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The effects of externally imposed stresses on the phase separation process of elastically coherent binary-
alloy systems were investigated numerically with large-scale Langevin simulations.tBothand three-
dimensionalsystems were considered. The intrinsic crystallographic symmetries of the system compete with
the external strains in the determination of both the shapes and the orientation of the precipitates. These can go
all the way from the configurations predicted by a stress-free equilibrium criterion at small stresses, to lamellar
and cylindrical configurationéor stripe configurations in two dimensigret high stresses. Between these two
extremes, there are new shapes and a continuous spectrum of orientation angles. This competition can also
induce late-time, large-scale splitting of the domains. The stress effect is larger when the precipitates form the
majority phase, and considerably smaller when they are in the minority.

[. INTRODUCTION hardness/softness of the matrix relative to the precipitates,
can all be understood in terms of a single selection criterion,
The mechanism behind Ostwald ripening, the late-stag#hich is based on the effective, weighted shear coefficients
processes by which a quenched binary-alloy system phag¥ the system. The mechanisms of phase separation were
separates, was first explored theoretically by Lifshitz, Slyoidentified to be a combination of LSW growth and the elas-
zov, and Wagne(LSW).! In the absence of any long-range tically driven coalescence of the precipitates. _
interactions, growth is characterized by a single time- In this paper, we present a complementary numerical
dependent quantity—the average domain 88, which is study of phase separation of elastically coherent binary-alloy
predicted to follow a power-law growtR(t)~t" with a systems in the presence @fternalstresses, thereby extend-
growth exponent oh=1/3. Furthermore, the late-time mor- ing the work presented in SOSR |. Both 2D and 3D systems

phology is self-similar in time, provided that one rescales2ve been explored. In this case, the intrinsic crystallo-
both length and time scales in a proper marinahich is graphic symmetries of the system now compete with the ex-

flected i ial i h as the structure fact ternal strains in the determination of both the shapes and the
refiected in spatial quantities such as the structure 1actor ange niation of the precipitates. These can go all the way from

dp m:?\in morpholo.gy.. Long-range forces can alter all of thes‘?he configurations predicted by the stress-free selection cri-
kinetic characteristics. For example,

or in_soft condensedsgrion at small stresses, to lamellar and cylindrical configu-
matter systems, such as lipid monolayers and block copolyrstions in three dimensiongstripes in two dimensionsat
mer systems, effective long-range interactions can induce 3igh stresses. Between these two extremes, there are new
inverse coarsening process in which material flows from thehapes and a continuous spectrum of orientation angles. The
larger to the smaller droplefsand thereby stabilize both external stresses have the largest effect when the precipitates
monodisperse and polydisperse droplet distributfofer bi-  form the majority phase, and considerably less effect when
nary alloy systems, elastic interactions constitute the moshey are in the minority. Moreover, the external stresses in
important set of effective long-range interactions. Such elaseompetition with the crystallographic symmetries can also
tic interactions arise naturally from a lattice mismatch be-induce large-scale rearrangement of the domain morphology
tween the different atomic species, from differences in thepy “squeezing out” the matrix between the precipitates and
elastic constants of the phases, and from externally imposeidlducing the splitting of domains.
stresses. Experimentally, it is well known that elastic inter- Phase separation of elastically coherent binary alloys has
actions alter the universal features of LSW growth. Typicalbeen examined theoretically both with analytical theory and
phenomena associated with the phase separation of elastigth different simulation techniqué$-2” However, because
binary-alloy systems include shape transformations, the quaf the complexity of the equations and the high computa-
siordering of the domains into spatially correlated structurestional cost associated with the simulations, work has largely
and deviations from the=1/3 growth law>~* been confined to 2D, or to 3D systems with only a very small
In two previous publication$] hereafter referred to as number of interacting droplets. Three-dimensional work is,
SOSR |, we reported on large-scale two-dimensigi2a)) however, important if a meaningful comparison between
and three-dimension&BD) simulations of phase separation theory and experiment is to be made. This work, along with
of model binary-alloy systems in the presence of long-range&SOSR |, represents a first step in that direction. With the
elastic fields appropriate for systems with a cubic symmetrylarge-scale integration of a Langevin model, we have ex-
It was shown that aspects of the domain morphology, such gslored phase separation in the presence of externally im-
the orientation of the precipitates as well as the elastiposed stresses.
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Il. MODEL AND SIMULATION One can substitute these relations into g, and carry out

