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Vibrational properties of the one-components phase

S. I. Simdyankin,1 S. N. Taraskin,2 M. Dzugutov,1 and S. R. Elliott2
1Department of Numerical Analysis and Computing Science, Royal Institute of Technology, SE–100 44 Stockholm, Sweden

2Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
~Received 16 February 2000!

A structural model of a one-components-phase crystal has been constructed by means of molecular dy-
namics simulation. The phonon dispersion curves and the vibrational density of states were computed for this
model. The dependence of the vibrational properties on the thermodynamical parameters was investigated. The
vibrational density of states of thes-phase structure is found to be similar to that of a one-component glass
with icosahedral local order. On the basis of this comparison it is concluded that thes phase can be considered
to be a good crystalline reference structure for this glass.
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I. INTRODUCTION

The local atomic order in disordered condensed mater
is well defined and governs many physical properties.1 Quite
often, for a disordered marerial, it is possible to find a c
responding crystal with similar local and even intermedia
range order which give rise to similarities in many structu
and dynamical features of these two solids. Such a cry
can be regarded as a reference crystalline structure~crystal-
line counterpart! for the corresponding disordered substan
In some cases, the reference structure can be uniquely
fined. The simplest examples are toy structural models w
force-constant and/or mass disorder. In these toy models
atoms occupy their equilibrium positions at the sites o
crystalline lattice~e.g., simple cubic!, which can be consid-
ered to be a reference one~see e.g., Ref. 2!. Another related
example is a binary substitutional alloy, the reference sys
for which is a periodic point lattice with one of the tw
atomic species placed at the lattice sites.3 The disorder in
such models does not influence the equilibrium positions
the atoms arranged in an ideal crystalline lattice. This ma
possible the use of approximate analytical approaches~e.g.,
the coherent potential approximation3! to treat the vibrational
properties of the models, provided that the vibrational pr
erties of the counterpart crystal are known.

In amorphous solids, or glasses, the atoms do not occ
the sites of a crystalline lattice, which results in position
disorder. For these materials, a choice of a reference s
ture becomes problematic. Good counterparts can usuall
found among the crystalline polymorphs having the same~or
similar! chemical composition as the corresponding gla
For example,a cristobalite appears to be a good crystalli
counterpart for vitreous silica.4–6 The main purpose of this
paper is to investigate numerically the vibrational propert
of a one-components phase7–9 crystal which is conjectured
to be a good crystalline counterpart for a one-compon
glass with icosahedral local order~IC glass!.10,11

The motivation for this choice of a crystalline counterp
of the IC glass is the following. The computational model
the IC glass is based on a simple empirical pair interato
potential10 resembling the effective interionic potentials co
jectured for simple metallic glass-forming alloys.12 The use
of the same potential allows us to construct models of
PRB 620163-1829/2000/62~5!/3223~9!/$15.00
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ands-phase crystals that are stable for a wide range of th
modynamical parameters.13 Of these two crystalline struc
tures, thes phase is expected to be a good reference st
ture for the IC glass because of the following reasons. T
supercooled IC liquid~where the interactions between atom
are described by the same potential10! undergoes a transition
either to the IC glass or to a dodecagonal quasicrystal14 de-
pending on the quench rate.13 This quasicrystal has simila
local structural properties with the IC glass.14 However, the
absence of global periodic order in the quasicrystalline ph
makes the analysis of its vibrational properties a task of co
parable complexity to that for the glass itself. Thes phase is
one of the closest low-order crystalline approximants15 for
this dodecagonal quasicrystal,16 which means that these tw
~crystalline and quasicrystalline! structures are built up from
the same structural units. This implies that the IC glass
the s phase, being both tetrahedrally closed-pack
structures,9 are nearly isomorphous in terms of local orde

Knowledge of the vibrational properties of thes-phase
crystal allows for a direct comparison with those of the
glass. The apparent similarity in the vibrational densities
states of these two structures gives stronger support for
choice of this crystalline counterpart for the IC glass.

