
PHYSICAL REVIEW B 1 JULY 2000-IVOLUME 62, NUMBER 1
Berry phase and ground-state symmetry inH‹h dynamical Jahn-Teller systems
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Due to the ubiquitous presence of a Berry phase, in most cases of dynamical Jahn-Teller systems the
symmetry of the vibronic ground state is the same as that of the original degenerate electronic state. As a single
exception, the linearH ^ h icosahedral model is determined by an additional free parameter, which can be
continuously tuned to eliminate the Berry phase from the low-energy closed paths: accordingly, the ground
state changes to a totally symmetric nondegenerate state. The detailed values of the parameters not being
known, the issue of the actual ground-state symmetry of C60

1 is open.
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The traditional field of degenerate electron-lattice inter
tions ~Jahn-Teller effect! in molecules and impurity center
in solids1,2 has drawn interest in recent years, excited by
discovery of new systems calling for a revision of a numb
of commonly accepted beliefs. Several molecular syste
including C60 ions, higher fullerenes, and Si clusters, deri
their behavior from the large~up to fivefold! degeneracy of
electronic and vibrational states due to the rich structure
the icosahedral symmetry group.3 Jahn-Teller~JT! systems
have therefore been considered theoretically,2,4,5 disclosing
intriguing features,5–9 often related to a Berry phase10 in the
electron-phonon coupled dynamics.

As it is well known, the molecular symmetry, reduced
the JT distortion with the splitting of the electronic-state d
generacy, is restored in the dynamical Jahn-Teller~DJT! ef-
fect, where tunneling among equivalent distortions is cons
ered. The vibronic states are therefore labeled
representations of the original point group of the undistor
system. In particular, for continuity, the weak-couplin
ground state~GS! retains the same degenerate representa
as that labeling the electronic level prior to coupling.A pri-
ori, there is no particular reason for this to continue at lar
couplings. However, it appears empirically2 that in all linear
DJT systems studied before the late nineties, the GS sym
try remains the same at all couplings. The explanation of
observation was a great outcome of the Berry-phase10 sce-
nario: the phase entanglement in the electron-phonon B
Oppenheimer~BO! dynamics,5,11–13originating at electroni-
cally degenerate high-symmetry points, seemed a unive
feature of the DJT systems.

In this context, it came as a surprise the discovery of
first linear JT system showing anondegenerateGS in the
strong-coupling limit.8,9 In particular, Ref. 8 studied a spher
cal modelD ^ d (L52 electrons interacting withL52 vi-
brations!. This system turns out to be a special case of
H ^ h icosahedral model: a fivefold degenerateH electronic
state interacting linearly with a distortion mode of the sa
symmetryh.8,14 In that special case, it was shown that, f
increasing coupling, a nondegenerateA excited state in the
vibronic spectrum moves down, to cross theH GS at some
finite value of the coupling parameter, thus becoming the
PRB 620163-1829/2000/62~1!/29~4!/$15.00
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at strong coupling.8 This phenomenon is a manifestation of
vanishing Berry phase in the entangled JT dynamics.8,15

The examples examined in the literature8,9 are very spe-
cific, and hardly related to a realistic case such as, for
ample, C60

1. In this paper, we study the linearH ^ h model
in its generality. We analyze in detail the connection b
tween the symmetry/degeneracy of the vibronic GS and
presence/absence of a Berry phase in the coupled dynam
This model owns its peculiarities to thenonsimple reducibil-
ity of the icosahedral symmetry group. In particular, theH
representation appears twice in the symmetric part of
Kronecker product of theH representation with itself:

$H ^ H%(s)5a% g% h[1]
% h[2] . ~1!

There are, therefore, two independent sets of Clebs
Gordan~CG! coefficients,

Cm,n
m[ r ] [ ^H,m;H,nuh,m& [ r ] ~2!

for the coupling of anH electronic state with anh vibrational
mode, identified by a multiplicity indexr 51,2.16 Of course,
since the twoh states are totally equivalent and indisti
guishable, symmetrywise, the choice of these orthogonal
of coefficients has some degree of arbitrariness: the free
rametera in the combination

Cm,n
m ~a![cosa Cm,n

m[1]1sina Cm,n
m[2] ~3!

accounts for it. The coefficientCm,n
m (a) coincides with the

r 51 andr 52 values17 for a50 anda5p/2, respectively.
Also, for a52arctan(3/A5)[2as , it becomes equivalen
to the spherical CG coefficient.