To investigate phase separation with elastic effects an&n expansion of the free energy to first ordeCfj. This has

externally imposed stresses, we use a Langevin model fir
introduced by Cahfit and Onuki*®?? The model assumes ) : : ey ons
coherent interfaces, and incorporates the effects of anisé)-b:famedf' Th(.:‘ g;ath_en:ﬁtlc_altpréce tt_hat 'Sf paid f]}or ;[.h's Iel|m|-
tropic elasticity, elastic inhomogeneities between the differ1ation of variables IS the introduction ot an etiective long-
ent phases, and external strains. This phase-field model nge interaction into the system via the potential function

. R . As this procedure has been detailed several times in the
formulated in terms of the order parameter figlfk,t), the D

e advantage of eliminating the displacement fields so that a
ree-energy functional formulated entirely in terms ifis

’ _ ! _ ; literature’®?2we do not reproduce the steps here and simply
displacement fieldsi(x,t), and the elastic strain tenspij  cite the final result. The dimensionless, free-energy func-
=1/2(0u; /9x;+ du;19x;). In dimensionless form, the free- tional that is obtained after some tedious but straightforward
energy functional is algebra is

F[df]=f dX[F()+3(Vi)+ay Tr(u)+fe(w)], (1) Feff(lp):f dx[ 3|V |2+ () + 11, ()], (6)

where f()=—¢?/2+ *4 denotes the bulk free-energy with an effective long-range interactidi
density; @ is a parameter that couples the order parameter

(concentration fieldto the trace of the strain tensor—i.e., I PW \2 D PW 1 ) 2
Tr(u)=V-u, andf,, is the elastic free-energy density. For I e X;%; t e ~ |\ oxZ d
the specific case of a system with cubic symmetry, the elastic
free-energy density becomes P\ [ oW
v SN
fom e (V-2 CurS, 2+ M | = =V - - - -
el_z( U a4t Hij —~ | Hi Ty Ul Here w contains the contributions of the strains resulting

2) from the externally imposed stresses, and is givenahy
:glM 1+ gzM2, Whel’e
which is expressed in terms of the spatial dimengipthe

compressibility modulugk=[Cq;+(d—1)C,,]/d and shear 0 Sy S¢

moduli C,,, and M=(C;;—C;,)/2. These parameters are Sy 0 S

written in terms of a set of dimensionless elastic coefficients M= y z (8)
Cij , which in turn are related to the unscaled coeffici@ﬁs Sz Sz 0

through the relatiorC;; =Ci’]lla, with | representing a char- ) _

acteristic length scale in the system such as the average di§- @ symmetric tensor dependent on the effective external
main size upon nucleation, and the surface tension. For shears only, and

elastically inhomogeneous alloys, the elastic coefficients

may be partitioned in a convenient way wimij=cﬁ S« 00
+Cyj i, wherej(r,t)=y(r,t) — ¢, and ¢, denotes the av- M= O Sw O, 9)
erage value of the order parameter of the system. In this 0 0 S,

formalism, the stress tensor is definedogs= oF/du;; . As-

suming that mechanical equilibrium is always maintaineds 5 traceless tensor describing the externally imposed defor-
within the system, one readily obtains a set of nonlineak,ations along the principal axes. This free energy is de-

equations scribed in terms of the two effective shear coefficients:
SF Sori =014+ 7o and uc=ga, With gy=Cjy(alk)? 9,=(C1y
T szo, (3)  —Ci)/2(alke)? and 7,=(2C3,+C39,—C39)(alky)?/2.

i ] j

] These terms are proportional to the square of the mésfit
which relate the displacement and order parameter fields, i.ewhich IS given bye=—aAyldky, WhereAz// is the con-
to zeroth order, centration difference between the matrix and the precipitates.
The physics presented in this paper is a result of the exter-
au; a PW nally imposed strains contained in the last term of the free-
(4) energy functional.

Since the free-energy functional is now entirely expressed

whereA;; represents some constant external affine deformal trms ofy, the time-evolution of the order parameter fol-
tion, kjo=C%,+2C%,, andW is a potential functiony2w  lowing a quench is given by the Langevin equation

5_)(1': ij_m 5Xj5xi,

=7(r,t). In order to effectively deal with the externally ap-

. S . . . P OF et

plied strain, it is convenient to introduce the symmetric ten- —=V?2 L (10
sor§; via o i

where we have neglected thermal noise.
To gain insight into the initial stages of spinodal decom-

2 K|o
Si=| At AT g i TrA) | 27 ® position with elastic fields and external strains, we have lin-
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suppressed, indicating that configurations consisting of
highly anisotropic domains all oriented in a similar direction
are to be expected.

