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Two- and three-dimensional simulations of the phase separation of elastically coherent binar
alloys subject to external stresses
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The effects of externally imposed stresses on the phase separation process of elastically coherent binary-
alloy systems were investigated numerically with large-scale Langevin simulations. Bothtwo- and three-
dimensionalsystems were considered. The intrinsic crystallographic symmetries of the system compete with
the external strains in the determination of both the shapes and the orientation of the precipitates. These can go
all the way from the configurations predicted by a stress-free equilibrium criterion at small stresses, to lamellar
and cylindrical configurations~or stripe configurations in two dimensions! at high stresses. Between these two
extremes, there are new shapes and a continuous spectrum of orientation angles. This competition can also
induce late-time, large-scale splitting of the domains. The stress effect is larger when the precipitates form the
majority phase, and considerably smaller when they are in the minority.
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I. INTRODUCTION

The mechanism behind Ostwald ripening, the late-st
processes by which a quenched binary-alloy system ph
separates, was first explored theoretically by Lifshitz, Sl
zov, and Wagner~LSW!.1 In the absence of any long-rang
interactions, growth is characterized by a single tim
dependent quantity—the average domain sizeR(t), which is
predicted to follow a power-law growthR(t);tn with a
growth exponent ofn51/3. Furthermore, the late-time mo
phology is self-similar in time, provided that one resca
both length and time scales in a proper manner,2 which is
reflected in spatial quantities such as the structure factor
domain morphology. Long-range forces can alter all of th
kinetic characteristics. For example, in soft condens
matter systems, such as lipid monolayers and block cop
mer systems, effective long-range interactions can induc
inverse coarsening process in which material flows from
larger to the smaller droplets,3 and thereby stabilize both
monodisperse and polydisperse droplet distributions.4 For bi-
nary alloy systems, elastic interactions constitute the m
important set of effective long-range interactions. Such e
tic interactions arise naturally from a lattice mismatch b
tween the different atomic species, from differences in
elastic constants of the phases, and from externally impo
stresses. Experimentally, it is well known that elastic int
actions alter the universal features of LSW growth. Typi
phenomena associated with the phase separation of e
binary-alloy systems include shape transformations, the q
siordering of the domains into spatially correlated structur
and deviations from then51/3 growth law.5–14

In two previous publications,15 hereafter referred to a
SOSR I, we reported on large-scale two-dimensional~2D!
and three-dimensional~3D! simulations of phase separatio
of model binary-alloy systems in the presence of long-ra
elastic fields appropriate for systems with a cubic symme
It was shown that aspects of the domain morphology, suc
the orientation of the precipitates as well as the ela
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hardness/softness of the matrix relative to the precipita
can all be understood in terms of a single selection criteri
which is based on the effective, weighted shear coefficie
of the system. The mechanisms of phase separation w
identified to be a combination of LSW growth and the ela
tically driven coalescence of the precipitates.

In this paper, we present a complementary numer
study of phase separation of elastically coherent binary-a
systems in the presence ofexternalstresses, thereby extend
ing the work presented in SOSR I. Both 2D and 3D syste
have been explored. In this case, the intrinsic crysta
graphic symmetries of the system now compete with the
ternal strains in the determination of both the shapes and
orientation of the precipitates. These can go all the way fr
the configurations predicted by the stress-free selection
terion at small stresses, to lamellar and cylindrical config
rations in three dimensions~stripes in two dimensions! at
high stresses. Between these two extremes, there are
shapes and a continuous spectrum of orientation angles.
external stresses have the largest effect when the precipi
form the majority phase, and considerably less effect wh
they are in the minority. Moreover, the external stresses
competition with the crystallographic symmetries can a
induce large-scale rearrangement of the domain morpho
by ‘‘squeezing out’’ the matrix between the precipitates a
inducing the splitting of domains.

