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Generalized-stacking-fault energy surface and dislocation properties of aluminum
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We have employed the semidiscrete variational generalized Peierls-Nabarro model to study the dislocation
properties of aluminum. The generalized-stacking-fault~GSF! energy surface entering the model is calculated
by using first-principles density functional theory~DFT! and the embedded-atom method~EAM!. Various core
properties, including the core width, dissociation behavior, energetics, and Peierls stress for different disloca-
tions have been investigated. The correlation between the core energetics and the Peierls stress with the
dislocation character has been explored. Our results reveal a simple relationship between the Peierls stress and
the ratio between the core width and the atomic spacing. The dependence of the core properties on the two
methods for calculating the GSF energy~DFT vs EAM! has been examined. Although the EAM gives the
general trend for various dislocation properties, it fails to predict the correct finer core structure, which in turn
can affect the Peierls stress significantly~about one order of magnitude!.
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I. INTRODUCTION

Dislocations which are one-dimensional topological d
fects, are central to the understanding of mechanical pro
ties of crystalline solids. The creation and motion of disloc
tions mediate the plastic response of a crystal to exte
stress. While the continuum elasticity theory describes w
the long-range elastic strain of a dislocation for length sca
beyond a few lattice spacings, it breaks down near the
gularity in the region surrounding the dislocation cent
known as the dislocation core. The discrete nature of the
crystalline lattice avoids the conceptual difficulty posed
the continuum singularity and recovers the structural diff
entiation smoothed out by the continuum elasticity. Th
has been a great deal of interest in describing accurately
dislocation core structure on an atomic scale because o
important role in many phenomena of crystal plasticity1,2

The core properties control, for instance, the mobility of d
locations, which accounts for the intrinsic ductility or brittle
ness of solids. The core is also important for the interact
of dislocations at close distances, which are relevant to p
tic deformation. For example, by integrating the local ru
derived from atomistic simulations of core interactions in
dislocation-dynamics simulations, a connection betwe
micro-to-meso scales can be established to study disloca
reactions and crystal plasticity.3

Two types of theoretical approaches have been emplo
to study the core properties of dislocations. The first type
based on direct atomistic simulations employing either e
pirical potentials or first-principles calculations. Empiric
interatomic potentials involve the fitting of parameters to
predetermined database and hence may not be reliab
describing the core properties, where severe distortions
bond breaking, bond formation and switching necessita
PRB 620163-1829/2000/62~5!/3099~10!/$15.00
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quantum-mechanical description of the electronic degree
freedom. On the other hand, first-principles electronic str
ture calculations, though considerably more accurate,
computationally expensive for studies of dislocation prop
ties. The second type, is based on the framework of
Peierls-Nabarro~PN! model which seems to be a plausib
alternative to direct atomistic simulations. In fact, there h
been a resurgence of interest in the simple and tractable
model for the study of dislocation core structure a
mobility.4–8

Peierls first proposed9 the remarkable hybrid model in
which some of the details of the discrete dislocation c
were incorporated into an essentially continuum framewo
Nabarro10 and Eshelby11 further developed Peierls’ mode
and gave a meaningful estimate of the lattice friction to d
location motion. Later attempts to generalize the origin
treatment of Peierls and Nabarro assumed a more gen
core configuration from which they derived the interactio
between the glide planes which satisfy the Peierls integ
equation. The essence of these models was captured
more comprehensive approach by Vitek,12,13 who introduced
the concept of the generalized-stacking fault: Consider a
fect crystal cut across a single plane into two parts which
then subjected to a relative displacement through an arbit
vector f and rejoined. The reconnected lattice has a surp
energy per unit areag(f). As the vectorf is varied to span a
unit cell of the interface,g(f) generates the generalized
stacking-fault~GSF! energy surface. The procedure can
repeated for various crystal planes. The significance of
GSF surface~or g surface! is that for a fault vectorf there is
an interfacial restoring stress

