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Three-dimensional ordering in weakly coupled antiferromagnetic ladders and chains
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A theoretical description is presented for low-temperature magnetic-field-induced three-dime(Binal
ordering transitions in strongly anisotropic quantum antiferromagnets, consisting of weakly coupled antiferro-
magnetic spin-1/2 chains and ladders. First, effective continuum field theories are derived for the one-
dimensional subsystems. Then the Luttinger parameters, which determine the low-temperature susceptibilities
of the chains and ladders, are calculated from the Bethe ansatz solution for these effective models. The 3D
ordering transition line is obtained using a random-phase approximation for the weak inténstealaddey
coupling. Finally, considering a Ginzburg criterion, the fluctuation corrections to this approach are shown to be
small. The nature of the 3D ordered phase resembles a Bose condensate of integer-spin magnons. It is proposed
that for systems with higher spin degrees of freedom, Bi4pg spin-1/2 ladders, multicomponent condensates
can occur at high magnetic fields.

. INTRODUCTION gaps include KCuG[® CuGeQ,® a’-NaV,0s,'° and the ho-

: 11
Compounds of weakly coupled spin chains typically haveT0l090us series of cuprates, Sty 10an+.1. .
b y b P ypicaly The exact nature of these 3D ordered phases is currently

an ordering transition from a high-temperature quasi-one- .
dimensiona?l (1ID) phase to aglow-tepmperaturg three- under debaté® In the case of weakly coupled gapless chains

dimensional3D) phase at a critical temperature that depend that undergo a 3D ordering transition even in the absence of
. P . 'P g PENdS, magnetic field, long-range antiferromagnetic order is found
on the interchain coupling constanThis transition can be

. T . <l B pelow the transition temperatutd=or the spin-gapped com-
sup_pr_essed if the individual chams_ are gapped spin “qu'dspounds TICuG) and Cu(C,H.N,),Cl, the field-induced
as it is the case for Haldane or spin-Peierls systems, or fQp,_temperature transition resembles that of a Bose-Einstein
compounds with an Ising anisotropy in the intrachain ex-condensation of integer-spin magnons. The critical exponent
change coupling. In these systems, the low-energy Spectrufg; the transition line of such a condensate, g T* with
consists of a singlet ground state with an excitation gap tQ,=3/2, is rather close to the experimentally observed
the first triplet. This gap can be reduced and eventually overpehavio*®
come by turning on and increasing an external magnetic |n this work, a numerical solution of the Bethe ansatz is
field. Once the spin gap is destroyed, the residual interchainsed to determine the susceptibilities of the one-dimensional
coupling can lead to 3D ordering at low temperatfrédn  subsystems, combined with a generalized random-phase ap-
this paper, we discuss a quantitative theoretical approach feroximation(RPA) approach for the low-temperature 3D or-
study such magnetic-field-induced transitions, based on agdering transition. In the following section, we illustrate this
exact field-theoretical description of the low-energy intrac-approach by discussing the case of weakly coupled Heisen-
hain dynamics that drives the transition, combined with aberg chains with an easy-axis anisotrop§X{Z mode). Sub-
mean-field theory(including quantum fluctuation correc- sequently, corrections due to fluctuation effects are deter-
tions) for the interchain exchange. mined, which turn out to be rather small. Then the case of
Our results are in good agreement with recent experiweakly coupled two-leg ladders and dimerized chains in a
ments on the compounds TICuCl(Ref. 5 and magnetic field is discussed. These results are most pertinent
Cuy(C,H1,N,),Cl, % where transition linesi,(T) were ex-  to recent and forthcoming experiments. Finally, we examine
tracted from an analysis of the temperature-dependent magreakly coupled\-leg ladders withN>2. In this case, mul-
netization and from NMR data for theTly relaxation. Typi- tiple ordering transitions can occur, which may partially
cally, the spin gap in most of the ladder compounds knowroverlap. In our conclusions, we propose that these overlap-
to date is too large to be overcome by presently availablging high-field phases are multicomponent Bose-Einstein
magnetic fields. However, these particular materials haveondensates, consisting of magnons with different integer
small spin gaps of the order 10-20 K, which makes thespin.
interesting gapless regime experimentally accessible. It has

