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Three-dimensional ordering in weakly coupled antiferromagnetic ladders and chains

Stefan Wessel and Stephan Haas
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484

~Received 15 February 2000!

A theoretical description is presented for low-temperature magnetic-field-induced three-dimensional~3D!
ordering transitions in strongly anisotropic quantum antiferromagnets, consisting of weakly coupled antiferro-
magnetic spin-1/2 chains and ladders. First, effective continuum field theories are derived for the one-
dimensional subsystems. Then the Luttinger parameters, which determine the low-temperature susceptibilities
of the chains and ladders, are calculated from the Bethe ansatz solution for these effective models. The 3D
ordering transition line is obtained using a random-phase approximation for the weak interchain~interladder!
coupling. Finally, considering a Ginzburg criterion, the fluctuation corrections to this approach are shown to be
small. The nature of the 3D ordered phase resembles a Bose condensate of integer-spin magnons. It is proposed
that for systems with higher spin degrees of freedom, e.g.,N-leg spin-1/2 ladders, multicomponent condensates
can occur at high magnetic fields.
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I. INTRODUCTION

Compounds of weakly coupled spin chains typically ha
an ordering transition from a high-temperature quasi-o
dimensional ~1D! phase to a low-temperature thre
dimensional~3D! phase at a critical temperature that depen
on the interchain coupling constant.1 This transition can be
suppressed if the individual chains are gapped spin liqu
as it is the case for Haldane or spin-Peierls systems, or
compounds with an Ising anisotropy in the intrachain e
change coupling. In these systems, the low-energy spec
consists of a singlet ground state with an excitation gap
the first triplet. This gap can be reduced and eventually ov
come by turning on and increasing an external magn
field. Once the spin gap is destroyed, the residual interch
coupling can lead to 3D ordering at low temperatures.2–4 In
this paper, we discuss a quantitative theoretical approac
study such magnetic-field-induced transitions, based on
exact field-theoretical description of the low-energy intra
hain dynamics that drives the transition, combined with
mean-field theory~including quantum fluctuation correc
tions! for the interchain exchange.

Our results are in good agreement with recent exp
ments on the compounds TlCuCl3 ~Ref. 5! and
Cu2(C2H12N2)2Cl4,6 where transition lineshc(T) were ex-
tracted from an analysis of the temperature-dependent m
netization and from NMR data for the 1/T1 relaxation. Typi-
cally, the spin gap in most of the ladder compounds kno
to date is too large to be overcome by presently availa
magnetic fields. However, these particular materials h
small spin gaps of the order 10–20 K, which makes
interesting gapless regime experimentally accessible. It
recently been pointed out that Cu2(C2H12N2)2Cl4 may better
be modeled as an ensemble of weakly coupled dimers
as an antiferromagnetic two-leg ladder.7 Whatever the pre-
cise structure may turn out to be, a magnetic-field-indu
ordering transition can occur in all anisotropic spin syste
with a singlet-triplet excitation gap, including weak
coupled Ising-like chains, spin-Peierls chains, and ensem
of spin dimers. Other possible candidate materials with s
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gaps include KCuCl3,8 CuGeO3,9 a8-NaV2O5,10 and the ho-
mologous series of cuprates SrnCun11O2n11.11

The exact nature of these 3D ordered phases is curre
under debate.4,5 In the case of weakly coupled gapless cha
that undergo a 3D ordering transition even in the absenc
a magnetic field, long-range antiferromagnetic order is fou
below the transition temperature.1 For the spin-gapped com
pounds TlCuCl3 and Cu2(C2H12N2)2Cl4 the field-induced
low-temperature transition resembles that of a Bose-Eins
condensation of integer-spin magnons. The critical expon
for the transition line of such a condensate, i.e.,hc}Ta with
a53/2, is rather close to the experimentally observ
behavior.4,5

