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Solitons in carbon nanotubes
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The symmetries of spontaneous lattice distortions in carbon nanotubes are investigated. When the degen-
eracy of the ground states remains discrete, there are solitons or domain walls connecting the different
symmetry-broken vaccua. These solitons, similarly to the case of polyacetelene, are fractionally charged states.
In addition to the topological domain walls, there are polaron states with discrete energies within the energy
gap. The energies and shapes of these localized midgap states should be accessible via scanning tunneling
microscopy spectroscopy.

I. INTRODUCTION ideas are familiar from another one-dimentional carbon
based system: polyacetyletfeThe carbon nanotubes are
The electronic properties of carbon nanotubes have restructurally more complex than polyacetelene, and this com-
cently become the subject of much attentfoSingle wall  plexity will be reflected in the nature of the dimerization
nanotubes, in particular, provide a clean realization of quanpatterns that arise from breaking the lattice symmetries. Con-
tum wires, as well as the opportunity to both engineer elecsider, for example, the patterns shown in Fig. 1 for armchair
tronic device properties and study fundamental questions ifanotubegthe tube axis is aligned horizontally
low-dimensional physics. Even within an independent elec- The ALT structures have dimerizations similar to polyac-
tron approximation, the properties of the single wall tubesetelene. However, pairs of rows along the axis have displace-
are rather rich and useful. Depending on how a graphen@ents in the opposite direction. There iZ asymmetry, and
sheet is wrapped so as to make the tube, the system can there should be, at the domain walls between the twofold
either an insulator or a metal. vaccua, quantum states with fractional chatge/2 per spin
A great deal of work has been done towards understandiegree of freedom for each of the two species of Dirac fer-
ing the role of electron-electron interactions in the tubesmions present in the probleth The armchair tubes have, in
Studies have been carried out by using the bosonizatiothe low-energy spectrum, two species of Dirac fermions,
schemé® as well as by mapping the problem with short- while polyacetelene has just one. The vaccum flow of charge
range interactions into a two-leg Hubbard moti&/ithin the ~ for the two species of Dirac fermions goes in opposite direc-
bosonization studies, power-law correlations were found fotions, and it can be interpreted as flowing chaeg2 from
the order parameter of different electronic instabilities, suctpne species to the othdiThe precise discussion on the frac-
as charge-density wav&€DW), spin-density wavédSDW),
and superconductivitySC).

@

A different perspective is explored in this paper. Here we o/‘\/ } = N e
consider the effect of lattice deformations in the electronic ‘ ‘ | |
properties of the nanotubes. The effects of stress-induced N N '\/‘\./’
long-wavelength distortions have been egegantly studied by ‘ | | |
Kane and Meele using a tight-binding modé\lso, Peierls- o, ) ® Py
like distortions have been previously investigated by study- o N N 0/ \/ e
ing displacements along the bond directions, and by assum- l l .‘ ’ ’ |
ing no spatial or quantum fluctuations of these distortibns. N Ny '\/’\./ °
The objective of this paper is to identify what exactly the
symmetries of the displacement order parameters are, in or- ALT-A ALT-B
der to understand the nature of the possible topological soli-
tons in the nanotubes. Understanding the correct symmetries N AN
of the order parameter is fundamental in determining the H/C} A\T B n C |
fractional charge associated with the topological solitons. ® ® ® ®
We also study the role of quantum fluctuations in the CDW N \r/ D
order parameter. l B .| C i A l

Let us motivate the study of the symmetries of lattice N D e N
distorsions by raising a question: are there fractionally H/C | A ‘ B | C ‘
charged solitons in carbon nanotubes? If there is a discrete e ® ® e ®
number of degenerate ground states corresponding to differ- N e N N
ent lattice distortions, topological excitations should exist KEKULE
connecting the degenerate vaccua, and fractionally charged
excitations should be present in the domain walls. These FIG. 1. Dimerization patterns for armchair nanotubes.
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tional charge will be done later in the paper.