Fb~ f!52¹„g~ f!…, ~1!
3099 ©2000 The American Physical Society
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3100 PRB 62LU, KIOUSSIS, BULATOV, AND KAXIRAS
which has the same formal interpretation as the resto
stress in the PN model. The PN model has now come
represent a combination of the original continuum model a
the GSF interplanar potential, and its accuracy can be
fected by either component. At present, the GSF energies
be calculated using empirical interatomic potentials~such as
the embedded-atom method, EAM! or electronic structure
methods. While extremely useful as a conceptual framew
the PN model becomes increasingly inaccurate for dislo
tions with narrow cores, which is typically the case in c
valently bonded solids.4,14 The origin of this inaccuracy re
mains controversial, and it has not been unequivoc
established whether or not the Peierls framework can be
tended to capture such situations. Exploring the limits a
extending the range of applicability of the classic PN mo
remains a worthwhile endeavor. Recently, there have b
several attempts to generalize the original treatment of
PN model. A semidiscrete variational generalized PN mo
has been proposed by Bulatov and Kaxiras,15 which has been
successfully implemented to the study of dislocation mo
ity in silicon. Using the GSF energy surface determined fr
an empirical interatomic potential, the model predicts t
the Peierls stress for the glide screw dislocation in Si is 0.
eV/Å3, more than two orders of magnitude lower than t
value 9.0 eV/Å3 obtained from the classic PN model. Dire
atomistic calculations using the same interatomic poten
gives 0.021 eV/Å3. Furthermore, the model gives satisfacto
results for other core properties when compared to di
atomistic simulations for various dislocations in Si. Cons
ering the effect of the anisotropy of the elastic ener
Schoeck7 adopted a variational procedure for the total ene
by assuming a tan21-type solution for the displacemen
which may not be the case for the general interplanar po
tial. Von Sydowet al. introduced an interesting treatment
the Peierls integrodifferential equation by extrapolating
atomic positions away from the glide plane.8 This approach
was shown to yield results in better agreement with atomi
simulations employing the same interatomic potential.

The purpose of this paper is to apply the semidiscrete
model to aluminum which is a prototypical ductile met
with much lower Peierls energy and stress than silicon.
the other hand, just like silicon, aluminum is known to ha
a narrow core due to its large stacking-fault energy. T
successful application of the model to aluminum will furth
prove its validity and versatility in predicting dislocatio
core properties for different materials. In particular, alum
num is exceptional among the fcc materials in that there h
been no experimental observations for a full dislocation d
sociation into partials.17 The ability to predict the absence o
dissociation in aluminum constitutes another test for the
liability of the model. In order to test the accuracy of th
model, we have calculated the Peierls stress using both
semidiscrete generalized PN model and direct atomi
simulations based on the same EAM potential. We have
ried out systematic calculations of the core properties and
mobility of relevant dislocations in Al, and we have exam
ined the relationship between the core properties~energetics,
core width, and Peierls stress! and the dislocation characte
namely the angle between the dislocation line and its Burg
vector. In order to explore the dependence of the disloca
properties on the method employed to calculate the GSF
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ergy, we have performed calculations using both fir
principles electronic structure methods and the empir
EAM potential.

The remainder of this paper is organized as follows: S
II describes the computational techniques used in our fi
principles calculations for the GSF energy surface. Sec
III contains a brief review of the model on which this stud
is based. In Sec. IV, we present the results of the GSF en
surfaces for the~111! plane of aluminum using both first
principles and empirical potential calculations. In Sec. V
compare the dislocation properties using the GSF surf
evaluated from the two methods. The correlation between
dislocation properties and the dislocation character is p
sented in Sec. VI, along with some general conclusions
the applicability of our approach.

II. COMPUTATIONAL METHODS

The GSF energy surface is calculated within the fram
work of density-functional theory18 ~DFT! in the local-
density approximation19 to the exchange-correlation func
tional, using the expression proposed by Perdew
Zunger.20 A kinetic energy cutoff of 12 Ry for the plane
wave basis is used and the atomic structures are consid
fully relaxed when the Hellmann-Feynman forces on ea
atom are smaller than 0.001 Ry/au. The calculated equ
rium lattice constant (a0) and bulk modulus are 3.94 Å an
82.52 GPa, in good agreement with the corresponding
perimental room-temperature values of 4.05 Å and 76
GPa, respectively.

In addition to the lattice constant and bulk modulus, w
have calculated the value of the intrinsic stacking fault e
ergy and the unstable stacking fault energy. To simulate
block shearing process we employed a supercell consis
of six and nine atomic layers in thê111& direction. The
intrinsic stacking-fault configuration corresponds to a slip
a0 /A6 in the ^112& direction, resulting in the stacking
ABCuBCABC. The unstable stacking-fault energy corr
sponds to the lowest energy barrier that needs to be cro
for the slip from the ideal configuration to the intrinsic stac
ing fault in the ^112& direction. The calculations are pe
formed at the theoretically determined in-plane lattice co
stant. For the reciprocal-space integration we have use
k-point grid consisting of~16, 16, 4! divisions along the
reciprocal-lattice directions according to the Monkhorst-Pa
scheme.21 This corresponds to 514k points in the entire Bril-
louin zone. Convergence tests were performed both for
number of divisions along each reciprocal space direction
well as the number of plane waves. Furthermore, the res
for the six-layer and nine-layer supercells are reasona
close, indicating adequate convergence with respect to
supercell size. Both atomic relaxations and volume rel
ations were carried out to obtain accurate GSF energies.
value of the intrinsic stacking-fault energy we obtained
0.164 J/m2, in excellent agreement with the result of 0.16
J/m2 of Sun and Kaxiras22 and that of 0.161 J/m2 of Wright,
Daw, and Fong.23 Experimental measurements range from
low value of 0.110 J/m2 to a high value of 0.280 J/m2.16

Finally, the value of the relaxed unstable stacking-fault e
ergy is 0.224 J/m2, in agreement with previous theoretic
calculations.5,6
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PRB 62 3101GENERALIZED-STACKING-FAULT ENERGY SURFACE . . .
For the EAM calculations of the GSF energy surface,
have used the Ercolessi-Adams potential24 for Al. The super-
cell contains six~111! layers with a total of 216 atoms
Three-dimensional periodic boundary conditions were
posed and both volume and atomic relaxations were
cluded.

