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Nonmonotonic roughness evolution in unstable growth

Claudio Castellano* and Joachim Krug
Fachbereich Physik, Universita¨t GH Essen, 45117 Essen, Germany

~Received 15 February 2000!

The roughness of vapor-deposited thin films can display a nonmonotonic dependence on film thickness, if
the smoothening of the small-scale features of the substrate dominates over growth-induced roughening in the
early stage of evolution. We present a detailed analysis of this phenomenon in the framework of the continuum
theory of unstable homoepitaxy. Using the spherical approximation of phase-ordering kinetics, the effect of
nonlinearities and noise can be treated explicitly. The substrate roughness is characterized by the dimensionless
parameterQ5W0 /(k0a2), where W0 denotes the roughness amplitude,k0 is the small-scale cutoff wave
number of the roughness spectrum, anda is the lattice constant. Depending onQ, the diffusion lengthl D and
the Ehrlich-Schwoebel lengthl ES, five regimes are identified in which the position of the roughness minimum
is determined by different physical mechanisms. The analytic estimates are compared by numerical simulations
of the full nonlinear evolution equation.
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I. INTRODUCTION

The morphology of thin-film surfaces has a decisive
fluence on many film properties. The control of growt
induced surface roughness is therefore a central conce
thin-film science and technology. Two types of roughen
mechanisms have been extensively studied in recent yea1,2

The termkinetic rougheningis commonly used to refer to
stochasticmechanism, in which fluctuations in the depo
tion flux interact with thermal smoothening to generate
scale-invariant, rough morphology. This theoretically appe
ing but empirically rather elusive phenomenon3 is often su-
perseded by a second,deterministicmechanism, agrowth
instability associated with reduced interlayer transport a
slope-dependent mass currents along the surface.2,4,5 The
hallmark of unstable growth is a morphology of more or le
regular mounds with a clearly developed characteri
length scale. While in practice the distinction between
two types of roughening mechanisms may not always be
clear cut,6 they are very different conceptually.

In addition to the growth-induced roughness, clearly a
the roughness of the substrate affects the film morpholo
Since the growing film covers up the small-scale details
the substrate modulations, the substrate contribution to
roughness is expected to decrease with increasing film th
ness, while the growth-induced roughness component
creases. Under suitable conditions this leads to the some
counterintuitive possibility of aminimumof the total surface
roughness at a nonzero film thickness. This phenomenon
been observed in several growth experiments,7–9 and a theo-
retical description has been worked out on the level of lin
continuum theories of kinetic roughening10 and unstable
growth.11

In Ref. 11 a quantitative comparison with the experime
of Gyureet al.9 was attempted, which indicated an importa
influence of nonlinearities. This motivated the present stu
in which the nonlinear term in the growth equation is trea
explicitly using the spherical approximation of phas
ordering kinetics.12,13 We find that the interplay of instabil
ity, nonlinearity, and noise gives rise to a rather comp
PRB 620163-1829/2000/62~4!/2879~10!/$15.00
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behavior, in which the position of the roughness minimu
can be determined by several distinct physical mechanis
For a quick overview of the different regimes we refer t
curious reader to Table I.

The paper is organized as follows. In the Sec. II we int
duce the standard continuum equation for unstable homo
taxial growth13,14 and describe the strategy for its analytic
solution. Section III is devoted to the roughness evolution
the absence of noise. We first recapitulate the linear anal
of Ref. 11, then provide a detailed analysis of the releva
of the nonlinearity and the nonlinear behavior, and fina
discuss the influence of correlated initial roughness. The
fects of noise are analyzed in Sec. IV. In Sec. V we comp
the analytic estimates to a numerical evaluation of the sph
cal approximation, as well as to numerical simulations of
full nonlinear growth equation, finding good agreement in
cases. Finally, some conclusions are formulated in Sec.

II. THE CONTINUUM EQUATION

The evolution of a surface growing under typical molec
lar beam epitaxy~MBE! conditions is described by an equ
tion of the form4

TABLE I. Analytical estimates of the position of the minimum
depending on the substrate roughness parameterQ5W0 /(a'aik0).
The other quantities appearing in the table are determined by
characteristic length scalesl D and l ES of the growing surface. In
particular,y5 l ES/ l D andt l54k/a2'16F21( l D / l ES)

2. For defini-
tions of tD andtES see Eqs.~32! and ~33!.

Value of Q
Position

of the minimum
Relevant

effect

Q!1/2 tRD5(Q4y2/8p)t l Conserved
noise

1/2!Q!A32p/y tRS5(Q2y2/32p)t l Nonconserved
noise

A32p/y!Q!8l D /(aiy) 0.18t l Linear
deterministic

8l D /(aiy)!Q!8l D /(aiy
2) 0.4(t ltD)1/2 Nonlinear

8l D /(aiy
2)!Q 0.5(t ltDtES)

1/3 Nonlinear
2879 ©2000 The American Physical Society
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] tH1“•J5a'F1h, ~1!

where H is the height,J is the surface current,a' is the
monolayer thickness,F is the average value of the depositio
flux, andh is a noise term describing fluctuations in the fl
~shot noise! and in the diffusion of adatoms on the surfac
The constant terma'F can be eliminated passing to th
frame of referenceH5a'Ft1h moving with the average
height. The noise has zero average and correlations

^h~x,t !h~x8,t8!&5~2p!22d~ t2t8!~RS2RD¹2!d~x2x8!,
~2!

with the amplitudesRS and RD representing the effect o
shot and diffusion noise, respectively.

