal(with respect to an energy minimi-
zation c/a ratio was taken to be equal to 0.5273. To deter-

mine the optimal model structure, it was sufficient to per-

strongly depends on the choice of the interatomic potentigorm molecular dynamics simulations with the number of
for the model. For example, the Lennard-Jones pmentialparticles in the system equal td=1620 (3x3X6 unit

. . . . . o 3
widely used n creating simple models of liquitfgglasses, cells). Details of the preparation of this atomic configuration
and crystals;' is not suitable for this purpose, because éhe e given in Sec IV A.

phase is not stable for it in the range of thermodynamical
parameters investigated belofthe stable phase is the fcc
lattice). Instead, we use a pair interatomic potential sug-
gested in Ref. 10 and show that it is possible to construct a A straightforward method to analyze the vibrational dy-
one-component- phase which is stable for a wide range of namics in a molecular dynamics model is to imitate inelastic
thermodynamical parametels. neutron scattering experiments by calculating the dynamical
structure factorS(Q, w),>* proportional to the neutron scat-
tering cross sectioff;**which is the spectrum of the density
autocorrelation function

0.5

FIG. 2. The IC pair potential used in this stugigef. 10 (solid
line) compared with the Lennard-Jones potentddshed ling

B. Time-correlation functions

A. Model

As a mathematical model for the study of atomic dynam-
ics in the crystalliner-phase structure, we consider a classi- F(Q.1)=(p(Q.)p(—Q.0)), (3.2
cal system ofN identical particles interacting via a spheri- \where
cally symmetric pair potential. The pair potential used in this
study® is designed to favor icosahedral local order. The
main repulsive part of this potential is identical to that of the p(Q)= 2 exd —iQ-r(1)] (3.3
Lennard-Jones  potential u,,(r)=4e€[ (o/r)*?— (o/r)®]; K=t
therefore all the quantities in these simulations are expressés the Fourier transform of the local particle densty is
in reduced Lennard-Jones uritsj.e., with o, €, and 7o the number of particles in the system(t) is the position
=(mo?/€)Y? chosen as length, energy, and time units. Tovector of particlek, and the wave vecto® takes on the
convert the reduced units to physical units one can refer tealues according to Eq3.1). A longitudinal phonon is as-
argon (M=39.948 a.m.u.) by choosing the Lennard-Jonessociated with a maximum i8(Q, ») at a fixedQ. In order to
parametersr=3.4 A ande/kg=120 K. In this case, our fre- get information about the transverse modes fri8(Q, ),
guency unitv0=751 corresponds to 0.4648 THz. The ana- one has to select wave vectors outside the first Brillouin
lytical expression defining the potential is given in Ref. 10.zone¥
This potential resembles those for simple glass-forming me- In a more convenient way, the vibrational modes can be
tallic alloys'? with only the first of the Friedel oscillations studied using the current autocorrelation functfon
being retainedsee Fig. 2.

We use conventional molecular dynamics simulatioirs
which the Newtonian equations of motion are solved using a
finite-difference algorithm with time step equal to 0.01 while h
the particles are enclosed in a simulation box of voluvhe where
with periodic boundary conditions. In this case, the total en- N
ergy E is a constant o_f motion an_d time averages obtained in i(Q.)=> [ev(t)]exd —iQ-r(t)] (3.5
the course of simulations approximate the ensemble averages k=1
in the microcanonicalconstantNVE) statistical ensemble.
Wave vectors

N

QZ

is the Fourier transform of the local current(t) is the

velocity of particlek, ande is the unit polarization vector.
Note that for the longitudinal polarizatio®|Q, Eq. (3.4)

Q=nQx 0+ NyQy 01T NQz0 (3.)  can be obtained from E¢3.2) by double differentiation with
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respect to time. For the transverse-current correlation func-
tions, the polarization vector must be chosen consistently
with the lattice symmetry.

At a temperaturd, the vibrational density of stateg w)
can be calculated as the Fourier transform of the normalized
velocity autocorrelation functicf®3

1 N
Z(t)= WT< 2 vk<t>-vk<0)>. (3.6

We computed the time-correlation functions using the
overlapped data collection technigtfeThe number of over-
lapped measurements used for statistical averaging was
about 10000. The time origins of the measurements were
separated by 0.2 r.120 time stepp In order to reduce the
finite-time truncation effects in the spectra of the time-
correlation functions, we used a Gaussian window function
with the half-width equal to 3 r.u.

