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We have employed the semidiscrete variational generalized Peierls-Nabarro model to study the dislocation
properties of aluminum. The generalized-stacking-fe@@8P energy surface entering the model is calculated
by using first-principles density functional thediyFT) and the embedded-atom meth@&HhM). Various core
properties, including the core width, dissociation behavior, energetics, and Peierls stress for different disloca-
tions have been investigated. The correlation between the core energetics and the Peierls stress with the
dislocation character has been explored. Our results reveal a simple relationship between the Peierls stress and
the ratio between the core width and the atomic spacing. The dependence of the core properties on the two
methods for calculating the GSF ener@FT vs EAM) has been examined. Although the EAM gives the
general trend for various dislocation properties, it fails to predict the correct finer core structure, which in turn
can affect the Peierls stress significan@pout one order of magnituge

[. INTRODUCTION quantum-mechanical description of the electronic degrees of
freedom. On the other hand, first-principles electronic struc-
Dislocations which are one-dimensional topological de-ture calculations, though considerably more accurate, are
fects, are central to the understanding of mechanical propecomputationally expensive for studies of dislocation proper-
ties of crystalline solids. The creation and motion of disloca-ties. The second type, is based on the framework of the
tions mediate the plastic response of a crystal to externdPeierls-NabarrgPN) model which seems to be a plausible
stress. While the continuum elasticity theory describes welklternative to direct atomistic simulations. In fact, there has
the long-range elastic strain of a dislocation for length scaledeen a resurgence of interest in the simple and tractable PN
beyond a few lattice spacings, it breaks down near the sinmodel for the study of dislocation core structure and
gularity in the region surrounding the dislocation center,mobility.*~
known as the dislocation core. The discrete nature of the real Peierls first proposédthe remarkable hybrid model in
crystalline lattice avoids the conceptual difficulty posed bywhich some of the details of the discrete dislocation core
the continuum singularity and recovers the structural differwere incorporated into an essentially continuum framework.
entiation smoothed out by the continuum elasticity. TheréNabarrd® and Eshelby* further developed Peierls’ model
has been a great deal of interest in describing accurately tr&nd gave a meaningful estimate of the lattice friction to dis-
dislocation core structure on an atomic scale because of ilecation motion. Later attempts to generalize the original
important role in many phenomena of crystal plastitify. treatment of Peierls and Nabarro assumed a more general
The core properties control, for instance, the mobility of dis-core configuration from which they derived the interactions
locations, which accounts for the intrinsic ductility or brittle- between the glide planes which satisfy the Peierls integral
ness of solids. The core is also important for the interactiorequation. The essence of these models was captured in a
of dislocations at close distances, which are relevant to plagnore comprehensive approach by VitéK?who introduced
tic deformation. For example, by integrating the local rulesthe concept of the generalized-stacking fault: Consider a per-
derived from atomistic simulations of core interactions intofect crystal cut across a single plane into two parts which are
dislocation-dynamics simulations, a connection betweerihen subjected to a relative displacement through an arbitrary
micro-to-meso scales can be established to study dislocatiorectorf and rejoined. The reconnected lattice has a surplus
reactions and crystal plasticify. energy per unit areg(f). As the vectof is varied to span a
Two types of theoretical approaches have been employednit cell of the interface,y(f) generates the generalized-
to study the core properties of dislocations. The first type, istacking-fault(GSH energy surface. The procedure can be
based on direct atomistic simulations employing either em+epeated for various crystal planes. The significance of the
pirical potentials or first-principles calculations. Empirical GSF surfacdor vy surface is that for a fault vectof there is
interatomic potentials involve the fitting of parameters to aan interfacial restoring stress
predetermined database and hence may not be reliable in
describing the core properties, where severe distortions like
bond breaking, bond formation and switching necessitate a Fp(f)=—V(y(f)), (eh]
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which has the same formal interpretation as the restoringrgy, we have performed calculations using both first-
stress in the PN model. The PN model has now come t@rinciples electronic structure methods and the empirical
represent a combination of the original continuum model andEAM potential.

the GSF interplanar potential, and its accuracy can be af- The remainder of this paper is organized as follows: Sec.
fected by either component. At present, the GSF energies cdhdescribes the computational techniques used in our first-
be calculated using empirical interatomic potentiaisch as  Principles calculations for the GSF energy surface. Section
the embedded-atom method, EAMr electronic structure _III contains a brief review of the model on which this study
methods. While extremely useful as a conceptual frameworkS based. In Sec. IV, we present the results of the GSF energy

the PN model becomes increasingly inaccurate for dislocaSurfaces for the11l) plane of aluminum using both first-
tions with narrow cores, which is typically the case in co- principles and empirical potential calculations. In Sec. V we

valently bonded solid&2* The origin of this inaccuracy re- CMPare the dislocation properties using the GSF surface
mains controversial, and it has not been unequivocall)fayaluat(.ad from the.two methods. The cqrrelauon betwgen the
established whether or not the Peierls framework can be e _|sIocat!on properties and .the dislocation character.|s pre-
tended to capture such situations. Exploring the limits an ented In Sgg. V1, along with some general conclusions on
extending the range of applicability of the classic PN model he applicability of our approach.