Phase separation of elastically coherent binary alloys
been examined theoretically both with analytical theory a
with different simulation techniques.16–27 However, because
of the complexity of the equations and the high compu
tional cost associated with the simulations, work has larg
been confined to 2D, or to 3D systems with only a very sm
number of interacting droplets. Three-dimensional work
however, important if a meaningful comparison betwe
theory and experiment is to be made. This work, along w
SOSR I, represents a first step in that direction. With
large-scale integration of a Langevin model, we have
plored phase separation in the presence of externally
posed stresses.
3160 ©2000 The American Physical Society
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II. MODEL AND SIMULATION

To investigate phase separation with elastic effects
externally imposed stresses, we use a Langevin model
introduced by Cahn21 and Onuki.19,22 The model assume
coherent interfaces, and incorporates the effects of an
tropic elasticity, elastic inhomogeneities between the diff
ent phases, and external strains. This phase-field mod
formulated in terms of the order parameter fieldc(x¢,t), the
displacement fieldsu(x¢,t), and the elastic strain tensorm i j
51/2(]ui /]xj1]uj /]xi). In dimensionless form, the free
energy functional is

F@c#5E dx@ f ~c!1 1
2 ~¹c!21ac Tr~m!1 f el~m!#, ~1!

where f (c)52c2/21c4/4 denotes the bulk free-energ
density;a is a parameter that couples the order param
~concentration field! to the trace of the strain tensor—i.e
Tr(m)5“•u, and f el is the elastic free-energy density. F
the specific case of a system with cubic symmetry, the ela
free-energy density becomes

f el5
k

2
~“•u!21C44(

iÞ j
m i j

2 1M(
i

S m i i 2
1

d
“•uD 2

,

~2!

which is expressed in terms of the spatial dimensiond, the
compressibility modulusk5@C111(d21)C12#/d and shear
moduli C44, and M5(C112C12)/2. These parameters ar
written in terms of a set of dimensionless elastic coefficie
Ci j , which in turn are related to the unscaled coefficientsCi j*
through the relationCi j 5Ci j* l /s, with l representing a char
acteristic length scale in the system such as the average
main size upon nucleation, ands the surface tension. Fo
elastically inhomogeneous alloys, the elastic coefficie
may be partitioned in a convenient way withCi j 5Ci j

o

1Ci j8 c̃, wherec̃(r ,t)5c(r ,t)2co and co denotes the av-
erage value of the order parameter of the system. In
formalism, the stress tensor is defined ass i j 5dF/dm i j . As-
suming that mechanical equilibrium is always maintain
within the system, one readily obtains a set of nonlin
equations

dF

dui
5(

j

ds i j

dxj
50, ~3!

which relate the displacement and order parameter fields,
to zeroth order,

]ui

]xj
5Ai j 2

a

klo

]2W

]xj]xi
, ~4!

whereAi j represents some constant external affine defor
tion, klo5C12

o 12C44
o , and W is a potential function:¹2W

5c̃(r ,t). In order to effectively deal with the externally ap
plied strain, it is convenient to introduce the symmetric te
sor Si j via

Si j 5FAi j 1Aji 2
2

d
d i j Tr~A!G k lo

a
. ~5!
d
rst
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-
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One can substitute these relations into Eq.~1!, and carry out
an expansion of the free energy to first order inCi j8 . This has
the advantage of eliminating the displacement fields so th
free-energy functional formulated entirely in terms ofc is
obtained. The mathematical price that is paid for this elim
nation of variables is the introduction of an effective lon
range interaction into the system via the potential funct
W. As this procedure has been detailed several times in
literature,19,22we do not reproduce the steps here and sim
cite the final result. The dimensionless, free-energy fu
tional that is obtained after some tedious but straightforw
algebra is

Fe f f~c!5E dx@ 1
2 u¹cu21 f ~c!1 f lr ~c!#, ~6!

with an effective long-range interactionf lr

f lr 5md(
iÞ j

S ]2W

]xj]xi
D 2

1mc(
i

S ]2W

]xi
2 2

1

d
¹2WD 2

1(
i j

Ã i j S ]c

]xi
D S ]W

]xj
D . ~7!

Here Ã contains the contributions of the strains resulti
from the externally imposed stresses, and is given byÃ
5g1M11g2M2, where

M15S 0 Sxy Sxz

Sxy 0 Syz

Sxz Syz 0
D , ~8!

is a symmetric tensor dependent on the effective exte
shears only, and

M25S Sxx 0 0

0 Syy 0

0 0 Szz
D , ~9!

is a traceless tensor describing the externally imposed de
mations along the principal axes. This free energy is
scribed in terms of the two effective shear coefficients:md

5g1c̃1to and mc5g2c̃, with g15C448 (a/klo)2, g25(C118
2C128 )/2(a/klo)2, and to5(2C44

o 1C12
o 2C11

o )(a/klo)2/2.
These terms are proportional to the square of the misfie,
which is given bye52aDc/dklo , whereDc is the con-
centration difference between the matrix and the precipita
The physics presented in this paper is a result of the ex
nally imposed strains contained in the last term of the fr
energy functional.