The surface current is the sum of two contributions

J5k“~“2h!1 f @~“h!2#“h. ~3!

The first tends to smoothen the surface and has the form
capillarity term,15 even though it may be dominated by no
equilibrium effects such as nucleation.24,16 The second term
models a growth-induced surface current, whose existenc
often ~but not necessarily17–19! caused by the presence of a
Ehrlich-Schwoebel barrier for interlayer diffusion. We a
sume in-plane isotropy of the current~for a discussion of
origins and consequences of anisotropy see Refs. 19 and!.
For the functionf (a) we use the form valid in the wea
barrier limit5

f ~a!5
a

~11 l DAa/a'!~11 l ESAa/a'!
, ~4!

where l D is the diffusion length andl ES the Ehrlich-
Schwoebel length. These length scales are related to th
layer hopping rateD, the interlayer hopping rateD8, and the
deposition fluxF through

l D'~D/F !gai , l ES5~D/D821!ai . ~5!

Hereai denotes the in-layer lattice constant and the expon
g depends on the size of the critical cluster for tw
dimensional nucleation.21 Conditions of weak and stron
step edge barriers can be distinguished according to whe
l ES@ l D ~strong barriers! or l ES! l D ~weak barriers!.2,5,16

Here we focus on the latter case, in which a continuum
scription is most likely to be valid.

The coefficientsa andk in Eqs.~3! and~4! are related to
microscopic parameters bya'Fl ESl D/2, k'Fl D

4 .2,5,14,16

We will for simplicity assume that the equality sign holds
these formulas; however, numerical factors are not preci
known and the equalities should be intended instead onl
order of magnitude. Also the amplitude of the noise term
connected to microscopic parameters throughRD5 l D

2 RS

5 l D
2 Fa'

2 ai
2 .

By inserting the expression~3! of the current in the equa
tion for the height and neglecting noise one obtains

] th52k~“2!2h2“@ f „~“h!2
…“h#. ~6!

This strongly nonlinear equation is reminiscent of the Ca
Hilliard equation for phase-ordering in systems with co
served order parameter.12 A widely used method for investi
gating this kind of nonlinear evolution is the large-N limit, or
.
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spherical approximation. In the present context it consists
replacing the argument of the nonlinear currentf with its
average valuea(t)5^(“h)2&. In this way, Eq.~6! is effec-
tively linearized. It is then possible to write down a clos
form linear equation for the structure factorS(k,t)
5^ĥ(k,t)ĥ(2k,t)&

] tS~k,t !522@kk42 f @a~ t !#k2#S~k,t !, ~7!

wherea(t) must be determined self-consistently

a~ t !52pE
0

k0
dk k3S~k,t !. ~8!

The solution of this pair of coupled equations has alrea
been derived for long times by Rost and Krug.13 Here we
concentrate on the short-time behavior, i.e., all what happ
before the instability sets in. In this time range we expect
large-N approximation to give a fairly accurate descriptio
of the nonlinear behavior,22 since correlations are still sma
in range and amplitude. In particular we will be interested
the time evolution of the surface roughness

W2~ t !52pE
0

k0
dk kS~k,t !. ~9!

We usually assume as initial conditionS0(k)5S(k50,t)
a white spectrum with an upper cutoffk05p/ l 0

S0~k!5H W0
2/~pk0

2! for k,k0

0 for k.k0 ,
~10!

which impliesW2(0)5W0
2 and a(0)5W0

2k0
2/2. The dimen-

sionless number

Q5W0 /~k0a'ai! ~11!

will turn out to provide a useful measure for the strength
the initial roughness; note that it involves both the amplitu
(W0) and the small-scale cutoff. Other types of initial roug
ness spectra will be treated in Sec. III C.

III. SOLUTION IN THE DETERMINISTIC CASE

Equation~7! can be formally integrated

Sdet~k,t !52S W0

k0
D 2

exp@22kk4t12k2b~ t !#, ~12!

where

b~ t !5E
0

t

ds f@a~s!#. ~13!