0.7 0.8 09 1
p

C. Normal-mode analysis FIG. 3. (a) Minimal potential energy of the~-phase structure as
a function of density(b) Pressure as a function of density. The dots

To calculate the dispersion relations in the harmonic apgpoy the data points and the solid curves are obtained by a cubic
proximation, we used the standard method based on diag@serpolation.

nalization of the Fourier transformed dynamical maffix.

From the known dispersion relationg(Q), s=1,2,....90,  proximate one in the sense that the atomic positions do not
the vibrational density of states can be computed by integrasorrespond to a minimal potential-energy configuration for a

tion over the first Brillouin zone according to given interaction potential. To obtain the true structure cor-

; responding to the potential, the approximate configuration
__ v B must be relaxed by a molecular dynamics program. More-
glw)= r(2m)d 1 fsz‘[w s(Q)]dQ, 3.7) over thec/a ratio is slightly different for different natural

o-phase crystals, which means that this ratio is not uniquely
where the sum is over alldispersion branches amdstands  defined.
for the volume of the unit cell. In the computations, a Gauss- The atomic configuration of the phase used in this study
ian function with small but finite width is substituted for the was prepared as follows. A sample Nf=1620 particles (3
6 function. The half-width of the Gaussian function in our x3x 6 unit cell§ was constructed by filling a tetragonal box
computations was equal to about 0.05. Formally, the wavef appropriate dimensions withi-phase unit cells. We used
vector Q in Eq. (3.7) is a continuous variable, but in the the unit-cell atomic configuration suggested byh@a%+®
simulations the integral was estimated by a sum over a uninith c/a=0.5176. The number densityp=N/V, V
form rectangular grid of 100100X 100 points in the first =LyLyL,, of this atomic configuration was=1.0048. This
Brillouin zone. configuration was then used to provide the initial atomic co-
ordinates for variable-shapéS T (constant number of atoms,
IV. RESULTS pressure tensor, and temperajurelecular dynamicg® the
run performed aB=0 andT=0. This procedure is equiva-
lent to a potential-energy minimization by the steepest de-
In this subsection, we describe the method of constructioscent method under the condition of independent pressure
of the thermodynamically stable model of tbhephase and balance in each spatial dimension. The variable-sipé&
analyze the range of its stability. There are several ways toun resulted in an ideal crystalline structure for which the
obtain numerical values of the atomic coordinates indhe fractional coordinates of the atoms in all unit cells were iden-
phase. One way is to use those available fogfx,.*? Al- tical within the precision of the calculations. The structure of
ternatively, a unit cell of ther-phase structure can be con- the o phase thus obtained is characterized by the minimum
structed either by manipulating the kagomiling according  potential energy per atomy ,;,=—2.5899, with respect to
to the algorithm given by Frank and Kasper in Ref. 8 or byvariations of thermodynamical parameters. In order to check
stacking the square and triangular basic elements of ththis, we have performed simil&STruns at different pres-
dodecagonal quasicrystal motféi®into the 3,4,3,4 square- sures and indeed found that the energy is minimum at zero
triangle net [see Fig. 18)]. The arrangements of the atoms pressurgsee Figs. &), 3(b)]. The density for the optimal
resulting from these constructions do not correspond exacthstructure has been found to pe=0.8771 and the ratio of the
although the difference is rather small—the root-meandattice parameters i€/a=0.5273, close to that of3-U
square distance between the corresponding atoms in differe(¢/a=0.5257, atT=720 °C)** The potential-energy mini-
configurations is of the order of a few percent of the root-mum for the bcc structure at the same density with the same
mean-square distance between different atoms in the sanpstential wasU ,,=—2.6148. At zero pressure, the density
configuration. In either case, the resulting structure is an apef the bcc structure ip=0.8604 and the minimum potential

A. Optimization of the structure in the o phase
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energy per atom i) ;,=—2.6357, i.e., in both cases lower @ a0
than for theo phase. It was shown earliéithat the potential

energy per atom for the phase becomes lower than that for

the bcc structure at the same density as the temperature ir 2
creases. This is consistent with the fact that natural crystal-

line o phases are stable only at high temperatures. They 2° %Z j\
"
Sf

25

120

Wdf\

undergo a solid-solid phase transition to a simpler crystalline
phase as the temperature decreases. In our simulations, ho 15 :
ever, the system was stable in the range of temperafures