The basic Hamiltonian for theH ^ h model can be written

H5Hharm~\v!1He-v~g\v,a!, ~4!

with

Hharm~\v!5
1

2
\v(

m
~pm

2 1qm
2 !, ~5!
29 ©2000 The American Physical Society
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He-v~g\v,a!5
g\v

2 (
m m n

qmcm
† c2nCm,n

m ~a!, ~6!

where qm is the distortion coordinate~with conjugate mo-
mentumpm) and cm

† is the electronic operator in standa
second-quantized notation.

The a dependence of the CG coefficients indicates t
the group does not determine completely the form of the
coupling as, for example, in cubic symmetry. The spec
value of a must be established case by case by deta
analysis of the phonon mode and its coupling with that s
cific electronic state. Indeed, eachh mode of, say, C60

1 ions,
is characterized not only by its own frequencyv i and scalar
coupling gi , but also by its particular angle of mixinga i .
Earlier works onH ^ h DJT studied in detail the casesa
5p2as ~Ref. 8! anda5p/2 ~Ref. 9!.

For intermediate to strong coupling, the interesting no
perturbative regime, the customary framework is the B
separation of vibrational and electronic motion: when
splitting among the five potential sheets~proportional tog2)
is large, the electronic state can be safely assumed to fo
adiabatically the lowest BO potential sheet, while virtu
inter-sheet electronic excitations may be treated as a s
correction. The BO dynamics is determined by the low
eigenvalue of the interaction matrixJ5(qmV(m) in the
electronic space.J is obtained from Eq.~6! by the same
technique described in Ref. 15, and it is a simple general
tion of that obtained forD ^ d: here, for brevity, we repor
only the expression of the diagonal matrix elements of
V(0) matrix, corresponding to the coupling to a pureq0 dis-
tortion:

F C0,2
2 ~a!

2C0,1
1 ~a!

C0,0
0 ~a!

2C0,1
1 ~a!

C0,2
2 ~a!

G 5cosa3
1

2 A5

1

2 A5

22

A5

1

2 A5

1

2 A5

4 1sina3
2

1

2

1

2

0

1

2

2
1

2

4 . ~7!

This form makes it clear that a shifta→a1p introduces a
sign change in the coupling matrix, and it can be comp
sated by a reflectionqW→2qW . We will restrict ourselves
therefore, without loss of generality, to the interval 0<a
<p.

The electronic eigenvalue (22/A5)cosa is the lowest for
a,as and a.p2as ~region a): in this range the BO po-
tential presents six absolute minima, one of which is lyi
along theq̂0 pentagonal axis, with energy loweringEclas5
2g2cos2a \v/10. However, influenced by theV(mÞ0) ma-
trices, in the complementary intervalas,a,p2as ~region
b), ten trigonal distortions become the absolute minima w
energy gainEclas52g2sin2a \v/18. At the boundary angle
t
T
c
d
-

-

e

w
l
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t

a-

e

-

h

(a5as andp2as), all pentagonal and trigonal minima be
come degenerate, and part of a continuous degenerate
dimensional~4D! trough8 of depthEclas52g2 \v/28.

We come now to the role of the Berry phase in this s
tem. As well known, geometrical phases are induced
conical degeneracies of two BO potential surfaces.6,10 In the
D ^ d system8,15 ~the a5p2as case of the model studie
here! the flat minimum trough touches tangentially the se
ond BO sheet. For that case, it was shown15,18 that the tan-
gential contacts lead to null Berry phase, in turn yielding
nondegenerate ground state. For generica in contrast, all
contacts between the lowest two potential sheets occur
stead as conic intersections, at points that are far from
potential minima. In particular, conical crossings appear
both trigonal and pentagonal axes fora in regionsa andb,
respectively~i.e., when they do not correspond to minima!.
For example, forqW on the q̂0 axis, Eq. ~7! lists the five
electronic eigenvalues, and it can be readily verified that
a in region b the most negative one is indeed twofold d
generate.