By definingkm
2 (t)5b(t)/(2kt) one can rewrite

W2~ t !52S W0

k0
D 2E

0

k0
dk kexpH 2tkk4F2S km

k D 2

21G J
~14!
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5W0
2Ap

2
exp~2kkm

4 t !

3
$erf~km

2 A2kt !1erf@~k0
22km

2 !A2kt#%

2Aktk0
2

, ~15!

with erf(s)5(2/Ap)*0
sexp(2t2)dt. The wave numberkm is

the position of the structure function peak~when it is a real
number, otherwise the peak is fork50). Within linear
theory its value is constant,km5kl[Aa/2k, while in general
km is a function of time.

The derivative ofW2 with respect tot at t50 is

dW2~ t !

dt U
t50

5 2
3 W0

2kk0
2~3k̃22k0

2!, ~16!

where k̃[km(0)5Af @a(0)#/2k5Af (W0
2k0

2/2)/2k. Hence if

k̃/k0.1/A3 the roughness grows from the beginning a
there is no minimum in the behavior ofW2(t): The instabil-
ity is immediately at work. Notice, however, that the cond
tion for the existence of the minimum involvesk̃ and notkl .
When the initial roughness is largek̃!kl and it may occur
that k̃!k0!kl : In such a case a minimum occurs even if t
linear theory does not predict it. This fact, together with t
observation thatkl /k0 does not depend onW0, implies that if
k0 is sufficiently large a minimum exists even for very sm
amplitude of the initial fluctuations. Ifk0 is not large, only a
strong initial roughness can originate a nonmonotonic beh
ior of the width.

We will assume in the following that a minimum exist
To study the detailed behavior of the system one should
principle consider Eqs.~12! and ~13! simultaneously. How-
ever, expanding the expression ofW2(t) for small km /k0

W2~ t !5S W0

k0
D 2Ap

2

erf~k0
2A2kt !

2Akt
1W0

2@12exp~22kk0
4t !#

3S km

k0
D 2

1OS km

k0
D 4

, ~17!

one finds that after a transient timet051/(2kk0
4) the width

starts decreasing as 1/Akt and it does so until 1/Akt.km
2 .

During this time interval the width decreases in time a
depends only onk andk0, not onkm ~hence not on the form
of the current, not even its linear expansion!. The system is
effectively described by an evolution equation~6! where
only the relaxational term proportional tok matters.10,23This
fact is crucial for all the following calculations: The structu
factor is known

Sdet~k,t !5S0exp~22kk4t ! ~18!

and can be used to computea(t) and km(t), which change
nonlinearly in time, but do not affect significantlySdet(t).
This situation persists up to a time such that other term
the expansion~17! become large. Since the other terms gro
with t, it is around this time thatW2(t) reaches a minimum
The only role played by the currentf is to determine the time
l

v-

in

in

evolution of km(t) and hence when the decay of the initi
fluctuations ends: Butf does not affect the wayW2(t) de-
creases.

The form~18! of the structure factor may be interpreted
that of a system which is coarsening with a typical corre
tion length growing asL(t);(kt)1/4. The initial condition
creates ‘‘domains’’ of sizek0

21, much smaller than the lengt
of the instabilitykm

21 : the system evolves by reducing th
amplitude of fluctuations and increasing the correlat
length. This explains why the initial decrease ofW2 is seen
only for small k̃/k0. This coarsening process continues un

L.km
21 . ~19!

From this time on the evolution proceeds by amplifying flu
tuations of scaleL and the instability sets in. Notice tha
while in the linear casekm5kl is constant in time, when
nonlinearities are taken into accountkm grows in time but
remains always smaller thankl , becausef (a)<a for all a.
Therefore the time where the minimum occurs in the line
theory is a lower bound for the same quantity in the nonl
ear case.

We now compute in detail how the position of the min
mum depends on the amplitude of the initial fluctuations. F
reference it is useful to summarize first the results of
linear theory.11

A. Linear theory

The assumption of linearity for the current impliesa(t)
50. Hence f @a(t)#5 f @0#5a, b(t)5at, and km

2 5kl
2

5a/2k. Then the temporal evolution of the width is full
specified for all times by Eq.~15!. Letting k0→` such a
formula can be cast as

W2~ t !5
W0

2

4 S kl

k0
D 2

F~ t/t l !, ~20!

where

t l54k/a2 ~21!

is the inverse amplification rate of the maximally unstab
fluctuations and the scaling function is

F~x!5e2xA2p/x@11erf~A2x!#. ~22!

This formula is valid only for times greater thant0

51/2kk0
4;(kl /k0)4t l!t l .

The width attains a minimum at a time

tmin
l '0.18 t l , ~23!

where it has been reduced by a factor

W2~ tmin
l !/W0

2'3.42 ~kl /k0!2. ~24!

This minimum marks the transition between the init
power-law decrease and the eventual exponential incre
due to the linear instability.