recently been pointed out that &C;H1,N,),Cl, may better IIl. SPIN-1/2 HEISENBERG CHAINS
be modeled as an ensemble of weakly coupled dimers than _ _
as an antiferromagnetic two-leg laddewhatever the pre- Let us consider a crystal of weakly coupled antiferromag-

cise structure may turn out to be, a magnetic-field-inducedietic Heisenberg chains in a magnetic field, described by the
ordering transition can occur in all anisotropic spin systemgiamiltonian

with a singlet-triplet excitation gap, including weakly

coupled Ising-like chains, spin-Peierls chains, and ensembles 10 _ WSS+ Y+ A )—h 1

of spin dimers. Other possible candidate materials with spin Z [SS S ASSL)—hS] (D)
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FIG. 1. Phase diagram of a spin-1/2 Heisenberg chain with ar|1 Tf;e m'agngtlza.tlonbof tfle Chf};n' :’ relateg t? the sp!r)-
easy-axis anisotropy, in a magnetic fielcdh. FM, ferromagnetic ess fermion density by m=n-1/2. Hence, the lower criti-

regime; incommensurate, partially polarized gapless regime; AFmc@l field h&y is determined by the condition that the band of
antiferromagnetic regime. spinless fermions starts to fill up. Since in this low-density

limit the interactions between the fermions are negligible,

whereJ>0 is an antiferromagnetic exchange constant withinone easily findsh¢;=—(1+A)J.. From a particle-hole
the chainsA is an easy-axis anisotropy, ahds an applied ~transformationa/—b,, the upper critical fieldh%,=(1
external magnetic field. The chains are weakly coupled byt A)Je (high-density limit for the spinless fermionss ob-
H =32 ;yS- S with 0<J'<J. tained analogously.

The phase diagram dfi'® can be obtained from a nu-  In the gapless regiofii.e., hs;<h=<h.,), we bosonize
merical solution of the Bethe ansatz equatiths and is H'® and obtain a&=1 CFT of a compactified scalar field,
shown in Fig. 1. At zero magnetic field, the 1D subsystem is
in the ferromagnetic Ising regime far<—1. In the interval H :j dx
—1<A<1, it is in the gaplesXY regime, whereas foA B
>1, itis in the massive Ising antiferromagnetic regime. The . o o .
magnetization of the system becomes nonzero if the mag¥nere¢(x.t) is the bosonic field antll (x,t) is its conjugate
netic fieldh exceeds a minimal field given Hyy;,=0 for ~ momentum. The Luttinger parametétsndu depend on the
—1<A<1. In the gapped case\ coshy=1): magnetic field and _the exchange interaction of the onglnal

Hamiltonian, and still need to be determined. One can inter-

pretHg as describing a compactified boson with radius

7ruKHZ+ u ) .
- m(ﬁxdﬂ \ 5

27 sinhy < 1
>

)

Y A0 (2n+1)7*’ 1
cosh— R=——. ©)

It saturates at a maximum critical field given =(1 ) . .
+A)J. g Bhar=( We will now discuss the equations to determkeandu,

The interchain coupling’ is assumed to be small com- which can be derived from the Bethe ansatz Fof° (see,

pared to the intrachain coupling Therefore, 3D long-range €9~ Ref. 15 One finds a system of integral equatiGhs
antiferromagnetic order only occurs in the gapless region. ighat nee(_j 'FO be splved numerlpally. The dressed energy
order to calculate the magnetic response of the chains and tife(?7) satisfies the integral equation

