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Nonmonotonic roughness evolution in unstable growth
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The roughness of vapor-deposited thin films can display a nonmonotonic dependence on film thickness, if
the smoothening of the small-scale features of the substrate dominates over growth-induced roughening in the
early stage of evolution. We present a detailed analysis of this phenomenon in the framework of the continuum
theory of unstable homoepitaxy. Using the spherical approximation of phase-ordering kinetics, the effect of
nonlinearities and noise can be treated explicitly. The substrate roughness is characterized by the dimensionless
parameterQ=W,/(ko,a%), where W, denotes the roughness amplitudg, is the small-scale cutoff wave
number of the roughness spectrum, @nid the lattice constant. Depending @q the diffusion lengtH, and
the Ehrlich-Schwoebel lengllz 5, five regimes are identified in which the position of the roughness minimum
is determined by different physical mechanisms. The analytic estimates are compared by numerical simulations
of the full nonlinear evolution equation.

I. INTRODUCTION behavior, in which the position of the roughness minimum
can be determined by several distinct physical mechanisms.
The morphology of thin-film surfaces has a decisive in-For a quick overview of the different regimes we refer the
fluence on many film properties. The control of growth- Curious reader to Table . _
induced surface roughness is therefore a central concern in | N€ Paper is organized as follows. In the Sec. Il we intro-
thin-film science and technology. Two types of roughenin du<_:e the Starljrng(’jl%rd continuum equation for unst_able hom_oepl-
mechanisms have been extensively studied in recent y8ars. axial growt and describe the strategy for its analytical

The termkinetic rouaheninds commonly used to refer to a solution. Section Il is devoted to the roughness evolution in
. ughenings Y . . the absence of noise. We first recapitulate the linear analysis
stochasticmechanism, in which fluctuations in the deposi-

on flux | i th | heni of Ref. 11, then provide a detailed analysis of the relevance
tion flux interact with thermal smoothening to generate ayt e nonlinearity and the nonlinear behavior, and finally
scale-invariant, rough morphology. This theoretically appealyiscuss the influence of correlated initial roughness. The ef-

ing but empirically rather elusive phenomerias often SU-  fects of noise are analyzed in Sec. IV. In Sec. V we compare
perseded by a secondeterministicmechanism, agrowth  the analytic estimates to a numerical evaluation of the spheri-
instability associated with reduced interlayer transport anctal approximation, as well as to numerical simulations of the
slope-dependent mass currents along the suffd€elhe  full nonlinear growth equation, finding good agreement in all

hallmark of unstable growth is a morphology of more or lesscases. Finally, some conclusions are formulated in Sec. VI.

regular mounds with a clearly developed characteristic

length scale. While in practice the distinction between the Il. THE CONTINUUM EQUATION

two types of roughening mechanisms may not always be S0 The evolution of a surface growing under typical molecu-

clear cut‘f_ they are very different conceptually. lar beam epitaxyMBE) conditions is described by an equa-
In addition to the growth-induced roughness, clearly alsgjon of the fornf

the roughness of the substrate affects the film morphology.

Since the growing film covers up the small-scale details of TABLE I Analytical estimates of the position of the minimum
the substrate modulations, the substrate contribution to th@epending on the substrate roughness paran@eteW,/(a, ajko).
roughness is expected to decrease with increasing film thick[he other quantities appearing in the table are determined by the
ness, while the growth-induced roughness component in(;har.actenstlc length scalég andzlES of t_hle growng surfacg..ln
creases. Under suitable conditions this leads to the somewhgg'ticulary=les/lp andn=4«/a”~16F"*(Ip/le9)®. For defini-
counterintuitive possibility of aninimumof the total surface ~ 10nS 0f 7o and 7es see Eqs(32) and(33).

roughness at a nonzero film thickness. This phenomenon has

been observed in several growth experiméntsnd a theo- Position Relevant
. L - Value of Q of the minimum effect
retical description has been worked out on the level of linear
continuum theories of kinetic rougheniigand unstable Q<1/2 mro=(Q%?/8m) 7, Conserved
growth!! noise
In Ref. 11 a quantitative comparison with the experiments] /2< Q< 32x/y Trs=(Q?%y?/327) 7, Nonconserved
of Gyureet al® was attempted, which indicated an important noise
influence of nonlinearities. This motivated the present study,32z/y<Q<8lIy /(ayy) 0.187 Linear
in which the nonlinear term in the growth equation is treated deterministic
explicitly using the spherical approximation of phase-8i,/(ay)<Q<8Iy/(ay?) 0.4(rm)"2 Nonlinear
ordering kinetics***We find that the interplay of instabil- gI, /(ay?<Q 0.5(n 75 e ¥ Nonlinear

ity, nonlinearity, and noise gives rise to a rather complex
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dH+V-J=a,F+7, ) spherical approximation. In the present context it consists of
replacing the argument of the nonlinear currénwith its

whereH is the height.,J is the surface curreny, is thg_ average vaIua(t)=<(Vh)2>. In this way, Eq.(6) is effec-
monolayer thickness; is the average value of the deposition yje|y finearized. It is then possible to write down a closed

flux, and» is a noise term describing fluctuations in the fluX ¢5rm,  Jinear equation for the structure factoB(k,t)
(shot nois¢ and in the diffusion of adatoms on the surface. =(ﬁ(k t)ﬁ(—k 0) ’