B. Nonlinear theory

The initial condition implies thata(0)5W0
2k0

2/2. Then,
for very smallt
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b~ t !5 f ~W0
2k0

2/2!t[ãt. ~25!

By comparingã with a one recovers the condition~21! of
Ref. 11 for the irrelevance of the nonlinearity

W0k0l D

a'

!1. ~26!

However, this condition turns out to be too restrictive. T
reason is that it assesses the relevance of the nonline
from its importance in the expression of the unstable curr
at the initial time. But, as discussed above,f does not play
any role in the initial evolution of the width. The relevanc
of the nonlinearity must instead be established from its
fluence on the position of the minimum ofW2(t), i.e., for
long times. By that time the initial fluctuations have alrea
been reduced significantly.

Expandinga(t) as a function ofkm /k0

a~ t !5
W0

2

4kk0
2t

@12exp~22kk0
4t !# ~27!

1
W0

2

4 F24exp~22kk0
4t !k0

21A2p

kt
erf~k0

2A2kt !G
3S km

k0
D 2

1OS km

k0
D 4

, ~28!

one can see thata(t) is constant only for times of the orde
of t051/(2kk0

4), indicating that Eq.~25! soon loses validity.
For longer times~up to t.1/@kkm(t)4#),

a~ t !5
W0

2

4kk0
2t

. ~29!

Inserting Eq.~29! in the expression~13! we can compute the
long-time behavior ofb(t)

b~ t !5E
0

t

ds
a

S 11
l DW0

2a'k0Aks
D S 11

l ESW0

2a'k0Aks
D ~30!

5E
0

t

ds
a

~11AtD /s!~11AtES/s!
, ~31!

where we have introduced two time scales

tD5S l DW0kl
2

2a'k0
D 2

t l5Q2y2S ai

8l D
D 2

t l ~32!

and

tES5S l ESW0kl
2

2a'k0
D 2

t l5Q2y4S ai

8l D
D 2

t l . ~33!

In the right equalities we have introduced the quantityy
5 l ES/ l D andQ is defined in Eq.~11!. It is important to stress
that since we are considering weak Ehrlich-Schwoebel b
riersy!1 and hencetES!tD . Moreover, realistic values o
the diffusion length are such thatl D /ai@1. Depending on
the initial roughness via the parameterQ, the time scalestES
ity
nt

-

r-

and tD will be larger or smaller than the initial one,t l ,
giving rise to different scenarios.

1. Irrelevant nonlinearity (intermediate initial roughness)

Consider first the case of a fairly small initial roughnes
i.e., Qyai/8l D!1, so that tES!tD!t l . Then for t0!t
!tES one can neglect the constant term in the denomina
of Eq. ~31!

b~ t !'E
0

t

ds
as

AtDtES

5
at2

2AtDtES

. ~34!

For tES!t!tD instead

b~ t !'E
0

t

ds
as1/2

AtD

5
2at3/2

3AtD

, ~35!

while for tD!t!t l

b~ t !'at. ~36!

b(t) undergoes several changes during the time evolu
passing through two intermediate behaviors. However, i
easy to see that these variations in the form ofb(t) are too
short lived to affect the time evolution ofW2 @or a(t)]. The
minimum width is reached when the effect of the nonline
ity is already lost, and is well described by linear theory. T
condition for the irrelevance of the nonlinearity is therefo
that tD!t l , that is

W0k0l D

2a'
S kl

k0
D 2

!1. ~37!

Comparing with Eq.~26! it is clear that the relevance of th
nonlinearity is strongly reduced whenkl!k0. Notice, more-
over, that the role ofk0 is opposite compared to the conditio
~26!: An initial substrate rough down to very small leng
scales~largek0) makes the nonlinearity less relevant.

2. Relevant nonlinearity (large initial roughness)

Let us assume insteadtES!t l!tD , i.e., 8l D /(yai)!Q
!8l D /(y2ai). One has fortES!t!tD

b~ t !5
2a

3AtD

t3/2!at. ~38!

With this expression ofb(t) the value ofkm is much smaller
than the linear valuekl and the condition~19! for the mini-
mum is attained on time scales larger thant l . To estimate
tmin more precisely the form ofW2(t) can be written in the
scaling form

W2~ t !5
W0

2

4 S km~ t !

k0
D 2

F@ tkkm~ t !4#, ~39!

whereF is defined in Eq.~22!. Now the minimum value of
W2 is not reached whereF8(x)50, becausekm depends on
t. The condition for the minimum ofW2 is instead

xF8~x!~2b8t2b!1F~x!~b8t2b!50. ~40!

Using the expression~38! for b(t) one gets
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xF8~x!

F~x!
52

1

4
, ~41!

whose solution isxmin5tmin
D /t(tmin

D )'0.06, yielding

tmin
D '0.4~t ltD!1/250.4 QyS ai

8l D
D t l . ~42!