The Langevin equations were solved numerically using
pseudospectral methods with Euler's method. Periodic
boundary conditions were used on grids of size (%28)
(256) in two-dimensions, and (63)and (128§ in three-
dimensions, with mesh sizes dix=1.7 and a timestep of
0.05 or less. The initial disordered state consisted of a Gauss-
ian distribution ofiy’s centered abou#, with width of 0.1.
The simulations were run on a Cray T90, with a typical
(128)° run out tot=10000 requiring approximately 50 h.

IIl. RESULTS

We now present the results of our numerical simulations
with an emphasis upon the domain morphology, the coars-
ening mechanisms, and the scaling properties of the structure
factor. In addition to its four main parameters, i.e., volume
fraction ¢, and effective elastic coefficientg{,g9,,7,),

FIG. 1. Contour plots of 2D linear dispersion relatioitk, i) whose effects were analyzed in SOSR |, the model is aug-

with the unstable modes shaded in the lightest gray. Note that in th@en_ted by theS's that specify_the e_xternal strains. When
absence of any externally imposed strains, there are four lopgduoting parameters for the various figures, we shall assume
that all theS's are zero, except for the values reported.

where the modes are unstable. These are centered eitherionathe
Ry axis, or on the diagonals. The effect of externally imposed strains

is to change the shape of the unstable regions and to possibly reduce A. Morphology and microstructure
their number. Parameters for the different regions @ey,=0, . -
(01.95.76) = (0.5,0.5,0) andS,,—1/16, (b) 1),=0, elastic param- The most important effects of elastic fields on the phase

eters (05,00 and S,,=1/16, (¢) %=0.3, elastic parameters separation of bi.ngry-alloy systems is to alter the mi.cr.ostruc—

(0.5.1.0,0.5), andS,,=1/4, and(d) ,=0.3, (1.0,0,0 with S,, tyre of the preupﬂqtes. In the absence Qf any ela§tlc mterac—

—1/16. tions, the coarsening system forms either a bicontinuous

structure consisting of two interpenetrating domains as is the

earized the model. The linear equation of motiaﬁgk/at case for a system with equal amountg of either phase, or a
~ , , ) dropletlike morphology for systems with low volume frac-

= o (K, o) i is defined in terms of the Fourier transform (o i the presence of elastic interactions, but no external

of the order parameter, i.af = [dxe* Xi(x,t), and the dis-  strains, it has previously been found that the morphology is

persion relation determined by a single criterion, namely tlitais the matrix

that holds most of the elastic distortiorighis then naturally

(K, )= ye— v K2+ 7, k2 S K2k2+ 2Kk kK. | leads to a.selecuon criterion that is based on.stglect]on of
(Ktho) =n= 71K+ 72 ;, H |§,: e the numerically smallest effective shear coefficient in the ma-

(11 trix erilighted by the amount of precipitate present in the
. system” This determinesi) which of two phases will form

with  y=k(1=3y5—k?), lezﬂc(wo)(l_d)/d' Y2 the matrix and/or precipitatéii) the hard versus soft nature
=2[2pc(ho) — ()], and ki=k;/k. In the absence of of the phases, andii) the symmetry of the domains.
any elastic effectsd;=g,=17,=0), the dispersion relation  We find that the externally imposed stresses do not alter
reduces tow(K,#,) =y, which is that of a pure mode8  points (i) and (ii) of the selection criterion. Rather, the pri-
system. In this case, the classical spinodal is locategi,at mary effect of the externally imposed stresses is to reorient
=+1/3, and the maximally unstable mode is kt=(1  the precipitates toward a single direction, and to alter their
—31//(2))/2. In the dispersion relation, the terms with coeffi- shapes. To illustrate these points, consider a 2D system. In
cients vy , result from the elastic misfits and inhomogene-absence of external strains, systems with both anisotropy and
ities, while the last term represents the contribution of thadnhomogeneities would exhibit square domains oriented in
external strains. The effects of the first three terms have prahe axial directions for the parametegs, (9,,7,) as in Figs.
viously been analyzed, with the following results. The  2(a,b,c,d,); square domains oriented in the diagonal direc-
term does not break the circular symmetry of the modds in tions for (g;,9,,7,) in Figs. 2e,f,k); and isotropic domains
space, but simply shifts the maximally unstable modes anéh Figs. 2g,h,i,). If the system were to be anisotropic but
the location of the spinodal. The, term breaks up the un- homogeneous, it would exhibit rectangular stripes distributed
stable region into four lobe@n two dimensiong which are  in equal proportions along perpendicular directions. Figure 2
centered either on thk, and k, axis or on the diagonals, shows new 2D configurations obtained by the addition of
depending on the specific elastic constants. Inclusion of thaniaxial strains §,,=—S,,#0 and S,,=0), shears §,
last term alters these unstable regions, as shown in Fig. & S,,=0 andS,,#0), or a combination of botff The ad-
Note that in some cases, two out of four unstable lobes ardition of external strains tends to break the symmetry of the
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TABLE |. Parameters for Fig. 2.