Since the free-energy functional is now entirely expres
in terms ofc, the time-evolution of the order parameter fo
lowing a quench is given by the Langevin equation

]c

]t
5¹2S dFe f f

dc D , ~10!

where we have neglected thermal noise.
To gain insight into the initial stages of spinodal deco

position with elastic fields and external strains, we have
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3162 PRB 62ORLIKOWSKI, SAGUI, SOMOZA, AND ROLAND
earized the model. The linear equation of motion,]c̃k /]t

5v(k,co)c̃k ,i is defined in terms of the Fourier transfor
of the order parameter, i.e.,ck5*dxeik•xc̃(x,t), and the dis-
persion relation

v~k,co!5gk2g1k21g2k2(
iÞ j

k̂i
2k̂ j

212k2(
i , j

Ã i j k̂i k̂ j ,

~11!

with gk5k2(123co
22k2), g152mc(co)(12d)/d, g2

52@2mc(co)2md(co)#, and k̂i5ki /k. In the absence o
any elastic effects (g15g25to50), the dispersion relation
reduces tov(k,co)5gk , which is that of a pure modelB
system. In this case, the classical spinodal is located aco
561/3, and the maximally unstable mode is atk25(1
23co

2)/2. In the dispersion relation, the terms with coef
cients g1,2 result from the elastic misfits and inhomogen
ities, while the last term represents the contribution of
external strains. The effects of the first three terms have
viously been analyzed, with the following results. Theg1
term does not break the circular symmetry of the modesk
space, but simply shifts the maximally unstable modes
the location of the spinodal. Theg2 term breaks up the un
stable region into four lobes~in two dimensions!, which are
centered either on thekx and ky axis or on the diagonals
depending on the specific elastic constants. Inclusion of
last term alters these unstable regions, as shown in Fig
Note that in some cases, two out of four unstable lobes

FIG. 1. Contour plots of 2D linear dispersion relationv(k,co)
with the unstable modes shaded in the lightest gray. Note that in
absence of any externally imposed strains, there are four lo

where the modes are unstable. These are centered either on thek̂x or

k̂y axis, or on the diagonals. The effect of externally imposed stra
is to change the shape of the unstable regions and to possibly re
their number. Parameters for the different regions are~a! co50,
(g1 ,g2 ,to)5(0.5,0.5,0) andSxy51/16, ~b! co50, elastic param-
eters ~0.5,0,0! and Sxy51/16, ~c! c050.3, elastic parameter
(0.5,1.0,0.5), andSxy51/4, and ~d! co50.3, ~1.0,0,0! with Sxy

51/16.
-
e
e-

d

e
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suppressed, indicating that configurations consisting
highly anisotropic domains all oriented in a similar directio
are to be expected.

The Langevin equations were solved numerically us
pseudospectral methods with Euler’s method. Perio
boundary conditions were used on grids of size (1282,
(256)2 in two-dimensions, and (64)3 and (128)3 in three-
dimensions, with mesh sizes ofdx51.7 and a timestep o
0.05 or less. The initial disordered state consisted of a Ga
ian distribution ofc ’s centered aboutco with width of 0.1.
The simulations were run on a Cray T90, with a typic
(128)3 run out tot510 000 requiring approximately 50 h.

III. RESULTS

We now present the results of our numerical simulatio
with an emphasis upon the domain morphology, the coa
ening mechanisms, and the scaling properties of the struc
factor. In addition to its four main parameters, i.e., volum
fraction co , and effective elastic coefficients (g1 ,g2 ,to),
whose effects were analyzed in SOSR I, the model is a
mented by theS8s that specify the external strains. Whe
quoting parameters for the various figures, we shall assu
that all theS8s are zero, except for the values reported.

A. Morphology and microstructure

The most important effects of elastic fields on the pha
separation of binary-alloy systems is to alter the microstr
ture of the precipitates. In the absence of any elastic inte
tions, the coarsening system forms either a bicontinu
structure consisting of two interpenetrating domains as is
case for a system with equal amounts of either phase,
dropletlike morphology for systems with low volume fra
tion. In the presence of elastic interactions, but no exter
strains, it has previously been found that the morphology
determined by a single criterion, namely thatit is the matrix
that holds most of the elastic distortions. This then naturally
leads to a selection criterion that is based on theselection of
the numerically smallest effective shear coefficient in the m
trix weighted by the amount of precipitate present in t
system.15 This determines~i! which of two phases will form
the matrix and/or precipitate,~ii ! the hard versus soft natur
of the phases, and~iii ! the symmetry of the domains.