remains a worthwhile endeavor. Recently, there have been

several attempts to generalize the original treatment of the Il. COMPUTATIONAL METHODS
PN model. A semidiscrete variational generalized PN model
has been proposed by Bulatov and Kaxitashich has been The GSF energy surface is calculated within the frame-

successfully implemented to the study of dislocation mobil-work of density-functional theo} (DFT) in the local-
ity in silicon. Using the GSF energy surface determined fromdensity approximatioli to the exchange-correlation func-
an empirical interatomic potential, the model predicts thational, using the expression proposed by Perdew and
the Peierls stress for the glide screw dislocation in Siis 0.06Zunger®® A kinetic energy cutoff of 12 Ry for the plane-
eV/A3, more than two orders of magnitude lower than thewave basis is used and the atomic structures are considered
value 9.0 eV/& obtained from the classic PN model. Direct fully relaxed when the Hellmann-Feynman forces on each
atomistic calculations using the same interatomic potentiatom are smaller than 0.001 Ry/au. The calculated equilib-
gives 0.021 eV/A Furthermore, the model gives satisfactory rium lattice constantd,) and bulk modulus are 3.94 A and
results for other core properties when compared to direc82.52 GPa, in good agreement with the corresponding ex-
atomistic simulations for various dislocations in Si. Consid-perimental room-temperature values of 4.05 A and 76.93
ering the effect of the anisotropy of the elastic energy,GPa, respectively.
Schoeck adopted a variational procedure for the total energy In addition to the lattice constant and bulk modulus, we
by assuming a tari-type solution for the displacement, have calculated the value of the intrinsic stacking fault en-
which may not be the case for the general interplanar poterergy and the unstable stacking fault energy. To simulate the
tial. Von Sydowet al. introduced an interesting treatment of block shearing process we employed a supercell consisting
the Peierls integrodifferential equation by extrapolating theof six and nine atomic layers in th@11) direction. The
atomic positions away from the glide plah&his approach intrinsic stacking-fault configuration corresponds to a slip of
was shown to yield results in better agreement with atomisti@,//6 in the (112 direction, resulting in the stacking
simulations employing the same interatomic potential. ABCBCABC The unstable stacking-fault energy corre-
The purpose of this paper is to apply the semidiscrete PNponds to the lowest energy barrier that needs to be crossed
model to aluminum which is a prototypical ductile metal for the slip from the ideal configuration to the intrinsic stack-
with much lower Peierls energy and stress than silicon. Orning fault in the (112) direction. The calculations are per-
the other hand, just like silicon, aluminum is known to haveformed at the theoretically determined in-plane lattice con-
a narrow core due to its large stacking-fault energy. Thestant. For the reciprocal-space integration we have used a
successful application of the model to aluminum will further k-point grid consisting of(16, 16, 4 divisions along the
prove its validity and versatility in predicting dislocation reciprocal-lattice directions according to the Monkhorst-Pack
core properties for different materials. In particular, alumi-scheme? This corresponds to 51Kkipoints in the entire Bril-
num is exceptional among the fcc materials in that there haviouin zone. Convergence tests were performed both for the
been no experimental observations for a full dislocation disnumber of divisions along each reciprocal space direction as
sociation into partiald’ The ability to predict the absence of well as the number of plane waves. Furthermore, the results
dissociation in aluminum constitutes another test for the refor the six-layer and nine-layer supercells are reasonably
liability of the model. In order to test the accuracy of the close, indicating adequate convergence with respect to the
model, we have calculated the Peierls stress using both tteipercell size. Both atomic relaxations and volume relax-
semidiscrete generalized PN model and direct atomistiations were carried out to obtain accurate GSF energies. The
simulations based on the same EAM potential. We have caralue of the intrinsic stacking-fault energy we obtained is
ried out systematic calculations of the core properties and th@.164 J/m, in excellent agreement with the result of 0.165
mobility of relevant dislocations in Al, and we have exam- J/n? of Sun and Kaxire® and that of 0.161 J/fof Wright,
ined the relationship between the core propertg®rgetics, Daw, and Fond? Experimental measurements range from a
core width, and Peierls strésand the dislocation character, low value of 0.110 J/fto a high value of 0.280 J/At®
namely the angle between the dislocation line and its BurgerBinally, the value of the relaxed unstable stacking-fault en-
vector. In order to explore the dependence of the dislocatioergy is 0.224 J/ff) in agreement with previous theoretical
properties on the method employed to calculate the GSF ermalculations’®
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y[111] across the glide plan&,(f(x)). This results in the PN inte-
normal to grodifferential equation
glide plane
Kf“c - Olf(X,)d "=Fy(f 2
Xk Taw X =R, )

where f(x) is the disregistry vector of the atomic row at
point x related to the dislocation density by(x)
=df(x)/dx, andK is a constant depending on the elastic

o.___bsing < prtl)_[glerties and the dislocation character. For an isotropic
Y 8 b glide direction solid,
)
’ o K= 2 sinf 0 +cog 6 3
X == CcO y
/ SN 27\ 1-» @
2y G
z by where u and v are the shear modulus and Poisson’s ratio,
dislocation respectively, and is the angle between the dislocation line
line and the Burgers vector. The prelogarithmic elastic energy