The s-phase structure, used in our computations,
been obtained by means of molecular dynamics simula
with the use of an interatomic pair potential.10 The vibra-
tional properties have been investigated by using both
normal-mode analysis and by computing the spectra of
propriate time-correlation functions.

The paper is arranged as follows. Thes-phase structure is
described in Sec. II. The model and technical details of
calculations are presented in Sec. III. In Sec. IV we pres
the results of the simulations. Some concluding remarks
contained in Sec. V.

II. THE s PHASE

In this section, we review the known structural and d
namical properties of thes phase.

A. Structure

Thes phase belongs to an important class of tetrahedr
close-packed crystallographic structures,9 viz., the Frank-
3223 ©2000 The American Physical Society
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3224 PRB 62SIMDYANKIN, TARASKIN, DZUGUTOV, AND ELLIOTT
Kasper phases.7,8 The first coordination shells of the con
stituent atoms in these structures form triangulated~Frank-
Kasper! polyhedra composed entirely of slightly distorte
tetrahedra. The four possible coordination numbers (Z) in
these structures areZ512, 14, 15, and 16. The least distorte
tetrahedra are found in icosahedra (Z12 polyhedra!. Struc-
tures of small clusters of atoms interacting via pairwise c
tral potentials favor icosahedral order9 as having the lowes
energy. The prototypes phase structures areb-U ~Ref. 17!
and Cr48Fe52.18 There are 30 atoms per tetragonal unit c
(tP30) with c/a'0.52, wherec anda are the dimensions o
the cell~lattice parameters!. The space group of this phase
P42 /mnm. There are 10 atoms with the coordination nu
ber 12,Z12 or icosahedra, 16Z14 atoms, and 4Z15 atoms.
The 272° disclination lines9 form a network~a major skel-
eton, in the parlance of Frank and Kasper7,8!, where rows of
Z14 atoms parallel to the tetragonalc-axis thread planar net
works of Z14 andZ15 atoms. A projection of thes-phase
structure down thec axis is shown in Fig. 1.

The Frank-Kasper phases share their significant geom
cal property of icosahedral local order with simple meta
glasses.9,12 Some liquid alloys which form Frank-Kaspe
phases have a tendency to freeze into metastable amorp
structures ~metallic glasses! when quenched sufficiently
rapidly.12 It is now generally well accepted that, at least
the case of metallic alloys of simple constitution, glass f
mation is caused by the incompatibility of local icosahed
coordination with the translational symmetry in Euclide

FIG. 1. Projection down thec axis of thes-phase structure:~a!
32,4,3,4 net@the numerical symbols are Schla¨fli symbols ~Ref. 7!,
specifying the number and sequence of various polygons aro
each vertex#. The dashed square outlines a unit cell;~b! Atomic
arrangement in one unit~cubic! cell. L: z50, l: z50.5, •: z
50.2499. 3: z50.2501, +: z50.7499, h: z50.7501, s: Z12
atoms,h: Z15 atoms. The rest of atoms are Z14. Multiplyingz by
the properc/a ratio gives a tetragonal unit cell witha51.
-

l

-

ri-
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space~geometrical frustration!.9 There exist statistical me
chanical arguments in favor of this scenario of gla
formation19 based on a Landau free-energy analysis. The
erage coordination numberZ̄ in the Frank-Kasper phase
(13.333<Z̄<13.5) is very close to that of a sphere-pack
‘‘ideal glass’’ model20 (Z̄ideal513.4). In a sense, this ‘‘idea
glass’’ could be regarded as a Frank-Kasper phase with
infinitely large unit cell.9,20 Thus the class of Frank-Kaspe
phases is a natural choice for reference crystalline struct
for metallic glasses of simple constitution.

From a structural point of view, thes phase can be also
regarded as a crystalline low-order approximant for do
cagonal quasicrystals.16 Such quasicrystals,15 morphologi-
cally close to Frank-Kasper phases, represent an alterna
class of noncrystallographic structures which combine ico
hedral local order with nontranslational long-range ord
manifested by infinitely sharp diffraction peaks.