We find that the externally imposed stresses do not a
points ~i! and ~ii ! of the selection criterion. Rather, the pr
mary effect of the externally imposed stresses is to reor
the precipitates toward a single direction, and to alter th
shapes. To illustrate these points, consider a 2D system
absence of external strains, systems with both anisotropy
inhomogeneities would exhibit square domains oriented
the axial directions for the parameters (g1 ,g2 ,to) as in Figs.
2~a,b,c,d,l!; square domains oriented in the diagonal dire
tions for (g1 ,g2 ,to) in Figs. 2~e,f,k!; and isotropic domains
in Figs. 2~g,h,i,j!. If the system were to be anisotropic b
homogeneous, it would exhibit rectangular stripes distribu
in equal proportions along perpendicular directions. Figur
shows new 2D configurations obtained by the addition
uniaxial strains (Syy52SxxÞ0 and Sxy50), shears (Syy
5Sxx50 andSxyÞ0), or a combination of both.28 The ad-
dition of external strains tends to break the symmetry of

he
es

s
uce



ia
th
t

R
st
te

at

lo
ar
he
i

t
te
ly
e

na

.

ue
he

the
rity
l
-

d
the

m
nal

ile
-
rs

ri-
ted

ins.
ro-

ress
u-
om
al,
ec-

om-
g-
ith
xial

e-
for
ol-
For

l to

res-
s
hus,

je

le

5
5
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two perpendicular directions~whether axial or diagonal! fa-
vored by the selection criterion. The application of a uniax
stress can produce alignment along the direction of
stress, or along the perpendicular direction, depending on
sign of the different elastic parameters. As shown in SOS
the most unstable direction, as determined by the linear
bility criterion, does not necessarily coincide with the la
time orientation of the precipitates. Figures 2~a,b,c,d! show
the effect of nonzeroSii . In ~a! and ~b!, with g2 and Sxx
having the same sign, the domains form rectangles elong
along thex̂ direction, while in~c! and ~d!, with g2 andSxx
having the opposite sign, the rectangles are elongated a
the ŷ direction. In general, when the external strains
moderate, the largest effect on the morphology occurs w
the precipitates form the majority phase, as illustrated
Figs. 2~a,d,e!. By contrast, there is relatively little effec
when the precipitates form the minority phase, as illustra
in Figs. 2~b,c,f!. In this case, the precipitates are all relative
small domains that appear barely elongated from the cas
zero external strain. Figures 2~e,f! show the effect of pure
shear, with domains elongating along the positive diago
i.e., g1Sxy.0. Figures 2~g–j! illustrate the case of a system
with isotropic elastic constants subject to external strains
the absence of any external strains, these precipitates
initially rounded. At later times, they develop flat faces d
to the close proximity of other precipitates. The effect of t

FIG. 2. Sample configurations for quenched 2D systems sub
to external strains. The left and right panels are at timet
5200,10 000, respectively. Other parameters are given in Tab
l
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external strains is, again, both to distort and re-orient
precipitates. Thus, when the precipitates form the majo
phase@Figs. 2~g,h!#, they point in thex̂ and positive diagona
directions because theSxx andSxy terms dominate these spe
cific simulations. In Fig. 2~k!, both the selection criterion an
the shear favor domains along the diagonal direction, but
domains are more broken up—when compared to Fig. 2~e!—
along the perpendicular diagonal direction~this will be fur-
ther discussed in Sec. B!. Finally, Fig. 2~l! shows a combi-
nation of uniaxial and shear strains resulting in tilting fro
the preferred axial directions in the absence of exter
strains.~See also Table I.!

The external strains in Figs. 2~e,f,k! pick one of the two
possible directions predicted by the selection criterion, wh
those in Figs. 2~g–j! determine the orientation of the do
mains without strong competition with the paramete
(g1 ,g2 ,to), which would favor isotropy. Figure 2~l!, on the
other hand, shows the final result when two competing o
entations are present. This competition is further illustra
in Fig. 3, where the orientation favored by (g1 ,g2 ,to) com-
petes with the orientation imposed by the external stra
The resulting shape and orientation of domains is a comp
mise between the two effects. Thus, when the external st
is small, then there is little effect on the square/axial config
ration. Increasing the stress results in more deviations fr
this configuration: the domains become more rhomboid
and the angle between their orientation and the axial dir
tions increases. At very high stress, the precipitates c
pletely deform into stripes oriented along the positive dia
onal direction. Similar results are obtained for systems w
diagonal symmetry subject to transformations along the a
directions.