In this work, a numerical solution of the Bethe ansatz
used to determine the susceptibilities of the one-dimensio
subsystems, combined with a generalized random-phase
proximation~RPA! approach for the low-temperature 3D o
dering transition. In the following section, we illustrate th
approach by discussing the case of weakly coupled Heis
berg chains with an easy-axis anisotropy (XXZ model!. Sub-
sequently, corrections due to fluctuation effects are de
mined, which turn out to be rather small. Then the case
weakly coupled two-leg ladders and dimerized chains in
magnetic field is discussed. These results are most perti
to recent and forthcoming experiments. Finally, we exam
weakly coupledN-leg ladders withN.2. In this case, mul-
tiple ordering transitions can occur, which may partia
overlap. In our conclusions, we propose that these over
ping high-field phases are multicomponent Bose-Einst
condensates, consisting of magnons with different inte
spin.

II. SPIN-1Õ2 HEISENBERG CHAINS

Let us consider a crystal of weakly coupled antiferroma
netic Heisenberg chains in a magnetic field, described by
Hamiltonian

H1D5(
i

@J~Si
xSi 11

x 1Si
ySi 11

y 1DSi
zSi 11

z !2hSi
z#, ~1!
316 ©2000 The American Physical Society
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whereJ.0 is an antiferromagnetic exchange constant wit
the chains,D is an easy-axis anisotropy, andh is an applied
external magnetic field. The chains are weakly coupled
H85J8(^ i , j &Si•Sj with 0,J8!J.

The phase diagram ofH1D can be obtained from a nu
merical solution of the Bethe ansatz equations,12,13 and is
shown in Fig. 1. At zero magnetic field, the 1D subsystem
in the ferromagnetic Ising regime forD,21. In the interval
21,D,1, it is in the gaplessXY regime, whereas forD
.1, it is in the massive Ising antiferromagnetic regime. T
magnetization of the system becomes nonzero if the m
netic fieldh exceeds a minimal field given byhmin50 for
21,D,1. In the gapped case (D5coshg>1):

hmin5J
2p sinhg

g (
n50

`
1

cosh
~2n11!p2

2g

. ~2!

It saturates at a maximum critical field given byhmax5(1
1D)J.

The interchain couplingJ8 is assumed to be small com
pared to the intrachain couplingJ. Therefore, 3D long-range
antiferromagnetic order only occurs in the gapless region
order to calculate the magnetic response of the chains an
3D ordering temperature, one needs to know the lo
temperature behavior of the susceptibility at finite magne
fields. This can be determined analytically by mappingH1D

onto an effective continuum field theory that describes
low-lying excitations ofH1D in the gapless incommensura
regime. ForD close to zero, the long-wavelength limit o
H1D can be studied via bosonization techniques, leading
c51 conformal field theory~CFT!. The effective parameter
of this CFT for thewhole rangeof D can be determined by
comparing the thermodynamical properties of this CFT w
the numerical Bethe ansatz solution to the original Ham
tonian ~1!.

In the following, we discuss the technical aspects of t
procedure. The Hamiltonian~1! can be mapped onto a mod
of interacting spinless fermions via a Wigner-Jord
transformation14

FIG. 1. Phase diagram of a spin-1/2 Heisenberg chain with
easy-axis anisotropyD, in a magnetic fieldh. FM, ferromagnetic
regime; incommensurate, partially polarized gapless regime; A
antiferromagnetic regime.
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Si
15Si

x1 iSi
y5ai

†expS ip(
j 51

i 21

aj
†aj D , Si

z5ai
†ai2

1

2
.

~3!

Using the fact thatH1D(J,D,h) is related to H1D(2J,
2D,h) via a unitarity transformation, this mapping gives

HF
1D52J (

kPBZ
ak

†ak cosk1S D1
h

JDak
†ak

1
DJ

N (
k1 , . . . ,k4

d~k11k32k22k4!

3ei (k12k4)ak1

† ak2
ak3

† ak4
. ~4!

The magnetization of the chain,m, is related to the spin-
less fermion densityn by m5n21/2. Hence, the lower criti-
cal field hc1

e is determined by the condition that the band
spinless fermions starts to fill up. Since in this low-dens
limit the interactions between the fermions are negligib
one easily findshc1

e 52(11D)Je . From a particle-hole
transformation ak

†→bk , the upper critical fieldhc2
e 5(1

1D)Je ~high-density limit for the spinless fermions! is ob-
tained analogously.