B. Dynamics

Similarities in the local structure of metallic glasses a
Frank-Kasper phases are reflected in the dynamical pro
ties of these materials. The available data about the vib
tional dynamics of Frank-Kasper phases is limited to some
the Laves phases, a subclass of the Frank-Kasper phase12,21

For instance, the similarity between the phonon-dispers
relations of the Mg70Zn30 glass22,23 and those of the Laves
phase MgZn2 ~Ref. 24! was emphasized by Hafner.12,25

Another interesting aspect of the dynamics of Fran
Kasper phases is related to the appearance of soft vibrati
modes in these materials. Such a soft low-frequency o
mode at theG point ~the origin of the reciprocal lattice! has
been found numerically in the same Laves phase MgZn2.24

The frequency of this mode decreases with increasing p
sure ~accompanied by volume compression! and eventually
becomes negative, indicating a structural pha
transition.26–30 The authors of Ref. 24 applied a group
theoretical analysis and demonstrated that the polariza
vector of the soft optic mode in MgZn2 is determined by the
structure symmetry and is independent of interatomic in
actions. This suggests that the soft-mode character of s
vibrations is a generic property of Frank-Kasper phas
However, no soft-mode behavior was observed in the is
tructural CaMg2 ~Ref. 31! where the mass ratio of the con
stituent elements is reversed with respect to MgZn2. Hafner12

suggested that the soft modes in MgZn2 should be attributed
to the relatively large mass of the Zn atoms. This is an
ample of the chemical composition of the materials introd
ing considerable difficulties into the analysis of the interpl
of the structure and the dynamics.

A numerical simulation of a one-component Fran
Kasper phase allows us to eliminate this uncertainty.
investigate the behavior of the lowest-frequency optic mo
in the one-components phase with variable pressure in Se
IV B 3.

III. METHODS OF COMPUTATION

We have constructed a thermodynamically stable str
tural model of the one-components phase by means of clas
sical molecular dynamics simulation. In this case, succ

nd
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strongly depends on the choice of the interatomic poten
for the model. For example, the Lennard-Jones poten
widely used in creating simple models of liquids,32 glasses,33

and crystals,34 is not suitable for this purpose, because thes
phase is not stable for it in the range of thermodynam
parameters investigated below~the stable phase is the fc
lattice!. Instead, we use a pair interatomic potential su
gested in Ref. 10 and show that it is possible to constru
one-components phase which is stable for a wide range
thermodynamical parameters.13

A. Model

As a mathematical model for the study of atomic dyna
ics in the crystallines-phase structure, we consider a clas
cal system ofN identical particles interacting via a spher
cally symmetric pair potential. The pair potential used in t
study10 is designed to favor icosahedral local order. T
main repulsive part of this potential is identical to that of t
Lennard-Jones potential uLJ(r )54e@(s/r )122(s/r )6#;
therefore all the quantities in these simulations are expre
in reduced Lennard-Jones units,35 i.e., with s, e, and t0
5(ms2/e)1/2 chosen as length, energy, and time units.
convert the reduced units to physical units one can refe
argon (m539.948 a.m.u.) by choosing the Lennard-Jon
parameterss53.4 Å ande/kB5120 K. In this case, our fre
quency unitn05t0

21 corresponds to 0.4648 THz. The an
lytical expression defining the potential is given in Ref. 1
This potential resembles those for simple glass-forming m
tallic alloys12 with only the first of the Friedel oscillation
being retained~see Fig. 2!.

We use conventional molecular dynamics simulations35 in
which the Newtonian equations of motion are solved usin
finite-difference algorithm with time step equal to 0.01 wh
the particles are enclosed in a simulation box of volumeV
with periodic boundary conditions. In this case, the total
ergyE is a constant of motion and time averages obtaine
the course of simulations approximate the ensemble aver
in the microcanonical~constant-NVE) statistical ensemble
Wave vectors

Q5nxQx,01nyQy,01nzQz,0 ~3.1!