A different case illustrating elastic competition is pr
sented in Fig. 4, which show the behavior of systems
which the selection criterion predicts a change in morph
ogy based solely on a change in the volume fraction.
these two systems, (g1 ,g2 ,to)5(0.5,20.5,0) so that orien-
tation of the domains is expected to change from diagona
axial asco changes from10.3 to20.3 ~from top to bottom!.
Indeed that is what is observed both in the absence and p
ence of external stresses15. However, the external stresse
again induce significant shape changes in the domains. T

ct

I.

TABLE I. Parameters for Fig. 2.

Fig. co (g1 ,g2 ,to) Configuration Sxx Sxy

without strain

~a! 0.3 ~0,0.25,0! white squares, axial 0.25 0
~b! 20.3 ~0,0.25,0! white squares, axial 0.25 0
~c! 0.3 ~0,20.25,0! black squares, axial 0.25 0
~d! 20.3 ~0,20.25,0! black squares, axial 0.25 0
~e! 0.3 ~0.25,0,0! white squares, diagonal 0.0 0.2
~f! 20.3 ~0.25,0,0! white squares, diagonal 0.0 0.2
~g! 0.3 ~0.25,0.25,0! white isotropic domains 0.25 0
~h! 0.3 ~0.25,0.25,0! white isotropic domains 0.0 0.25
~i! 20.3 ~0.25,0.25,0! white isotropic domains 0.5 1.0
~j! 20.3 ~0.25,0.25,0! white isotropic domains 1.0 1.0
~k! 0.3 ~0.125,0,20.25! white squares, diagonal 0 1/8
~l! 20.3 ~0.25,0.25,0.25! white squares, axial 0.5 1.0
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when a shearSxy50.5 is imposed@Figs. 4~a,c,e!#, the do-
mains forco50.3 elongate along the positive diagonal, a
will ultimately evolve so as to form rectangles similar to Fi
2~e!. Whenco520.3, the shear is not strong enough as
obliterate the axial configuration favored by the select
criterion in the absence of external strain; a rhomboi
shape emerges as a compromise. The counterpart situ
occurs in Figs. 4~b,d,f!, where a uniaxial stress is impose
The results are largely reversed in that the dominant effe

FIG. 3. Sample 2D configurations showing the case of a di
competition between the symmetry imposed by the selection c
rion @elastic parameters~0.125,0.25,0.25! so that the selected orien
tation is axial#, and an externally imposed shear, which favors
diagonal direction. The dominant effect of this competition is to
the domain walls of the precipitates in the direction of the impo
stress, and ultimately melt the domain’s diagonal stripes. Pa
~a!–~c! are for co520.3, ~d!–~f! for co50.3. The external shea
parametersSxy are ~a! 0.5, ~b! 1.0, ~c! 2.0, ~d! 0.5, ~e! 1.0, and~f!
2.0, respectively.

FIG. 4. Sample 2D configurations for systems with elastic
rameters~0.5,-0.5,0! subject to external shear at timest5400,
10 000 showing change in morphology as a function ofco : ~a! and
~b! co50.3, ~c! and ~d! co50, and~e! and ~f! co520.3, where
external strain isSxy50.5 for ~a!, ~c!, ~e! and Sxx50.5 for
~b!,~d!,~f!.
n
l
ion

is

on theco520.3 configuration~bottom!, rather than theco
50.3 case~top!, which preserves the diagonal orientatio
~with rhombi instead of squares!. Clearly, the effects of the
external stresses manifest themselves most readily when
external strains reinforce the orientation determined by
selection criterion.