) . ) — factor isK= u/27 andK .= u/[27(1— v)] for a screw and

eva?ﬁérlagﬁ;ézz?:ssiitg coordinates showing the directions relén edge dislocation, respectively. In the following calcula-
' tions, ©=28.8 GPa=0.1797 eV/&, v=0.344, andb=|b|

=2.85A are used. The dislocation densitfx) satisfies the

For the EAM calculations of the GSF energy surface, W€, ormalization condition

have used the Ercolessi-Adams poteffitdr Al. The super-
cell contains six(111) layers with a total of 216 atoms. +oo +e df(x")
Three-dimensional periodic boundary conditions were im- J p(X')dX'=J “ax
posed and both volume and atomic relaxations were in- * o

dx'=b. (4)

cluded. If a simple sinusoidal form is assumed fBg(f(x)), as in
the original PN model, the disregistry vector is then given by
IIl. SEMIDISCRETE VARIATIONAL the well-known analytical solution,
PEIERLS-NABARRO MODEL % b

To facilitate the presentation, we adopt the following con- fo)= ;tan‘ 12 + 2 ®)
ventions: In Fig. 1, theXZ, plane is thg111) glide plane, the
Z axis is in the direction of the dislocation line, and tke ~where
axis is in the glide direction. Th& axis in normal to the
glide plane. For planar dislocations, the displacements along Kb 6)

the Y direction are small. The Burgers vectorlies on the ¢= 2F max
glide plane making an angle with the Z axis. The Burgers
vector is along theX axis (f=90°) for an edge dislocation . o ;
and along theZ axis (6=0°) for a screw dislocation. The ma;'m“”? f[ez orlrlg S resi. by Bulat d Kaxitsth
Burgers vector of a mixed dislocation has both an edge com- S pointed out recently by Bulatov and Kaxirasthe
ponent,b sin#, and a screw componeri,cosé. In general cIasgc PN continuum model has the .folllo_wm.g fIav@)

the atomic displacements have components in all three direc: h|Ie_the elastic energy betwgen the. |nf|n|te_S|maI d'S|0.Ca'
tions rather than only along the direction of the Burgers vecons 1S evaluated frqm a continuous Integration, thg misfit
tor, because the path along the Burgers vector may have fg’l?rgy across the gl_lde plane is sampled_ discretely, in order
surmount a higher interplanar energy barrier in the GSF sur-> incorporate the discrete nature of lattice. Thus, the two
face. In other words, the GSF energy is reduced when th nergy contributions are not treated on an equal footing and

dislocation acquires additional displacement components i € total energy Is not variationa@) The CIaSS'C.PN mo.dclel
other directions. neglects the important degrees of freedom which participate

In the classic PN formalism. the dislocation misfit is as-2ctively in the translation of a dislocation over the Peierls

sumed to be confined on a single plane, the glide plané)arrier, and(_3)_The elastic strain energy of a o!islocati_on
separating two semi-infinite linear elastic continua. Betwee alculated within the PN model can be unrealistically high,

these two elastic half-spaces one places a dislocation, conv8§peCIa|Iy for solids with a narrow core.

niently represented as a continuous distribution of i”ﬁniteSi'tiorllg|ord2rntec:;ﬁzs§(|jvegg?esr?spr?nbcl,zr;& rt]r;i s%?eddsc(;(;tvee;/oarlea(;
mal dislocations with densitp(x).'! Herex is the coordi- 9 P

nate of the atomic row, which is always parallel to therecently. Within this approach, the equilibrium structure of

dislocation line. A discrete lattice of arbitrary structure, de-2 dislocation is obtained by minimizing the dislocation en-

formed by the dislocation’s displacement field, is superim—ergy functional

posed on the elastic half-crystals. At a given point along the Uso=U Ut U +Kb2InL 7
interface the resultant misfit, due to all the infinitesimal dis- dist™ elastic T Fmisfit? Hstress ’ @
locations, is then balanced against the lattice restoring stresghere

is the half width of the dislocation core arfd,,, is the
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1
2 2 3 3
Uelastic:iEj EXij[Ke(pi(l)pJ(l)+pi( )pj( ))+Kspi( )pJ( )],

(8)
0.5
Umisfit:Z Axys(f), (9) 0.4
E 0.3
0.2
2 2 J

x?—xZ_ 4
Ustress™ _; %(Pi(l)ﬁl))a (10

with respect to the dislocation density or disregistry vector.
Here,p®, p@ | andp!® are the edge, vertical, and screw
components of the general interplanar displacement densit))
at theith nodal point, andy;(f;) is the three-dimensional
misfit potential. The corresponding components of the ap-
plied stress interacting with the®, p®, and p{®, are
W=0,,, @=0,,, and r®=0,;, respectively K, K,
andK; are the prelogarithmic energy factors defined earlier.