=<0.9 for as long as$,,,=5000. 10 : 10f
We have also investigated the thermodynamical stability
of the o phase under variable pressure. We have found tha s} : 1 T 1 I T 5
the o phase is stable for pressures in the rangd<P
=12. At high pressure®=12, a structural transformation 0 0 .
occurs, resulting in the fcc structure. The phase diagramot I M R rg? A T X0 go(-(])) 0.2

the IC potential is not known at present. We can expect that
at densities greater than the triple-point density for the FIG. 4. Phonon-dispersion relations along the symmetry direc-
Lennard-Jones systemi= 0.8532 the solid-fluid coexistence tions(a) and vibrational density of stat¢b) evaluated by a normal-
curve for the IC system is close to that for the LJ system. \Wdnode analysis in the harmonic approximation. The symmetry points
can only estimate that the melting temperature mat on the surface of the first Brillouin zone afé=(0,0,0), M
=0.877L is about 0:8T=0.9 from the fact that the-phase  _(" 27790 & (T mame).  2=(0.0mle). A
crystalline structure is stable @t=0.8 on the time scale of T T
our computations. No diffusion was observed at tempera- 1. Phonon dispersion in ther phase
tures up toT=0.8. At T=0.9 the system stayed in a meta-
stable superheated state for abgyt=5000, after which it
melted.

We used the density and tleéa ratio obtained from the

The o phase has 30 atoms per unit cell which result in 3
acoustic and 87 optic branches, as shown in Fig. 4. The
vibrational density of state®/DOS) obtained by integration
over the first Brillouin zondsee Eq.3.7)] is shown on the
NSTrun to performNVE (constant number of atoms, vol- jons hand side of Fig. 4. The linear dispersion of the acous-

ume, and total energymolecular dynamics runs starting yic pranches in the low-frequency range=4) results in the
from the .t_hree conﬂgurauons_menuoned a}bO\_/e and Sca,“”ﬂ)ebye law for the VDOSg(w)=3w2/w%, with the Debye
the velocities to zero at each tlm_e §tep, which is also equ'Vafrequency equal tav,~23.89. The Debye frequency has
lent to a potential-energy minimization by the steepestyeen estimated from a fit of the initial part of the VDOS by
descent method. The same was done for one instantaneoy$,arabolic function. The optic branches are densely distrib-
configuration corresponding to the temperatlire0.8. The  yted above the acoustic part. There are no large gaps in the
configurations resulting from this procedure were identical,spectrum, which is a consequence of tight binding and the
which is an indication that there is a well-defined potential-mutual penetration of the basic structural unirank-
energy minimum corresponding to a unique crystallographi&asper polyhedrain the o phase. In other words, there are
arrangement of atoms within the-phase unit cell. This no isolated structural units, such as molecules in molecular
structure, scaled so that=c=1, is shown in Fig. (b). The  crystalg® and crystalline fulleren®, or tetrahedra in silica,
atomic layers withz close to 0.25 and 0.75, which are not the vibrations of which form separate optic bands. At some
closely packed, show a small but significant puckering—arof the zone boundarie.g., theX point; see Fig. % the
effect present in thgg-U (Ref. 17 and CpgFes, (Ref. 42 dispersion curves do not show zero derivatives. This is be-
structures. cause the space grol®,/mnmof the o phase is nonsym-
morphic, i.e., it contains nonpoint symmetry elements in-

volving fractional translationg>4®
B. Vibrational dynamics

Above, we have discussed the similarities in the local 2. Comparison with the IC glass

structure of thes phase and the IC glass. These similarities An informative characteristic of the vibrational dynamics
are expected to cause the vibrational spectra in these twia the IC glass which can be compared with thehase is its
materials also to be similar. In order to check this assumpVYDOS (Ref. 47 (see Fig. % which can be easily obtained
tion, in this subsection we investigate the vibrational properfrom the velocity autocorrelation function E@3.6). The
ties of theo phase and compare the vibrational spectra olVDOS for the bcc lattice is also presented for comparison in
this crystal and the IC glass. the figure(the dashed line We can clearly see that the fre-

If the vibrational spectra are similar, the phase can be quency range of the whole spectrum is the same forathe
considered to be a good crystalline reference structure for thehase and the IC glass but differs for the bcc lattice. The
IC glass. One consequence of these similarities is that we cahape of the IC-glass spectrum mainly reproduces the basic
use the data about the vibrational properticies ofdhghase features of ther phase spectrum and can be imagined as a
crystal to explain the nature of the vibrational excitations insuperposition of broadeney disorde) crystalline peaks.
the corresponding amourphous structure. This is a consequence of the presence of a large number of
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FIG. 5. Vibrational densities of states calculated by a normal-
mode analysis for the- phase(thin solid line and for bce(dashed
line) structures, and from the velocity autocorrelation function for

30

the IC glasg(thick solid line at the temperatur&=0.01.

optic modes in the vibrational spectrum of ngphase struc-
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ture located in the same frequency region as the whole spec- P
trum of the IC glass. Therefore, the similarities in the VDOS

of the o phase and the IC glass strongly support the choic

of the o phase as a crystalline counterpart.