3D ordering temperature, one needs to know the low- 1 (A

temperature behavior of the susceptibility at finite magnetic = _ _j — ' '

fields. This can be determined analytically by mappihty ol 7) = ol 7) 2m —AK(ﬂ 7)en)dy’ ()

onto an effective continuum field theory that describes the

low-lying excitations ofHP in the gapless incommensurate where the kernek () and the bare energg(7) are gl\llllaan

7 )
regime. ForA close to zero, the long-wavelength limit of in Table I.* A similar table_ has bee_n given by Catafag_
H1P can be studied via bosonization techniques, leading to a The cutoff parameteA is determined by the condition
c=1 conformal field theoryCFT). The effective parameters e(A)=0 ®)
of this CFT for thewhole rangeof A can be determined by d '

comparing the thermodynamical properties of this CFT withOnceA has been obtained, the dressed charge funéiiem
the numerical Bethe ansatz solution to the original Hamil-can be calculated from the integral equation

tonian(1).

In the following, we discuss the technical aspects of this 1 (A , o
procedure. The Hamiltoniafl) can be mapped onto a model &(n)=1- ZLAK(”_ n')é(n")d7y’, ©
of interacting spinless fermions via a Wigner-Jordan
transformatioti* directly giving the Luttinger exponeri:
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TABLE I. Functions used in the integral equations for ¥ Z chain.

A K(7) eo( ) 9(7)

tang 2

ani 2_ cot;

cosh=A<1 . ; h, a1 2
tarf 6 costf = +sinif = J  coshy—A 7 0 .7
2 2 cosif = +cof = sintP—=
2 2 2

A=1 4 h 2 2

7*+4 JopP+1 7*+1

cothz

tanhy 2 2

h A1

coshy=A>1 7 . 3 < §’7 r?y n2’7
— +sirf= cosy— K Y2
tanr?ycosz2+sm22 77 cos 5 +cott? S sin’ 3

K=¢&(A)2. (10) o

Simultaneously, the integral equations for the phase-space
densitieso(#) andp(#n) are solved self-consistently:

1 (A
o(m=0(n-5=| " K(=m)otardn’, @1

X+2(0z,0=0T)=F(4) .

u
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Sin(m) (277-'—)1/%2

X B? il 1—i)—L (16)
8K’ 4K u(l1-1/4K) |’
1 dK(p—A) 1 (A
pln)= 27 dy  2m _AK(”_ 7)p(n")dy’. whereB(x,y) is Euler's beta function, an8(A) is a pref-

(12 actor that strongly depends on the Ising anisotropy:
Then the spinon velocityy and the magnetizatiom are
given by ( 32 ) 2
r
1 2-2p°
u e
e F(A)= 17
3" 2m0(A)’ a3 2(1- B%)? 1
Jal
N 2-2p%
m=1-2[" o(man, 14
-A 0.5 ; 5 »
where 03 (a) 4l (d)
0.1 3+
deg(A) (A -0 A=05 | 27
e=—4x +J A60(77)P(7I)d7/- (19 03| I
- -0.5 0 :
In Fig. 2, the magnetization curvas(h) for an XY-like, ! 41 (e)
an isotropic, and an Ising-like Heisenberg chain are shown, g oA 2 |
along with the upper and lower bound of the spinon excita-  —0-1 827
tion spectrum. The cases=0.5 andA=1.0 are gapless, -03 | L
whereas forA = 2.0, the zero-field spin gaf-ig. 3(f)] leads -05 0
to a plateau iim(h) [Fig. 3(c)]. Furthermore, the bandwidth 0.3 4
of the spinon spectrum increases withreflecting the renor- 0.1 3¢
malization of the spinon velocity due to backscattering pro- 01 | 21
cesses. ~03 1L
From the exact numerical solution of the continuum ~05 ; 0 .
model, the spin-spin correlation functions of the original -4 -2 h(/)J 2 4 0 2 " 4 6

model(1) can be derived. In turn, the finite-temperature sus-
ceptibilities are given via a Fourier transformation of the