The dislocation density at théth nodal point isp;=(f; 0.5
—fi_)/(x;—X;_1), wheref; andx; are the disregistry vec- 0.4
tor and the coordinate of thieh nodal point(atomic row, B 03

respectively. The remaining quantities entering in this ex-
pression are xij=3¢ii—1bj -1+ ¥i—1j-1T i~ i1
- ¢j,i—1! with ¢i,j:Xi_Xj , and ¢|,J:%¢I2,J In |¢i.j | The
quantityL entering the last term is the outer cutoff radius for
the elastic energ}f

The first term in the energy functiondl ¢astic, repre-
sents theconfiguration-dependentdensity or disregistiy (b)
part of the elastic energy, which has been discretized. Since
any details of the displacements across the slip plane other FIG. 2. The GSF energy surfaces for displacements along a
than those on the atomic rows are disregarded, the disloc&L1L plane in Al (I/nf) (the comers of the plane and its center
tion density is constant between the nodal points. This excor_respond to identical equilibrium_configurations, ie., the_ ideal Al
plicit discretization of the elastic energy term removes the@ttice): (&) from DFT pseudopotential plane-wave calculatiofs;
inconsistency in the original PN model and allows the to,[a|_from EAM calculations. Thg two energy surfaces are displayed in
energy functional to be variational. Another modification in e.x.actly the same perspective and on the same energy scale to fa-

cilitate comparison of important features. The EAM energy surface

this approach is that the nonlinear misfit potential in the en- . )
. . . extends to values about four times larger than the maximum value
ergy functional,U,isfit, IS @ function of all three compo-

h . . displayed(black t ted i
nents of the nodal displacementgx;). Namely, in addition isplayed(black truncated regions
to the displacements along the Burgers vector, lateral a”ﬁ’1stability is reached when an optimal solution for no

even vertical displacements across the slip plane are a|§8nger exists, which is manifested numerically by the failure

included. This in turn allows the treatment of straight dislo- ¢ ha minimization procedure to convergence. The Peierls
cations of arbitrary orientation in arbitrary glide planes. Fur-gyeqq is defined as the critical value of the applied stress
thermore, because the disregistry vedios) is allowed to |\ hich gives rise to this instability.

change during the process of dislocation translation, the
Peierls energy barrier can be significantly lowered compared
to its corresponding value from a rigid translation. In order to
examine the trend of energetics for different dislocations, we The first-principles GSF energy surfagéf) for the (111)
identify the dislocationconfiguration-dependergart of the  plane was calculated on a grid of 40 points in the irreducible
total energy as the core energy¥.core=Uelastict Umisfit part of the(111) slip plane(1/12 of the area shown in Fig).2
which includes the density-dependent part of the elastic enye used an augmented symmetrized polynomial basis to fit
ergy and the entire misfit energy, in the absence of stresshe calculated DFT GSF energy surface in order to facilitate
The last term in Eq(7), Kb?InL, is independentof the  the computation of dislocation properties. The basis was cho-
dislocation density, and hence it is irrelevant in the varia-sen so that it preserves the underlying translational and rota-
tional procedure. In fact, this term was not included in thetional symmetry of the fcc lattice. Because it is relatively
total-energy expression of Ref. 15 because it does not corfaster to calculate the GSF energy using the E&Me di-
tribute in the evaluation of the Peierls stress. The outer cutoffectly compute the GSF energy for any given disregistry vec-
radiusL is 10° A for all dislocations. tor.

The response of a dislocation to an applied stress is Shown in Figs. 2a) and 2b) is the fitted GSF energy
achieved by minimization of the energy functional with re- surface from the DFT and EAM, respectively. The three high
spect top; at the given value of the applied stresg,). An peaks of the GSF surface correspond to the run-on stacking

2 = oy adil
0.1 eariaseaaay

<110>

IV. GENERALIZED-STACKING-FAULT ENERGY
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FIG. 3. Projections of the GSF energy surfaces on(éh¢121] and (b) [101] directions from both the DFT and EAM calculations.

fault configurationABCCABGC in which two C layers are A. Disregistry vector and dislocation width
neighboring to each other. The projection of the DFT and | grger to examine the trend of the disregistry vector,
EAM GSF energy surfaces on th#21] and[101] directions  =f %+ f,§+f,2, as a function of the anglé between the

are shown in Figs. (8 and 3b), respectively. The first en- dislocation line and the Burgers vector one needs to de-
ergy maximum encountered along fi21] direction is the  termine the components éfparallel and perpendicular tm,
unstable stacking fault energy, which represents the loweste., f=f sin6+f;cos6 and f°=f, cos¢—f;sin 6, respec-
energy barrier for dislocation nucleatién?®the first energy tively. The results forf? using the DFT and EAM GSF sur-
minimum ata,/+\/6 corresponds to the intrinsic stacking- faces are presented in Figiab for the screw and 60° dislo-
fault configuration, where a full dislocation dissociates into acations, and in Fig. ®) for the 30° and edge dislocations,
pair of Shockley partials. The projection of the GSF surfacgespectively.