Hencetmin
D is larger thant l but smaller thantD . The value

of the width at the minimum is

W~ tmin
D !/W0'1.3S kl

k0
D S t l

tD
D 1/2

. ~43!

If insteadQ@8l D /(y2ai), thent l!tES!tD . By means
of an analogous procedure, one finds that the minimum
curs forxmin'0.03, yielding

tmin
ES '0.5~t ltDtES!

1/350.5 Q4/3y2S ai

8l D
D 4/3

t l . ~44!

The value of the width at the minimum is

W~ tmin
ES !/W0'1.1S kl

k0
D S t l

2

tDtES
D 1/3

. ~45!

C. Correlated initial conditions

The previous results can be easily extended to the cas
a substrate with correlated roughness, i.e., with

S0~k!5H A for k,k*

A~k* /k!u for k* ,k,k0

0 for k.k0 ,

~46!

with u.0 andk0 /k* @1.
In this case the condition for an initial decrease of t

roughness is, in the limitk0 /k* →`,

S k̃

k0
D 2

,H 42u

2~62u!
for u,4

0 for u.4.

~47!

Hence foru.4 the width can only increase monoton
cally from the beginning.

1. Linear theory

For u,2 one can safely takek* →0 and find, for t
@1/(2kk0

4) and to second order inkl ,

W2~ t !5pAk* u~2kt !u/4F 1

~8kt !1/2
GS 22u

4 D1kl
2GS 12

u

4D G .

~48!

Estimating the position of the minimum from the time wh
the second term equals the first, one obtains

tmin
l ~u!5

1

8kkl
4F GS 22u

4 D
GS 12

u

4D G
2

, ~49!
c-

of

while the minimum width reached is

W2@ tmin
l ~u!#

W0
2

5~22u!22(u/211)GS 22u

4 D u/2

3GS 12
u

4D 12u/2S kl

k0
D 22u

. ~50!

Both tmin
l (u) and W2@ tmin

l (u)# are growing functions ofu:
The minimum is delayed and made shallower by the pr
ence of correlations in the roughness. This occurs beca
the roughness is concentrated on large length scales an
damping of small scale fluctuations provided by the rela
ational dynamics is less effective in the reduction of the s
face width. Such effect is most evident whenu approaches 2:
tmin
l (u) diverges, whileW2@ tmin

l (u)#/W0
2 goes to 1, since for

u52 all the roughness is concentrated on the macrosc
length scale (k* )21.

For 2,u,4, the origin of the minimum is different. In
this case one can takek0→`, and find fort!1/(2kk* 4) and
small kl

W2~ t !5W0
212pAk* u/4~2kt !u/4

3F2
1

~u22!~2kt !1/2
1

2kl
2

42uG . ~51!

Differently from Eq.~48!, heret has, in the first contribution
to the second term, a positive~and small! exponent but a
negative prefactor. Therefore in this case the initial decre
of the roughness is much weaker and this is reflected by
minimum width, which is close toW0. The time when the
minimum is reached is

tmin
l ~u!5

1

8kkl
4 S 42u

u22D 2

~52!

and vanishes, as expected, in the limitu→4.

2. Nonlinear theory

With correlated initial conditions the evolution of the a
erage square slope, consideringS(k,t)5S0(k)exp(22kk4t)
andk* →0, is for t@1/(2kk0

4)

a~ t !5
pAk* uG~12u/4!

2~2kt !12u/4
. ~53!

Hencea(t) is for all u,4 a decreasing function of time bu
its rate of reduction vanishes asu approaches 4. All the
previous treatment of the nonlinearity can be repeated.
only difference in the results is that the time scalestD and
tES are modified. In particular

tD~u!5
1

2K FpAk* uG~12u/4!

2

l D
2

a'
2 G4/(42u)

. ~54!

With this expression one can assess the relevance of the
linearity by comparison with the time scale of linear theo
tmin
l (u). Foru,2 one finds that the nonlinearity is irreleva

@tD(u)!tmin
l (u)# for
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W0
2k0

2l D
2

4ai
2 S kl

k0
D 4

!S kl

k0
D u 1

~22u!G~12u/4!F12
u

2 S k*

k0
D 22uG

3H G@~22u!/4#

2G~12u/4! J (42u)/2

. ~55!

The right-hand side of the previous inequality is of t
order of one foru→0, in agreement with Eq.~37!. For small
u it decreases as (kl /k0)u. For u→2 it diverges, as a conse
quence of the fact thattmin

l (u) goes to infinity.
For 2,u,4 the condition for the irrelevance of the no

linearity becomes

W0
2k0

2l D
2

4ai
2 S kl

k0
D 4

!S kl

k0
D u 1

~22u!G~12u/4!F12
u

2 S k*

k0
D 22uG

3F 42u

2~u22!G
(42u)/2

. ~56!