The constant terna, F can be eliminated passing to the
frame of referenceH=a, Ft+h moving with the average

— _ 4 __ 2
height. The noise has zero average and correlations dS(k,t)= —2[ xk*=f[a(t) Ik"IS(k.D), @)

(n(x,t) (X' t))=(2m) " 28(t—t")(Rs— RpV2) S(x—X') wherea(t) must be determined self-consistently
) ) - S D [l
@ @
with the amplitudesRs and Rp representing the effect of a(t)=27rf0 dk I°S(k,t). (8)
shot and diffusion noise, respectively.

The surface current is the sum of two contributions The solution of this pair of coupled equations has already

J:KV(VZh)+f[(Vh)2]Vh (3) been derived for |Ong times by ROSt and Kﬂ?gﬂere we
concentrate on the short-time behavior, i.e., all what happens
The first tends to smoothen the surface and has the form of igefore the instability sets in. In this time range we expect the
capillarity term}® even though it may be dominated by non- jargeN approximation to give a fairly accurate description
equilibrium effects such as nucleatith'® The second term  of the nonlinear behavid? since correlations are still small
models a growth-induced surface current, whose existence i range and amplitude. In particular we will be interested in

often (but not necessarity~*9 caused by the presence of an the time evolution of the surface roughness
Ehrlich-Schwoebel barrier for interlayer diffusion. We as-

sume in-plane isotropy of the curreffor a discussion of ) ko
origins and consequences of anisotropy see Refs. 19 gnd 20 W (t)ZZWJO dk kSk,t). 9
For the functionf(a) we use the form valid in the weak

ier limi
barrier limit We usually assume as initial conditi®(k) =S(k=0,)

o a white spectrum with an upper cutdf= /I,

f(a)= , (4)
(1+lpVala,)(1+]esVa/a, ) W2/(k2) for k<k,
where | is the diffusion length and g the Ehrlich- So(k)= 0 for k>kg, (10

Schwoebel length. These length scales are related to the in-
layer hopping rat®, the interlayer hopping rate’, and the  which impliesW2(0)=W§ and a(0)=W§k§/2. The dimen-
deposition fluxF through sionless number

Ip~(D/F)”a, lgs=(D/D'~1)ay. (5 Q=Wo/(koa, &) (D

Herea, denotes the in-layer lattice constant and the exponenvtvi” turn out to provide a useful measure for the strength of
v depends on the size of the critical cluster for two- P g

dimensional nucleatiof: Conditions of weak and strong the initial roughness; note that it involves both the amplitude

step edge barriers can be distinguished according to wheth&}Vo) and the small-scale cutoff. Other types of initial rough-
le>1p (strong barriers or |ee<lp (weak barriers>510 ness spectra will be treated in Sec. Il C.

Here we focus on the latter case, in which a continuum de-

scription is most Iiker to be valid. I1l. SOLUTION IN THE DETERMINISTIC CASE

The coefficientsy andx in Egs.(3) and(4) are related to - -
microscopic parameters by~Fldp/2, k~FI4 251416 Equation(7) can be formally integrated
We will for simplicity assume that the equality sign holds in
these formulas; however, numerical factors are not precisely Sdet(k,t)IZ(
known and the equalities should be intended instead only in
order of magnitude. Also the amplitude of the noise terms is

Wo

2
K ) exd —2xkt+2k%0(t)], (12
0

connected to microscopic parameters throU@B=I%RS where
=13Fa%af. .
By inserting the expressiof) of the current in the equa- b(t)= J ds fla(s)]. (13
tion for the height and neglecting noise one obtains 0
dth=—k(V?)2h—V[f((Vh)?)Vh]. (6) By definingkZ(t)=h(t)/(2«t) one can rewrite

This strongly nonlinear equation is reminiscent of the Cahn- 2 5
Hilliard equation for phase-ordering in systems with con- Wz(t)zz(%) J Odkkexp{ 2t sck? 2(&) _1H
served order paramet&r A widely used method for investi- Ko 0 k

gating this kind of nonlinear evolution is the largelimit, or (14
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—Wz\ﬁexqz kit
— Yo 2 K m)

{erf(k2\2kt)+erf (ki —k2)\2«t]}
>< L
2./ktk3

with erf(s)=(2/\/F)f3exp(—t2)dt. The wave numbek,, is
the position of the structure function peékhen it is a real
number, otherwise the peak is fdr=0). Within linear
theory its value is constark,,= k= \ a/2«, while in general
k., is a function of time.