III. SEMIDISCRETE VARIATIONAL
PEIERLS-NABARRO MODEL

To facilitate the presentation, we adopt the following co
ventions: In Fig. 1, theXZ, plane is the~111! glide plane, the
Z axis is in the direction of the dislocation line, and theX
axis is in the glide direction. TheY axis in normal to the
glide plane. For planar dislocations, the displacements a
the Y direction are small. The Burgers vectorb lies on the
glide plane making an angleu with the Z axis. The Burgers
vector is along theX axis (u590°) for an edge dislocation
and along theZ axis (u50°) for a screw dislocation. The
Burgers vector of a mixed dislocation has both an edge c
ponent,b sinu, and a screw component,b cosu. In general,
the atomic displacements have components in all three d
tions rather than only along the direction of the Burgers v
tor, because the path along the Burgers vector may hav
surmount a higher interplanar energy barrier in the GSF
face. In other words, the GSF energy is reduced when
dislocation acquires additional displacement component
other directions.

In the classic PN formalism, the dislocation misfit is a
sumed to be confined on a single plane, the glide pla
separating two semi-infinite linear elastic continua. Betwe
these two elastic half-spaces one places a dislocation, co
niently represented as a continuous distribution of infinite
mal dislocations with densityr(x).11 Here x is the coordi-
nate of the atomic row, which is always parallel to t
dislocation line. A discrete lattice of arbitrary structure, d
formed by the dislocation’s displacement field, is superi
posed on the elastic half-crystals. At a given point along
interface the resultant misfit, due to all the infinitesimal d
locations, is then balanced against the lattice restoring st

FIG. 1. Cartesian set of coordinates showing the directions
evant for dislocations in Al.
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across the glide plane,Fb„f (x)…. This results in the PN inte-
grodifferential equation

KE
2`

1` 1

x2x8

d f~x8!

dx8
dx85Fb„f ~x!…, ~2!

where f (x) is the disregistry vector of the atomic row a
point x related to the dislocation density byr(x)
5d f(x)/dx, and K is a constant depending on the elas
properties and the dislocation character. For an isotro
solid,

K5
m

2p S sin2 u

12n
1cos2 u D , ~3!

wherem and n are the shear modulus and Poisson’s ra
respectively, andu is the angle between the dislocation lin
and the Burgers vector. The prelogarithmic elastic ene
factor isKs5m/2p andKe5m/@2p(12n)# for a screw and
an edge dislocation, respectively. In the following calcu
tions, m528.8 GPa50.1797 eV/Å3, n50.344, andb5ubu
52.85 Å are used. The dislocation densityr(x) satisfies the
normalization condition

E
2`

1`

r~x8!dx85E
2`

1` d f~x8!

dx8
dx85b. ~4!

If a simple sinusoidal form is assumed forFb„f (x)…, as in
the original PN model, the disregistry vector is then given
the well-known analytical solution,

f ~x!5
b

p
tan21

x

z
1

b

2
, ~5!

where

z5
Kb

2Fmax
~6!

is the half width of the dislocation core andFmax is the
maximum restoring stress.

As pointed out recently by Bulatov and Kaxiras,15 the
classic PN continuum model has the following flaws:~1!
While the elastic energy between the infinitesimal dislo
tions is evaluated from a continuous integration, the mi
energy across the glide plane is sampled discretely, in o
to incorporate the discrete nature of lattice. Thus, the t
energy contributions are not treated on an equal footing
the total energy is not variational.~2! The classic PN mode
neglects the important degrees of freedom which particip
actively in the translation of a dislocation over the Peie
barrier, and~3! The elastic strain energy of a dislocatio
calculated within the PN model can be unrealistically hig
especially for solids with a narrow core.

In order to resolve these problems, the semidiscrete va
tional generalized Peierls model has been develo
recently.15 Within this approach, the equilibrium structure o
a dislocation is obtained by minimizing the dislocation e
ergy functional

Udisl5Uelastic1Umis f it1Ustress1Kb2 ln L, ~7!

where

l-
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Uelastic5(
i , j

1

2
x i j @Ke~r i

~1!r j
~1!1r i

~2!r j
~2!!1Ksr i

~3!r j
~3!#,

~8!

Umis f it5(
i

Dxg3~ f i !, ~9!