In the gapless region~i.e., hc1<h<hc2), we bosonize
H1D and obtain ac51 CFT of a compactified scalar field,

HB5E dxS puK

2
P21

u

2pK
~]xf!2D , ~5!

wheref(x,t) is the bosonic field andP(x,t) is its conjugate
momentum. The Luttinger parametersK andu depend on the
magnetic field and the exchange interaction of the origi
Hamiltonian, and still need to be determined. One can in
pret HB as describing a compactified boson with radius

R5
1

A4pK
. ~6!

We will now discuss the equations to determineK andu,
which can be derived from the Bethe ansatz forH1D ~see,
e.g., Ref. 15!. One finds a system of integral equations13,16

that need to be solved numerically. The dressed ene
ed(h) satisfies the integral equation

ed~h!5e0~h!2
1

2pE2L

L

K~h2h8!ed~h8!dh8, ~7!

where the kernelK(h) and the bare energye0(h) are given
in Table I.17 A similar table has been given by Cabraet al.13

The cutoff parameterL is determined by the condition

ed~L!50. ~8!

OnceL has been obtained, the dressed charge functionj(h)
can be calculated from the integral equation

j~h!512
1

2pE2L

L

K~h2h8!j~h8!dh8, ~9!

directly giving the Luttinger exponentK:

n

,
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TABLE I. Functions used in the integral equations for theXXZ chain.

D K(h) e0(h) g(h)

cosu5D,1
tanu

tan2u cosh2
h

2
1sinh2

h

2

h

J
1

D221

coshh2D

cot
u

2

cosh2
h

2
1cot2

u

2
sinh2

h

2

D51 4

h214

h

J
2

2

h211

2

h211

coshg5D.1
tanhg

tanh2 g cos2
h

2
1sin2

h

2

h

J
1

D221

cosh2D

coth
g

2

cos2
h

2
1coth2

g

2
sin2

h

2

a

w
ita
,

h

ro

m
a

us
he
e
th
K5j~L!2. ~10!

Simultaneously, the integral equations for the phase-sp
densitiess(h) andr(h) are solved self-consistently:

s~h!5g~h!2
1

2pE2L

L

K~h2h8!s~h8!dh8, ~11!

r~h!5
1

2p

dK~h2L!

dh
2

1

2pE2L

L

K~h2h8!r~h8!dh8.

~12!

Then the spinon velocityu and the magnetizationm are
given by

u

J
5

e

2ps~L!
, ~13!

m5122E
2L

L

s~h!dh, ~14!

where

e5
de0~L!

dL
1E

2L

L

e0~h!r~h!dh. ~15!

In Fig. 2, the magnetization curvesm(h) for an XY-like,
an isotropic, and an Ising-like Heisenberg chain are sho
along with the upper and lower bound of the spinon exc
tion spectrum. The casesD50.5 andD51.0 are gapless
whereas forD52.0, the zero-field spin gap@Fig. 3~f!# leads
to a plateau inm(h) @Fig. 3~c!#. Furthermore, the bandwidt
of the spinon spectrum increases withD, reflecting the renor-
malization of the spinon velocity due to backscattering p
cesses.

From the exact numerical solution of the continuu
model, the spin-spin correlation functions of the origin
model~1! can be derived. In turn, the finite-temperature s
ceptibilities are given via a Fourier transformation of t
correlation functions.18 The low-temperature behavior of th
susceptibility in the gapless regime is determined by
dominant low-frequency spinon modes at momentumqz
5p :4,19
ce

n,
-

-

l
-

e

x12
1D ~qz ,v50;T!5F~D!F sinS p

4K D
u S 2pT

u D 1/2K22

3B2S 1

8K
,12

1

4K D2
p

u~121/4K !
G , ~16!

whereB(x,y) is Euler’s beta function, andF(D) is a pref-
actor that strongly depends on the Ising anisotropy:20

F~D!5
1

2~12b2!2F GS b2

222b2D
ApGS 1

222b2D G
2

~17!