The derivative ofW? with respect ta att=0 is

(19

dWA(t)

m = SWikk3(3k?—Kj),

t=0

(16)

wherek=k,(0)= \f[a(0)]/2x= \f(W3k3/2)/2«. Hence if
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evolution ofk,(t) and hence when the decay of the initial
fluctuations ends: But does not affect the way?(t) de-
creases.

The form(18) of the structure factor may be interpreted as
that of a system which is coarsening with a typical correla-
tion length growing ad (t)~ («t)¥* The initial condition
creates “domains” of sizé, *, much smaller than the length
of the instability k,;lz the system evolves by reducing the
amplitude of fluctuations and increasing the correlation
length. This explains why the initial decreaseWf is seen

only for smallk/k,. This coarsening process continues until

L=k, *. (19

From this time on the evolution proceeds by amplifying fluc-
tuations of scalel and the instability sets in. Notice that
while in the linear cas&,,=k; is constant in time, when
nonlinearities are taken into accouky, grows in time but
remains always smaller thdq, becausd (a)=<« for all a.

k/ko>1/\/3 the roughness grows from the beginning andTherefore the time where the minimum occurs in the linear

there is no minimum in the behavior ¥?(t): The instabil-

theory is a lower bound for the same quantity in the nonlin-

ity is immediately at work. Notice, however, that the condi- ear case.

tion for the existence of the minimum involvesand notk; .
When the initial roughness is larde<k, and it may occur

thatk<ky<k : In such a case a minimum occurs even if the
linear theory does not predict it. This fact, together with the

observation thak, /k, does not depend dW,, implies that if

ko is sufficiently large a minimum exists even for very small

amplitude of the initial fluctuations. K, is not large, only a

We now compute in detail how the position of the mini-
mum depends on the amplitude of the initial fluctuations. For
reference it is useful to summarize first the results of the
linear theory!!

A. Linear theory

The assumption of linearity for the current impliaét)

strong initial roughness can originate a nonmonotonic behav=0. Hence f[a(t)]=f[0]=a, b(t)=at, and ki=k?

ior of the width.

= a/2k. Then the temporal evolution of the width is fully

We will assume in the following that a minimum exists. specified for all times by Eq(15). Letting k,— such a
To study the detailed behavior of the system one should iformula can be cast as

principle consider Eqs(12) and(13) simultaneously. How-
ever, expanding the expression\WE(t) for smallk,/kqo

Wo\2 [ erf(k3y2«t)
W2(t 2(—) \ﬁ—-l—Wz 1—exp —2xkit
(1) Ko 2 2\/E ol o xKot) ]
k 2
x(k—m) +0
0

K 4

K/ 17
one finds that after a transient tinhg= 1/(2Kk3) the width
starts decreasing as\l#t and it does so until I/xt=Kk?.

During this time interval the width decreases in time and
depends only ok andkg, not onk,, (hence not on the form

of the current, not even its linear expansiohhe system is
effectively described by an evolution equati¢®) where
only the relaxational term proportional tomatters®23 This

o Wolki\?
W (t)=T(k—O) O (t/m), (20)

where

(21)

is the inverse amplification rate of the maximally unstable
fluctuations and the scaling function is

®(x)=eX\2m/x[ 1+ erf(\2x)]. (22)
This formula is valid only for times greater thaty
=1/2xk3~ (k Iko) <77
The width attains a minimum at a time

7'|=4K/012

th.~0.18 7, (23

fact is crucial for all the following calculations: The structure where it has been reduced by a factor

factor is known
Syet k,t) = Spexp( — 2kk*t) (18)

and can be used to compuaét) andkq,(t), which change
nonlinearly in time, but do not affect significantf§ye(t).

This situation persists up to a time such that other terms in
the expansiorl7) become large. Since the other terms grow
with t, it is around this time thaiV?(t) reaches a minimum.

W2(t}i)/WA~3.42 (K /ko)?. (24)

This minimum marks the transition between the initial
power-law decrease and the eventual exponential increase
due to the linear instability.