FIG. 2. (a)—(c): Magnetization curvem(h) of an antiferromag-

correlation functiong® The low-temperature behavior of the petic spin-1/2XXZ chain.(a) XY regime with Ising anisotropyA
susceptibility in the gapless regime is determined by the=0.5, (b) isotropic Heisenberg point witih=1.0, and(c) Ising

dominant low-frequency spinon modes at momentgm
.4,19
=a."’

regime withA =2.0. The graphs iid)—(f) show the corresponding
lower and upper bounds of the spinon excitation spectiwi(k).
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04 T points, since the corresponding fermionic theory is free in
0z |@ A=05 | this case. In this limit, one finds the following values for
T i andK:
02 : | :
o1 T ’ ! 1 (h)2 K=1 (20)
—=pp= —=], =1.
0.0 R EEEEEE J J
(b) A=1.0 S - .
03y i In this limit, the 3D transition temperature is
5
~ 02| T N
|_° 5 \ J —2/3
01 | m 1 T=JvfCy| —+Co—| (22)
J Uk
0.0 !
05 1(©) A=20 | where C; and C, are given numerical constants. At the
lower critical field h,;=—1 the behavior ofT. is thusT,
02| | «\h—h¢;.22 From the numerical results, a similar scaling
0.1} Vool behavior at the edge of the gapless phase is obtained for
oo b— U 1. nonzero values oA.
3-2-10 1 2 3
h/J lll. GINZBURG CRITERION
FIG. 3. 3D ordering temperatufsolid line) as a function of the To determine the quality of the RPA theory described in

applied m_agne_tic field in a cybic crystal of_weakl_y coupled antifer-ine previous section, a Ginzburg criterion will now be used
romagnetic sp|_n-1/2_(xz chains.(@ XY regime w_|thA_=0.5, B o examine the widtiA T, of the critical region. This can be
Heisenberg point4 =1.0), and(c) Ising regime withA=2.0. The 4516 within the spinless fermion picture of the coupled
dashed lines indicate the onset of the fluctuation region below., .« ¢5r \which a Landau-Ginzburg functional can be de-
which the 3D magnetic correlation length becomes comparable t?ived benotin the localized spins I8/, , where the index
the interchain spacing. For this plot, we have cho3gd=1/16. Iabels the ZI?D chai d fﬁ) indié h " |
s . ins and the indexhe position along
g ) 2) these chains, the Hamiltonian for the entire 3D system is
»dt sin t i
< ex _J ) hB _pre2| | given by
o t \sinht cosh(1-B?)t]

(18 3D_ 1D , )
| H % HP(3,4,h)+J il%y) S, S, (22
where cosf8%)=A. Here, it has been assumed that the
chains are parallel to theaxis of the crystal. Furthermore,  |ntroducing spinless-fermion creation operators on each

we have neglected higher-order logarithmic corrections thaghain, this Hamiltonian can be mapped onto a model of
arise in a more rigorous treatment of the backscattering prayeakly coupled metallic chains. Neglecting the interchain

cesses. o _ hopping (assuming an Ising-like coupling between the
The low-temperature transition line to 3D ordering due tochaing, the resulting Hamiltonian is

the small but finite inter-chain coupliny can be calculated

within an RPA approximation. The corresponding 3D sus- D + h J7\ |
ceptibility is then given by?* HE = _J% BBk COSKH| A+ 5= a8,
(g, 0=0;T JA
¥P(4,0=0iT)= —~ (qle T T, 2, Okitks—ko—ky)
1+3'f(q)x*°(q,, ©=0:T) ke kg
wheref(q) is the crystal form factor, which we here set to weiki—kdgl o al a — l
f(g)=—1 for simplicity (simple cubic lattice The 3D or- KypThonTkanThan N kl,..%,(ﬂ v)
dering transition is driven by the low-temperature divergence + N
of x!P(q,,w=0;T), where the transition temperature is X &(ky+kg—Ka—Ka)ay ,8x,.8k,,8,» (23
given by the locus of the divergence pt®(q,w=0;T). The . . _ _
resulting magnetic-field dependenceTgfis shown in Fig. 3 Note that the interchain coupling renormalizes the bare