FIG. 2. ~a!–~c!: Magnetization curvesm(h) of an antiferromag-
netic spin-1/2XXZ chain. ~a! XY regime with Ising anisotropyD
50.5, ~b! isotropic Heisenberg point withD51.0, and~c! Ising
regime withD52.0. The graphs in~d!–~f! show the corresponding
lower and upper bounds of the spinon excitation spectrum,v(k).
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3expH 2E
0

`dt

t S sinh~b2t !

sinht cosh@~12b2!t#
2b2e22tD J ,

~18!

where cos(pb2)5D. Here, it has been assumed that t
chains are parallel to thez axis of the crystal. Furthermore
we have neglected higher-order logarithmic corrections
arise in a more rigorous treatment of the backscattering
cesses.

The low-temperature transition line to 3D ordering due
the small but finite inter-chain couplingJ8 can be calculated
within an RPA approximation. The corresponding 3D su
ceptibility is then given by1,21

x3D~q,v50;T!5
x1D~qz ,v50;T!

11J8 f ~q!x1D~qz ,v50;T!
, ~19!

where f (q) is the crystal form factor, which we here set
f (q)521 for simplicity ~simple cubic lattice!. The 3D or-
dering transition is driven by the low-temperature divergen
of x1D(qz ,v50;T), where the transition temperature
given by the locus of the divergence ofx3D(q,v50;T). The
resulting magnetic-field dependence ofTc is shown in Fig. 3
for the various regimes ofD. The field dependence of th
onset of the crossover from 1D to 3D is shown by the das
line, which is obtained from the fluctuation formula derive
in the next section.

In this section, we have calculated the Luttinger para
eters (K andu) of the effective CFT~5! for the XXZ chain
from a numerical solution of the Bethe ansatz equati
within the whole range ofD. However, the particular case o
the XY limit ( D50) can be treatedexactlyvia bosonization
~after linearization of the dispersion law around the Fer

FIG. 3. 3D ordering temperature~solid line! as a function of the
applied magnetic field in a cubic crystal of weakly coupled antif
romagnetic spin-1/2XXZ chains.~a! XY regime withD50.5, ~b!
Heisenberg point (D51.0), and~c! Ising regime withD52.0. The
dashed lines indicate the onset of the fluctuation region be
which the 3D magnetic correlation length becomes comparabl
the interchain spacing. For this plot, we have chosenJ8/J51/16.
at
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-

e
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s
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points!, since the corresponding fermionic theory is free
this case. In this limit, one finds the following values foru
andK:

u

J
5vF5A12S h

JD 2

, K51. ~20!

In this limit, the 3D transition temperature is

Tc5JvF
1/3C1F J

J8
1C2

1

vF
G22/3

, ~21!

where C1 and C2 are given numerical constants. At th
lower critical field hc1521 the behavior ofTc is thusTc

}Ah2hc1.22 From the numerical results, a similar scalin
behavior at the edge of the gapless phase is obtained
nonzero values ofD.

III. GINZBURG CRITERION

To determine the quality of the RPA theory described
the previous section, a Ginzburg criterion will now be us
to examine the widthDTc of the critical region. This can be
done within the spinless fermion picture of the coupl
chains, for which a Landau-Ginzburg functional can be d
rived. Denoting the localized spins bySim , where the index
m labels the 1D chains and the indexi the position along
these chains, the Hamiltonian for the entire 3D system
given by

H3D5(
m

Hm
1D~J,D,h!1J8 (

i ,^m,n&
Sim•Sin . ~22!

Introducing spinless-fermion creation operators on e
chain, this Hamiltonian can be mapped onto a model
weakly coupled metallic chains. Neglecting the intercha
hopping ~assuming an Ising-like coupling between th
chains!, the resulting Hamiltonian is

HF
3D52J(

k,m
akm

† akm cosk1S D1
h

J
2

J8

J Dakm
† akm

1
JD

N (
k1 , . . . ,k4 ,m

d~k11k32k22k4!