on the[101] direction is symmetric with respect to the slip  The dislocation half width/, defined as the atomic dis-
displacement 0f,/2v2. In both the DFT and EAM calcula- tance over whicti? changes frondb to 3b (definition I), can
tions, the unstable stacking-fault energy al¢hg1] is found be determined from Fig. 5. The half width may also be cal-
to be larger than that alongl21]. This anisotropy of the culated from Eq(6), which assumes a sinusoidal form for
unstable stacking-fault energy will affect the emission of dis-the restoring stresgefinition Il). While the first definition
locations from a crack tip. The difference between the DFTt@kes into account the full details of the entire GSF surface in
and EAM values for the run-on stacking fault is due to thethe evaluation of the disregistry vector, the second definition
fact that theab initio database to which the EAM potential involves only the maximum restoring StréfSg,,, which can
was fitted does not include this fault configuration. The enP€ set equal to the first maximum of the restoring stfess
ergy values of the various stacking faults obtained from theencountered along tHel21] direction?” Values of¢ for the
DFT and EAM calculations are summarized in Table |. Thefour dislocations evaluated from the above two definitions
restoring stress for different directions using the DFT andare listed in Table Il. The half width increases monotonically
EAM are shown in Figs. @) and 4b), respectively. with dislocation angled for both DFT and EAM calcula-
tions. The dislocation half width calculated from the EAM is
larger compared to its corresponding DFT value, due to the
smaller restoring force in the vicinity of both the unstable
and intrinsic stacking faultgFig. 4(@)]. Overall, and in par-

In this section we present the results of various dislocaticular for the DFT calculations, there is a good agreement
tion properties for the screw, 30°, 60° and edge dislocationgor the values of evaluated from the two definitions, which
with Burgers vectorb=a/2[101], using the GSF energy suggests that the details of the GSF surface are not important
surface obtained from the DFT and EAM calculations. in the evaluation of.. The larger discrepancy between the

two definitions for the 60° and edge dislocations using the

TABLE I. Fault vectors and energies for four stacking faults EAM, is due to the fact that for both dislocations, the EAM

obtained from the DFT and EAM calculations. All energies are in€nergy surface gives dissociation into Shockley partials,

V. DISLOCATION PROPERTIES

Jint. which can only be manifested within the first definition.
Vector DFT EAM . . .
B. Dissociation behavior
Intrinsic StaCk'r.'g 1/6[12H 0.164 0.120 The dislocation densitysolid curves for the screw, 30°,
Unstable stacking 1/1q1121] 0.224 0.141 60°, and edge dislocations, calculated from the DFT GSF
Unstable stacking 1ja01] 0.250 0.663 energy surface, are presented in Fig. 6, along with the corre-
Run-on stacking 1/3121] 0.400 1.354 sponding results from the EAM calculatioridashed and

dotted curver In all cases, DFT predicts no splitting for the




3104

Restoring stress (ev/A")

(a)

LU, KIOUSSIS, BULATOV, AND KAXIRAS PRB 62
0.10 T . T 0.10 : T T .
EAM
/7 N\
L / \ 1 &~ EAM
0.05 , \ & 0.05 - Piy .
/ \ % yid N
/ \ C \
/DI \ 3 ,7__DFT
N / ] \
0.00 < £ 000
\ / o \ 7
\ /4 £ \ .
\ / k] \ 7
\ / 7] N - -
-0.05 - \ /4 & 005¢ - 1
/
N/
-0.10 . . . -0.10 . ' . .
0.0 0.5 1.0 1.5 0.0 0.2 0.4 0.6 0.8 1.0
Unit Burgers vector (b) Unit Burgers vector

FIG. 4. The restoring stresses alo@y[ 121] and(b) [101] (b) directions calculated from both the DFT and EAM GSF energy surfaces.

complete dislocations

into partials,

consistent

withneighboring atomic rows and hence a double-peak structure.

experiment.” While the narrow double-peak structure found A double-peak structure may be indicative of a splitting, if
for the 60° dislocation is suggestive of a splitting, it is ratherthe peaks are separated by a larger distance or the nodal

due to the fact that the nodal points along ¥direction are

points are evenly spaced, as in the case of the 30° and edge

not evenly spaced, i.e., they are distributed alternatelippy dislocations.

and bp/2, whereb,, is the Burgers vector of the Shockley

In contrast to the DFT results and experiment, the EAM

partial. This in turn gives rise to density fluctuations over thegjculations predict that the full edge and 60° dislocations
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dissociate into partials. In Fig. 6, we display both the screw
and edge components for the 30° and the 60° dislocations.
The multipeak found for the screw dislocation suggests that
it might also be unstable. The 30° dislocation exhibitsaa-

row double-peak structure. Overall, the dissociation trend
found in the EAM calculations could be due to the smaller
value of the intrinsic-stacking-fault energy. Recognizing that
the EAM GSF energy surface differs from the DFT surface
not only in the intrinsic stacking-faullSP) energy, but also

in the energy profile around it, we have investigated the ef-
fect of the shape of the GSF surface on the dissociation be-
havior for the full edge dislocation using the DFT GSF sur-
face. We have fixed the ISF energy of the GSF surface to its
DFT value of 0.164 J/f but varied the DFT energy profile
around the ISF to make it as flat as possible to be similar to
the that of the EAM GSF surfad@nset of Fig. 7. Using the
modified GSF surface, we then calculated the dislocation
density for the edge dislocation, and found a small dissocia-
tion into partials(double peak in the density distributipn
with a separation of one Burgers vect®ig. 7). Therefore,

not only the ISF energy itself, but also the GSF energy pro-
file around it plays an important role on the dissociation
behavior.