for the various regimes oh. The field dependence of the chemical potential. After linearization of the dispersion
onset of the crossover from 1D to 3D is shown by the dashe@round the Fermi points, one finds a generalized Landau-
line, which is obtained from the fluctuation formula derived Ginzburg functional, describing the 3D ordering transition of
in the next section. the original model in terms of a density-wave-type phase
In this section, we have calculated the Luttinger paramiransition within the spinless fermion picture:

eters K andu) of the effective CFT(5) for the XXZ chain
from a numerical solution of the Bethe ansatz equations
within the whole range oAA. However, the particular case of
the XY limit (A=0) can be treatedxactlyvia bosonization
(after linearization of the dispersion law around the Fermi +C”|VH\If|2]. (24)

1
FIW(xy.2)]— d—zf X[ AW 2+ B|W[*+C, |V, W2
1
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Hered, denotes the interchain distance, and the other pa-

rameters can be expressed in terms of those of the micro

scopic model. Analogous to Ref. 23, they are

~1-3x*°(q;,0=0;T)

, (25
XlD(qz-wZO;T)

v 74(3) ¥?

ZiﬁﬁJsxlD(qz,w=0:T), (26)
1 2
C,=5Jdi, (27)
2
v v

Ci= — , 28
” 2X1D(qz,w=0;T)<7TT) 28

wherev is the Fermi velocity ang=2—1/2K is the scaling
exponent of the singular part f°(q,,0=0:T) for T—0.
If Tis close toT, it follows that

— ! T
A=A (T—C—l), (29)

with A’=Jvy. In the Gaussian approximatiéfthe correla-
tion length parallel to the chains is then given by

T —1/2
=&l =——1 , 30
& §o|<-|-C (30)
where the longitudinal coherence leng#) is defined as
= (3D
o Al

FIG. 4. The two-leg ladder with various couplings.

(A')?
- (36)
2d%BT,

is the specific heat jump per unit volume at the transition.
Using the above equations, one finds

AT, [‘]XID(qzy("’ZO;Tc)]s
~0.0L .

(37)
The width of the critical region is thus of the order of 1%.

IV. TWO-LEG LADDERS AND DIMERIZED CHAINS

In this section, we derive effective Hamiltonians, describ-
ing the low-energy spectrum of various gapped spin systems
that are driven into a gapless phase by an external magnetic
field. First, consider a general two-leg ladder system, de-
scribed by the Hamiltonian

H:Z,- JHS,,--SH,J-HEi 3,1'3,2+Ji2§i: S-Stz

+Jé12i S,Z'SJrl,l_hiEj: S

In the direction perpendicular to the chains, the correlation

length is given by a similar expression, with

/C.
§o1 = ; (32

Before discussing the Ginzburg criterion, let us derive the
crossover condition that has already been mentioned above.
There are different criteria for the definition of a crossover

where

J, ifievenj=1
J, ifiodd, j=1

Jij= J. ifievenj=2 (39
Jyg ifiodd,j=2.

condition. Here the onset of the crossover is defined as th&he various couplings are shown in Fig. 4. To derive the
temperature at which the perpendicular correlation lengtieffective Hamiltonian in the gapless regime léf a pertur-

equals the distance between the chains, i.e.,

& =d, . (33

This gives the following condition for the 1D susceptibility:

2
J’XlD(qz,w=0;T)=§. (34)

bation expansion in the off-rung couplings andJi’j is per-
formed.