The Kekule bond-alternated structure contains short
(double ling and long bondsgsingle line between neighbor-
ing carbon atoms. The patterned cells are labgldgl, andC
according to the relative position of the single and double
lines in the hexagons. If one visualizes the Kekstieicture
as a tiling or coloring of the hexagons in the nanotube with
the three labels or colors, B, andC, there should be three i, 2. pisplacement vectors for the carbon atofasTextured
degenerate vaccua corresponding to permutations of the cQisplacements in the Kekutend (b) uniform displacements in the
oring scheme. The domain walls between these three vaccyd T structures.
should be described by topological solitons with fractional

charge* e/3 per spin degree of freedom for each specie ofis way, we will be able to identify the correct symmetry
Dirac fermion. roup of the Kekuledistortions in nanotubes, which will al-

The conclusions above are based on displacements onfy,y ys to determine if there are fractionally charged domain
along the bonds. In order to fully understand the validity of,, 55 connecting discrete vaccua.

these naive arguments, we need to look more carefully at e start with a tight-binding Hamiltonian for a graphite
more general lattice distortions and their actual symmetriesheet:
One of the results of this paper is that, in reality, the Kekule
distorsion has a continuous(1) symmetry. Therefore, the 3
naive conclusion that there should be fractional charg#3 — ) t )
should not hold. The ALT structure, on the other hand, is H ER 121 [t+ay(nleanea(r+ m)+H.c. (1)
truly twofold symmetric, and does sustain topological exci-
tations with chargete/2. wherer spans the triangular lattice, and the vectoys(j

The paper is organized as follows. In Sec. Il we discuss=1,2,3) connect a carbon atom to its three nearest neighbors
the Kekuletype distortions, and show that one can construcin the other sublattice. The fermion operatogsandc, act in
a continuous order parameter that represents the tripling ahe two sublattices of the graphite sheet. The distortions of
the unit cell. To date, considerations of Peierls-like instabili-the lattice alter the bond lengths, and thus the hopping matrix
ties in the armchair nanotubes were limited to threefold symelements change bgt;(r).
metric distortions only.In this paper we argue that the right  In the absence of the distortions, the spectrum is given by
symmetry for the CDW order parameter is a continuousg (k)= +t|h(k)|, where h(k)=2j3:1eik"'i. The spectrum
U(1). The effective W1) symmetry, in contrast to the dis- contains two Dirac points & . = (= 4/3a,0). The disper-

creteZ3 which is naively expected, does not lead to a quansijon h(k) can be linearized near the Dirac points, ik.,
tized value of the fractional charge associated with topologi-=K . +p, so the energy near these points E(p)

cal excitations connecting the different vaccua. Instead, the. +,_|p|, with a Fermi velocityvr=2 td (d=a/v3 is the
phase of the order parameter varies continuosly, and the locglstance between neighboring carbon atpriiéie nanotubes
accumulation of charge is simply the gradient of the phasgre obtained from the graphite sheet by wrapping around a
field, with no quantization condition as in the discrete sym-certain direction, identifying the lattice point8, 0) and (N,
metry case. In Sec. Il we discuss the Slmpler dlmerlzatlorM)' This Wrapping introduces a set of quantization condi-
pattern in the ALT structures. These patterns have a trulyions on the momenta. In tHé=M armchair tubes, the two
discreteZ, symmetry, and therefore will have topological pjrac pointsk . always lie on an allowed subband of states.
excitations with fractional charge-e/2 for each flavor Ny The subbandwhich we identify asp,=0 if the momentum
=2 species of Dirac fermionsand each spinNs=2). We  parallel to the tube axis ip,) corresponds to states that are
also discuss, in addition to the topological solitons, polaronigniform along the circunference of the tube p, direc-
states that correspond to a local depletion of the CDW ordefion). In addition to the periodic boundary condition, the
parameter but without switching between the two degenerat@rapping of the tube brings in curvature effects; these are
vaccua of the ALT distortion. The polaronic states have enyyiefly discussed in the Appendix.