Ustress52(
i ,l

xi
22xi 21

2

2
~r i

~ l !t i
~ l !!, ~10!

with respect to the dislocation density or disregistry vect
Here,r i

(1) , r i
(2) , andr i

(3) are the edge, vertical, and scre
components of the general interplanar displacement den
at the i th nodal point, andg3(f i) is the three-dimensiona
misfit potential. The corresponding components of the
plied stress interacting with ther i

(1) , r i
(2) , and r i

(3) , are
t (1)5s21, t (2)5s22, and t (3)5s23, respectively.K, Ke ,
andKs are the prelogarithmic energy factors defined earl
The dislocation density at thei th nodal point isr i5( f i
2 f i 21)/(xi2xi 21), where f i andxi are the disregistry vec
tor and the coordinate of thei th nodal point~atomic row!,
respectively. The remaining quantities entering in this
pression are x i j 5

3
2 f i ,i 21f j , j 211c i 21,j 211c i , j2c i , j 21

2c j ,i 21 , with f i , j5xi2xj , and c i , j5
1
2 f i , j

2 ln ufi,j u. The
quantityL entering the last term is the outer cutoff radius f
the elastic energy.16

The first term in the energy functional,Uelastic, repre-
sents theconfiguration-dependent~density or disregistry!
part of the elastic energy, which has been discretized. S
any details of the displacements across the slip plane o
than those on the atomic rows are disregarded, the disl
tion density is constant between the nodal points. This
plicit discretization of the elastic energy term removes
inconsistency in the original PN model and allows the tot
energy functional to be variational. Another modification
this approach is that the nonlinear misfit potential in the
ergy functional,Umis f it , is a function of all three compo
nents of the nodal displacements,f(xi). Namely, in addition
to the displacements along the Burgers vector, lateral
even vertical displacements across the slip plane are
included. This in turn allows the treatment of straight dis
cations of arbitrary orientation in arbitrary glide planes. F
thermore, because the disregistry vectorf(xi) is allowed to
change during the process of dislocation translation,
Peierls energy barrier can be significantly lowered compa
to its corresponding value from a rigid translation. In order
examine the trend of energetics for different dislocations,
identify the dislocationconfiguration-dependentpart of the
total energy as the core energy,Ucore5Uelastic1Umis f it ,
which includes the density-dependent part of the elastic
ergy and the entire misfit energy, in the absence of str
The last term in Eq.~7!, Kb2 ln L, is independentof the
dislocation density, and hence it is irrelevant in the var
tional procedure. In fact, this term was not included in t
total-energy expression of Ref. 15 because it does not c
tribute in the evaluation of the Peierls stress. The outer cu
radiusL is 103 Å for all dislocations.

The response of a dislocation to an applied stress
achieved by minimization of the energy functional with r
spect tor i at the given value of the applied stress,t i
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instability is reached when an optimal solution forr i no
longer exists, which is manifested numerically by the failu
of the minimization procedure to convergence. The Peie
stress is defined as the critical value of the applied str
which gives rise to this instability.

IV. GENERALIZED-STACKING-FAULT ENERGY

The first-principles GSF energy surfaceg(f) for the ~111!
plane was calculated on a grid of 40 points in the irreduci
part of the~111! slip plane~1/12 of the area shown in Fig. 2!.
We used an augmented symmetrized polynomial basis t
the calculated DFT GSF energy surface in order to facilit
the computation of dislocation properties. The basis was c
sen so that it preserves the underlying translational and r
tional symmetry of the fcc lattice. Because it is relative
faster to calculate the GSF energy using the EAM,24 we di-
rectly compute the GSF energy for any given disregistry v
tor.

Shown in Figs. 2~a! and 2~b! is the fitted GSF energy
surface from the DFT and EAM, respectively. The three h
peaks of the GSF surface correspond to the run-on stac

FIG. 2. The GSF energy surfaces for displacements alon
~111! plane in Al ~J/m2! ~the corners of the plane and its cent
correspond to identical equilibrium configurations, i.e., the ideal
lattice!: ~a! from DFT pseudopotential plane-wave calculations;~b!
from EAM calculations. The two energy surfaces are displayed
exactly the same perspective and on the same energy scale
cilitate comparison of important features. The EAM energy surfa
extends to values about four times larger than the maximum v
displayed~black truncated regions!.
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FIG. 3. Projections of the GSF energy surfaces on the~a! @121̄# and ~b! @101# directions from both the DFT and EAM calculations.
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fault configurationABCuCABC, in which two C layers are
neighboring to each other. The projection of the DFT a
EAM GSF energy surfaces on the@121̄# and@101# directions
are shown in Figs. 3~a! and 3~b!, respectively. The first en
ergy maximum encountered along the@121̄# direction is the
unstable stacking fault energy, which represents the low
energy barrier for dislocation nucleation;25,26 the first energy
minimum at a0 /A6 corresponds to the intrinsic stackin
fault configuration, where a full dislocation dissociates into
pair of Shockley partials. The projection of the GSF surfa
on the@101# direction is symmetric with respect to the sl
displacement ofa0/2&. In both the DFT and EAM calcula
tions, the unstable stacking-fault energy along@101# is found
to be larger than that along@121̄#. This anisotropy of the
unstable stacking-fault energy will affect the emission of d
locations from a crack tip. The difference between the D
and EAM values for the run-on stacking fault is due to t
fact that theab initio database to which the EAM potentia
was fitted does not include this fault configuration. The e
ergy values of the various stacking faults obtained from
DFT and EAM calculations are summarized in Table I. T
restoring stress for different directions using the DFT a
EAM are shown in Figs. 4~a! and 4~b!, respectively.