B. Nonlinear theory
The initial condition implies that(0)=W3k3/2. Then,

The only role played by the currefis to determine the time for very smallt
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b(t)=f(W3k3/2)t="at. (25)

By comparing?z with a one recovers the conditiof2l) of
Ref. 11 for the irrelevance of the nonlinearity
Wokol p

2 <L (26)

However, this condition turns out to be too restrictive. The
reason is that it assesses the relevance of the nonlinearity
from its importance in the expression of the unstable current b(t)~f ds

at the initial time. But, as discussed aboVeloes not play

any role in the initial evolution of the width. The relevance
of the nonlinearity must instead be established from its in-

fluence on the position of the minimum ®¥2(t), i.e., for

long times. By that time the initial fluctuations have already b(t)~f ds——

been reduced significantly.
Expandinga(t) as a function ok,,/kg

2

W2
a(t)= gz 1o~ 2ikit)] 27)
2 2
+ TO —4ex —2kkgO kg + [ —rerf(ky2xt)
2 k 4
x| —| +0| = (28
Ko ko)

one can see thaa:(t) is constant only for times of the order

of to= 1/(2Kk0) indicating that Eq(25) soon loses validity.
For longer timegup tot=1/ xk(t)*]),

W5
4Kk(2)t '

a(t)= (29

Inserting Eq.(29) in the expressionl3) we can compute the
long-time behavior ob(t)

[¢%

t
b(t =f ds 30
v 0 (1 loWo )(1+ lesWo ) 0
2a, ko\/ks 2a, kov/ks
s e
=| ds , 31
0 (1+ TD/S)(1+ ’TEsls) ( )
where we have introduced two time scales
|DW0k|2 2 2 2 a” 2
D= ZaJ_ kO = Q 8| 7| (32)
and
| eaWok?) 2 a \?
TES™ Za k. 7=Q%"* % ap (33

In the right equalities we have introduced the quaniity
=lgs/lp andQ s defined in Eq(11). It is important to stress

that since we are considering weak Ehrlich-Schwoebel ba
riersy<1l and hencegs< 7y . Moreover, realistic values of

the diffusion length are such thét/a;>1. Depending on
the initial roughness via the parame@rthe time scalesgg

and mp will be larger or smaller than the initial oney,
giving rise to different scenarios.

1. Irrelevant nonlinearity (intermediate initial roughness)

Consider first the case of a fairly small initial roughness,
i.e., Qya/8lp<1, so thatrgg<7p<7. Then for ty<t
< 7gg One can neglect the constant term in the denominator
of Eq. (31)

at? (34)
\/TDTES 2\TpTes
For rgs<t<<7p instead
S1/2 2 qt32 a5
Y
while for rp<t<<
b(t)~ at. (36)

b(t) undergoes several changes during the time evolution
passing through two intermediate behaviors. However, it is
easy to see that these variations in the fornb@f) are too
short lived to affect the time evolution &% [or a(t)]. The
minimum width is reached when the effect of the nonlinear-
ity is already lost, and is well described by linear theory. The
condition for the irrelevance of the nonlinearity is therefore
that o< 7, that is

Wok0| D
2a,

K |2

—| <1. (37

Ko

Comparing with Eq(26) it is clear that the relevance of the
nonlinearity is strongly reduced whémn<k,. Notice, more-
over, that the role ok, is opposite compared to the condition
(26): An initial substrate rough down to very small length
scales(largek,) makes the nonlinearity less relevant.

2. Relevant nonlinearity (large initial roughness)

Let us assume insteatts<7<7p, i.e., 8p/(ya)<Q
<8lp/(y? ). One has forrgg<t<7p

t¥2<at. (39

b(t)= 2a
()—3

™D

With this expression o(t) the value ok, is much smaller
than the linear valu&, and the condition(19) for the mini-

mum is attained on time scales larger than To estimate
tin More precisely the form oiV?(t) can be written in the
scaling form

WA(t) = ( ";(t)) ®[trkin(t)], (39)
0

where® is defined in Eq(22). Now the minimum value of
W? is not reached wher®’(x)=0, becausé,, depends on
L The condition for the minimum o#V? is instead

®'(x)(2b’'t—b)+®(x)(b't—b)=0. (40
Using the expressiofB8) for b(t) one gets
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x®'(x) 1 47
d(x) 4 “D
whose solution imi,=t>./7(t2.)~0.086, yielding
D 12_ a
tmin~0.477p)"“=0.4 Qy 8l 7. (42)

Hencetp;, is larger thanr but smaller than, . The value
of the width at the minimum is

o1 ]| 2]
Wit )/ Wo~1.3 - ) .

D

(43

If instead Q>8I /(y?ay), then rj<7gs<7p . By means
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while the minimum width reached is

W tyn(6)]

2 0) 612
Wg

:(2_ 0)2(0/2+1)F(T

g\ 102 k|20
1-— = .
i1l
[ [ ; ; .