ergies withing the CDW gafmidgap states which are cal- In the Kekuledistortion, the size of the unit cell is tripled
culated, and could be in principle measured by scanning turgye to the dimerizations, because the hexagor8, andC

neling microscopy(STM) spectroscopy. Finally, we briefly pecome distinct. This corresponds to coupling points in the
discuss in Sec. IV the effects of electronic interactions, anghriginal Brillouin zone, which are separated =K,

in the Appendix the effects of curvature. —K_, such as the two Dirac points.
Consider displacements of carbon atoms that can be writ-
Il. KEKULE DISTORTIONS AND THE SYMMETRY OF tfg("fiéﬁrms d%f ihg E?g'?“g‘ed 'Iatt'ce pgsmom as A(fj
THE PEIERLS ORDER PARAMETER —Ae andB,=Be "". Complex numbers are used to

represent the displacement vectors, axdand B, are in
In this section we will study the Kekuldistortion in the  separate sublatticésee Fig. 2a)]. Notice that the textures in
nanotubes. We will do so in the most general way, by allow-the two sublattices spiral in opposite directions. The Kekule
ing displacements of carbon atoms along arbritary directiongjistortion triples the size of the unit cell, hence the displace-
not only along bonds. We will calculate the changes in thements of the three neighbors to any carbon atom are related
electronic energies due to such distortions, as well as thby a rotation of-=2#/3. It is useful at this point to introduce
elastic cost associated with these general displacements. the cubic roots of unit
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Zj:eiK+rj:ei(277/3)(j—1) The wave vectoG=K , —K_ mixes the two species of
g Dirac fermions. Substituting E@4) into Eq.(1), one obtains
an
Zj=en=e 20T, H=2 Wp){h ° }xp(p) L
] P 0 —h ' A —p)
It is also convenient to think o@ as complex numbers; h
= —idz;. Notice that=?_ ,z=3% ,7?=0 and3? =3, WNe®
. . h _ iG-f__
In th!s notatlon- one can ertBHTj— Be~'z;. WT:(’#L,S‘#LS‘/’L,A‘/’{,A)
Given the displacement vectafs andB, for the carbon
atoms in the two sublattices, one can proceed and calculaf¥d
the change in bond length(r), at siter and in the direction 1
of 7j: e a(P) = —[C1(Ko +p) £ Co(Ke +)]
4 A B, T Brir . . . . .
i _jn A P 1 ﬂ('ﬁ "7l tye  are the symmetric and antisymmetric linearized fermion op-
d d d d 2d\d d erators near the Dirac points. The order parameter is
Using the properties of;, it is simple to show that the A <
expression above leads to ri —3iaet Sae.
&d;(r : . ; e i
éj( ) —ieze® —ieze 1O, @) The mean field gapi| that opens is given by
|A|21t2=90a2| €|?+ 9 (3 —€%), (6)
where . .
and the cubic terms il restore aZ; symmetry.
Iy Let us now start a detailed discussion of what, effectively,
A+B . o . .
=g is the symmetry of the Kekuldistortion, as well as the size

of the gap due to the dimerization. Although the second term
is the effective lattice displacement vector that alters bondd™ the right side of Eq(6) does restore the discrete symme-
The other combination. namel —(A—§)/2d chanaes try, these terms are smaller than the rotational symmetric
. , Namelyy= : ge leading term by a factor of the ordéA|/t. Basically, the
bond a_ngles without stretthng them, o_nly costing elasjuc enf[erms that restore th#&; are down from the first term in the
ergy without any electronic energy gain. The reason is tharight side of Eq.(6) by a factorale, which itself is of order
the electronic overlaps are independent of angle for#the L\AVt ' '
orbitals, and thus only depend 3”_ how much the bonds ar The ratio of the gap\| to the bandwidth is obtained in the
stretched. Therefore;=0 or A=B is chosen. following way. Minimizing the sum of the elastic and elec-
The elastic energy per hexagon is tronic energy for the filled levels, one findgnoring the
3 nonlinear effects
1 1 ’
E= 12 -21 > Kldj(r)—dJ?. K
- |A|=veA exp —

r

2
Using Eq.(2) and the properties of the cubic roots of unit, Via® 1

z;, one easily finds wherevA is an energy cutoff scale of the order of the
bandwidtht. Using typical parameters for graphite sheets