V. DISLOCATION PROPERTIES

In this section we present the results of various dislo
tion properties for the screw, 30°, 60° and edge dislocati
with Burgers vector,b5a/2@101#, using the GSF energy
surface obtained from the DFT and EAM calculations.

TABLE I. Fault vectors and energies for four stacking fau
obtained from the DFT and EAM calculations. All energies are
J/m2.

Vector DFT EAM

Intrinsic stacking 1/6@121̄# 0.164 0.120

Unstable stacking 1/10@121̄# 0.224 0.141

Unstable stacking 1/4@101# 0.250 0.663
Run-on stacking 1/3@121̄# 0.400 1.354
d

st

a
e

-
T

-
e

d

-
s

A. Disregistry vector and dislocation width

In order to examine the trend of the disregistry vectorf
5 f 1x̂1 f 2ŷ1 f 3ẑ, as a function of the angleu between the
dislocation line and the Burgers vectorb, one needs to de
termine the components off parallel and perpendicular tob,
i.e., f a5 f 1 sinu1f3 cosu and f b5 f 1 cosu2f3 sinu, respec-
tively. The results forf a using the DFT and EAM GSF sur
faces are presented in Fig. 5~a! for the screw and 60° dislo
cations, and in Fig. 5~b! for the 30° and edge dislocations
respectively.

The dislocation half widthz, defined as the atomic dis
tance over whichf a changes from1

4b to 3
4b ~definition I!, can

be determined from Fig. 5. The half width may also be c
culated from Eq.~6!, which assumes a sinusoidal form fo
the restoring stress~definition II!. While the first definition
takes into account the full details of the entire GSF surface
the evaluation of the disregistry vector, the second definit
involves only the maximum restoring stressFmax, which can
be set equal to the first maximum of the restoring stressFus ,
encountered along the@121̄# direction.27 Values ofz for the
four dislocations evaluated from the above two definitio
are listed in Table II. The half width increases monotonica
with dislocation angleu for both DFT and EAM calcula-
tions. The dislocation half width calculated from the EAM
larger compared to its corresponding DFT value, due to
smaller restoring force in the vicinity of both the unstab
and intrinsic stacking faults@Fig. 4~a!#. Overall, and in par-
ticular for the DFT calculations, there is a good agreem
for the values ofz evaluated from the two definitions, whic
suggests that the details of the GSF surface are not impo
in the evaluation ofz. The larger discrepancy between th
two definitions for the 60° and edge dislocations using
EAM, is due to the fact that for both dislocations, the EA
energy surface gives dissociation into Shockley partia
which can only be manifested within the first definition.

B. Dissociation behavior

The dislocation density~solid curves! for the screw, 30°,
60°, and edge dislocations, calculated from the DFT G
energy surface, are presented in Fig. 6, along with the co
sponding results from the EAM calculations~dashed and
dotted curves!. In all cases, DFT predicts no splitting for th



ces.

3104 PRB 62LU, KIOUSSIS, BULATOV, AND KAXIRAS
FIG. 4. The restoring stresses along~a! @121̄# and~b! @101# ~b! directions calculated from both the DFT and EAM GSF energy surfa
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a

the
of

to
complete dislocations into partials, consistent w
experiment.17 While the narrow double-peak structure foun
for the 60° dislocation is suggestive of a splitting, it is rath
due to the fact that the nodal points along theX direction are
not evenly spaced, i.e., they are distributed alternately bybp
and bp/2, wherebp is the Burgers vector of the Shockle
partial. This in turn gives rise to density fluctuations over t

FIG. 5. The disregistry vector in units of the Burgers vec
obtained from the DFT and EAM calculations for~a! the screw and
60° dislocations;~b! the 30° and edge dislocations.
r

e

neighboring atomic rows and hence a double-peak struct
A double-peak structure may be indicative of a splitting,
the peaks are separated by a larger distance or the n
points are evenly spaced, as in the case of the 30° and
dislocations.