3ei (k12k4)ak1m
† ak2mak3m

† ak4m2
J8

N (
k1 , . . . ,k4 ,^m,n&

3d~k11k32k22k4!ak1m
† ak2mak3n

† ak4n ~23!

Note that the interchain coupling renormalizes the b
chemical potential. After linearization of the dispersio
around the Fermi points, one finds a generalized Land
Ginzburg functional, describing the 3D ordering transition
the original model in terms of a density-wave-type pha
transition within the spinless fermion picture:

F@C~x,y,z!#5
1

d'
2 E d3x@AuCu21BuCu41C'u¹'Cu2

1Ciu¹ iCu2#. ~24!

-

w
to



p
icr

io

th
o
e
t

gt

y:

rg

n.

.

ib-
ms
etic

de-

he

ept
of
The
let

r a

the
ys-
s

320 PRB 62STEFAN WESSEL AND STEPHAN HAAS
Here d' denotes the interchain distance, and the other
rameters can be expressed in terms of those of the m
scopic model. Analogous to Ref. 23, they are

A5
12Jx1D~qz ,v50;T!

x1D~qz ,v50;T!
, ~25!

B5
v
2

7z~3!

8p

g2

T2
J3x1D~qz ,v50;T!, ~26!

C'5
1

2
Jd'

2 , ~27!

Ci5
g

2x1D~qz ,v50;T!
S v
pTD 2

, ~28!

wherev is the Fermi velocity andg5221/2K is the scaling
exponent of the singular part ofx1D(qz ,v50;T) for T→0.
If T is close toTc it follows that

A5A8S T

Tc
21D , ~29!

with A85Jg. In the Gaussian approximation,24 the correla-
tion length parallel to the chains is then given by

j i5j0iS T

Tc
21D 21/2

, ~30!

where the longitudinal coherence lengthj0i is defined as

j0i5ACi

A8
. ~31!

In the direction perpendicular to the chains, the correlat
length is given by a similar expression, with

j0'5AC'

A8
. ~32!

Before discussing the Ginzburg criterion, let us derive
crossover condition that has already been mentioned ab
There are different criteria for the definition of a crossov
condition. Here the onset of the crossover is defined as
temperature at which the perpendicular correlation len
equals the distance between the chains, i.e.,

j'5d' . ~33!

This gives the following condition for the 1D susceptibilit

J8x1D~qz ,v50;T!5
2

3
. ~34!

The width of the critical region according to the Ginzbu
criterion25 is given by

DTc

Tc
5

1

32~pDCj0'
2 j0i!

2
, ~35!

where
a-
o-

n

e
ve.
r
he
h

DC5
~A8!2

2d'
2 BTc

~36!

is the specific heat jump per unit volume at the transitio
Using the above equations, one finds

DTc

Tc
'0.01

@Jx1D~qz ,v50;Tc!#
3

g2
. ~37!

The width of the critical region is thus of the order of 1%

IV. TWO-LEG LADDERS AND DIMERIZED CHAINS

In this section, we derive effective Hamiltonians, descr
ing the low-energy spectrum of various gapped spin syste
that are driven into a gapless phase by an external magn
field. First, consider a general two-leg ladder system,
scribed by the Hamiltonian

H5(
i , j

Ji j Si , j•Si 11,j1J'(
i

Si ,1•Si ,21J128 (
i

Si ,1•Si 11,2

1J218 (
i

Si ,2•Si 11,12h(
i , j

Si , j
z ,

where

Ji j 55
Ja if i even,j 51

Jb if i odd, j 51

Jc if i even,j 52

Jd if i odd, j 52 .

~38!

The various couplings are shown in Fig. 4. To derive t
effective Hamiltonian in the gapless regime ofH, a pertur-
bation expansion in the off-rung couplingsJi j andJi j8 is per-
formed.