Both trr_lin,(a) aqd Wz[tmin( 0)] are growing functions ob:

The minimum is delayed and made shallower by the pres-
ence of correlations in the roughness. This occurs because
the roughness is concentrated on large length scales and the

damping of small scale fluctuations provided by the relax-
ational dynamics is less effective in the reduction of the sur-

XTI

(50

of an analogous procedure, one finds that the minimum odace width. Such effect is most evident wheapproaches 2:

curs forx,;,=~0.03, yielding

a |43
triisnmo-aTlTDTEs)m:O-E’ Q4/3y2(%) . (44

The value of the width at the minimum is

K, le 1/3
ES . o
W(tmin)/WO~1.J( ko) ( ToTes)

C. Correlated initial conditions

(49)

th . (6) diverges, whilew?[t! . (6)]/W2 goes to 1, since for
#=2 all the roughness is concentrated on the macroscopic
length scale K*) 1.

For 2< <4, the origin of the minimum is different. In
this case one can takg— , and find fort<1/(2«xk**#) and
small k,

W2(t) = W3+ 2mAK* #4(2kt) 74

1 2k?
x| = +
(6—2)(2kt)Y2 4-06

. (51

The previous results can be easily extended to the case gifferently from Eq.(48), heret has, in the first contribution

a substrate with correlated roughness, i.e., with

A for k<k*
Sy(k) =9 A(k*/k)? for k* <k<kg (46)
0 for k>kg,

with 6>0 andkoy/k*>1.

In this case the condition for an initial decrease of the

roughness is, in the limiky/k* — oo,

for 6<4

N

0 0 for 6>4.

Hence for >4 the width can only increase monotoni-

cally from the beginning.

1. Linear theory

For <2 one can safely tak&* —0 and find, fort
>1/(2kkg) and to second order ik,

6
+ kT

W2(1) = mAK* /(2 ct) 04 r(;
0 2™ |5

10
Z.

(48)

Estimating the position of the minimum from the time when

the second term equals the first, one obtains

1]

sxkf‘rl 6\ |’
4

tlrnin( 0)=

(49

to the second term, a positiv@nd small exponent but a
negative prefactor. Therefore in this case the initial decrease
of the roughness is much weaker and this is reflected by the
minimum width, which is close t&,. The time when the
minimum is reached is

4- 0) 2
(52

| = |—
tminl €)= 8Kk|4( 0-2
and vanishes, as expected, in the lift4.

2. Nonlinear theory

With correlated initial conditions the evolution of the av-
erage square slope, consideriBik,t) = Sy(k)exp(—2«k’t)
andk* —0, is for t>1/(2kkj)

_ wAK T (1- 0/4)
2(2Kt)171‘}/4

a(t) (53

Hencea(t) is for all /<4 a decreasing function of time but
its rate of reduction vanishes &b approaches 4. All the
previous treatment of the nonlinearity can be repeated. The
only difference in the results is that the time scatgsand

Tes are modified. In particular

1 [ wAK* T (1— 9/4) 13449
(0= 5 2 a
1

(54)

With this expression one can assess the relevance of the non-
linearity by comparison with the time scale of linear theory

t' . (6). For #<2 one finds that the nonlinearity is irrelevant
[7o(6) <tiin(6)] for
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0.8

o
-2}
T

o
'S
T

limit of validity of linear theory

o
o

2
6

FIG. 1. Plot of the right hand side of Eq&5) and(56) vs @ for
k, /ko=1/10 andk* /ky=1/100.

S ) - S
4af \ko ko) (2—O)T(1—014)|" 2|k

T[(2— 6)/4]

2T (1— 014)

(4—0)I2
} (55

4

The right-hand side of the previous inequality is of the
order of one ford— 0, in agreement with Eq37). For small
6 it decreases ax(/ko)’. For 6—2 it diverges, as a conse-
qguence of the fact thattmn(e) goes to infinity.
For 2< <4 the condition for the irrelevance of the non-
linearity becomes
o &

4
J<[x
4—6
(56)

X{zw—z)

The right-hand side diverges f&i—2 and vanishes fop
—4, as expected sincey () diverges in that limit: Foro
—4 the nonlinearity is always relevant.