It is interesting to examine the character of the resultant
partials in Fig. 6. The complete edge dislocation dissociates
into two symmetric 60° partials, whereas the 60° dislocation
dissociates into a 30fleft double-peak and a 90°(right
double-peak partial. The double-peak structure again stems
from the inequivalent nodal spacing between neighboring
atomic planes. The fact that the density of the screw compo-
nent (dotted curve vanishes at the point where the edge
component(right double peakreaches its maximum, indi-
cates the pure edge character of the 90° partial. The 30°

FIG. 5. The disregistry vector in units of the Burgers vector dislocation exhibits a weak tendency for dissociation into a

obtained from the DFT and EAM calculations f@) the screw and

60° dislocations{b) the 30° and edge dislocations.

screw and a 60° partial, while the edge component for the
60° partial is singly peaked. Our result for the dissociation of
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TABLE II. Core half widthsZ (in A), with ' from the definition through the disregistry vector aflt
from the definition through the restoring stress; core energigs. and separate contributions from the
configuration-dependenglastic energy,Uqastic and Unmissi; Kb2INL (in eV/A); and Peierls stresgin
meV/A3), for the four dislocations from both the DFT and EAM calculations. The last two rows list the
Peierls stress for the screw and 60° dislocations from direct atomistic simulétibrSim.) using the same
EAM potential, and from the expression of 3oand Duesber(D) using the EAM values fof from the two

definitions.
Screw 30° 60° Edge
Core widths ¢',¢") DFT (2.1,2.2 (2.5,2.9 (3.0,2.9 (3.5,3.2
EAM (3.7,34 (4.3,3.9 (5.4,4.7 (6.4,5.2
Ucore DFT —-0.0834 —0.1096 -0.1678 -0.1979
EAM —0.0534 —0.0813 —0.1413 —0.1730
Uelastic DFT -0.1828 —-0.2317 —0.3199 —0.3666
EAM —0.1679 —0.2086 —0.2960 —0.3445
Umistit DFT 0.0938 0.1221 0.1521 0.1688
EAM 0.1145 0.1273 0.1547 0.1716
KbZInL 1.6050 1.8123 2.233 2.446
Peierls stress DFT 1.60 0.33 0.61 0.02
EAM 0.55 0.21 0.28 0.15
At. Sim. 0.51 0.29
JD (0.017, 0.03y (0.0003, 0.001B
the full 60° dislocation into partials agrees with direct atom- C. Energetics and lattice resistance

istic simulation8® using the same Ercolessi-Adams EAM po-  The DET and EAM results for the energetics and the
tential. Although this agreement indicates the success of thgge(s stress for the four dislocations are presented in Table
semidiscrete variational PN model in predicting the finery rthe pET results for the energetics are in good agreement
core structure, the result itself is not consistent with the eXyyith those from the EAM calculations including the trend
periment due to the smaller ISF energy from the EAM cal-5.q5q the series. The misfit enerlyycri(, increases mono-
culations. It is also interesting to compare our results to regynically from the screw to the edge dislocation, while the
cent atom|s|,t|c ;lmdulatlons of Millet al.l ETgtIO?"r:jg the  configuration-dependerelastic energylqjasic (negative in
same Ercolessi-Adams EAM potential, Millst al. deter- g "gecreases as the angle increases. dwfiguration-
mined the core spreading of the 60° dislocation which in t”"\ndependenelastic energb?InL is listed also in Table II.

gives an ISF energy of 0.120 Jin excellent agreement  ge,eral hoints need to be emphasizdiiThe configuration-
with our EAM value (Table ). Furthermore, these authors P P 24 9

conclude that empirical EAM potentials are not capable of o4 ——F——r—F——T"—"—"—1T—7T"—7T———7T
accurately modeling the dissociation of the 60° dislocation. oal e ,
| energy (J/m")
-------- modified
04 o8 / real
60 — DFT(p,) 0.3 —0.2 ' ]
— EAMG) NS
- EAM(p,) bos
'ﬁ 0.2 % 1 2 3 4 5% -
c Disregistry () i
[ 3]
fa]
0.1 .
— DFT(p,)
90 - EAM(p,)
00 | ...I:...I.....I.... L
20 -15  -10 -5 0 5 10 15 20
60 .| |, —% Unit Burgers vector
FIG. 7. Dislocation density for the edge dislocation calculated
- ‘ e from the modified GSF energy surfagashed lingand the DFT
-10.0 -5.0 0.0 5.0 10.0

GSF energy surface without modificati¢solid line). The distance

is in terms of the full Burgers vectoflnse) The projection of the
FIG. 6. Dislocation density for four dislocatior{slockwise: GSF energy surfaces alofg21] with and without modifying the

screw, 30°, 60° and edge, obtained by using DFT and EAM calcuDFT energy profile. The solid curve represents the DFT energy

lations: For the 30°, 60°, and edge dislocations, the characters of tharofile while the dashed curve represents the modified GSF energy

resultant partials for the EAM calculations are indicatede also  surface but keeping the same intrinsic stacking-fault energy as its

text). DFT value.