SE=3Kd?€|?. (3
This energy cost is independent of the phase, i.e., the direc- t=24eV,
tion of the distortion of the carbon atoms. This is consistent K~19.4 eV/A2
with a continuous 1) symmetry, not a discreté;. Terms ’
that lower the symmetry appear to higher orders in the ex- a~3.7,
pansion of the changes in bond lengidis well as bond
angle. The nonlinearities, however, are more pronounced in d~1.42A,
the hopping overlaps, which are exponentially sensitive to
the changes in distance. one finds|A|=te” 2™, so for a(5,5) tube the gap is of the

Consider a change in bond hopping that is related to therder 1 K, as previously fountiThe anisotropy that restores

change in bond length by an exponentiat;(r) the Z; symmetry is a factofA|/t lower than the gap scale,
=te~*%(N/d_Expanding to second order, and usigr) and it only becomes apparent at temperatures of the order of

as given by Eq(2), one finds 20 K. This is a very low scale, and so the symmetry for the
Kekule distortion is effectively 1), occurring on a tem-
8t;(r) G — i s 21 12 perature scale of the order of 1 K.
T —METTHNe P a lel”, 4 Even atT=0 quantum fluctuations can restore théllJ
symmetry. This can be studied using a simple rotor model,
wherekj=[—ia?—(a2/2)ez]zj . where the arm of the rotor is the magnitude of the displace-
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ment of the carbon atoms from equilibrium. One finds thatof Krotov, Lee, and Louié.The charge transferred between
the anisotropy is irrelevant even for smalltubes(the esti-  S/A is not quantized because the symmetry is a continuous
matedN_. is less than 2, smaller than that for realistic tybes U(1).

This result is obtained as follows. Focusing on the linear In conclusion, we find that the KeKuldistortions have a
pieces, one obtains a problem equivalent to(a)r O(2) continuous W1) symmetry, and therefore will not have frac-
rigid rotor, whose length it]. Slow spatial rotations of the tionally charged states wittt e/3 charge as the naive expec-
displacement vector cost very little energy, and can be caltation, based on dimerizations along bonds only, would im-
culated from the Hamiltonian E¢5) for slow phase twists in  ply.

A. The presence of the nonlinear terms introduces a cosine

potential and turns the problem into a clock model. The en- IIl. THE ALT DISTORTION

ergy scale for rotations, however, is still much smaller ) ) _

[O(€?)] than that for closing the gap altogether and opening !N this section we will show that the symmetry for the
it again at the new anglgd(e)]. In simple terms, the shape ALT distortion is trgly a d|scr(_ate>22 symmetry. This W|II_
of the potential energy is that of a mexican hat with threeMply that there will be fractionally charged states with
little bumps along its bottom. Now consider the kinetic en-charge +e/2 for each of the species of Dirac fermions
ergy for rotations of the lattice displacement vector. HerePresent in the low-energy description of the problem. We
only the angular component of the rotor motion is accountedVill lso discuss the energies of the midgap polaronic states
for, and the massive fluctuations of the length of the rotor@Ssociated with local suppression of the ALT dimerizations,
arm are neglected. The kinetic rotation energy for a carboRut which are not topological in nature. .

atom s given byE=1UMcd|d 242, Using this, a La- € 70 TR IO € e e
grangian for the fluctuating fielgh(t,x) can be written points [Jsee Fig. #b)], in ch)ntrast to the textured Kekule
structure that was treated previously. One has