The right-hand side diverges foru→2 and vanishes foru
→4, as expected sincetD(u) diverges in that limit: Foru
→4 the nonlinearity is always relevant.

A more immediate perception of the meaning of Eqs.~55!
and ~56! is given by Fig. 1, showing the right-hand sides
the inequalities as a function ofu. Nonlinearity is irrelevant
for values of@W0kl

2l D /(2ai
2k0)#2 smaller than the function

plotted. Except for a small region aroundu52, where it
diverges~becausetmin

l →`), the function is always smalle
than its value foru→0.25 This means that correlations in
crease the effect of the nonlinearity for almost all values
u.

IV. SOLUTION IN THE NOISY CASE

So far we have neglected the presence of noise in Eq.~1!.
We now turn to the study of the problem in the presence b
of deposition and diffusion noise. It will turn out that nois
affects the position of the minimum only for small initia
roughness. For large and intermediate values ofW0 the de-
terministic theory of Sec. III is sufficient.

FIG. 1. Plot of the right hand side of Eqs.~55! and~56! vs u for
kl /k051/10 andk* /k051/100.
f

th

The inclusion of noise in the problem changes Eq.~7! to

] tS~k,t !522@kk42 f @a~ t !#k2#S~k,t !1R~k!, ~57!

with R(k)5RS1RDk2.
The formal solution is

S~k,t !5Sdet~k,t !1Snoise~k,t !, ~58!

whereSdet(k,t) is again given by Eq.~12! while

Snoise~k,t !5R~k!Sdet~k,t !E
0

t

ds Sdet
21~k,s!. ~59!

As before the key point is to realize that provide
km /k0!1, after a short transient of durationt051/(2kk0

4),
one can safely takeSdet(k,t)'S0exp(22kk4t). Using this
expression

Snoise~k,t !5
R~k!

2kk4 @12exp~22kk4t !#. ~60!

With this formula one can compute the additive contrib
tions of the noisy part of the structure factor toa(t) and to
the roughnessW2(t) which arise due to shot noise~S! and
diffusion noise (D), respectively,

a~ t !5adet~ t !1aS~ t !1aD~ t ! ~61!

and

W2~ t !5Wdet
2 ~ t !1WS

2~ t !1WD
2 ~ t !. ~62!

The results are

aS~ t !'
pRS

4k
ln~2kk0

4t !, ~63!

aD~ t !'
pRDk0

2

2k
, ~64!

and

WS
2~ t !'pRSApt

2k
, ~65!

WD
2 ~ t !'

pRD

4k
ln~2kk0

4t !. ~66!

The determination of the temporal evolution of the syst
is now more complicated than in the noiseless case. Th
the form ofa(t) was always the same and the minimum f
W2 changed depending on the various approximations
f @a(t)#. Here, even the expression ofa(t) varies in time.
Moreover, in the noiseless case, the minimum inW2 occurs
when the condition~19! is fulfilled. Here, there are three
independent contributions to the width: A minimum may a
pear much before the instability starts to play any role, s
ply because of the interplay between the different contri
tions to W2. However, sinceWdet

2 is the only decreasing
contribution, it is clear that a minimum inW2 can occur only
if it already existed in the deterministic case. Noise can
create a minimum and, as will be shown below, cannot
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stroy it, but can only shift it to shorter times. We will assum
in the following that a minimum in the noiseless case exis

The complication related to the different contributions
a(t) turns out to be unimportant for physical values of t
parameters. Inserting the expressions foraS and aD in Eq.
~4! one sees that, under the physically sensible assump
l D@ai and k0

21@ai , f (aS)' f (aD)'a. Hence, even if for
long times it may happen thataS or aD become larger than
adet , their value is so small that the theory is not affecte

The analysis ofW2 is instead quite involved. Let us defin
the time scales

tRS5
W0

2

2k0
2pRS

5
Q2y2

32p
t l , ~67!

tRD5
2kW0

4

pk0
4RD

2 5
Q4y2

8p
t l , ~68!

tDS5S RD

RS
D 2 1

8pk
5

y2

128p
t l . ~69!

tRS is the time scale whenWS becomes greater thanWdet ;
tRD is the time scale whenWD.Wdet ; tDS is the time scale
whenWS.WD . Let us carry out the analysis of the interpla
of these different time scales assuming, for the moment,
the deterministic part is well described by linear theory, i
tmin5tmin

l '0.18t l .
For small initial roughness (Q!1/2) one finds thattRD

!tRS!tDS!t l and this implies thatW5Wdet for t!tRD ,
W5WD for tRD!t!tDS , W5WS for tDS!t!t l , and W
'exp(t) for t l!t. Hence the minimum occurs fortmin
'tRD but before the instability sets in there is anoth
change fort'tDS .