Consider first the case where all couplings vanish, exc
for J' . If no magnetic field is applied, the ground state
the ladder consists of independent singlets at each rung.
Hilbert-space of a single rung is spanned by the sing
u0,0&5(u↑↓&2u↓↑&)/A2, and the tripletu1,1&5u↑↑&, u1,0&
5(u↑↓&1u↓↑&)/A2, u1,21&5u↓↓&. The triplet excitation
above the ground state isDE51J' for zero magnetic field.
If a magnetic field is applied, the triplet states split, and fo
critical field hcrit5DE, the statesu0,0& and u1,1& become
degenerate. Upon increasing the magnetic field further,
triplet stateu1,1& becomes the new ground state of the s
tem. Thus at the critical fieldhcrit the magnetization change
discontinuously from zero to saturation.

FIG. 4. The two-leg ladder with various couplings.
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Now, consider the ladder with nonzero but small inte
rung couplings. The discontinuous transition forJ'50 is
now broaded between the magnetic fieldshc1,hcrit,hc2,
and this gapless regime is described by an effective spin
Hamiltonian. To derive the corresponding effective theo
for this regime, one introduces effective spin-1/2 operat
S̃i

a acting on the statesu⇑&5u1,1& and u⇓&5u0,0& for each
rung. To first order in the small couplings, one then finds
effective Hamiltonian,

He f f5(
i

Ji
e f f~S̃i

xS̃i 11
x 1S̃i

yS̃i 11
y 1D i

e f fS̃i
zS̃i 11

z !2(
i

hi
e f fS̃i

z,

~39!

where

Ji
e f f5

1

2
~Ji11Ji22J128 2J218 !, ~40!

D i
e f f5

1

2

Ji11Ji21J128 1J218

Ji11Ji22J128 2J218
, ~41!

hi
e f f5h2J'2

1

4
~Ji11Ji21J128 1J218 !. ~42!

The parameters of the effective Hamiltonian become site
dependent in certain cases of interest. For example, if we
Ji j 5Ji , we recover the known result for the strong
coupled two-leg ladder.26 For Ja5Jd5Ji5(12d)J and Jb
5Jc50, we obtain an effective description of a single cha
with dimerizationd close to one, if we setJ'5(11d)J. The
original model in this case is given by~see Fig. 5!:

HD5J(
i

@11d~21! i #Si•Si 111J8(
i

Si•Si 122h(
i

Si
z ,

~43!

whereJ85J128 5J218 is a next-nearest-neighbor coupling co
stant. Note, that the isotropic chain (De f f51) is recovered
for

J8

J
5

12d

6
. ~44!

In analogy to our discussion of theXXZ chain, the critical
fieldshc1 andhc2 can be determined for the effective Ham
tonian, i.e., hc1

e f f52(11De f f)Je f f and hc2
e f f5(1

1De f f)Je f f . Expressed in terms of the physical variables
Eq. ~38!, we find for the two-leg ladder:

hc15J'2Ji1
J128 1J218

2
, ~45!

hc25J'12Ji , ~46!

FIG. 5. The dimerized chain.
-

/2
y
s

n

-
et

f

and for the single dimerized chain:

hc15
113d

2
J1J8, ~47!

hc252J. ~48!

Having derived these effective Hamiltonians, th
magnetic-field driven 3D ordering temperature can be st
ied for the effective models, using the results of the previo
sections. The behavior of the transition temperature is sim
to Fig. 3~c!, mainly depending on the easy-axis anisotro
De f f of the effective model.

V. N-LEG LADDERS

Let us now consider the case ofN-leg spin-1/2 Heisen-
berg ladders. If the coupling along the rungs is denoted
J' , and the coupling along the legs asJi , the Hamiltonian is

HN5Ji(↔ Si ,t•Sj ,t1J'(l Si ,t•Si ,t8 ,2h(
i ,t

Si ,t
z ,

~49!

wherei and j enumerate the rungs,t andt 8 label the legs,
and the sum marked by↔ (l) runs over nearest neighbor
along legs~rungs!.