1/2N o 12 s 1 )
L=5 | Mcdel®|(9h)*— 5ve(9x) Sd.
TI:iZ‘U_ izju, (8
—hscog3(¢p+m/2)]. (7)
where
Let us define
_ A-B
u=—q"
KZ=—Mcd?|e|?v ~—N&|6|2 : : -
eff c F Me ' Analogously to the previous section, the elastic energy per
hexagon can be related to
where the numerical value fomegd/% was substituted SE=3(K+K,)d?|uf?
= ) ,

above. Because of the exponential dependende]| i N,

Kec(Mc/mo)YNe 2™, Hence, the quantum fluctuations where in this case there is an extra contribution due to

are controlled by the diameter of the tube throdgjhHow-  changes in bond angle, as well as bond length i€ defined

ever, Ky is typically quite small. For example, numerical usingd to convert from angle to length displacements—see

estimates foN=5 yield K 4~5x10" 4. Therefore, 8K,z  Ref. 14 for values in grapheneAgain, this energy cost is

<3?for any N (with a possible exception to the pathological independent of the phase, i.e., the direction of the distortion

N=1 cas¢, and the cosine term is irrelevant. Along the of the carbon atoms.

same lines of thought, one can study the role of vortices. If The correction to the Hamiltonian due to the new hopping

Ke<2/m vortices are relevant, which in practice is alwaysamplitudes, however, is not independent of the direction of

the case. Notice that, even in principle, there is no rand¢ of the displacements. It is not necessary to keep the changes in

such that both the vortices and the anisotropy are irrelevangond hopping beyond lowest order. Similarly to the previous

since the anisotropy is threefold ané&<®.=4." The con- case, one can show that the Hamiltonian is

clusion here is that, even &t=0, the symm((a);t?ry for the h

Kekuledistortions are, contrary to previous studiesntinu- _ =t A =

ous U1) due to quantum fluctuations. H_UFEp: v (p){ 0 ¥(p), ©)
Let us discuss the implications of the continuous phase

fluctuations of the \(L) order parameter in the local accumu- Where

lation of charge. Phase fluctuations of the order parameter

A(x) imply a charge accumulatioAQ. = *(e/27) A¢,*? ho—

whereA¢ is the phase twist oA (x). The accumulation due A

to twisted phases af (x) coming from theS, Achannels has

opposite signs. Notice that these continuous phase twist

and the accompanied charge compensation between the sym- =ttt )

metric and antisymmetric channels, can be understood in +HL P+ 20T =10 =20

terms of a neutral boson. This is indeed the same situatiofherey. ,,, are the fermions nea¢ .. in the two sublattices:

that emerges when nearest-neighbor electronic interactions

are included, and the system is in the so-called CDW2 phase Ui 1p(P)=Cy AK++Pp).

_h_;

0 p—A

=% 0 | A=2iau/d.
p_

g’he spinor
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For thep,=0 band, the distortion opens the largest gapground states. More precisely, the polarons are self-

for real values ofu, in which caseA=A and consistent solutions for a position-dependent real order pa-
rameterA(x) such thatA(—=)=A(x)=*A,, whereas the
Aog=vg|Al=3at|ul. solitons or kinks are solutions such thAf— o)X A(x)

S _ = — A2 (the sign switches
The energy gap scale for t_hls dlstortlon_ is estimated to_ bel |tis very simple to obtain the energy levels for the elec-
K [essentially, the electronic energy gain and the elastic eryonic excitations, as well as the polaron and kink formation
ergy loss are both similar to the(l) Kekule scald. There  gnergies. We start by recognizing that the Hamiltonian for
are only two vaccuazp), corresponding to positive or nega- the ALT distorsions Eq(9) together with elastic energy cost
tive realu, as in polyacetelene. Notice that=h_,, andthe sg—3 (K+K,)d?|u|? is simply a static version of the
spectrum has positive and negative energies in paitsidf  Gross-Neveu model for a real background field®28 The

purely imaginary, i.e., if the displacement is orthogonal tognergies of the electronic states and the formation energies
the tube axis, then there is no gap and hence no electronige thus given by

gain from the negative energy states. There is only elastic

cost for imaginaryu, so the minimum energy path connect- nw 2N;
ing the two vaccua should be like in polyacetelene: a veal wn=A0c05< N) EnAg—sin
changes sign. T m

n
2N+/’