Fig. 4o  (91,92,7) Configuration S« Sy
without strain

(@ 0.3 (0,0.25,0 white squares, axial 0.25
m-‘“I"" (b) —0.3 (0,0.25,0 white squares, axial 0.25
HE III||||| (c0 03 (0,-0.25,0 black squares, axial  0.25
(d) —-0.3 (0,-0.25,0 black squares, axial 0.25
(e 0.3 (0.25,0,0 white squares, diagonal 0.0 0.25
(f) -0.3 (0.25,0,0 white squares, diagonal 0.0 0.25
(99 0.3 (0.25,0.25,0  white isotropic domains 0.25 0
(h) 0.3 (0.25,0.25,0 white isotropic domains 0.0 0.25
(i) —0.3 (0.25,0.25,0 white isotropic domains 0.5 1.0
() —0.3 (0.25,0.25,0 white isotropic domains 1.0 1.0
(k) 0.3 (0.125,0,-0.25 white squares, diagonal 0 1/8
() —0.3 (0.25,0.25,0.2b  white squares, axial 05 1.0

o o © o

external strains is, again, both to distort and re-orient the
precipitates. Thus, when the precipitates form the majority
phasegFigs. 2g,h], they point in thex and positive diagonal
directions because tf#, andS,, terms dominate these spe-
cific simulations. In Fig. &), both the selection criterion and
the shear favor domains along the diagonal direction, but the
domains are more broken up—when compared to Kig)—2
along the perpendicular diagonal directighis will be fur-
ther discussed in Sec.)BFinally, Fig. 21) shows a combi-
nation of uniaxial and shear strains resulting in tilting from
the preferred axial directions in the absence of external
strains.(See also Table)l.

FIG. 2. Sample configurations for quenched 2D systems subject The external strains in Figs(&f,k pick one of the two
to external strains. The left and right panels are at time possible directions predicted by the selection criterion, while
=200,10 000, respectively. Other parameters are given in Table Ithose in Figs. @—j) determine the orientation of the do-
mains without strong competition with the parameters
vored by the selection criterion. The application of a uniaxialé%ﬁé?zﬁgﬁ])d’Vlulgcv;v tcl)qLéI(jfigz\fc;:a;slﬁirev%)gnFtlgvlgi(cl)a&ggtitgg ori-
stress can produce alignment along the direction of thehiations are present. This competition is further illustrated
stress, or alqng the perpendlcular direction, depen_dlng on the Fig. 3, where the orientation favored by,(g,, ;) com-
sign of the different elastic parameters. As shown in SOSR Inetes with the orientation imposed by the external strains.
the most unstable direction, as determined by the linear st he resulting shape and orientation of domains is a compro-

bility criterion, does not necessarily coincide with the Iate-mise between the two effects. Thus. when the external stress
time orientation of the precipitates. Figure@,c,d SNOW jg gmai then there is little effect on the square/axial configu-

the effect of nonzerds; . In (a) and (b), with g, and Si  ration. Increasing the stress results in more deviations from
having the same sign, the domains form rectangles elongatgflis configuration: the domains become more rhomboidal,
along thex direction, while in(c) and (d), with g, andS,,  and the angle between their orientation and the axial direc-
having the opposite sign, the rectangles are elongated alonns increases. At very high stress, the precipitates com-
the y direction. In general, when the external strains arepletely deform into stripes oriented along the positive diag-
moderate, the largest effect on the morphology occurs wheanal direction. Similar results are obtained for systems with
the precipitates form the majority phase, as illustrated irdiagonal symmetry subject to transformations along the axial
Figs. 4a,d,e. By contrast, there is relatively little effect directions.