If insteadQ@1/2 there are two possibilities. If the initia
roughness is not very large (Q2y2!32p), one hastDS
!tRS!t l and W5Wdet for t!tRS, W5WS for tRS!t
!t l , and W'exp(t) for larger times. Otherwise, ifQ2y2

@32p, then tDS!t l!tRS!tRD : W5Wdet always, the
noise is irrelevant andtmin5tmin

l '0.18t l . Notice that the
conditionQ2y2@32p is, apart from the numerical factor, th
condition ~15! of the paper by Krug and Rost.11

We have so far assumed thattmin
det 5tmin

l of the same order
of magnitude oft l . When deterministic nonlinearities ar
strong they increase the value oftmin

det , which becomes much
greater thant l . As shown above, this starts to happen
tD@t l which corresponds toQ2y2@(8l D /ai)

2@1. Then it
might in principle happen thattmin

det becomes larger thantRS

in the last of the cases above. However, whiletmin
det grows for

largeQ asQ @Eq. ~42!# or asQ4/3 @Eq. ~44!#, tRS is propor-
tional to Q2: tRS always remains larger thantmin

det and noth-
ing in the previous discussion changes.

In Table I is a summary of the different regimes fou
depending onQ.

V. NUMERICAL RESULTS

The results presented above are obtained by analytic
estimating the behavior of the large-N equation~7!, which in
turn is an approximation of the fully nonlinear Eq.~6!. In
order to check the validity of these results we have sol
.

ns

at
.,

r

r

lly

d

numerically the fully nonlinear equation for values of th
parameters corresponding to the different possible regime
Table I and compared the results with the numerical integ
tion of the large-N equation26 and with the analytical esti-
mates. The numerical integration was performed by
simple first-order Euler scheme, on a lattice of size 5
3512. The temporal stepsize was chosen to be 1, while
lattice spacing was equal top/k0, with k0 specified in the
figure captions.

We start by considering the limit of very small initia
roughness, so thatQ50.1 and the minimum is due to con
served noise roughening the surface~Fig. 2!. The minimum
width for the fully nonlinear solution occurs for a time com
patible with the analytical predictiontmin5tRD'1600. De-
spite having a minimum around the same time the solution
the fully nonlinear case and the large-N approximation differ
noticeably for large times. This poor agreement is, howev
only apparent and is due to a technical subtlety: The num
cal solution of the full equation is performed on a squa
lattice, while the analytical calculations assume a circu
Brillouin zone, k,k0. When noise is irrelevant, since th
structure factor decays exponentially for large wave vecto
the difference in the Brillouin zones does not really mat
after the initial transientt0. In the noise dominated case
instead, the structure factor has a power-law tail: The eff
of the different Brillouin zones persists in time, cannot
eliminated easily,27 and leads to a systematic overestimate
the value ofW2(t). This is why for long times the numerica
solution is not in agreement with the large-N result. This
problem is most evident in this case dominated by conser
noise, as the power-law tail of theS(k,t) is broader.

In Fig. 3 the value of the roughness of the fully nonline
case and of the large-N approximation are plotted in the cas
where nonconserved noise dominates. Again, the analy
value tmin5tRS'15 700 matches quite well the numeric
results.

The same quantities are reported in Fig. 4 for values
the parameters such that both noise and nonlinearities

FIG. 2. Double logarithmic plot ofW2(t) vs t for a system with
k051/10, W051/100, Q51/10, F51027, l D51000, and y
51/100. Here and in all other plotsa' andai are taken to be equa
to 1. For these values of the parametersQ!1/2 and conserved nois
dictates the position of the minimum.
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irrelevant. In this case, the analytical prediction for the po
tion of the minimum is the one provided by linear theo
tmin
l '0.18t l'14 400. Also in this case, the agreement b

tween numerics and the theoretical prediction is good. No
that for these values of the parameters the naive cond
~26! for the irrelevance of nonlinearity is violated. Howeve
the nonlinear contribution to the current~4! is initially large
but rapidly decays, so that it does not influence the posi
of the minimum. The initial deviation from linearity can als
be seen in the behavior ofb(t), plotted in the inset of Fig. 4

The position of the minimum is instead determined by
nonlinearity in Fig. 5: Here linear theory would predicttmin

l

'300, while the roughness keeps decreasing untit
'60 000 in reasonable agreement with the analytical e
matetmin'40 000 given by Eq.~42!. The nonlinear behavio

FIG. 3. Double logarithmic plot ofW2(t) vs t for a system with
k051/40, W0510/4, Q5100, F51, l D540, andy51/100. For
these values of the parameters 1/2!Q!A32p/y: The minimum is
due to nonconserved noise.