Three-dimensional simulations show similar results
the domain morphologies. The 3D systems without ext
nally imposed stresses display isotropic, ‘‘diagonal’’„(110)
3@11̄0# shears… and axial„(100)@010# shears… symmetries.
External stresses alter the morphologies in different fashio
For instance, for the case of isotropic elastic constants,
addition of a uniaxial strain changes the morphology so t
the domains become more ‘‘cylinderlike’’~when the strains
are high enough!, with facets due to the proximity of othe
domains. In this case, the domains align themselves a
the appropriate axis@Fig. 5~a!#, while for the case of shears
the plane in which the domains align themselves is tilted
shown in Fig. 5~b!. Note that in this case, the external strai
are not strong enough so as to induce lamellarlike doma
as in Fig. 5~f!. As in the 2D case, the effect of the extern
strains is most pronounced when the precipitates form
majority. For example, Fig. 5~c! shows a case where th
precipitate forms the minority phase. In this case, the dom
morphology is virtually unchanged. Another interesting e
ample is given in Fig. 5~d!. In the absence of externa
stresses, the morphology consists of a series of highly an
tropic domains pointing in the axial directions. Addin
shears breaks up these highly anisotropic domains int

ct
e-

e

d
ls

-

FIG. 5. Sample configurations for quenched 3D systems sub
to external strains. The left and right panels are at timest5400,
10 000 for all systems except for~c! and ~f!, which are at timest
5200, 1000; alsoco50.3, except for~e! and ~f!, for which co

520.3. Elastic parameters of the system are~a! ~0.5,0.5,0! Sxx

5Szz51/9 and Syy522/9; ~b! ~0.5,0.5,0! Sxy5Syz51/8; ~c!
(20.25,0,0) Sxy51/8; ~d! (0.24,20.8,0.7) Sxy50.083 and Syz

520.083; ~e! ~0.25,0.25,0! Sxx51.5, Syy520.5, Szz521.0 and
Sxy51.0; ~f! ~0.25,0.25,0.5!–S8s same as~e!.



ffi
d
b

ed

he
th
ap
a
a
a

p

te
in

o

es
c
t

on
te
y
o
d
te
n
ti

lita
f
-
er
ss
al

are
his
rm

ects
ition
rnal
ins.

ins,

ec-
rate
ure
.

in

re-
ect
bic
of

d in

e
s as
ses

,

g.

PRB 62 3165TWO- AND THREE-DIMENSIONAL SIMULATIONS OF . . .
large number of smaller cubic domains. Finally, Figs. 5~e,f!
show examples of systems with a mixture of elastic coe
cients with both nonzeroM1,2 ~where the parameters use
amount to a uniaxial strain, and two shears: one given
SxyÞ0 and one given bySzz52Syy and Sxx50). Without
strains, the configuration in Fig. 5~e! would consist of isotro-
pic domains and the configuration in Fig. 5~f! of cubic do-
mains. The late-time morphologies show a series of tilt
sheetlike domains.

In summary, the external strains, while not altering t
relative hardness/softness of the matrix with respect to
precipitates, introduce a continuous way of tuning the sh
and orientation of the domains. These can go all the w
from the configurations predicted by the selection criterion
small stresses, to lamellar and cylindrical configurations
high stresses, with a wealth of shapes and a continuous s
trum of orientation angles in between.

B. Growth of precipitates

In this section, we discuss the growth of the precipita
as a function of time, and the breakdown of dynamic scal
of the structure factor. As previously discussed in SOSR
the phase-separating system evolves in such a way as t
crease both its interfacial and elastic free energy. This
achieved through a combination of LSW growth plus coal
cence. Coalescence events dominate the ordering pro
when the precipitates form the majority phase. It gives rise
accelerated rates of growth with considerable deviati
from then51/3 growth law, i.e., the system coarsens fas
than a pure modelB system without any elastic effects. B
contrast, when the precipitates form the minority phase, c
lescence events are relatively infrequent, and the system
plays a decreased rate of growth that is however consis
with a LSW exponent ofn51/3. The coarsening rates ca
also be determined by elastically-induced chemical poten
barriers.

When external stresses are relatively small, this qua
tive picture does not change. For these cases, the plots o
average domain sizeR(t) as a function of time largely re
semble those of SOSR I, and need not be further consid
here. However, two new features emerge when the stre
are significant. First, as already mentioned, the extern

FIG. 6. Sample 2D configurations with parameters:co5
20.3 (g1 ,g2 ,to)5(0,20.25,0) in the absence of external stress
for ~a!–~c! and in the presence of external stressesSxx50.5 for
~d!–~f!. The panels~a,d!, ~b,e! and ~c,f! show timest5200, 1600,
5000, respectively.
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imposed stresses distort the precipitates, so that they
elongated and all are oriented in a single direction. If t
distortion is large enough, then the domains distort to fo
ordered lamellar or cylindrical patterns~or stripes! broken up
by defects, so that it is the annealing away of these def
that dominates the ordering process. Second, the compet
between the intrinsic elastic symmetries and the exte
stresses can induce the large-scale splitting of the doma