when the precipitates form the minority phase, as illustrated A different case illustrating elastic competition is pre-
in Figs. 4b,c,f. In this case, the precipitates are all relatively sented in Fig. 4, which show the behavior of systems for
small domains that appear barely elongated from the case ®@fhich the selection criterion predicts a change in morphol-
zero external strain. Figurege2f) show the effect of pure ogy based solely on a change in the volume fraction. For
shear, with domains elongating along the positive diagonalthese two systemsg(,9,,7,)=(0.5,—0.5,0) so that orien-
i.e.,91S,,>0. Figures 2g—j) illustrate the case of a system tation of the domains is expected to change from diagonal to
with isotropic elastic constants subject to external strains. laxial asiy, changes fromt+0.3 to — 0.3 (from top to bottonm.

the absence of any external strains, these precipitates akedeed that is what is observed both in the absence and pres-
initially rounded. At later times, they develop flat faces dueence of external stressésHowever, the external stresses
to the close proximity of other precipitates. The effect of theagain induce significant shape changes in the domains. Thus,

two perpendicular directioneGvhether axial or diagonpafa-
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FIG. 3. Sample 2D configurations showing the case of a direct
competition between the symmetry imposed by the selection crite-
rion [elastic parameter®.125,0.25,0.2bs0 that the selected orien-
tation is axial, and an externally imposed shear, which favors the
diagonal direction. The dominant effect of this competition is to tilt
the domain walls of the precipitates in the direction of the imposed  F|G. 5. Sample configurations for quenched 3D systems subject
stress, and ultimately melt the domain’s diagonal stripes. Panelg external strains. The left and right panels are at tired00,
(@—(c) are for = —0.3, (d)—(f) for 4,=0.3. The external shear 10000 for all systems except féc) and (f), which are at times
parametersS,, are(a) 0.5, (b) 1.0, (c) 2.0,(d) 0.5, (¢) 1.0, and(f) =200, 1000; alsay,=0.3, except for(e) and (f), for which i,

2.0, respectively. =—0.3. Elastic parameters of the system & (0.5,0.5,0 S,,
=S,,~1/9 and S,=—2/9; (b) (0.50.5,0 S,,=S,,=1/8; (c)

when a sheaS,,=0.5 is imposedFigs. 4a,c,8], the do-  (~0.25,0,0) S,=1/8; (d) (0.24-0.8,0.7) S,=0.083 andS,,

mains fory,=0.3 elongate along the positive diagonal, and= —0:083;(¢) (0.25,0.25,0 S,=15, §,,=-0.5, S,;=—1.0 and

will ultimately evolve so as to form rectangles similar to Fig. Sv=1.0: () (0.25,0.25,0.5-S's same age).

2(e). When ¢y,= —0.3, the shear is not strong enough as to

obliterate the axial configuration favored by the selectionon the ,= —0.3 configurationbottom), rather than they,

criterion in the absence of external strain; a rhomboidal=0.3 case(top), which preserves the diagonal orientation

shape emerges as a compromise. The counterpart situationith rhombi instead of squaresClearly, the effects of the

occurs in Figs. é,d.f), where a uniaxial stress is imposed. external stresses manifest themselves most readily when the

The results are largely reversed in that the dominant effect iexternal strains reinforce the orientation determined by the
selection criterion.

777 77 e TS 2 Three-dimensional simulations show similar results for
(3)7///%////% 7 /%l (b)é‘." Vi it the domain morphologies. The 3D systems without exter-