_ where I=n=<N;—1=3 for the polarons, andy= N+ for an
A. Quantum numbers for ALT domain walls infinitely separated kink-antikink soliton painotice that the

The accumulation of fractional charge in domain wallstopological electronic state has zero engrdgy means of
between the twofold vaccua &2 per spin degree of free- STM spectroscopy, one should be able to probe both the
dom, and thet species contribute with opposite phase shiftsenergiesthe o, above and the shapes of the solitonic states.
(one may allow a small imaginary part into see this rela-
tive phasg hence the two quantum states have opposite IV. INTERACTION EFFECTS
charge. If filled or occupied, they have chargee/2 and
Fe/2, respectively. One can interpret the imbalance as trans- The effects we described above were all derived taking
fer of chargee/2 from one specie of Dirac fermion to the into account the coupling between the electrons and lattice
other. distortions. We have not included the effects of the electron-

In the case of p0|yacete|ene’ the presence of the two Spirgjectron interactions. Let us discuss here what we expect
(NS: 2) masks thet+e/2 fractiona”y Charged states. As a when the electronic interactions are included. There are two
Consequence of havirmszz Spin Speciesl states with quan_ issues that we need to address. The first one is whether the

tum numbers such as chargand spinS= 0, which combine  €ffects we discuss in this paper could arise from electronic
two Q=e/2, S=1/2 states, appear in the spectrum. In theinteractions alone. If not, the second issue is whether the

nantotubes, in addition to the two spin statég+ 2) there  effects survive in the presence of electronic interactions.

are the two species of fermionsN(=2). BecauseN; To address the first issue, we can C(_)nnect our regults to
—NN;=4, the quantum numbers of the zero energy state§OMe of thg results found previously using bosonlza@n

in the nanotubes cannot be distinguished from those of elec-9-0l0gy”) in Refs. 3—7. To be more specific, let us directly
trons. For example, one can assemble from the fractionallfompare some of ur results to those by Krotov, Lee, and
charged states an excitation with chargeshd spinS=0 on ~ LOUi€ usingg-ology.” There they found that two of the pos-
the domain wall. Therefore, even though the “fundamental” Sible instabilities that led to energy gaps were charge-density
constituents are fractionally charged objects, they appear iWaves, termed CDW1 and CDW2. Basically, CDW2 corre-
quartets that have the same quantum numbers as electro9ONds to coupling between the two Dirac points in the arm-
These quartets are “confined” together because they argnar spectrumK..), which is equivalent to our Kekuleis-

forced to sit on the same domain wall that gives origin totortion. They found that there was a continuougllU
each of the four quantum states. symmetry for the order parameter, and that the density fluc-

tuations associated with slow twists of the order parameter
phase did not couple to the electromagnetic field. In other
words, they found that the low-energy excitations were neu-

In contrast to polyacetelene chains, the nanotubes can liral. This is exactly the same situation that we found consid-
individually laid on a substrate, and locally probed via ering the Kekuladistortions, where the order parameter had a
STM.!® One would then expect that the midgap states withcontinuous symmetry, and the charge accumulation in the
E=0 corresponding to domain wall&inks and antikinks  symmetric and antisymmetric channels canceled each other.
could be probed by tunneling of electrons from a STM tip. The reason that the results coincide is that electron-phonon
The position-dependent tunneling density of states woular nearest neightbor electron-electron interactirsed, in
probe the shape of the soliton, as well as the energy of thaddition to on-site interactions, in Ref) Bad to the same
state. effective theory for theg-ology. Therefore, in this case, the

In addition to the topological zero energy states connectelectron-electron interactions and the electron-phonon inter-
ing the two ground states, there are also polaronic excitaactions reinforce each other in opening a CDW gap.
tions. The difference between the polarons and the domain However, there is a difference between what is found for
walls is that the polarons correspond to depletions or dimplethe CDW1 phase of Ref. 3 and the case of the ALT distor-
in the order parameter without switching between the twation, even though both are instabilities that do not couple the