Distance (b)
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dependent elastic enerdy, astic, ignored in some previous density distribution, but yields no dissociation. On the other
studies, is the dominant contribution to the core enéigy;,.  hand, keeping the same shear modylysut reducing the
(about a factor of two larger thdd,;ssi) . More importantly, DFT value ofy;s; from 0.164 to 0.096 J/fn(the vicinity of
it depends strongly on the dislocation charact@y; While  the ISF in the GSF surface is also reduced by this energy
U.iastic iS Negative here, in principle, it can be of either sign.rescaling, results in the dissociation of the edge dislocation
For example U astic Was found to be positive in SF (3)  into two 60° partials, separated by one Burgers vector. The
Inclusion of the configuration-independent elastic term,corresponding Peierls stress is 0.33 me¥//An order of
Kb2InL, yields positive values for both the total energy andmagnitude larger than the original value of 0.02 me¥/A
the total elastic energy. Further reduction ofys; to 0.085 J/m, yields a larger par-
The mobility of dislocations is characterized by the tials separation of B, but the same Peierls stress of 0.33
Peierls stress and the Peierls energy, the former being deseV/A3. Since our calculations give a partials separation
fined usually as the maximum derivative of the latter withwhich is an integer multiple of the Burgers vector, we can
respect to dislocation translation. As alluded earlier, theinfer from Benoitet al.that the Peierls stress of 0.33 meV/A
Peierls stress in this work is the critical value of the appliedshould be equal to that for moving an isolated 60° partial.
stressr, at which the dislocation energy functional fails to be Therefore, the origin for the discrepancy in Peierls stress
minimized with respect tp; through standard conjugate gra- between the DFT and EAM results is that the DFT calcula-
dient techniques. This approach is more accurate and phydions predict no dissociation for the edge dislocation and
cally transparent, because it captures the nature of the Peielience a very low Peierls stress, whereas the EAM calcula-
stress as the stress at which the displacement field of thi#ns, due to the lowel;s;, predict a dissociation into par-
dislocation undergoes a discontinuous transition. Furthertials and hence a much higher Peierls stress.
more, this definition for the Peierls stress treats the full and In Table Il, we list also the values of the Peierls stress for
partial dislocations on an equal footing. the screw and 60° dislocations obtained from direct atomistic
The Peierls stress calculated from the DFT GSF energyimulation§8 employing the same EAM potential. A final
surface is in good agreement with that from the EAM calcu-corroboration of the success of the semidiscrete variational
lations, except for the edge dislocation, where the EAM re-PN model is that, for both the screw and 60° dislocations, the
sult is an order of magnitude larger than the DFT result. ThiEEAM GSF energy surface yields a Peierls stress in excellent
discrepancy could be associated with the splitting of the edgagreement with that from direct atomistic simulatihssing
dislocation into partials. Benokt al. proposed that if the  the same EAM potential. Furthermore, listed in Table Il are
equilibrium separation between the two Shockley partials ighe values ofrp calculated from the expression of 3oand
an integer or half integer multiple of the vecta/2)(110, Duesbery*
so that the two partials move in phase and reach the troughs
or the crests of the Peierls potential simultaneously, then the o :ZWKb ex;{ _ %
Peierls stress required to move the extended configuration is Poal a’'
simply the stress required to move an isolated partial dislo; , . N .
cation. On the other hand, if the two partials are rigidly sepa-.Here’a =2.47 A (for both dislocationsis the atomic spac-

. ing perpendicular to the dislocation line. Using the EAM
rated by(1/4) or (3/4) times the vector4/2)(110), then the N . :
partialsygre)exa(ctly) out of phase an§ tr)1<e Pogierls stress yalues for{ (from both definitiong; Eq. (12) gives a Peierls

0 . . . .
L : Uress for the screw dislocation and for the 60° dislocation,
each partial is always equal and opposite, and hence the 3Both several orders of magnitude smaller than the corre-

g;}eeds stress required to move the rigid configuration Van'sponding values found from the current model and the results

We next investigate the effect of dissociation on thefrom direct atomistic simulations. On the other hand, had we

Peierls stress. Since the EAM potential gives rise to dissogsﬁ]d ;rr]:b:?alzt-lc; ;/ha;l:?ri);ogt’heEqrﬁ(()%ji)l %glliilz;isrier'll'shiztrizsdsu e
ciation for the perfect edge dislocation into two symmetric P :

60° partials with a separation of about three times the Bur:[0 the fact that Eq(12), based on the sinusoidal approxima-

gers vectorsee Sec. VB one can infer from the work of tion for the restoring force, can not treat dissociated disloca-