Consider first the case where all couplings vanish, except
for J, . If no magnetic field is applied, the ground state of
the ladder consists of independent singlets at each rung. The
Hilbert-space of a single rung is spanned by the singlet
10,0=(IT1)=[L1))/V2, and the triplef1,2)=|11), [1,0)
=(1T)+]11N/V2, |1,—1)=]|]]). The triplet excitation

The width of the critical region according to the Ginzburg above the ground state $sE=1J, for zero magnetic field.

criteriorf® is given by

AT, 1
Te  32AmACE, &2’

(39

where

If a magnetic field is applied, the triplet states split, and for a
critical field h,;;=AE, the stateg0,0) and|1,1) become
degenerate. Upon increasing the magnetic field further, the
triplet state|1,1) becomes the new ground state of the sys-
tem. Thus at the critical field.,;; the magnetization changes
discontinuously from zero to saturation.
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FIG. 5. The dimerized chain.

Now, consider the ladder with nonzero but small inter-

rung couplings. The discontinuous transition fbr=0 is
now broaded between the magnetic fielts<<h.<hc,,
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and for the single dimerized chain:
1+36
hCl= 2 ‘J+‘J’1 (47)
he,=2J. (48

Having derived these effective Hamiltonians, the
magnetic-field driven 3D ordering temperature can be stud-
ied for the effective models, using the results of the previous

and this gapless regime is described by an effective spin-1/%‘3°“°”5- The behavior of the transition temperature is similar
Hamiltonian. To derive the corresponding effective theory!© Fig: 3€), mainly depending on the easy-axis anisotropy
for this regime, one introduces effective spin-1/2 operatoreff Of the effective model.

S* acting on the statef)=|1,1) and||)=]0,0) for each

rung. To first order in the small couplings, one then finds an

effective Hamiltonian,

Herr= 3 S+ 8L AT S-S 0T,

(39
where
eff_l ’ ’

Ji _E(‘Jil+Ji2_J12_‘J21)! (40)
ert_L JintJipt It Iy (a1)

L2054 3,,- 305

eff 1 ’ ’

hi'=h=J3, = 7 (Jis+Jiz+ J1oH+ J20). (42)

V. N-LEG LADDERS

Let us now consider the case Nfleg spin-1/2 Heisen-
berg ladders. If the coupling along the rungs is denoted as
J, , and the coupling along the legs &s the Hamiltonian is

HY=32 S8, 432 S-S0 —h2 S,
(49)

wherei andj enumerate the rungs, and 7’ label the legs,
and the sum marked by (]) runs over nearest neighbors
along legs(rungs.

We first discuss the occurrence of gapless phases for these
systems. Due to the alternating nature of the ground states of
N-leg ladder systems at zero field, which show a spin gap for
evenN and are gapless for odd, one has to consider these
cases separately. In the limit of large rung coupliny (
>J)), one can consider first &-site open Heisenberg chain

The parameters of the effective Hamiltonian become site inin a magnetic field, and then treat the coupling along the leg
dependent in certain cases of interest. For example, if we ses a perturbation. In the case of evdnthere will beN/2
Jij=Jy, we recover the known result for the strongly changes in the nature of the ground state upon increasing the

coupled two-leg ladde?® For Ja=J3=J)=(1-96)J and J,

magnetic field. At each change, a new gapless phase opens

=J.=0, we obtain an effective description of a single chainup. This can be seen as follows: the spectrum contains mul-

with dimerizations close to one, if we set, =(1+ 6)J. The
original model in this case is given lgee Fig.