B. Midgap states and STM probes
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two Dirac points. The CDW1 order parameter has a continusmall anisotropies that reduce thél)Ysymmetry toZ; when
ous Ul) symmetry, whereas the ALT dimerization has ahigher-order terms in the atomic displacements are included.
discreteZ, symmetry. Although the electron-lattice coupling However, we showed here that these anisotropies are only
effectively generates an interaction between the electrons, gvident at energies five orders of magnitude smaller than the
naive g-ology treatment in the case of the lattice distortionsCDW gap scale. In addition, even &&= 0, quantum fluctua-
would miss the fact that the order parameter for the elections restore the 1) symmetry in spite of the presence of
tronic instability has a directand physical connection to a  the anisotropy.
discrete symmetry that stems from the lattice displacements. \We have also shown that the ALT structure has a discrete
So, even though both the electron-lattice coupling and elecz,, symmetry. We discuss the implications of topological do-
tron electron interactions tend to open CDW gaps, their symmain walls between the twofold ground states, the fraction-
metry is different. ally charged states on the walls, and the consequences of
Therefore, the answer to the first question raised is thahavingN;=N¢ N;=4 in masking the fractional states. Quar-
even though interactions alone lead to CDW instabilities,tets OfQ: +e/2 fractiona”y Charged constituents appear to-
they in general do not have the same symmetries as thogfther so that the combined quantum numbers are the same
generated by the mechanisms we discuss here. The lowgk those for electrons. We obtain the energies of the kink
symmetry has important consequences, such as the solitefates, as well as the polaron states, by recognizing that the
and polaron solutions with midgap energies discussed in thigjamiltonian for the ALT distorsion is a version of a Gross-
paper. Neveu model with a static real background field. These mid-
Let us now turn to the second issue about whether th@ap states could be probed by STM spectroscopy, reso|ving

effects of the lattice distortion survive in the presence ofexperimentally both the energies and the shapes of the soli-
electronic interactions. Because the interactions also lead toignic states.

CDW instability, one would expect that they reinforce the
effect found with the Iattl_ce dl_stortlon_s;. Since the CDW sym- ACKNOWLEDGMENTS
metry due to the ALT distortion4,) is lower than that of
the CDW1[U(1)], the combined effects of electron-electron We would like to acknowledge enlighting discussions
interactions and lattice distortions should give rise to a diswith D.K. Campbell, A.H. Castro-Neto, M. Crommie, E.
creteZ, (the lowe) symmetry at a temperature scale of at Fradkin, D.-H. Lee, P. A. Lee, N. Sandler, M. Stone, and L.
leag 1 K asfound with the lattice distortions alone. Venema. This work was supported in part by the NSF
Finally, we would like to touch on the question of through Grant No. DMR-98-76208. The author acknowl-
whether other instabilities due to electronic interactions, suckedges the support from the Alfred P. Sloan Foundation.
as SDW or SC, could appear before the CDW. As found in
Ref. 3, the prevailing instabilities depend on the details of APPENDIX: CURVATURE EFFECTS
the interaction potential. In addition, one would have to re-
consider these findings if the lattice distortion effects are In this appendix we discuss how the curvature of the
combined to the electron-electron interaction effects. Al-hanotubes affect the spontaneous lattice distortions consid-
though the CDW1 and CDW2 states can be dominant insts€red in this paper. The tube curvature causes the hopping
bilities depending on the interaction parameters, and th@mplitudes to be different in the directions parallel and per-
same should remain true when combined with the effects opendicular to the tube axis. There is a simple way to account
lattice distortions, determining whether the physical interacfor these effects within the formulation we used when dis-
tion parameters fall within this parameter space window iscussing the ALT structures, which are zero wave-vector lat-
beyond the scope of this paper. tice distortions. Consider a displacementas used in Sec.
lII') that is perpendicular to the tube axis. The orthogonality
between the displacementand the tube axis implies that
V. CONCLUSIONS u=—u. Such displacement vectarstretches the bonds per-
We raised in this paper the question of whether there argendicul'ar'and parallel to the tut_)e axis uneveply, which cor-
rgctly mimics the effects of curving the graphite sheet.