FIG. 2. The IC pair potential used in this study~Ref. 10! ~solid
line! compared with the Lennard-Jones potential~dashed line!.
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with nx , ny , andnz being integers, compatible with periodi
boundary conditions are multiples of the three fundamen
wave vectorsQx,05(2p/Lx)(1,0,0), Qy,05(2p/Ly)(0,1,0),
and Qz,05(2p/Lz)(0,0,1), whereLx , Ly , and Lz are the
dimensions of the~tetragonal! simulation box. In order to
have a sufficient number of allowed wave vectors within t
Brillouin zone, the sample dimensions must be sufficien
large. The time-correlation functions resulted from the m
lecular dynamics simulation reported below were obtain
for a system of 20 580 particles (737314 unit cells with 30
atoms per unit cell!. This relatively large system size als
gives sufficient statistical accuracy.36 Where necessary, we
performed simulations in other ensembles by modifying
equations of motion.37,38

The arrangement of atoms in a unit cell of the mod
s-phase structure used in our computer simulations is sh
in Fig. 1~b!. The optimal~with respect to an energy minimi
zation! c/a ratio was taken to be equal to 0.5273. To det
mine the optimal model structure, it was sufficient to pe
form molecular dynamics simulations with the number
particles in the system equal toN51620 (33336 unit
cells!. Details of the preparation of this atomic configuratio
are given in Sec IV A.

B. Time-correlation functions

A straightforward method to analyze the vibrational d
namics in a molecular dynamics model is to imitate inelas
neutron scattering experiments by calculating the dynam
structure factorS(Q,v),34 proportional to the neutron sca
tering cross section,27,32which is the spectrum of the densit
autocorrelation function

F~Q,t !5^r~Q,t !r~2Q,0!&, ~3.2!

where

r~Q,t !5 (
k51

N

exp@2 iQ•r k~ t !# ~3.3!

is the Fourier transform of the local particle density,32 N is
the number of particles in the system,r k(t) is the position
vector of particlek, and the wave vectorQ takes on the
values according to Eq.~3.1!. A longitudinal phonon is as-
sociated with a maximum inS(Q,v) at a fixedQ. In order to
get information about the transverse modes fromS(Q,v),
one has to select wave vectors outside the first Brillo
zone.39

In a more convenient way, the vibrational modes can
studied using the current autocorrelation function32

Ce~Q,t !5
Q2

N
^ j e~Q,t ! j e~2Q,0!&, ~3.4!

where

j e~Q,t !5 (
k51

N

@e•vk~ t !#exp@2 iQ•r k~ t !# ~3.5!

is the Fourier transform of the local current,vk(t) is the
velocity of particlek, ande is the unit polarization vector.

Note that for the longitudinal polarizationeiQ, Eq. ~3.4!
can be obtained from Eq.~3.2! by double differentiation with
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3226 PRB 62SIMDYANKIN, TARASKIN, DZUGUTOV, AND ELLIOTT
respect to time. For the transverse-current correlation fu
tions, the polarization vector must be chosen consiste
with the lattice symmetry.

At a temperatureT, the vibrational density of statesg(v)
can be calculated as the Fourier transform of the normal
velocity autocorrelation function26,33

Z~ t !5
1

3NT K (
k51

N

vk~ t !•vk~0!L . ~3.6!

We computed the time-correlation functions using t
overlapped data collection technique.40 The number of over-
lapped measurements used for statistical averaging
about 10 000. The time origins of the measurements w
separated by 0.2 r.u.~20 time steps!. In order to reduce the
finite-time truncation effects in the spectra of the tim
correlation functions, we used a Gaussian window funct
with the half-width equal to 3 r.u.

C. Normal-mode analysis

To calculate the dispersion relations in the harmonic
proximation, we used the standard method based on di
nalization of the Fourier transformed dynamical matrix41

From the known dispersion relationsvs(Q), s51,2, . . .,90,
the vibrational density of states can be computed by inte
tion over the first Brillouin zone according to

g~v!5
v

r ~2p!3 (
s51

r E
BZ

d@v2vs~Q!#dQ, ~3.7!

where the sum is over allr dispersion branches andv stands
for the volume of the unit cell. In the computations, a Gau
ian function with small but finite width is substituted for th
d function. The half-width of the Gaussian function in o
computations was equal to about 0.05. Formally, the w
vector Q in Eq. ~3.7! is a continuous variable, but in th
simulations the integral was estimated by a sum over a
form rectangular grid of 10031003100 points in the first
Brillouin zone.