WA A ! . ; . . .
,//{;7///;/22/% / 5’.‘?3""* g naII;Qmposed stresses display isotropic, “diagon#{’110)
?7////;/;1//?/2 / RE{'!J%‘M W I ) X[110] shear} and axial((100) 010] sheary symmetries.
Z&Z%f% Kug?g.’}?,'.g%@ ( External stresses alter the morphologies in different fashions.
[— l; — "‘;'i: ; - For instance, for the case of isotropic elastic constants, the
A4 ,'I‘l((:.);.‘.".'!'?lilﬁ':'-i'; 'm‘,!'j“',';‘..j "“I"},,l.illl|i|.",| addition of a uniaxial strain changes the morphology so that
i»i;;gl,w!!!,gl..‘ip,\,\mﬁ' il |||||5||IIIIIIIIIII |  the domains become more “cylinderlikefihen the strains
‘Il"“"‘l"lfi;';:ll!'!? hiil \ '|'|II|I||1||||||!||||| I  are high enough with facets due to the proximity of other
| iyt "f.-'-!','{! li““' e domains. In this case, the domains align themselves along
it '"L["m““ the appropriate axigFig. 5a)], while for the case of shears,
EEATEAIANE =B 1) () the plane in which the domains align themselves is tilted as
(?2" ;'f}ﬂ?ﬁﬂ{i 'l'ui’l_{,‘."‘,’ﬁﬁ( ) shown in Fig. Bb). Note that in this case, the external strains
Fl'! Hearimass nmimy -!!—ll ; i i
"z, i ﬂ' are not strong enough so as to induce lamellarlike domains

g‘,:;?:'.' i

{

ALk SR

lllllll’.lmmlli as ip Fig. %f). As in the 2D case, the effect_mc the external
strains is most pronounced when the precipitates form the
majority. For example, Fig. (6) shows a case where the
FIG. 4. Sample 2D configurations for systems with elastic pa-Precipitate forms the minority phase. In this case, the domain
rameters(0.5,-0.5,0 subject to external shear at times-400, ~ Morphology is virtually unchanged. Another interesting ex-
10 000 showing change in morphology as a functiowgf (8) and ~ ample is given in Fig. &l). In the absence of external
(b) ,=0.3, (c) and (d) ¥,=0, and(e) and (f) ¥,=—0.3, where  Stresses, the morphology consists of a series of highly aniso-
external strain isS,,=0.5 for (a), (c), (¢) and S;,=0.5 for tropic domains pointing in the axial directions. Adding
(b),(d),(f). shears breaks up these highly anisotropic domains into a

i
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FIG. 6. Sample 2D configurations with parameteis;= FIG. 7. Sample 2D configurations, with parameters and times as

—0.3 (91,92,7,)=(0,—0.25,0) in the absence of external stressesin the previous figures. However, now we have external stresses
for (@—(c) and in the presence of external stresSgs=0.5 for  specified byS,,=0.25 and at timeg=200, 1600, 2000, 2400,
(d)—(f). The panelda,d, (b, and(c,f) show timest=200, 1600, 3200, and 5000.

5000, respectively.

imposed stresses distort the precipitates, so that they are
large number of smaller cubic domains. Finally, Fig&e,5  elongated and all are oriented in a single direction. If this
show examples of systems with a mixture of elastic coeffidistortion is large enough, then the domains distort to form
cients with both nonzerdl,, (where the parameters used ordered lamellar or cylindrical patterisr stripes broken up
amount to a uniaxial strain, and two shears: one given byy defects, so that it is the annealing away of these defects
Sy#0 and one given bys,,= —S,, and S,,=0). Without  that dominates the ordering process. Second, the competition
strains, the configuration in Fig(& would consist of isotro- between the intrinsic elastic symmetries and the external
pic domains and the configuration in Figfpof cubic do-  stresses can induce the large-scale splitting of the domains.
mains. The late-time morphologies show a series of tilted, These features are illustrated in Figs. 6—8. Figules-6
sheetlike domains. show an example of a system without any external strains,
In summary, the external strains, while not altering theand elastic parameters such that + 1 forms the minority
relative hardness/softness of the matrix with respect to thenatrix phase with the precipitates aligned in the axial direc-
precipitates, introduce a continuous way of tuning the shapgons. Note that the features of the system are degenerate
and orientation of the domains. These can go all the wawith respect to the two principal axes, i.e., no specific feature

from the configurations predicted by the selection criterion ajs gssociated with the and/ory directions, respectively.
small stresses, to lamellar and cylindrical configurations ajow, in Figs. d—f) and 7, external stresses are imposed in
high stresses, with a wealth of shapes and a continuous sp&ge systems. For both systengs, andS,, have the opposite

trum of orientation angles in between. sign, and, therefore, the domains align along yhdirection
(vertical. The main difference between Figgdé-f) and Fig.
B. Growth of precipitates 7 is that the strain in Fig. 7 is half tHabsolute value of that