In region a, the six minima are all equidistant, definin
the simplest regular polytope in 5 dimensions@see Fig. 1~a!#.
In this case, therefore, minimal closed paths join any of
20 triplets of minima. It is straightforward to verify that a
the center of all such triplets there lies one of the trigo
axes, carrying a conical intersection. If the degeneracy w
restricted to the trigonal axes, however, the rich topology
the 5D space would allow the triangular loop to squee
continuously to a point avoiding the degenerate line: the
sociated Berry phase would then vanish. Instead, we chec
that the two lowest sheets remain in contact through a bu
3D ~one radial1 two tangential! region of distortions sur-
rounding each trigonal axis. This guarantees the nontri
topology of the loops, thus the possibility of nonzero Ber
phase. Indeed ageometrical phase ofp is associated to thes
triangular loops, as we compute explicitly by the discretiz
phase integral of Ref. 19. We expect therefore, that, fora in
regiona, the GS of theH ^ h model must show the signatur
of a Berry-phase entanglement.

In region b, the minima are ten, each with three near
neighbors and six second neighbors. The shortest clo
paths through minima joins three points such as (1→2→3
→1) in Fig. 1~b!. Somewhat longer paths are of pentagon
shape, such as (1→2→3→4→5→1). We compute the
Berry phases for both kinds of paths, obtainingp and 0 for
the 3-points and 5-points loop, respectively. The nontriv
phases originate at the central degeneracy, since they re
the same if the five points are squeezed around the ce
pentagonal axis. Indeed, the coupling matrix restricted to
lowest levels getting degenerate at theq0 direction is

FIG. 1. The connectivity of the BO potential minima for region
a and b of angle a introduced in the text. All lines~solid and
dashed! join nearest-neighbor minima. The points 1–5 of paneb
are projected onto theq21-q1 plane in panelc.
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80
cosa1

A3

4
sina D S 2q1 2q21

2q21 q1 D . ~8!

The distortion coordinates determining the electronic wa
function are thereforeq21 andq1, and the coupling has th
form of the linearE^ e DJT, or, equivalently, of the Zeema
coupling of a spin-12 ,10 associated to a standard conical ‘‘di
bolic’’ intersection. The pentagonal path (1→2→3→4→5
→1) in the five-dimensionalq-space projects onto theq21
2q1 plane into the ‘‘star’’ drawn in Fig. 1~c!. It is apparent
that the pentagonal circuit loops twice around the deg
eracy, while the triangular ‘‘shortcut’’ (1→2→3→1) com-
pletes only one turn: this accounts for the computed pha

The potential barrier separating two far neighbors~3→1!
is longer and energetically at least 60% more expensive
that linking next neighbors (1→2). As a consequence, th
overlap integral for far neighbors is approximately the squ
of that for next neighbors~see Ref. 9 for a special case!, thus
negligibly small for largeg. In this limit, therefore,only the
pentagonal loopsare relevant, and so are the associa
Berry phases. We conclude that, in regionb, although non-
trivial Berry phases are present, they haveno effecton the
strong-coupling low-energy spectrum. Thus, in particul
the GS, which, in regiona of anglea, should remainH for
any coupling, in regionb should become a nondegenerateA
state turning lower at largeg. We stress that we have esta
lished the presence of nonzero Berry phases for all value
a, but also that, in regionb, the geometrical phase of
certain class of loops is ineffective due to high tunneli
barriers traversed by these paths.

This scenario is confirmed by numerical diagonalizat
~Lanczos method!.8,20 Figure 2 displays the gap between t
lowest H and A vibronic states. At weak coupling, as su
gested by continuity, the GS isH. Forg.7 anda in rangeb,
theA state becomes the GS. We note however a little mo
lation in the boundaries of this region, bothg- and a-wise.

FIG. 2. g2 times the gapD5EH2EA ~units of \v, logarithmic
gray scale! between the lowestH andA vibronic states as a function
of g anda. In the positive region, the GS isA, elsewhere it isH,
and there we plot 0 for better readability. This generates on theg-a
plane a zero-temperature ‘‘phase diagram.’’ The basis is trunc
to include up to 40 oscillator states.
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We observe, in particular, that the two special valuesas and
p2as , far from marking the closing of theH-A gap, show
instead a rather sharp peak in thea direction. By drawing~in
Fig. 2! the gap multiplied byg2, we evidence, along thes
ridges atas andp2as , theg22 large-g behavior of theH-
A gap, characteristic of the motion in a flat trough of si
;g. Inside regionb, instead, the gap vanishes much mo
quickly due to the tunneling integral through the barrie
between trigonal minima vanishing exponentially ing2.