3. Soft modes in thar phase

FIG. 7. Frequency of the low-frequency modes at the pBims
%ressure. The dashed line shows a linear extrapolation of the
lowest-frequency curve.

the whole spectrum is shifted to higher frequen¢ieee Fig.

atomic dynamics in the Frank-Kasper phases is related to thgroundw = 3.5 in Fig. Gc)] moves in the opposite direction,
appearance of low-frequency soft modes. We have investiypproaching zero and thus indicating a structural instability
gated whether a soft mode appears in our model of thestryctural phase transition to the fcc latliee a critical pres-
o-phase structure. For this purpose, we followed the evolugyrep, ~12.5(see Fig. 7. Around this value of the pressure

tion of the vibrational spectrum with variable press(see

the structure of ther phase becomes extremely unstable and

Fig. 6 and, indeed, found that one of the lowest-frequencysn investigation of the details of atomic motion requires a

optic modegdoubly degenerajen the I point shows soft-

thorough analysis. We hope to address this point in another

mode behavior. The frequency of this mode decreases boldy,qy.
with decreasing and increasing press(see Fig. 7. The
decrease of the mode frequency at negative pressures is not

surprising and reflects the softening of the whole vibrational
spectrumsee Fig. 6a)]. However, with increasing pressure,

0.3

0.2

0.1

(a)

0.01

4. Anharmonicity in the o~ phase

One of the interesting questions concerning the vibra-
tional dynamics of thes phase is related to the range of
applicability of the harmonic approximation for the lattice
vibrations. We are able to anwer this question by investigat-
ing the vibrational spectrum using the velocity autocorrela-
tion function with increasing temperature and comparing it
with the results of the normal-mode analygi@rmonic ap-
proximatior).

To assess the degree of temperature-induced anharmonic-
ity, we computed the dispersion relations for the symmetry
direction[001] (Q||c, I'Z in Fig. 4) at different temperatures
by using both these techniquémolecular dynamics and
normal-mode analysisand compared the results. These are
shown in Fig. 8 for several low- and high-frequency disper-
sion branches for two temperaturés-0.01 andT=0.8. At
intermediate frequencies, the density of dispersion branches
is so high that a comparison between the results of the two
methods of calculation of dispersion relations is hardly pos-
sible, mainly because of the finite width of the respective
peaks in the spectra of the current autocorrelation functions
(see Sec. Il B. Due to the fact that the-phase space group

FIG. 6. Vibrational densities of states calculated by normal-P4,/mnmis nonsymmorphic, i.e., it contains nonpoint sym-
mode analysis for ther-phase structure at different pressurés:
P=-4.74, (b) P=0, (c) P=9.49. The insets show the low- phonon-dispersion relations, derived from the peak positions
frequency parts of the corresponding spectra.

metry elements involving fractional translatidls,the

in C(Q,w) and Cy(Q,w), appear in the extended zone
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2r L FIG. 9. Vibrational densities of states calculated by normal-
= mode analysigsolid line) and from the velocity autocorrelation
0 0 ‘25 0'5 function at different temperaturdbroken line$ for the o-phase

£ in units (2n/c) ’ structure. Dotted lineT=0.01, dashed lineT=0.2, dashed-dotted

line: T=0.8. The inset shows the low-frequency part of the spec-
FIG. 8. Some phonon-dispersion curves calculated by a normakrum.

mode analysis in the harmonic approximati@olid lineg and de- L .
rived from the spectra of longitudinal and transverse particle-Narmonic in a wide range of temperatufes0.2.
current autocorrelation functiongsymbolg for the o-phase _ Finally, we would like to note the similarity between the
structure.O: longitudinal phononsf: transverse phonons &  Nigh-temperature VDOS for ther phase and the low-
=0.01. ®: longitudinal phonons:M: transverse phonons &  temperature VDOS for the IC glagsee Fig. 10 Sinceg(w)