These features are illustrated in Figs. 6–8. Figures 6~a–c!
show an example of a system without any external stra
and elastic parameters such thatc511 forms the minority
matrix phase with the precipitates aligned in the axial dir
tions. Note that the features of the system are degene
with respect to the two principal axes, i.e., no specific feat
is associated with thex̂ and/or ŷ directions, respectively
Now, in Figs. 6~d–f! and 7, external stresses are imposed
the systems. For both systems,g2 andSxx have the opposite
sign, and, therefore, the domains align along theŷ direction
~vertical!. The main difference between Figs. 6~d–f! and Fig.
7 is that the strain in Fig. 7 is half the~absolute! value of that
in Figs. 6~d–f!. Thus, Figs. 6~d–f! show smooth stripes
aligned in the elastically soft direction, whereas the cor
sponding stripes in Fig. 7 are split or cut up. This is a dir
consequence of the competition introduced by the cu
symmetry of the system, which—under a smaller value
the strain—reasserts itself. Similar features are observe

s
FIG. 7. Sample 2D configurations, with parameters and time

in the previous figures. However, now we have external stres
specified bySxx50.25 and at timest5200, 1600, 2000, 2400
3200, and 5000.

FIG. 8. Sample 3D configurations showing domain splittin
System parameters areco50.3 (g1 ,g2 ,to)5(0,0.25,0), andSxx

51/16, Syy521/16. Panels~a!–~f! are at timest5200, 1000,
2000, 2400, 2600, and 3000, respectively.
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3D, as illustrated in Fig. 8. Moreover, the stripelike patte
in Fig. 7 is broken up by dislocations and disclinations, a
evolves slowly to eliminate these defects. In many ways,
morphology of the system resembles that of phase-orde
fluids under external shears. The splitting of domains in F
7 and 8 can be viewed as nucleation of perpendicular str
of matrix. That is, at the very early times, the stress effe
dominate while the nucleation of perpendicular mat
stripes occurs in much longer time scales. Eventually,
configuration ends in an array of rectangles, which is
compromising equilibrium configuration resulting from th
competition between the intrinsic elastic symmetries and
external stresses. Using this criterium, we can also com
Figs. 2~e! and 2~k!. In the absence of external stresses,
equilibrium configuration in both cases is an array of squa
distributed symmetrically along the diagonal directions. F
ure 2~k! has a smaller shearSxy and a higher absolute valu
of the shear diagonal coefficient in the matrix:md5g1c̃
1to @20.338 in Fig. 2~k! and20.175 in Fig. 2~e!#. There-
fore, the domains in Fig. 2~k! are more broken up than thos
in Fig. 2~e!, where the external strain is more dominant.

These morphology changes are reflected in both the st
ture factor and changes in the average domain size, as i
trated in Figs. 9 and 10. First, the highly anisotropic nat
of the configurations is evident when one examines the st
ture factor, shown in Fig. 9. In the absence of any ela
effects, the structure factor consists of a diffuse ring t
brightens and shrinks in diameter as the phase separ
proceeds. In the presence of externally imposed stres
there is no ring, but rather two peaks that mark the domin
orientation of the domains. These peaks are located eithe
the k̂y axes@Figs. 9~a–c!# or on the positive diagonal@Figs.
9~d–f!#, depending on the elastic parameters of the syst
In addition, Figs. 9~a–c! show the development of two fur
ther peaks, which are significantly smaller in size, which
oriented along thekx axes. The development of these se

FIG. 9. Sample 2D structure factorsS(kx ,ky) as a function of
time, showing its highly anisotropic character when exter
stresses are present. Parameters of the system: for~a!–~c!, co

50.3, with (g1 ,g2 ,to)5(0,0.25,0) andSxx50.25 at timest5200,
5000, 10 000, respectively; for~d!–~f!, co50.3, ~0.25,0,0! and
Sxy50.25 at similar times. In the first case, the scattering is orien
primarily along theky andkx axis ~not shown!; in the second case
the dominant scattering is along the positive diagonal.
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ondary peaks may be understood in terms of a reassertio
the original domain symmetry, which is otherwise dominat
by the externally imposed stresses. The first three pane
Fig. 9 correspond to a morphology that is similar to Fig. 7,
that the development of these secondary peaks may be a
ciated with the nucleation and growth of the stripes of mat
that cut across the domains. In contrast, Figs. 9~d–f! corre-
spond to a case with similar features as Figs. 6~d–f!. In this
case, all of the stripes are oriented in a single direction,
that there is no significant development of secondary pe