A more immediate perception of the meaning of E&$)
and(56) is given by Fig. 1, showing the right-hand sides of
the inequalities as a function @t Nonlinearity is irrelevant
for values of Wokf1p/(2afko)]1* smaller than the function
plotted. Except for a small region arourt=2, where it
diverges(becausd,,,— ), the function is always smaller
than its value ford—0.2° This means that correlations in-

k*
ko

ki
Ko

21,212
WOkOI D
4af

1 [0
(2— )T (1— 0/4){1_ 2

(4—0)/2
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The inclusion of noise in the problem changes Ef).to

3,:S(k,t)=—2[ kk*— f[a(t)]k?]S(k,t)+ R(k), (57)
with R(k) =Rgs+ Rpk?.
The formal solution is
S(kit)zSdet(k!t)+sl1oise(k!t)r (58)

where Sye(k,t) is again given by Eq(12) while

t
S’loise(kit):R(k)sdet(kvt)JodS Seiks). (59

As before the key point is to realize that provided
kn/ko<<1, after a short transient of duratidg= 1/(2Kké),
one can safely tak&,q(k,t)~Syexp(—2«k*). Using this
expression

R(K) .
Snoise(kvt): m[l—eXK—ZKk t)] (60)
With this formula one can compute the additive contribu-
tions of the noisy part of the structure factoraét) and to
the roughnes®V?(t) which arise due to shot noig® and

diffusion noise D), respectively,

a(t)=agedt) +ag(t) +ap(t) (61)
and
W2(1) = Wie(t) + WA(t) +WH(1). (62)
The results are
’7TRS 4
ag(t)~ KH’](ZKkOt), (63
Rpk3
ap(t)~ o, (64
and
5 Tt
Ws(t)mﬂ'RS Z, (65)
WA (1)~ 7;—FiDm(szgt). (66)

The determination of the temporal evolution of the system
is now more complicated than in the noiseless case. There,
the form ofa(t) was always the same and the minimum for

X ) 2 . B . .
crease the effect of the nonlinearity for almost all values ofV" changed depending on the various approximations for

0.

IV. SOLUTION IN THE NOISY CASE

So far we have neglected the presence of noise i Hqg.

f[a(t)]. Here, even the expression aft) varies in time.
Moreover, in the noiseless case, the minimunWwi occurs
when the condition(19) is fulfilled. Here, there are three
independent contributions to the width: A minimum may ap-
pear much before the instability starts to play any role, sim-

We now turn to the study of the problem in the presence botlply because of the interplay between the different contribu-
of deposition and diffusion noise. It will turn out that noise tions to W2. However, sinceW3,, is the only decreasing
affects the position of the minimum only for small initial contribution, it is clear that a minimum W? can occur only
roughness. For large and intermediate value8Vgfthe de- if it already existed in the deterministic case. Noise cannot
terministic theory of Sec. Il is sufficient. create a minimum and, as will be shown below, cannot de-
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stroy it, but can only shift it to shorter times. We will assume

in the following that a minimum in the noiseless case exists.
The complication related to the different contributions to

a(t) turns out to be unimportant for physical values of the

parameters. Inserting the expressionsdgrand ap in Eq.

(4) one sees that, under the physically sensible assumption

lp>a; and k51>aH, f(ag)~f(ap)~a. Hence, even if for
long times it may happen thats or ap become larger than
aqet, their value is so small that the theory is not affected.

The analysis ofV? is instead quite involved. Let us define
the time scales

Wo Q%
RS 2KZmRs 327 ()
2kWg QY2 .
TRD™ a2 ~ g T
wkoRy 87
Rp\? 1 y?
TDS:(R_S) B 128n 69

Trs IS the time scale whelVg becomes greater thalWye,;
Trp IS the time scale wheWp>W_.; 7ps is the time scale
whenWg>W)y, . Let us carry out the analysis of the interplay
of these different time scales assuming, for the moment, th

the deterministic part is well described by linear theory, i.e.

tmin:tlminwo':l-sfrl .

For small initial roughness@<1/2) one finds thatrgp
<71Rs<7ps<7 and this implies thaWW= Wy, for t<7xp,
W=W, for rgp<t<7pg, W=Wjs for rps<t<7, andW
~expf) for m<t. Hence the minimum occurs for,,

~1rp but before the instability sets in there is another

change fort~tps.

If insteadQ>1/2 there are two possibilities. If the initial
roughness is not very largeQfy?><32r), one haspg
<7rs<7 and W=Wygg,; for t<rrg, W=Wg for rre<t
<7, and W~=expt) for larger times. Otherwise, iQ%y?
>32m, then 7ps<7<7TRs<7Rp: W=Wj; always, the
noise is irrelevant andy,,=t,,~0.18r . Notice that the
conditionQ?y?s 327 is, apart from the numerical factor, the
condition (15) of the paper by Krug and Rost.