IV. RESULTS

A. Optimization of the structure in the s phase

In this subsection, we describe the method of construc
of the thermodynamically stable model of thes phase and
analyze the range of its stability. There are several way
obtain numerical values of the atomic coordinates in thes
phase. One way is to use those available for Cr48Fe52.42 Al-
ternatively, a unit cell of thes-phase structure can be co
structed either by manipulating the kagome´ tiling according
to the algorithm given by Frank and Kasper in Ref. 8 or
stacking the square and triangular basic elements of
dodecagonal quasicrystal model16,43 into the 32,4,3,4 square-
triangle net8 @see Fig. 1~a!#. The arrangements of the atom
resulting from these constructions do not correspond exa
although the difference is rather small—the root-me
square distance between the corresponding atoms in diffe
configurations is of the order of a few percent of the ro
mean-square distance between different atoms in the s
configuration. In either case, the resulting structure is an
c-
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proximate one in the sense that the atomic positions do
correspond to a minimal potential-energy configuration fo
given interaction potential. To obtain the true structure c
responding to the potential, the approximate configurat
must be relaxed by a molecular dynamics program. Mo
over thec/a ratio is slightly different for different natura
s-phase crystals, which means that this ratio is not uniqu
defined.

The atomic configuration of thes phase used in this stud
was prepared as follows. A sample ofN51620 particles (3
3336 unit cells! was constructed by filling a tetragonal bo
of appropriate dimensions withs-phase unit cells. We use
the unit-cell atomic configuration suggested by Ga¨hler16,43

with c/a50.5176. The number densityr5N/V, V
5LxLyLz , of this atomic configuration wasr51.0048. This
configuration was then used to provide the initial atomic c
ordinates for variable-shapeNST~constant number of atoms
pressure tensor, and temperature! molecular dynamics,38 the
run performed atS50 andT50. This procedure is equiva
lent to a potential-energy minimization by the steepest
scent method under the condition of independent pres
balance in each spatial dimension. The variable-shapeNST
run resulted in an ideal crystalline structure for which t
fractional coordinates of the atoms in all unit cells were ide
tical within the precision of the calculations. The structure
the s phase thus obtained is characterized by the minim
potential energy per atom,Umin522.5899, with respect to
variations of thermodynamical parameters. In order to ch
this, we have performed similarNST runs at different pres-
sures and indeed found that the energy is minimum at z
pressure@see Figs. 3~a!, 3~b!#. The density for the optima
structure has been found to ber50.8771 and the ratio of the
lattice parameters isc/a50.5273, close to that ofb-U
(c/a50.5257, atT5720 °C).44 The potential-energy mini-
mum for the bcc structure at the same density with the sa
potential wasUmin522.6148. At zero pressure, the densi
of the bcc structure isr50.8604 and the minimum potentia

FIG. 3. ~a! Minimal potential energy of thes-phase structure as
a function of density.~b! Pressure as a function of density. The do
show the data points and the solid curves are obtained by a c
interpolation.
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PRB 62 3227VIBRATIONAL PROPERTIES OF THE ONE-COMPONENT . . .
energy per atom isUmin522.6357, i.e., in both cases lowe
than for thes phase. It was shown earlier13 that the potential
energy per atom for thes phase becomes lower than that f
the bcc structure at the same density as the temperatur
creases. This is consistent with the fact that natural crys
line s phases are stable only at high temperatures. T
undergo a solid-solid phase transition to a simpler crystal
phase as the temperature decreases. In our simulations,
ever, the system was stable in the range of temperaturT
&0.9 for as long ast run55000.