HD=JEi [1+5<—1)i]s-s+1+3'2 s~s+2—h2 s,
(43)

tiplets of multiplicitesm=1,3,5... N+1. Let E,(0) be
the energy of the lowestrplet at zero magnetic field. Then
there is a gapless phase at a field

. N
|:1’... —_

hi=E;+1(0)—E3_41(0), Th (50)

whereJ’ =J3,=J2, is a next-nearest-neighbor coupling con- In the case of oddN, the ground state of the system without

stant. Note, that the isotropic chait {;=1) is recovered
for
J 1-6

J 6
In analogy to our discussion of theXZ chain, the critical

(44)

fieldsh.; andh;, can be determined for the effective Hamil-

tonian, e, h&'=—(1+Aq)der and h'=(1

+Aqt)Jets- EXpressed in terms of the physical variables of

Eq. (38), we find for the two-leg ladder:

JiotIo
5

hclz‘]L_‘]H+ (45

heo=J,+2J, (46)

a magnetic field is a doublet, and, therefore, the first gapless
phase occurs already B{=0. Since the spectrum contains
also multiplets withm=4,6,- - - ,N+ 1, there are additional
gapless phases at fields

_ N+ 1
hi:EZi(O)_E2i72(O)! i=1,...,—.

> (5

The values of the magnetic field where the gapless phases
occur can, therefore, be obtained by a numerical calculation
of the zero-field spectrum. In each gapless phase, there are
two degenerate states, ely=3, h=h,:

y=1111), |U>=%(INU—ZIMHIM))-
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TABLE Il. Parameters of the effective low-energy model for the 03— —

gapless regions dfi-leg spin-1/2 ladders in a magnetic fifddThe (a) N=2 _(b) N=3

effective magnetic field is given bye;;=h—h(0)J, —cpJ; . 02 |

N [ Jer/IL Aett h¢(0) Ch

2 1 1 0.5 1 0.5 o1

3 1 1 1 0 0

3 2 1 05 15 05 5= 00 e

4 1 10750 03489 06589 0375 ° (@ N=7 () H=6

4 2 1 0.3750 1.7071 0.625 0.2 - ( ki

5 1 1.0169 1 0 0 i 1

5 2 1.0961 0.3789 1.1189 0.2958 01t .:E .: E

5 3 1 0.3 1.8090 0.7 H b

6 1 1.1114 0.3163  0.4916  0.3515 S N P& 1 R B R O

6 2 1.1348 0.3011 1.3860 0.3985 00 05 10 15 20 00 05 10 15 20 25

6 3 1 0.25 1.8660 0.75 h/J

7 1 1.0344 1 0 0 -

7 2 1.1415 0.3407 0.8848 0.2166 FIG. 6. 3D ordering transition temperatures Nfleg spin-1/2

7 3 1.1663 0.2381 1.5504 0.4891  Heisenberg ladders as a function of an external magnetic field. Cas-

7 4 1 0.2143 1.9010 0.7857 cades of transitions are observed ffor- 2, driven by 1D SDW's of

8 1 1.1364 0.3020 0.3926 0.3432  spinS multiplets on the ladders. For this plot, we have chosen an

8 2 1.1882 0.2743 1.1506 0.2888  anisotropy ratioJj/J, =1/5 and residual interladder coupling

8 3 1.1917 0.1962 1.6577 0.5555 J'/J=1/16.

8 4 1 0.1875 1.9239 0.8125

N=3,4,7, and 8. These diagrams are in good agreement
with results obtained by numerical finite cluster
diagonalizationd® Odd-leg ladders also have a sequence of
ordering transitions, with the only difference that the onset of
the first transition occurs already ht=0 [Figs. §b) and

6(c)].

For nonzero values o, these two excitations spread over
the ladder in the vicinity of the critical field, thus broadening
the gapless phase. To first orderdin the ladder system can
then be described by an effective spin-¥XZ Heisenberg
model in an effective magnetic fiel,¢;, after defining ef-
fective spin operators between the stdtgsand|l) in the
same matter as for the case of the two-leg ladder. Consider-
ing two suchN-site chains, coupled to each other by a con-
stantJ;, the energy spectrum of the corresponding Hamil-
tonian is calculated and compared to the spectrum of th
effective model. One can thus determine the values for th?l
parameters of the effective modelg¢s,Acts,hess), Where

the effective magnetic field isqrr=h—h¢(0)J, —c,J;. The
obtained values are given in Table II.