To probe the growth of domains, we have calculated
first moment of the structure factor resolved in each of
principal directions. Essentially, we calculatedRx,y,z

5p/kx,y,z5^kx,y,zS(kW ,t)&, whereS(kW ,t) is the structure fac-
tor ~not averaged!, and the angular brackets denote an av
age over the configurations.2 In situations where the principa
axis of the system did not correspond tok̂ axes, the structure
factor was first rotated by the appropriate angle. Typical
haviors are shown in Fig. 10. For instance, consider the c
of configurations under increasing stresses so as to ultima
form stripes, as shown in the upper panel of Fig. 10. Initia
the values ofRx andRy are close together in value. Howeve
as the external stress increases, and the domains pro
sively elongate, theRx component increases while theRy
component remains almost constant. This is characteristi
the formation of stripes. The lower panel of Fig. 10 corr
sponds to the configurations shown in Fig. 4, with the a
rotated such that the positive diagonal corresponds to thx̂
direction. The most interesting case here corresponds to
4~a! for which co50.3. Initially, the system forms stripe
that are oriented along the diagonal directions, so thatRx
shows a very sharp, initial increase. Hence, there is a la

l

d

FIG. 10. Sample behavior ofRx ~filled symbols! andRy ~open
symbols! for elastically isotropic systems: for the top panel, t
parameters areco50.3 (g1 ,g2 ,to)5(0.25,0.25,0) with increasing
shearsSxx as stripes develop; squares, 0.05; diamonds, 0.1;
triangles, 0.5; and for the bottom panel, the parameters as in
6~b! for changing concentration are squares,co50.3; diamonds,
co50.0; and triangles,co520.3. Note that the system has bee

rotated such thatx̂ corresponds to the positive diagonal.
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difference in theRx andRy values, as already seen in Fig.
However, at some point, we see the nucleation of a strip
matrix oriented along the negative diagonal that begins to
the domains. As more and more of the matrix is squeezed
from between the precipitates and ends up oriented along
negative diagonal, there is a corresponding decrease in
value of Rx and a corresponding increase inRy . In other
words, the system displays inverse coarsening behavior.4

Finally, we have examined the issue of dynamic scal
of the structure factor. Since under the influence of the
ternally imposed stresses each of the directions gr
~shrinks! at a different rate, some care must be taken
implementing the scaling. As the most general case, we
amined

S~kW ,t !5Rx~ t !Ry~ t !Rz~ t !F~x1 ,x2 ,x3!,

where x15kxRx(t), x25kyRy(t), x35kzRz(t), and F is a
time-independent shape function. Clearly, this formula
duces to the usual caseS(k,t)5R(t)dF(x) when theRi ’s are
equal. The main results are as follows. In cases where
precipitate forms the minority phase, and the influence of
externally imposed stresses are relatively small, good sca
similar to that reported in SOSR I is obtained.15 However,
there appears to be no dynamic scaling in the other si
tions. This is particularly true for cases when the doma
undergo large-scale shape transformations to form lame
or cylinders.29

IV. SUMMARY

In summary, we have investigated the phase separatio
model 2D and 3D binary-alloy systems with externally im
t.
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posed elastic stresses with Langevin simulations. We
that the selection criterion for thephase of the matrix/
precipitates, as discussed previously in SOSR I, is
changed. However, the symmetry of the domains can
longer be predicted by this criterion. The intrinsic crystall
graphic symmetries of the system compete now with the
ternal strains in the determination of both the shapes and
orientation of the precipitates. These can go all the way fr
the configurations predicted by the stress-free selection
terion at small stresses, to lamellar and cylindrical config
rations in three dimensions~stripes in two dimensions! at
high stresses. Between these two extremes, there are
shapes~i.e., rhomboidal and elliptical shapes in two dime
sions! and a continuous spectrum of orientation angles. T
stripes or lamellas created when the precipitates run toge
at large stresses form quasiordered configurations broke
by defects that evolve very slowly in time. The extern
stresses have the largest effect when the precipitates form
majority phase, and considerably less effect when they ar
the minority. The external stresses in competition with t
crystallographic symmetries can also induce large-scale r
rangement of the domain morphology by inducing mass
splitting of the domains. As expected, the highly anisotro
nature of the domain morphology is reflected in the struct
factor of the system, which generally does not display la
time scaling.
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