We have also investigated the thermodynamical stab
of the s phase under variable pressure. We have found
the s phase is stable for pressures in the range25&P
&12. At high pressuresP*12, a structural transformatio
occurs, resulting in the fcc structure. The phase diagram
the IC potential is not known at present. We can expect
at densities greater than the triple-point density for
Lennard-Jones system,r'0.85,32 the solid-fluid coexistence
curve for the IC system is close to that for the LJ system.
can only estimate that the melting temperature atr
50.8771 is about 0.8&T&0.9 from the fact that thes-phase
crystalline structure is stable atT50.8 on the time scale o
our computations. No diffusion was observed at tempe
tures up toT50.8. At T50.9 the system stayed in a met
stable superheated state for aboutt run55000, after which it
melted.

We used the density and thec/a ratio obtained from the
NST run to performNVE ~constant number of atoms, vo
ume, and total energy! molecular dynamics runs startin
from the three configurations mentioned above and sca
the velocities to zero at each time step, which is also equ
lent to a potential-energy minimization by the steepe
descent method. The same was done for one instantan
configuration corresponding to the temperatureT50.8. The
configurations resulting from this procedure were identic
which is an indication that there is a well-defined potenti
energy minimum corresponding to a unique crystallograp
arrangement of atoms within thes-phase unit cell. This
structure, scaled so thata5c51, is shown in Fig. 1~b!. The
atomic layers withz close to 0.25 and 0.75, which are n
closely packed, show a small but significant puckering—
effect present in theb-U ~Ref. 17! and Cr48Fe52 ~Ref. 42!
structures.

B. Vibrational dynamics

Above, we have discussed the similarities in the lo
structure of thes phase and the IC glass. These similarit
are expected to cause the vibrational spectra in these
materials also to be similar. In order to check this assum
tion, in this subsection we investigate the vibrational prop
ties of thes phase and compare the vibrational spectra
this crystal and the IC glass.

If the vibrational spectra are similar, thes phase can be
considered to be a good crystalline reference structure for
IC glass. One consequence of these similarities is that we
use the data about the vibrational properticies of thes phase
crystal to explain the nature of the vibrational excitations
the corresponding amourphous structure.
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1. Phonon dispersion in thes phase

The s phase has 30 atoms per unit cell which result in
acoustic and 87 optic branches, as shown in Fig. 4. T
vibrational density of states~VDOS! obtained by integration
over the first Brillouin zone@see Eq.~3.7!# is shown on the
right-hand side of Fig. 4. The linear dispersion of the aco
tic branches in the low-frequency range (v&4) results in the
Debye law for the VDOS,g(v)53v2/vD

3 , with the Debye
frequency equal tovD'23.89. The Debye frequency ha
been estimated from a fit of the initial part of the VDOS b
a parabolic function. The optic branches are densely dist
uted above the acoustic part. There are no large gaps in
spectrum, which is a consequence of tight binding and
mutual penetration of the basic structural units~Frank-
Kasper polyhedra! in the s phase. In other words, there a
no isolated structural units, such as molecules in molec
crystals26 and crystalline fullerens,45 or tetrahedra in silica,5

the vibrations of which form separate optic bands. At so
of the zone boundaries~e.g., theX point; see Fig. 4! the
dispersion curves do not show zero derivatives. This is
cause the space groupP42 /mnmof thes phase is nonsym-
morphic, i.e., it contains nonpoint symmetry elements
volving fractional translations.26,46

2. Comparison with the IC glass

An informative characteristic of the vibrational dynami
in the IC glass which can be compared with thes phase is its
VDOS ~Ref. 47! ~see Fig. 5! which can be easily obtaine
from the velocity autocorrelation function Eq.~3.6!. The
VDOS for the bcc lattice is also presented for comparison
the figure~the dashed line!. We can clearly see that the fre
quency range of the whole spectrum is the same for ths
phase and the IC glass but differs for the bcc lattice. T
shape of the IC-glass spectrum mainly reproduces the b
features of thes phase spectrum and can be imagined a
superposition of broadened~by disorder! crystalline peaks.
This is a consequence of the presence of a large numbe

FIG. 4. Phonon-dispersion relations along the symmetry dir
tions ~a! and vibrational density of states~b! evaluated by a normal-
mode analysis in the harmonic approximation. The symmetry po
on the surface of the first Brillouin zone areG5(0,0,0), M
5(p/a,p/a,0), R5(p/a,p/a,p/c), Z5(0,0,p/c), A
5(p/a,0,p/c), X5(p/a,0,0).
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3228 PRB 62SIMDYANKIN, TARASKIN, DZUGUTOV, AND ELLIOTT
optic modes in the vibrational spectrum of thes-phase struc-
ture located in the same frequency region as the whole s
trum of the IC glass. Therefore, the similarities in the VDO
of the s phase and the IC glass strongly support the cho
of the s phase as a crystalline counterpart.