We first discuss the occurrence of gapless phases for t
systems. Due to the alternating nature of the ground state
N-leg ladder systems at zero field, which show a spin gap
evenN and are gapless for oddN, one has to consider thes
cases separately. In the limit of large rung coupling (J'

@Ji), one can consider first anN-site open Heisenberg chai
in a magnetic field, and then treat the coupling along the
as a perturbation. In the case of evenN, there will beN/2
changes in the nature of the ground state upon increasing
magnetic field. At each change, a new gapless phase o
up. This can be seen as follows: the spectrum contains m
tiplets of multiplicities m51,3,5, . . . ,N11. Let Em(0) be
the energy of the lowestm-plet at zero magnetic field. The
there is a gapless phase at a field

hi5E2i 11~0!2E2i 21~0!, i 51,•••,
N

2
. ~50!

In the case of oddN, the ground state of the system witho
a magnetic field is a doublet, and, therefore, the first gap
phase occurs already ath150. Since the spectrum contain
also multiplets withm54,6,•••,N11, there are additiona
gapless phases at fields

hi5E2i~0!2E2i 22~0!, i 51, . . . ,
N11

2
. ~51!

The values of the magnetic field where the gapless pha
occur can, therefore, be obtained by a numerical calcula
of the zero-field spectrum. In each gapless phase, there
two degenerate states, e.g.,N53, h5h2 :

u⇑&5u↑↑↑&, u⇓&5
1

A6
~ u↑↓↓&22u↓↑↓&1u↓↓↑&).
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For nonzero values ofJi , these two excitations spread ov
the ladder in the vicinity of the critical field, thus broadenin
the gapless phase. To first order inJi , the ladder system ca
then be described by an effective spin-1/2XXZ Heisenberg
model in an effective magnetic fieldhe f f , after defining ef-
fective spin operators between the statesu⇑& and u⇓& in the
same matter as for the case of the two-leg ladder. Consi
ing two suchN-site chains, coupled to each other by a co
stantJi , the energy spectrum of the corresponding Ham
tonian is calculated and compared to the spectrum of
effective model. One can thus determine the values for
parameters of the effective model (Je f f ,De f f ,he f f), where
the effective magnetic field ishe f f5h2hc(0)J'2chJi . The
obtained values are given in Table II.

Using these effective model descriptions of theN-leg lad-
der in the gapless phases, we apply the RPA approach
scribed above to a crystal of weakly coupledN-leg ladders.
We now observe a cascade ofN/2 @(N11)/2] 3D ordering
transitions for quasi-1D ladder subsystems with an e
~odd! number of legs, as shown in Fig. 6. In the case
weakly coupled even-leg ladders, the first transition is driv
by the formation of a spin-density wave~SDW! of triplets
along the ladder direction, with a ground-state wave vec
that is proportional to the magnetic fieldh.hc1. The follow-
ing transition~for N.2) is driven by a SDW of quintuplets
etc. Depending on the ratioJi /J' , these phases of differen
multiplet polarization may overlap, and mixed regimes c
occur. The resulting 3D ordering temperature does not v
ish completely in this case, but has minima at particular m
netic fields where the number of the lower multiplet exci
tions equals the number of the next-higher multip
excitations. The dependence of this overlap on the ratio
the coupling constants is shown in Fig. 7, where the d
stripes show the phases of 3D order atT50 for the cases

TABLE II. Parameters of the effective low-energy model for t
gapless regions ofN-leg spin-1/2 ladders in a magnetic fieldh. The
effective magnetic field is given byhe f f5h2hc(0)J'2chJi .

N i Je f f /J' De f f hc(0) ch

2 1 1 0.5 1 0.5
3 1 1 1 0 0
3 2 1 0.5 1.5 0.5
4 1 1.0750 0.3489 0.6589 0.375
4 2 1 0.3750 1.7071 0.625
5 1 1.0169 1 0 0
5 2 1.0961 0.3789 1.1189 0.2958
5 3 1 0.3 1.8090 0.7
6 1 1.1114 0.3163 0.4916 0.3515
6 2 1.1348 0.3011 1.3860 0.3985
6 3 1 0.25 1.8660 0.75
7 1 1.0344 1 0 0
7 2 1.1415 0.3407 0.8848 0.2166
7 3 1.1663 0.2381 1.5504 0.4891
7 4 1 0.2143 1.9010 0.7857
8 1 1.1364 0.3020 0.3926 0.3432
8 2 1.1882 0.2743 1.1506 0.2888
8 3 1.1917 0.1962 1.6577 0.5555
8 4 1 0.1875 1.9239 0.8125
r-
-
-
e
e