In contrast to the DFT results and experiment, the EA
calculations predict that the full edge and 60° dislocatio
dissociate into partials. In Fig. 6, we display both the scr
and edge components for the 30° and the 60° dislocatio
The multipeak found for the screw dislocation suggests t
it might also be unstable. The 30° dislocation exhibits anar-
row double-peak structure. Overall, the dissociation tre
found in the EAM calculations could be due to the smal
value of the intrinsic-stacking-fault energy. Recognizing th
the EAM GSF energy surface differs from the DFT surfa
not only in the intrinsic stacking-fault~ISP! energy, but also
in the energy profile around it, we have investigated the
fect of the shape of the GSF surface on the dissociation
havior for the full edge dislocation using the DFT GSF su
face. We have fixed the ISF energy of the GSF surface to
DFT value of 0.164 J/m2, but varied the DFT energy profile
around the ISF to make it as flat as possible to be simila
the that of the EAM GSF surface~inset of Fig. 7!. Using the
modified GSF surface, we then calculated the dislocat
density for the edge dislocation, and found a small disso
tion into partials~double peak in the density distribution!
with a separation of one Burgers vector~Fig. 7!. Therefore,
not only the ISF energy itself, but also the GSF energy p
file around it plays an important role on the dissociati
behavior.

It is interesting to examine the character of the result
partials in Fig. 6. The complete edge dislocation dissocia
into two symmetric 60° partials, whereas the 60° dislocat
dissociates into a 30°~left double-peak! and a 90°~right
double-peak! partial. The double-peak structure again ste
from the inequivalent nodal spacing between neighbor
atomic planes. The fact that the density of the screw com
nent ~dotted curve! vanishes at the point where the ed
component~right double peak! reaches its maximum, indi
cates the pure edge character of the 90° partial. The
dislocation exhibits a weak tendency for dissociation into
screw and a 60° partial, while the edge component for
60° partial is singly peaked. Our result for the dissociation

r
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TABLE II. Core half widthsz ~in Å!, with z I from the definition through the disregistry vector andz II

from the definition through the restoring stress; core energiesUcore and separate contributions from th
configuration-dependentelastic energy,Uelastic and Umis f it ; Kb2lnL ~in eV/Å!; and Peierls stress~in
meV/Å3!, for the four dislocations from both the DFT and EAM calculations. The last two rows list
Peierls stress for the screw and 60° dislocations from direct atomistic simulations~At. Sim.! using the same
EAM potential, and from the expression of Joo´s and Duesbery~JD! using the EAM values forz from the two
definitions.

Screw 30° 60° Edge

Core widths (z I ,z II ) DFT ~2.1,2.1! ~2.5,2.4! ~3.0,2.9! ~3.5,3.2!
EAM ~3.7,3.4! ~4.3,3.8! ~5.4,4.7! ~6.4,5.2!

Ucore DFT 20.0834 20.1096 20.1678 20.1979
EAM 20.0534 20.0813 20.1413 20.1730

Uelastic DFT 20.1828 20.2317 20.3199 20.3666
EAM 20.1679 20.2086 20.2960 20.3445

Umis f it DFT 0.0938 0.1221 0.1521 0.1688
EAM 0.1145 0.1273 0.1547 0.1716

Kb2lnL 1.6050 1.8123 2.233 2.446
Peierls stress DFT 1.60 0.33 0.61 0.02

EAM 0.55 0.21 0.28 0.15
At. Sim. 0.51 0.29
JD ~0.017, 0.037! ~0.0003, 0.0018!
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the full 60° dislocation into partials agrees with direct ato
istic simulations28 using the same Ercolessi-Adams EAM p
tential. Although this agreement indicates the success of
semidiscrete variational PN model in predicting the fin
core structure, the result itself is not consistent with the
periment due to the smaller ISF energy from the EAM c
culations. It is also interesting to compare our results to
cent atomistic simulations of Millset al.29 Employing the
same Ercolessi-Adams EAM potential, Millset al. deter-
mined the core spreading of the 60° dislocation which in t
gives an ISF energy of 0.120 J/m2, in excellent agreemen
with our EAM value ~Table I!. Furthermore, these autho
conclude that empirical EAM potentials are not capable
accurately modeling the dissociation of the 60° dislocatio

FIG. 6. Dislocation density for four dislocations~clockwise!:
screw, 30°, 60° and edge, obtained by using DFT and EAM ca
lations: For the 30°, 60°, and edge dislocations, the characters o
resultant partials for the EAM calculations are indicated~see also
text!.
-
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C. Energetics and lattice resistance

The DFT and EAM results for the energetics and t
Peierls stress for the four dislocations are presented in T
II. The DFT results for the energetics are in good agreem
with those from the EAM calculations, including the tren
across the series. The misfit energy,Umis f it , increases mono-
tonically from the screw to the edge dislocation, while t
configuration-dependentelastic energy,Uelastic ~negative in
sign! decreases as the angle increases. Theconfiguration-
independentelastic energyKb2 ln L is listed also in Table II.
Several points need to be emphasized:~1! The configuration-

-
he

FIG. 7. Dislocation density for the edge dislocation calcula
from the modified GSF energy surface~dashed line! and the DFT
GSF energy surface without modification~solid line!. The distance
is in terms of the full Burgers vector.~Inset! The projection of the

GSF energy surfaces along@121̄# with and without modifying the
DFT energy profile. The solid curve represents the DFT ene
profile while the dashed curve represents the modified GSF en
surface but keeping the same intrinsic stacking-fault energy a
DFT value.
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dependent elastic energyUelastic, ignored in some previous
studies, is the dominant contribution to the core energyUcore
~about a factor of two larger thanUmis f it). More importantly,
it depends strongly on the dislocation character;~2! While
Uelastic is negative here, in principle, it can be of either sig
For example,Uelastic was found to be positive in Si;32 ~3!
Inclusion of the configuration-independent elastic ter
Kb2 ln L, yields positive values for both the total energy a
the total elastic energy.