. . . - in Figs. §d-f). Thus, Figs. &d-f) show smooth stripes
In this section, we discuss the growth of the pr§:C|p|taFesa”gned in the elastically soft direction, whereas the corre-
as a function of time, and the breakdown of dynamic scalin

of the structure factor. As previously discussed in SOSR Igspondmg stripes in Fig. 7 are split or cut up. This is a direct

the phase-separating svstem evolves in such a wav as to dbqnsequence of the competition introduced by the cubic
P P g sy Y -symmetry of the system, which—under a smaller value of

crease both its '“te”‘ac"”?' af‘d elastic free energy. This Rhe strain—reasserts itself. Similar features are observed in
achieved through a combination of LSW growth plus coales-

cence. Coalescence events dominate the ordering process
when the precipitates form the majority phase. It gives rise to
accelerated rates of growth with considerable deviations
from then=1/3 growth law, i.e., the system coarsens faster
than a pure moddB system without any elastic effects. By
contrast, when the precipitates form the minority phase, coa-
lescence events are relatively infrequent, and the system dis-
plays a decreased rate of growth that is however consistent
with a LSW exponent oh=1/3. The coarsening rates can
also be determined by elastically-induced chemical potential
barriers.

When external stresses are relatively small, this qualita-
tive picture does not change. For these cases, the plots of the
average domain sizB(t) as a function of time largely re- FIG. 8. Sample 3D configurations showing domain splitting.
semble those of SOSR I, and need not be further consideresystem parameters awg,=0.3 (g;,9,,70)=(0,0.25,0), andS,,
here. However, two new features emerge when the stressesl/16, S,,=—1/16. Panels(a—(f) are at timest=200, 1000,
are significant. First, as already mentioned, the externall000, 2400, 2600, and 3000, respectively.
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FIG. 9. Sample 2D structure factoBk,k,) as a function of 0 0 ' é e

time, showing its highly anisotropic character when external

stresses are present. Parameters of the system(afe(c), ¢,

=0.3, with (91,92,7,) =(0,0.25,0) and5,,=0.25 at timeg= 200, FIG. 10. Sample behavior &%, (filled symbols andR, (open

5000, 10000, respectively; fofd)—(f), #,=0.3, (0.25,0,0 and  symbols for elastically isotropic systems: for the top panel, the

S,y=0.25 at similar times. In the first case, the scattering is orientegparameters arg¢,=0.3 (g;,92,7,) = (0.25,0.25,0) with increasing

primarily along thek, andk, axis (not shown; in the second case, shearsS,, as stripes develop; squares, 0.05; diamonds, 0.1; and

the dominant scattering is along the positive diagonal. triangles, 0.5; and for the bottom panel, the parameters as in Fig.

6(b) for changing concentration are squargg=0.3; diamonds,

3D, as illustrated in Fig. 8. Moreover, the stripelike pattern,, _q o: and trianglesy,= —0.3. Note that the system has been

in Fig. 7 is broken L_Jp_by dislocations and disclinations, androtated such that corresponds to the positive diagonal.
evolves slowly to eliminate these defects. In many ways, the

morphology of the system resembles that of phase-ordering ) ]
fluids under external shears. The splitting of domains in Figsondary peaks may be understood in terms of a reassertion of
7 and 8 can be viewed as nucleation of perpendicular stripe&€ original domain symmetry, which is otherwise dominated
of matrix. That is, at the very early times, the stress effectdy the externally imposed stresses. The first three panels of
dominate while the nucleation of perpendicular matrixFig. 9 correspond to a morphology that is similar to Fig. 7, so
stripes occurs in much longer time scales. Eventually, théhat the development of these secondary peaks may be asso-
configuration ends in an array of rectangles, which is theciated with the nucleation and growth of the stripes of matrix
compromising equilibrium configuration resulting from the that cut across the domains. In contrast, Figs.—9 corre-
competition between the intrinsic elastic symmetries and théPond to a case with similar features as Fige—4). In this
external stresses. Using this criterium, we can also compai@@Se, all of the stripes are oriented in a single direction, so
Figs. 4e) and 2ZK). In the absence of external stresses, théhat there is no significant development of secondary peaks.
equilibrium configuration in both cases is an array of squares 10 probe the growth of domains, we have calculated the
distributed symmetrically along the diagonal directions. Fig-first moment of the structure factor resolved in each of the
ure 2k) has a smaller she&,, and a higher absolute value Principal directions. Essentially, we calculateRy, ,
of the shear diagonal coefficient in the matrigy=g,9 = 7 Kxy,2=(KxyS(k,1)), whereS(k,t) is the structure fac-
+7,[—0.338 in Fig. 2k) and —0.175 in Fig. 2e)]. There-  tor (not average);i_and the angular brackets denote an aver-
fore, the domains in Fig.(R) are more broken up than those ade over the configuratioidn 5|tuat|0n§ where the principal
in Fig. 2(e), where the external strain is more dominant.  axis of the system did not correspondkt@xes, the structure
These morphology changes are reflected in both the strudactor was first rotated by the appropriate angle. Typical be-
ture factor and changes in the average domain size, as illusaviors are shown in Fig. 10. For instance, consider the case
trated in Figs. 9 and 10. First, the highly anisotropic natureof configurations under increasing stresses so as to ultimately
of the configurations is evident when one examines the strudorm stripes, as shown in the upper panel of Fig. 10. Initially,
ture factor, shown in Fig. 9. In the absence of any elasti¢he values oR, andR, are close together in value. However,
effects, the structure factor consists of a diffuse ring thags the external stress increases, and the domains progres-
brightens and shrinks in diameter as the phase separatigively elongate, théR, component increases while t
proceeds. In the presence of externally imposed stressespmponent remains almost constant. This is characteristic of
there is no ring, but rather two peaks that mark the dominanthe formation of stripes. The lower panel of Fig. 10 corre-
orientation of the domains. These peaks are located either @ponds to the configurations shown in Fig. 4, with the axes