FIG. 4. Double logarithmic plot ofW2(t) vs t for a system with
k051/100, W053, Q5300, F51/50, l D5265.9, andy51/10.
The inset shows the log-log plot ofb(t) along with a line of slope
1. For these values of the parametersA32p/y!Q!8l D /(aiy): lin-
ear noiseless theory holds.
i-

-
e
n

n

e

ti-

is also evident in the inset, whereb(t) is plotted: it is pro-
portional tot3/2 as predicted by Eq.~35!.

Finally, in Fig. 6 the roughness in the most nonlinear ca
@Q@8l D /(aiy

2)# is shown. In this case the linear theo
would predicttmin'0.03, while Eq.~44! yields tmin'5000.
The numerical resulttmin'8000 is again close to the est
mate provided by nonlinear theory. Consistentlyb(t) grows
as t2 ~Fig. 6, inset!.

In summary, for initial values of the roughness rangi
from very small to very large we find that the evolution
the fully nonlinear equation is well approximated by th
large-N limit and that the analytical estimates found abo
agree with the numerical results. The large-N limit describes
quite precisely this early stage behavior because, up to
time when the minimum is reached, the dynamics makes

FIG. 5. Double logarithmic plot ofW2(t) vs t for a system with
k051/100, W0550 000, Q553106, F5104, l D510, and y
51/1000. The inset shows the log-log plot ofb(t) along with a line
of slope 3/2. For these values of the parameters 8l D /(aiy)!Q
!8l D /(aiy

2) and the nonlinearity is relevant.

FIG. 6. Double logarithmic plot ofW2(t) vs t for a system with
k051/1000, W05105, Q5108, F5104, l D5100, andy51/10.
The inset shows the log-log plot ofb(t) along with a line of slope
2. For these values of the parameters 8l D /(aiy

2)!Q.
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surface smoother, reducing slope fluctuations and making
approximation (“h)25^(“h)2& increasingly more accurate
Only after the minimum, when the instability takes ove
slope fluctuations grow, leading to the breakdown of
large-N approximation.

VI. DISCUSSION

In the previous sections we have carried out a rather c
plete analysis of the nonmonotonic behavior of the rou
ness of a surface which evolves according to the continu
equation for unstable growth. It must be stressed that
initial decrease of the roughness is not necessarily due
‘‘rough’’ substrate, in the sense of surface width exceed
some threshold. No matter how small the substrate fluc
tions, if they extend to a length scale smaller than that of
linear instability, the roughness will initially decrease. On
if substrate fluctuations are limited to relatively large leng
scales, big amplitudes are needed.

The initial decrease of the roughness is always gover
by the relaxational Mullins-like term. The moment when th
initial decrease ends depends instead crucially on the v
of Q ~i.e., on the initial roughness!: the minimum may be
accounted for by linear~noisy or deterministic! or nonlinear
theory. Interestingly, for realistic values of the diffusio
length l D and of the ratioy5 l ES/ l D , the different regimes
are nonoverlapping: It is in principle possible to see ea
behavior by simply changingW0, i.e., the initial roughness
It is clear, of course, that this is not necessarily true in pr
tice, since experimentally realizable values ofQ are limited.
Notice, however, thatQ depends on two quantities,W0 and
k0, and also the variation of the latter could help in expan
ing the range of variation of experimentally realizable valu
of Q. Moreover, the presence of correlations in the init
roughness enhances the effect of nonlinearity.

With regards to the experimental relevance of the pres
results it is natural to compare them with the recent data
Gyureet al.9 The comparison of linear theory with the sam
y
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data11 pointed out the violation of the naive condition for th
irrelevance of nonlinearity, Eq.~26!. As shown above the
correct condition for the irrelevance is different@Eq. ~37!#
and turns out to be fulfilled: The substrate is such that n
linearity does not matter. On the other hand, the experim
tal parameters giveQ'110 andA32p/y'450, indicating
that nonconserved noise mostly dictates the position of
minimum. This conclusion is at odds with the results of R
11. The mismatch is due to a different treatment of numer
prefactors and should not be taken too seriously: The pr
sion of values determined from experimental data is poor
already introduces large uncertainty in the physical para
eters. However, even if precise experimental data were av
able a very detailed comparison between theory and exp
ment would not be possible, because formulas link
parameters of the continuum equation (a,k) with physical
quantities (l D ,l ES) are known only in order of magnitude
Improved determination of the numerical prefactors wou
surely be an important contribution to this field of researc

We have considered here only the form~4! of the unstable
current, which is valid in the limit of small ES barriers an
does not vanish for finite slopes. Other forms of the curr
are commonly used for large ES barriers (l ES@ l D) or when
the current vanishes for some ‘‘magic’’ value of the slop
The previous analysis can be performed along the same
for these alternative currents. We do not expect qualitativ
different results. In particular, no special behavior should
induced by the presence of magic slopes, since the in
decay of fluctuations governed by the Mullins-like ter
quickly washes out large slopes independently from the
pression of the current.
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