The mobility of dislocations is characterized by th
Peierls stress and the Peierls energy, the former being
fined usually as the maximum derivative of the latter w
respect to dislocation translation. As alluded earlier,
Peierls stress in this work is the critical value of the appl
stresst, at which the dislocation energy functional fails to b
minimized with respect tor i through standard conjugate gr
dient techniques. This approach is more accurate and ph
cally transparent, because it captures the nature of the Pe
stress as the stress at which the displacement field of
dislocation undergoes a discontinuous transition. Furth
more, this definition for the Peierls stress treats the full a
partial dislocations on an equal footing.

The Peierls stress calculated from the DFT GSF ene
surface is in good agreement with that from the EAM calc
lations, except for the edge dislocation, where the EAM
sult is an order of magnitude larger than the DFT result. T
discrepancy could be associated with the splitting of the e
dislocation into partials. Benoitet al. proposed30 that if the
equilibrium separation between the two Shockley partial
an integer or half integer multiple of the vector (a/2)^110&,
so that the two partials move in phase and reach the trou
or the crests of the Peierls potential simultaneously, then
Peierls stress required to move the extended configuratio
simply the stress required to move an isolated partial di
cation. On the other hand, if the two partials are rigidly se
rated by~1/4! or ~3/4! times the vector (a/2)^110&, then the
partials are exactly out of phase and the Peierls stres
each partial is always equal and opposite, and hence the
plied stress required to move the rigid configuration va
ishes.

We next investigate the effect of dissociation on t
Peierls stress. Since the EAM potential gives rise to dis
ciation for the perfect edge dislocation into two symmet
60° partials with a separation of about three times the B
gers vector~see Sec. V B!, one can infer from the work o
Benoitet al. that the Peierls stress for each partial is equa
the Peierls stress required to move the extended disloca
i.e., the two partials and the intrinsic stacking fault in b
tween. Continuum elastic theory gives the partials separa
as

d5
mbp

2

8pg is f

21n

12n
, ~11!

wherebp is the partial Burgers vector andg is f is the intrinsic
stacking-fault energy.16 Since the DFT GSF energy surfac
predicts no dissociation for the edge dislocation, one m
force the dissociation by either increasing the shear mod
m or reducing the intrinsic stacking fault energyg is f .

Increasingm by up to a factor of ten, but keeping th
same DFT GSF energy surface, results in a wider disloca
.
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density distribution, but yields no dissociation. On the oth
hand, keeping the same shear modulusm, but reducing the
DFT value ofg is f from 0.164 to 0.096 J/m2 ~the vicinity of
the ISF in the GSF surface is also reduced by this ene
rescaling!, results in the dissociation of the edge dislocati
into two 60° partials, separated by one Burgers vector. T
corresponding Peierls stress is 0.33 meV/Å3, an order of
magnitude larger than the original value of 0.02 meV/Å3.
Further reduction ofg is f to 0.085 J/m2, yields a larger par-
tials separation of 3b, but the same Peierls stress of 0.
meV/Å3. Since our calculations give a partials separat
which is an integer multiple of the Burgers vector, we c
infer from Benoitet al. that the Peierls stress of 0.33 meV/Å3

should be equal to that for moving an isolated 60° part
Therefore, the origin for the discrepancy in Peierls str
between the DFT and EAM results is that the DFT calcu
tions predict no dissociation for the edge dislocation a
hence a very low Peierls stress, whereas the EAM calc
tions, due to the lowerg is f , predict a dissociation into par
tials and hence a much higher Peierls stress.

In Table II, we list also the values of the Peierls stress
the screw and 60° dislocations obtained from direct atomi
simulations28 employing the same EAM potential. A fina
corroboration of the success of the semidiscrete variatio
PN model is that, for both the screw and 60° dislocations,
EAM GSF energy surface yields a Peierls stress in excel
agreement with that from direct atomistic simulations28 using
the same EAM potential. Furthermore, listed in Table II a
the values ofsP calculated from the expression of Joo´s and
Duesbery31

sp5
2pKb

a8
expS 2

2pz

a8 D . ~12!