e-

n
f
n

r

n
n-
-

-
t
of
k

N53, 4, 7, and 8. These diagrams are in good agreem
with results obtained by numerical finite clust
diagonalizations.13 Odd-leg ladders also have a sequence
ordering transitions, with the only difference that the onse
the first transition occurs already ath50 @Figs. 6~b! and
6~c!#.

VI. CONCLUSIONS

We have presented a theoretical approach to magn
field induced 3D ordering transitions in strongly anisotrop
antiferromagnetically correlated spin-1/2 compounds. Th
systems consist of weakly coupled chains or ladders
have singlet ground states with finite excitation gaps to

FIG. 6. 3D ordering transition temperatures ofN-leg spin-1/2
Heisenberg ladders as a function of an external magnetic field. C
cades of transitions are observed forN.2, driven by 1D SDW’s of
spin-S multiplets on the ladders. For this plot, we have chosen
anisotropy ratio Ji /J'51/5 and residual interladder couplin
J8/Ji51/16.

FIG. 7. Schematic phase diagrams of weakly coupledN-leg lad-
ders in a magnetic fieldh at T50. The shaded areas indicate 3
ordered phases, and shown is the dependence on the ratio o
ladder couplingsJ' /Ji .
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lowest triplet states. Because the interchain couplings
weak compared to the intrachain couplings, the 1D s
systems are effectively independent. By applying an exte
magnetic field, the spin gap in the subsystems can be o
come, and they become partially polarized. In this inco
mensurate regime, even infinitesimal interchain coupl
leads to 3D long-range ordering at low temperatures.

There are only a few known realizations of Bose-Einst
condensation~BEC!. The two most prominent examples a
ultracooled dilute ensembles of trapped atoms and the su
fluid transition of helium 4. In principle, BEC can occur fo
any bosonic many-body system in a confining potentia
low temperatures. Therefore, magnetic compounds w
integer-spin excitations~e.g., spin-1 magnons! present a
promising class of candidate materials. However, indicati
for BEC in such materials have not been found until tw
recent experiments on TlCuCl3 and Cu2(C2H12N2)2Cl4.
These compounds are strongly anisotropic, and have a fi
spin gapD between their singlet ground state and the fi
triplet excitation. Hence, their magnetization is exponentia
activated at small temperatures and zero magnetic field.
applied magnetic field can decrease the singlet-triplet exc
tion gaps of the 1D subsystems, and eventually drive th
into a partially polarized, gapless regime if the field excee
a critical strength. Due to residual magnetic couplings
ic
k

a,

on
.

ys

s.
re
-
al
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-
g

n
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h

s
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n

a-
m
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tween the subsystems, a low-temperature 1D to 3D transi
occurs. The resulting 3D ordering may be viewed as a B
of spin-1 magnons, accurately predicting the temperature
pendence of the critical field@hBE(T)2D}T2/3# and the
magnetization curve.4,5

Let us now consider multicomponent phases, as they
cur in spin ladders with more than two legs. In a spin ladd
a spin-1 magnon excitation essentially corresponds to
formation of a spin triplet on a rung, a spin-2 magnon c
responds to a quintuplet, etc. At intermediate fields~larger
than hc1), these excitations can coexist, depending on
choice of parameters. The resulting low-temperature cond
sate may then contain multiple components, as it is the c
at high fields in Figs. 6~c! and 6~d! ~dashed regions!. These
phases may be viewed as multicomponent Bose-Eins
condensates, consisting of magnon excitations with differ
integerspins. It is, thus, of interest to conduct high magne
field experiments on appropriate candidate materials to
termine whether such phases exist in physical systems.
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