the Ry axes[Figs. 9a—0g] or on the positive diagondFigs.  rotated such that the positive diagonal corresponds toxthe
9(d-f)], depending on the elastic parameters of the systendirection. The most interesting case here corresponds to Fig.
In addition, Figs. 8a—9 show the development of two fur- 4(a) for which ¢,=0.3. Initially, the system forms stripes
ther peaks, which are significantly smaller in size, which arehat are oriented along the diagonal directions, so Rat
oriented along thé, axes. The development of these sec-shows a very sharp, initial increase. Hence, there is a large

4 6 8 10
10°
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difference in theR, andR, values, as already seen in Fig. 9. posed elastic stresses with Langevin simulations. We find
However, at some point, we see the nucleation of a stripe dhat the selection criterion for thehase of the matrix/
matrix oriented along the negative diagonal that begins to cuprecipitates, as discussed previously in SOSR |, is un-
the domains. As more and more of the matrix is squeezed o@hanged. However, the symmetry of the domains can no
from between the precipitates and ends up oriented along tHenger be predicted by this criterion. The intrinsic crystallo-
negative diagonal, there is a corresponding decrease in tfaphic symmetries of the system compete now with the ex-
value of R, and a corresponding increase Ry. In other ternal strains in the determination of both the shapes and the
words, the system displays inverse coarsening beh&vior. orientation of the precipitates. These can go all the way from
Finally, we have examined the issue of dynamic scalinghe configurations predicted by the stress-free selection cri-
of the structure factor. Since under the influence of the exterion at small stresses, to lamellar and cylindrical configu-
ternally imposed stresses each of the directions growkations in three dimensiontripes in two dimensionsat
(shrinkg at a different rate, some care must be taken inhigh stresses. Between these two extremes, there are new

implementing the scaling. As the most general case, we exéhapesi.e., rhomboidal and elliptical shapes in two dimen-
amined siong and a continuous spectrum of orientation angles. The

stripes or lamellas created when the precipitates run together
S(IZ,t)=Rx(t)Ry(t)Rz(t)F(xl,xz,xg), at large stresses form quasiordered configurations broken up
by defects that evolve very slowly in time. The external
stresses have the largest effect when the precipitates form the
p : ‘majority phase, and considerably less effect when they are in
duces to the usual casgk,t) =R(t)"F(x) when theRi's are  he minority. The external stresses in competition with the
equal. The main results are as follows. In cases where thgystallographic symmetries can also induce large-scale rear-
precipitate forms the minority phase, and the influence of th?angement of the domain morphology by inducing massive
externally imposed stresses are relatively small, good scalingyjitting of the domains. As expected, the highly anisotropic
similar to that reported in SOSR | is obtain€dHowever,  natre of the domain morphology is reflected in the structure

there appears to be no dynamic scaling in the other situgycior of the system, which generally does not display late-
tions. This is particularly true for cases when the domaing;me scaling.

undergo large-scale shape transformations to form lamellas
or cylinders?® ACKNOWLEDGMENTS
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