We have so far assumed théf!=t! . of the same order
of magnitude ofr;. When deterministic nonlinearities are
strong they increase the valuetdf! , which becomes much

-
~ -
-~ -
________

— Fully nonlinear
---- Large-N approx

. . L .
1 10 100 1000 10000 100000
t

FIG. 2. Double logarithmic plot 0fV2(t) vst for a system with
ko=1/10, W,=1/100, Q=1/10, F=10"7, 15,=1000, andy
=1/100. Here and in all other plots anda; are taken to be equal
to 1. For these values of the parame®@rs 1/2 and conserved noise
dictates the position of the minimum.

numerically the fully nonlinear equation for values of the

arameters corresponding to the different possible regimes of

able | and compared the results with the numerical integra-
tion of the largeN equatioR® and with the analytical esti-
mates. The numerical integration was performed by the
simple first-order Euler scheme, on a lattice of size 512
X 512. The temporal stepsize was chosen to be 1, while the
lattice spacing was equal te/k,, with k, specified in the
figure captions.

We start by considering the limit of very small initial
roughness, so th@=0.1 and the minimum is due to con-
served noise roughening the surfg€ég. 2). The minimum
width for the fully nonlinear solution occurs for a time com-
patible with the analytical predictiot},;,= 7rp~1600. De-
spite having a minimum around the same time the solution of
the fully nonlinear case and the larfeapproximation differ
noticeably for large times. This poor agreement is, however,
only apparent and is due to a technical subtlety: The numeri-
cal solution of the full equation is performed on a square
lattice, while the analytical calculations assume a circular
Brillouin zone, k<k,. When noise is irrelevant, since the
structure factor decays exponentially for large wave vectors,

greater thanr,. As shown above, this starts to happen forthe difference in the Brillouin zones does not really matter

75> 7, which corresponds t@2y?>(8lp/a))?>1. Then it
might in principle happen thaﬁﬁ}1 becomes larger tharkg
in the last of the cases above. However, whi¢, grows for
large Q asQ [Eq. (42)] or asQ*? [Eq. (44)], Trsis propor-
tional to Q% 7rg always remains larger thaf]5. and noth-
ing in the previous discussion changes.

after the initial transient,. In the noise dominated cases
instead, the structure factor has a power-law tail: The effect
of the different Brillouin zones persists in time, cannot be
eliminated easily/ and leads to a systematic overestimate of
the value ofW?(t). This is why for long times the numerical
solution is not in agreement with the largeresult. This

In Table | is a summary of the different regimes found problem is most evident in this case dominated by conserved

depending orQ.

V. NUMERICAL RESULTS

noise, as the power-law tail of tH&(k,t) is broader.

In Fig. 3 the value of the roughness of the fully nonlinear
case and of the largd-approximation are plotted in the case
where nonconserved noise dominates. Again, the analytical

The results presented above are obtained by analyticallyalue t,,;,= 7rs~15 700 matches quite well the numerical

estimating the behavior of the largé-equation(7), which in
turn is an approximation of the fully nonlinear E€). In

results.
The same quantities are reported in Fig. 4 for values of

order to check the validity of these results we have solvedhe parameters such that both noise and nonlinearities are
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1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
t t
FIG. 3. Double logarithmic plot of2(t) vst for a system with FIG. 5. Double logarithmic plot oW2(t) vst for a system with

ko=1/40, Wy=10/4, Q=100, F=1, |5;=40, andy=1/100. For  k,=1/100, W,=50000, Q=5%x10°, F=10% 15,=10, andy

these values of the parameters<4/Q< 32z/y: The minimum is  =1/1000. The inset shows the log-log plotix(ft) along with a line

due to nonconserved noise. of slope 3/2. For these values of the parametdris/@yy)<Q
<8ID/(aHy2) and the nonlinearity is relevant.

irrelevant. In this case, the analytical prediction for the posi-

tion of the minimum is the one provided by linear theory is also evident in the inset, whel¥t) is plotted: it is pro-

th . ~0.18n~14400. Also in this case, the agreement be-portional tot¥? as predicted by Eq:35).

tween numerics and the theoretical prediction is good. Notice Finally, in Fig. 6 the roughness in the most nonlinear case

that for these values of the parameters the naive conditioEQ>8ID/(a||y2)] is shown. In this case the linear theory

(26) for the irrelevance of nonlinearity is violated. However, would predictt,;,~0.03, while Eq.(44) yields t,;;~5000.

the nonlinear contribution to the curre@ is initially large ~ The numerical result,,;,~8000 is again close to the esti-

but rapidly decays, so that it does not influence the positiormate provided by nonlinear theory. Consisterii(y) grows

of the minimum. The initial deviation from linearity can also ast? (Fig. 6, inse}.

be seen in the behavior b{t), plotted in the inset of Fig. 4. In summary, for initial values of the roughness ranging
The position of the minimum is instead determined by thefrom very small to very large we find that the evolution of

nonlinearity in Fig. 5: Here linear theory would predt{;;-n the fully nonlinear equation is well approximated by the