Here,a852.47 Å ~for both dislocations! is the atomic spac-
ing perpendicular to the dislocation line. Using the EA
values forz ~from both definitions!, Eq. ~12! gives a Peierls
stress for the screw dislocation and for the 60° dislocati
both several orders of magnitude smaller than the co
sponding values found from the current model and the res
from direct atomistic simulations. On the other hand, had
used the DFT values forz, Eq. ~12! gives a Peierls stres
comparable to that from the model calculations. This is d
to the fact that Eq.~12!, based on the sinusoidal approxim
tion for the restoring force, can not treat dissociated dislo
tions.

VI. CORRELATION BETWEEN DISLOCATION
PROPERTIES AND DISLOCATION CHARACTER

In an effort to correlate dislocation properties with th
dislocation character, we have studied, using the DFT G
surface, the dislocation properties of 19 different dislocatio
that have the same Burgers vector but different orientatio
The angleu between the dislocation line and the Burge
vector varies from 0° to 90°.

In Fig. 8, we present the half width of the dislocation co
as a function of the dislocation angle, using both definitio
described in Sec. V A. The half width increases monoto
cally with dislocation angle. Overall, the agreement is s
prisingly good~less than 10%!, considering the fact that the
first definition takes into account the details of the ent
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GSF surface, whereas the second definition employs on
single point~namelyFus) of a simple sinusoidal GSF energ
surface.

The core energyUcore , along with its separate contribu
tions from the configuration-dependentelastic energy
Uelastic and the misfit energyUmis f it , are presented in Fig. 9
as a function of the dislocation angleu. We find thatUcore
and Uelastic decrease monotonically as the angle increas
whereas Umis f it increases with u. The configuration-
dependentelastic energyUelastic decreases withu because
the prelogarithmic factorK increases withu. On the other
hand, the monotonic increase ofUmis f it with u is due to the
fact that the core width increases with the dislocation an
Note, that the configuration-dependent elastic energy,
only is the dominant contribution to the total energy stored
the core region, but also is more sensitive to the disloca
character than the misfit energy.

In order to correlate the Peierls stress with the disloca
character, plotted in Fig. 10 is ln(spā/Kb) as a function of
z/ā. Here,z is the half width of the dislocation core calcu
lated from definition I andā is the average nodal spacin

FIG. 8. The half width~in Å! as a function of dislocation ori-
entation using the two different definitions. The square stands
the definition through the disregistry vector and the dot stands
the definition through the restoring stress~only DFT results shown!.

FIG. 9. The core energy, elastic energy, and misfit energy
function of dislocation orientations.
a

s,

e.
ot
n
n

n

along theX direction. It should be pointed out that most
the dislocations in the fcc lattice have noneven nodal sp
ings, except for the 30° and edge dislocations. Most of
calculated values can be fitted~solid line! with

sp5
2pKb

ā
e21.7z/ā. ~13!

The large deviation ofsP for the 30° and edge dislocation
from the common trend, indicates that the nodal spac
~even versus non-even! between atomic planes plays an im
portant role on the Peierls stress. Recently, we h
developed32 a general formalism which takes into accou
the effect of noneven nodal spacing in alternating lattic
such as the fcc lattice, and have shown that the Peierls s
for evenly spaced dislocations is several orders of magnit
lower than that for nonevenly spaced dislocations. On
other hand, the deviation of the 10.9° and 14.9° dislocati
from the common trend is unclear at present. Note, that
Peierls stress is more sensitive to the average atomic spa
ā than to the half width. For example, while both the 0° a
14.9° dislocations have predominant screw components
similar half widths of 2.1 and 2.3 Å, respectively, they ha
quite different atomic spacings, 1.2 and 0.3 Å, respective
This results in a Peierls stress of 0.04 meV/Å3 for the 14.9°
dislocation, almost two orders of magnitude smaller than t
of 1.60 meV/Å3 for the screw dislocation.

In conclusion, we have performed DFT and EAM calc
lations to obtain the GSF energy surfaces for the~111! glide
plane of Al. From those calculations we extracted the c
properties for various dislocations, using the semidiscr
variational generalization of the PN model. We have dem
strated that although the EAM gives the general trend
various dislocation properties, it fails to predict the corre
finer structure of the dislocation core, i.e., the presence
absence of dissociation into partials, which in turn det
mines the mobility of dislocations. Since the dislocation d
sociation into partials depends strongly on the intrin
stacking-fault energy, direct atomistic simulations based
empirical potentials may also fail to predict the correct d

r
r

a

FIG. 10. The scaled Peierls stress as a function of the ratio
the core width to the average atomic spacing perpendicular to
dislocation line.
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sociation behavior. Thus, the results of the present work
dicate that accurate DFT calculations of the GSF surf
combined with the semidiscrete variational PN model ena
the study of dislocation core properties more accurately
expediently. Moreover, this model can be extended to st
a wide range of problems that are associated with more c
plex dislocations processes such as cross slip, disloca
intersections, reactions, etc.
at
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