VI. CONCLUSIONS

We have presented a theoretical approach to magnetic-
field induced 3D ordering transitions in strongly anisotropic

antiferromagnetically correlated spin-1/2 compounds. These
ystems consist of weakly coupled chains or ladders that
ave singlet ground states with finite excitation gaps to the

20

Using these effective model descriptions of Neg lad- 15 -
der in the gapless phases, we apply the RPA approach de
scribed above to a crystal of weakly couplseeg ladders. 10 ¢
We now observe a cascade Wf2 [(N+1)/2] 3D ordering

transitions for quasi-1D ladder subsystems with an even 5 -
(odd number of legs, as shown in Fig. 6. In the case of —
weakly coupled even-leg ladders, the first transition is driven = 0
by the formation of a spin-density waSDW) of triplets 00 |
along the ladder direction, with a ground-state wave vector
that is proportional to the magnetic fighd>h.,. The follow-

ing transition(for N>2) is driven by a SDW of quintuplets, 10 -
etc. Depending on the ratiy/J, , these phases of different
multiplet polarization may overlap, and mixed regimes can
occur. The resulting 3D ordering temperature does not van- 0
ish completely in this case, but has minima at particular mag-

netic fields where the number of the lower multiplet excita-

tions equals the number of the next-higher multiplet FiG. 7. Schematic phase diagrams of weakly couplddg lad-
excitations. The dependence of this overlap on the ratio Ofiers in a magnetic fielth at T=0. The shaded areas indicate 3D
the coupling constants is shown in Fig. 7, where the darlordered phases, and shown is the dependence on the ratio of the
stripes show the phases of 3D orderTat O for the cases ladder couplings), /J;.

0
J /14,
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lowest triplet states. Because the interchain couplings arewveen the subsystems, a low-temperature 1D to 3D transition
weak compared to the intrachain couplings, the 1D subeccurs. The resulting 3D ordering may be viewed as a BEC
systems are effectively independent. By applying an externadf spin-1 magnons, accurately predicting the temperature de-
magnetic field, the spin gap in the subsystems can be ovependence of the critical fieldhgg(T)—AxT?%] and the
come, and they become partially polarized. In this incom-magnetization curvé®
mensurate regime, even infinitesimal interchain coupling Let us now consider multicomponent phases, as they oc-
leads to 3D long-range ordering at low temperatures. cur in spin ladders with more than two legs. In a spin ladder,
There are only a few known realizations of Bose-Einsteina spin-1 magnon excitation essentially corresponds to the
condensatioffBEC). The two most prominent examples are formation of a spin triplet on a rung, a spin-2 magnon cor-
ultracooled dilute ensembles of trapped atoms and the superesponds to a quintuplet, etc. At intermediate fielidsger
fluid transition of helium 4. In principle, BEC can occur for than h.,), these excitations can coexist, depending on the
any bosonic many-body system in a confining potential athoice of parameters. The resulting low-temperature conden-
low temperatures. Therefore, magnetic compounds witlsate may then contain multiple components, as it is the case
integer-spin excitationge.g., spin-1 magnonspresent a at high fields in Figs. &) and Gd) (dashed regions These
promising class of candidate materials. However, indicationphases may be viewed as multicomponent Bose-Einstein
for BEC in such materials have not been found until twocondensates, consisting of magnon excitations with different
recent experiments on TICuCland Cy(C,H;,N,),Cl,. integerspins. It is, thus, of interest to conduct high magnetic
These compounds are strongly anisotropic, and have a finitield experiments on appropriate candidate materials to de-
spin gapA between their singlet ground state and the firsttermine whether such phases exist in physical systems.
triplet excitation. Hence, their magnetization is exponentially
activ_ated at small temperatures and zero_magne'tic field. _An ACKNOWLEDGMENTS
applied magnetic field can decrease the singlet-triplet excita-
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