It is straightforward to extend the one-mode Hamiltoni
~4! to a more realistic case of many distortion modes,21 each
characterized by its own frequency, coupling, and angle
mixing:

H5(
i

@Hharm~\v i !1He-v~gi\v i ,a i !#. ~9!

We study in detail the two-mode case. Five free parame
(v1 being taken as a global scale factor! appear in the model
In order to carry out a significant study of the phase diagra
we limit ourselves to~i! two values only~1 and 5! of the
ratio v2 /v1,22 and ~ii ! a22p/25a1[a, assuming a prin-
ciple of ‘‘maximum difference’’ between the modes. W
take advantage of spectral invariance for individual s
change of each of the couplingsgi→2gi and fora→2a,
restricting to the 0<a<p/2, gi.0 sector. For convenience
we introduce polar variablesg15gcosg, g25gsing (0,g
,p/2), and draw slices of the parameters space for fix
values ofg, asa-g planes.

The first interesting observation concerns the case
equal frequencies: even though Hamiltonian~9! is linear in
the coupling parameters the CG coefficients and the bo
operators, the special casev15v2 cannot be trivially re-
duced to a one-mode problem, by means of a suitable rota
tion mixing mode 1 and 2. This is a consequence of
linear independence of the coupling matricesV(m)(a) for
different values ofa.

FIG. 3. The gapD5EH2EA ~units of\v1) between the lowest
H and A vibronic states as a function ofa and g ~defined in the
text!, for g510, v2 /v155. In the region ofD<0 (H GS!, we
replace the gap by 0. The convergence is fair, the basis includin
to 12 oscillator states.ed
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We resort to exact diagonalization to treat the two-mo
case. Due to the larger size of the matrices, we are limite
smaller couplings: we obtain a satisfactorily convergedEH
2EA gap up to g&10 only. The calculations, for both
v2 /v151 and 5, show that forg<7 the GS symmetry re
mainsH for any a and g as in the one-mode case. The
already atg58, anA ~nondegenerate! GS makes its appear
ance in two localized regions of thea-g plane. Starting from
g*9, these separated regions assume essentially
asymptotic strong-coupling shape~see Fig. 3!. The first re-
gion, located symmetrically acrossa5p/2, corresponds
mainly to mode 1 withb type ~no-Berry! coupling: mode 2
~Berry-phase entangled in this region! acts as a weak pertur
bation, incapable to change the GS symmetry for sm
enoughg. On the other side, the second region ofA-GS is
located arounda50: there, it is mode 2 that is responsib
for the no-Berry-phase coupling, mode 1 acting as a w
perturbation, forg close enough top/2. Forv2 /v151 ~not
reported here!, the twoA GS regions are, of course, equiv
lent. Forv2 /v155 ~Fig. 3! instead, these two regions diffe
in size, in relation with the different relative energetics
mode 1 versus mode 2.

In conclusion, we have illustrated the importance of t
tunneling energetics of paths surrounding the points of
generacies of the two lowest BO potential sheets, for de
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ing the effective role of the Berry phase. In all classic
linear JT models, the low-energy paths are affected by
geometrical phase in a way leading to a ‘‘boring’’ fixe
ground-state symmetry. TheH ^ h model is special in being
determined by an additional parameter, that changes the
nectivity of the graph of low-energy paths through minim
along with the regions of degeneracy of the two lowe
sheets. Consequently, this parameter leads continuously
a regular, Berry-phase entangled region to a whole reg
where, although present, the Berry phase is totally ineff
tive in imposing its selection rules to the low-energy vibron
states, and to the GS in particular.

In particular, in the molecular ion C60
1, the H electronic

state couples to eighth modes~and also to sixg modes!. The
present work implies that such a basic property as the s
metry of the molecular GS is not obviously knowna priori:
it depends on the detailed values not only of the coupl
parametersgi , but also of the characteristic anglesa i of
each mode. We suggest that, in the lack of microscopic
culations, spectroscopical investigation should resolve
issue experimentally.
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