~300, while the roughness keeps decreasing until largeN limit and that the analytical estimates found above

~60000 in reasonable agreement with the analytical estiagree with the numerical results. The lafgdimit describes

matet ,,;;~40 000 given by Eq(42). The nonlinear behavior quite precisely this early stage behavior because, up to the

time when the minimum is reached, the dynamics makes the

10

10

— Fully nonlinear

---- Large-N approx Numerical

-=-=-=- Large-N approx

. . L N
1 10 100 1000 10000 100000
t 10

<IT

-
-
L

L .
1 10 100 1000 10000 100000
t

FIG. 4. Double logarithmic plot 0fV2(t) vst for a system with
ko=1/100, Wy=3, Q=300, F=1/50, |5=265.9, andy=1/10. FIG. 6. Double logarithmic plot 0#2(t) vst for a system with
The inset shows the log-log plot b{(t) along with a line of slope ko= 1/1000, Wy,=10°, Q=10°, F=10% 1,=100, andy=1/10.
1. For these values of the parametgB2n/y<Q< 8lp/(ay): lin- The inset shows the log-log plot bf(t) along with a line of slope
ear noiseless theory holds. 2. For these values of the parametelg ﬂa”y2)<Q.
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surface smoother, reducing slope fluctuations and making theata! pointed out the violation of the naive condition for the
approximation ¥ h)2=((Vh)?2) increasingly more accurate. irrelevance of nonlinearity, Eq26). As shown above the
Only after the minimum, when the instability takes over, correct condition for the irrelevance is differefiq. (37)]
slope fluctuations grow, leading to the breakdown of theand turns out to be fulfilled: The substrate is such that non-

largeN approximation. linearity does not matter. On the other hand, the experimen-
tal parameters givé)~110 and 327/y~450, indicating
VI. DISCUSSION that nonconserved noise mostly dictates the position of the

) ) ) minimum. This conclusion is at odds with the results of Ref.

In the previous sections we have carried out a rather cOMy1 The mismatch is due to a different treatment of numerical
plete analysis of the nonmonotonic behavior of the roughyefactors and should not be taken too seriously: The preci-
ness of a surface which evolves according to the continuungjon of values determined from experimental data is poor and
equation for unstable growth. It must be stressed that agjready introduces large uncertainty in the physical param-
initial decrease of the roughness is not necessarily due 10 &ers. However, even if precise experimental data were avail-
“rough” substrate, in the sense of surface width exceeding,pe 5 very detailed comparison between theory and experi-
some threshold. No matter how small the substrate fluctugnent would not be possible, because formulas linking

tions, if they extend to a length scale smaller than that of th‘f)arameters of the continuum equatiom, ) with physical
linear instability, the roughness will initially decrease. Only quantities (p,lgd are known only in order of magnitude.

if substrate fluctuations are limited to relatively large |e”9th|mproved determination of the numerical prefactors would
scales, big amplitudes are needed. surely be an important contribution to this field of research.

The initial qlecrease _of the roughness is always goverr)ed We have considered here only the fof of the unstable
by the relaxational Mullins-like term. The moment when this ¢, rent, which is valid in the limit of small ES barriers and

initial decrease ends depends instead crucially on the valug,es not vanish for finite slopes. Other forms of the current
of Q (i.e., on the initial roughnegsthe minimum may be 416 commonly used for large ES barriets&15) or when
accounted for by lineamnoisy or Qetermlnlsthsor nonl|.near the current vanishes for some “magic” value of the slope.
theory. Interestingly, for realistic values of the diffusion e nrevious analysis can be performed along the same lines
lengthlp and of the ratioy=les/lp, the different regimes  foy these alternative currents. We do not expect qualitatively
are nonoverlapping: It is in principle possible to see eachyitterent results. In particular, no special behavior should be
behavior by simply changingVy, i.e., the initial roughness. hqyced by the presence of magic slopes, since the initial
It is clear, of course, that this is not necessarily true in PraCyecay of fluctuations governed by the Mullins-like term

ticej since experimentally realizable value@é}r'e limited. quickly washes out large slopes independently from the ex-
Notice, however, tha® depends on two quantitiegy, and pression of the current.

ko, and also the variation of the latter could help in expand-
ing the range of variation of experimentally realizable values
of Q. Moreover, the presence of correlations in the initial
roughness enhances the effect of nonlinearity.

With regards to the experimental relevance of the present The support of the Alexander von Humboldt Foundation
results it is natural to compare them with the recent data ofC.C) and of DFG within SFB 237J.K)) is gratefully ac-
Gyureet al® The comparison of linear theory with the same knowledged.
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