3. Soft modes in thes phase

As was mentioned in Sec. II B, an interesting feature
atomic dynamics in the Frank-Kasper phases is related to
appearance of low-frequency soft modes. We have inve
gated whether a soft mode appears in our model of
s-phase structure. For this purpose, we followed the evo
tion of the vibrational spectrum with variable pressure~see
Fig. 6! and, indeed, found that one of the lowest-frequen
optic modes~doubly degenerate! in the G point shows soft-
mode behavior. The frequency of this mode decreases
with decreasing and increasing pressure~see Fig. 7!. The
decrease of the mode frequency at negative pressures i
surprising and reflects the softening of the whole vibratio
spectrum@see Fig. 6~a!#. However, with increasing pressur

FIG. 5. Vibrational densities of states calculated by a norm
mode analysis for thes phase~thin solid line! and for bcc~dashed
line! structures, and from the velocity autocorrelation function
the IC glass~thick solid line! at the temperatureT50.01.

FIG. 6. Vibrational densities of states calculated by norm
mode analysis for thes-phase structure at different pressures:~a!
P524.74, ~b! P50, ~c! P59.49. The insets show the low
frequency parts of the corresponding spectra.
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the whole spectrum is shifted to higher frequencies@see Fig.
6~c!#, while the frequency of the soft mode@a small peak
aroundv53.5 in Fig. 6~c!# moves in the opposite direction
approaching zero and thus indicating a structural instab
~structural phase transition to the fcc lattice! at a critical pres-
sureP* '12.5~see Fig. 7!. Around this value of the pressur
the structure of thes phase becomes extremely unstable a
an investigation of the details of atomic motion requires
thorough analysis. We hope to address this point in ano
study.

4. Anharmonicity in thes phase

One of the interesting questions concerning the vib
tional dynamics of thes phase is related to the range
applicability of the harmonic approximation for the lattic
vibrations. We are able to anwer this question by investig
ing the vibrational spectrum using the velocity autocorre
tion function with increasing temperature and comparing
with the results of the normal-mode analysis~harmonic ap-
proximation!.

To assess the degree of temperature-induced anharm
ity, we computed the dispersion relations for the symme
direction@001# (Qic, GZ in Fig. 4! at different temperatures
by using both these techniques~molecular dynamics and
normal-mode analysis! and compared the results. These a
shown in Fig. 8 for several low- and high-frequency disp
sion branches for two temperaturesT50.01 andT50.8. At
intermediate frequencies, the density of dispersion branc
is so high that a comparison between the results of the
methods of calculation of dispersion relations is hardly p
sible, mainly because of the finite width of the respect
peaks in the spectra of the current autocorrelation functi
~see Sec. III B!. Due to the fact that thes-phase space grou
P42 /mnm is nonsymmorphic, i.e., it contains nonpoint sym
metry elements involving fractional translations,46 the
phonon-dispersion relations, derived from the peak positi
in Cl(Q,v) and Ct(Q,v), appear in the extended zon

l-

r

-

FIG. 7. Frequency of the low-frequency modes at the pointG vs
pressure. The dashed line shows a linear extrapolation of
lowest-frequency curve.
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scheme.26 The optic modes cannot be measured in the vic
ity of the origin of the first Brillouin zoneQ50 (Q5uQu),
because this long-wavelength limit corresponds to motion
the system as a whole, forbidden by the periodic bound
conditions. Information about these modes is available at
boundaries (Q52p/c,6p/c) and at the origin (Q54p/c)
of the second extended Brillouin zone. The molecular
namics results for the dispersion relations atT50.01 are
adapted from the second extended Brillouin zone. To m
possible the comparison with the results obtained in the
monic approximation, the data in the regionQ
P@5p/c,6p/c# were folded with respect toQ55p/c into
the regionQP@4p/c,5p/c#, which corresponds to half of a
irreducible zone. From these results we can see that the
monic approximation works quite well at the low temper
ture ofT50.01. AtT50.8, only the acoustic branches cou
be resolved without ambiguity. Therefore, for this tempe
ture, we used the data available from the first Brillouin zo