Benoitet al.that the Peierls stress for each partial is equal tc;uons.

the Peierls stress required to move the extended dislocation,
i.e., the two partials and the intrinsic stacking fault in be-
tween. Continuum elastic theory gives the partials separation

as In an effort to correlate dislocation properties with the
dislocation character, we have studied, using the DFT GSF
surface, the dislocation properties of 19 different dislocations
that have the same Burgers vector but different orientations.
The angled between the dislocation line and the Burgers
whereb, is the partial Burgers vector angs; is the intrinsic  vector varies from 0° to 90°.

stacking-fault energy® Since the DFT GSF energy surface  In Fig. 8, we present the half width of the dislocation core
predicts no dissociation for the edge dislocation, one mays a function of the dislocation angle, using both definitions
force the dissociation by either increasing the shear moduludescribed in Sec. V A. The half width increases monotoni-
w or reducing the intrinsic stacking fault energyg; . cally with dislocation angle. Overall, the agreement is sur-

Increasingu by up to a factor of ten, but keeping the prisingly good(less than 10% considering the fact that the

same DFT GSF energy surface, results in a wider dislocatiofirst definition takes into account the details of the entire

(12

VI. CORRELATION BETWEEN DISLOCATION
PROPERTIES AND DISLOCATION CHARACTER

B ,ubg 2+v
C Bmyisr 1

(11)
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FIG. 10. The scaled Peierls stress as a function of the ratio of

FIG. 8. The half width(in A) as a function of dislocation ori- the core width to the average atomic spacing perpendicular to the
entation using the two different definitions. The square stands fofjs|ocation line.

the definition through the disregistry vector and the dot stands for

the definition through the restoring stréssly DFT results shown along theX direction. It should be pointed out that most of

GSF surface, whereas the second definition employs only tarce dislocations in the fcc lattice have noneven nodal spac-

single point(namelyF,.) of a simple sinusoidal GSF energy ings, except for the 30° ar_1d edge _d|sloc_at|0ns. Most of the
surface. u calculated values can be fittégolid line) with

The core energW.q.e, along with its separate contribu-
tions from the configuration-dependentelastic energy
Uelastic and the misfit energy istit, are presented in Fig. 9 0p=
as a function of the dislocation angte We find thatU e
and Ug ,s1ic decrease monotonically as the angle increases,
whereas Upssiy increases with . The configuration-  The large deviation ofp for the 30° and edge dislocations
dependenelastic energyU,,siic decreases withd because from the common trend, indicates that the nodal spacing
the prelogarithmic factoK increases withd. On the other (€ven versus non-evebetween atomic planes plays an im-
hand, the monotonic increase Uf,;s;; with @ is due to the ~portant role on the Peierls stress. Recently, we have
fact that the core width increases with the dislocation angledevelope® a general formalism which takes into account
Note, that the configuration-dependent elastic energy, ndhe effect of noneven nodal spacing in alternating lattices,
only is the dominant contribution to the total energy stored insuch as the fcc lattice, and have shown that the Peierls stress
the core region, but also is more sensitive to the dislocatiofior evenly spaced dislocations is several orders of magnitude
character than the misfit energy. lower than that for nonevenly spaced dislocations. On the

In order to correlate the Peierls stress with the dislocatioPther hand, the deviation of the 10.9° and 14.9° dislocations
character, plotted in Fig. 10 is laga/Kb) as a function of from the common trend is unclear at present. Note, that the
{la. Here,{ is the half width of the dislocation core calcu- Peierls stress is more sensitive to the average atomic spacing
lated from definition | anda is the average nodal spacing @ than to the half width. For example, while both the 0° and

14.9° dislocations have predominant screw components and

Z?b e L7l (13)

similar half widths of 2.1 and 2.3 A, respectively, they have
PRSI L S quite different atomic spacings, 1.2 and 0.3 A, respectively.
030 -0 O T E T ] This results in a Peierls stress of 0.04 me¥fér the 14.9°
e--eU,, dislocation, almost two orders of magnitude smaller than that
000 | ooy | of 1.60 meV/A for the screw dislocation.
oy In conclusion, we have performed DFT and EAM calcu-
3 j G * .y lations to obtain the GSF energy surfaces for {hl) glide
5 0 s SR ] plane of Al. From those calculations we extracted the core
& . . "“‘0»1\11 properties for various dislocations, using the semidiscrete
020 ¢ e e variational generalization of the PN model. We have demon-
"w\me strated that although the EAM gives the general trend for
030 I SN ] various dislocation properties, it fails to predict the correct
“‘v\e\_e»_% finer structure of the dislocation core, i.e., the presence or
040 , , ] absence of dissociation into partials, which in turn deter-
00 300 Angle 600 900 mines the mobility of dislocations. Since the dislocation dis-

sociation into partials depends strongly on the intrinsic
FIG. 9. The core energy, elastic energy, and misfit energy as atacking-fault energy, direct atomistic simulations based on
function of dislocation orientations. empirical potentials may also fail to predict the correct dis-
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sociation behavior. Thus, the results of the present work in-
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