fractionally charged states in carbon nanotubes, and carrie The effect ofu on the electronic spectrum can be obtained
out a detailed analyses to address the problem. We ha\% P

e :
studied the symmetries of spontaneous lattice deformation®™ Eq. (9) with
in carbon nanotubes, so as to determine whether or not there A=2iauld
is a discrete number of ground states associated with lattice ’
deformations, and consequently fractionally charged quanwhich is now real. The spectrum is obtained from the eigen-
tum states associated with domain walls between such distates of the submatricég andh_,, which for realA give
crete vaccua.

We have shown that the KeKutiistortion has a continu- E(p)==|p+A|,

ous Ul) symmetry, contrary to a naive expectation of a
discreteZ;. This implies that the continuous phase fluctua-
tions of the W1) order parameter imply a charge accumula- K. oK. +A.
tion AQ.==*(el27) A¢, which is not quantized. There- - -
fore, there are no charge e/3 states as naively expected These results are well known, and they can be obtained by
from a Z; symmetry for carbon atom displacements solelyjust solving the tight-binding Hamiltonian for the graphite
along the original bond directions. In principle there aresheet with two different hopping amplitudeandt, (see, for

and correspond to shifting the two Dirac points by
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example, Ref. ¥ The reason for the above derivation in |n A/A. Hence, there is no longer a spontaneous distortion
terms of the displacementsis that we can now combine the with wave vectorG=K, —K_. Because of the curvature,

effects of the tube curvature and the Kekdistortion in a  with its associated shift in the Dirac points, the instability
very simple way. moves away from the commensurate wave vedkor
The elastic energy cost of the Kekulistortion remains —K_ . Instead, there will be an incommensurate distortion
the same to lowest order in the curvature because the unwith wave vectorG’'=K,—K_+2A. For this new wave
form displacementi and the Kekuledisplacement corre-  vector there will still be the logarithmic divergence for small
spond to orthogonal modes, since they have different wavA. In more physical terms, the singularity just moves to a
vectors. The extra energy cost of having a nonzeris, new (incommensurajephonon wave vectoG’'. The elastic
therefore, still SE=3Kd?|e|?. The electronic spectrum, energy cost remains almost unchanged, and can just be ob-
however, is changed due to The new Hamiltonian for the tained from the phonon dispersideee, for example, Ref.
combined distortions is 14) at the new incommensurate wave vedgr.
In the incommensurate problem the symmetry of the order
. parameter is a continuous(l). The absence of commensu-
H= % v p){o — h} ¥(p), (AL) ration with a discrete symmetry washes away any anisotropy.
The gradient of the phase of the order parameter gives con-
( p—A A ) tinuous fluctuations of the charge density. So the conclusion
h= , (A2) reached in this paper that there are no fraction&jyan-
A —P=A tized charged solitons for lattice distortions other than the
with ALT structures is unchanged.
Finally, we would like to discuss whether the curvature
YTV effects could restore a discrete symmetry for the Keklige
S tortion, should there be any mechanism favoring a commen-
surate distortion. The answer is negative, because even if
there is an anisotropy that tries to pin the phase of the order
_ A2 parameterA, this anisotropy is irrelevant, as we showed in
E=+AxVp™+[A[% Sec. Il using the sine-Gordon Lagrangian Ef). Therefore,
and it is easy to show that the shift in eneyyeads to the the only effect of the tube curvature on the Kekateucture
cancellation of the logarithmic divergence MdA from inte-  is not to restore the anisotropy, but just to suppress the dis-
grating the negative energy states, which is replaced byortion at the wave vecto® as described in this appendix.

as defined in Sec. Il, and to lowest order i A/t
= —3iae. The new spectrum is given by
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