One important signature of temperature-induced anh
monicity is a softening of the acoustic modes, i.e., a lower
of the acoustic branches with respect to those calculate
the harmonic approximation which occurs as the tempera
increases.26 This effect can be clearly seen forT50.8 in Fig.
8. In accordance with this observation, the vibrational d
sity of states for this temperature, shown in Fig. 9, exhib
the presence of excess states with respect to the harm
approximation. A deviation from the harmonic approxim
tion in g(v) at low frequencies~see the inset in Fig. 9! starts
to be noticeable at a temperature of aboutT50.2. Therefore,
we can conclude the the lattice dynamics in thes phase is

FIG. 8. Some phonon-dispersion curves calculated by a norm
mode analysis in the harmonic approximation~solid lines! and de-
rived from the spectra of longitudinal and transverse partic
current autocorrelation functions~symbols! for the s-phase
structure.s: longitudinal phonons;h: transverse phonons atT
50.01. d: longitudinal phonons;j: transverse phonons atT
50.8. The linear size of the symbols is approximately equal to
width of the spectral peaks. The direction of the wave vectorQ
5@0,0,j#, GZ, is parallel to thec axis.
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harmonic in a wide range of temperaturesT&0.2.
Finally, we would like to note the similarity between th

high-temperature VDOS for thes phase and the low-
temperature VDOS for the IC glass~see Fig. 10!. Sinceg(v)
for the glass is only slightly temperature dependent, we sh
it only for T50.01. The fact that the densities of states
the glass and the high-temperatures phase in Fig. 10 are
remarkably similar clearly indicates that the effect of t
thermally induced dynamical disorder in the crystalli
structure on the vibrational spectrum is similar to that of t
configurational disorder characteristic of the amorpho
structure.

V. CONCLUSIONS

In this paper we have studied the structural and vib
tional properties of as-phase crystal. First, we have show

l-

-

e

FIG. 9. Vibrational densities of states calculated by norm
mode analysis~solid line! and from the velocity autocorrelation
function at different temperatures~broken lines! for the s-phase
structure. Dotted line:T50.01, dashed line:T50.2, dashed-dotted
line: T50.8. The inset shows the low-frequency part of the sp
trum.

FIG. 10. Vibrational densities of states calculated from the
locity autocorrelation function for thes-phase structure and th
corresponding glass at the reduced temperatures shown. Bot
sults are obtained at the same densityr50.8771.
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that it is possible to construct a structural model of a o
components phase by means of molecular dynamics sim
lations using an appropriate pair potential. Thiss-phase
structure is stable in a wide range of thermodynamical
rameters. Our model of thes phase contains only one atom
component. This is important in understanding the role
topological icosahedral order alone on the structural and
namical properties and avoids the effects arising from
presence of different atomic species.

Second, we have investigated atomic vibrational dyna
ics of thes phase. In particular, we have found the range
applicability of the harmonic approximation in a descripti
of atomic dynamics. We have also demonstrated the e
tence of soft modes in thes phase which leads to a structur
phase transformation with increasing pressure.

Third, we have demonstrated that thes phase is a good
crystalline counterpart of the IC glass. This has been don
the basis of a comparative analysis of the vibrational dyna
ics ~vibrational density of states!.
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We think that the results on the vibrational properties
thes phase discussed above can be used in an analysis o
peculiar vibrational properties of the IC glass~e.g., the Bo-
son peak5!. We also believe that the computational data
the vibrational properties of thes phase could be of value
for metallurgy where this phase has received much deta
attention, chiefly because of the detrimental effect which
formation of this phase has on mechanical properties of
tain steels.48
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