=0.8. The linear size of the symbols is approximately equal to theOr the glass is only slightly temperature de'p'endent, we show
width of the spectral peaks. The direction of the wave veQor It only for T=0.01. The fact that the densities of states for

=[0,0£], T'Z, is parallel to thec axis. the glass and the high-temperaturephase in Fig. 10 are
remarkably similar clearly indicates that the effect of the

schemé?® The optic modes cannot be measured in the vicinthermally induced dynamical disorder in the crystalline

ity of the origin of the first Brillouin zon&Q=0 (Q=|Q|), structure on the vibrational spectrum is similar to that of the

because this long-wavelength limit corresponds to motion otonfigurational disorder characteristic of the amorphous

the system as a whole, forbidden by the periodic boundargtructure.

conditions. Information about these modes is available at the

boundaries Q=2=/c,6m/c) and at the origin Q=4/c) V. CONCLUSIONS

of the second extended Brillouin zone. The molecular dy-

namics results for the dispersion relationsTat 0.01 are

adapted from the second extended Brillouin zone. To mak

possible the comparison with the results obtained in the har- 0.1 ' ' ' '

In this paper we have studied the structural and vibra-
gonal properties of ar-phase crystal. First, we have shown

. e : . — glass, T=0.01
monic approximation, the data in the regio®Q 0.0l .. 237;56, T=%.% |
e[5w/c,6m/c] were folded with respect tQ=5mx/c into
the regionQ e [47/c,5m/c], which corresponds to half ofan ~ 0.08f .
irreducible zone. From these results we can see that the ha 47| FA
monic approximation works quite well at the low tempera- ) —
ture of T=0.01. AtT=0.8, only the acoustic branches could %% RN
be resolved without ambiguity. Therefore, for this tempera- Zg .95} /’ \\
ture, we used the data available from the first Brillouin zone. A N

One important signature of temperature-induced anhar- %%4f A \
monicity is a softening of the acoustic modes, i.e., a lowering .03} i ‘\
of the acoustic branches with respect to those calculated ir / RN
the harmonic approximation which occurs as the temperature 0.02¢ / -
increase$® This effect can be clearly seen 6 0.8 in Fig. oott /4 N ]
8. In accordance with this observation, the vibrational den- 0 - . . . . -
sity of states for this temperature, shown in Fig. 9, exhibits 0 5 10 15 20 25 30 35

the presence of excess states with respect to the harmonic
approximation. A deviation from the harmonic approxima-  FIG. 10. Vibrational densities of states calculated from the ve-
tion in g(w) at low frequenciegsee the inset in Fig.)®tarts  locity autocorrelation function for ther-phase structure and the

to be noticeable at a temperature of abbet0.2. Therefore, corresponding glass at the reduced temperatures shown. Both re-
we can conclude the the lattice dynamics in thg@hase is sults are obtained at the same dengpity0.8771.
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that it is possible to construct a structural model of a one- We think that the results on the vibrational properties of
componento phase by means of molecular dynamics simu-the o phase discussed above can be used in an analysis of the
lations using an appropriate pair potential. Thisphase peculiar vibrational properties of the IC glagsg., the Bo-
structure is stable in a wide range of thermodynamical pason peaR). We also believe that the computational data of
rameters. Our model of the phase contains only one atomic the vibrational properties of the phase could be of value
component. This is important in understanding the role ofor metallurgy where this phase has received much detailed
topological icosahedral order alone on the structural and dyattention, chiefly because of the detrimental effect which the

namical properties and avoids the effects arising from th@ormation of this phase has on mechanical properties of cer-
presence of different atomic species. tain steel<8

Second, we have investigated atomic vibrational dynam-
ics of theo phase. In particular, we have found the range of
applicability of the harmonic approximation in a description
of atomic dynamics. We have also demonstrated the exis-
tence of soft modes in the phase which leads to a structural ~ S.I.S. and M.D. thank Trinity College for hospitality. We
phase transformation with increasing pressure. are grateful to H.R. Schober for bringing to our attention

Third, we have demonstrated that tbrephase is a good Ref. 28. This study was supported by the following Swedish
crystalline counterpart of the IC glass. This has been done oresearch agencies: Natural Science Research Foundation
the basis of a comparative analysis of the vibrational dynam¢NFR), Technical Research FoundatiffFR), and Network
ics (vibrational density of states for Applied Mathematic§NTM).
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