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Solitons in carbon nanotubes
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Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 9 December 1999!

The symmetries of spontaneous lattice distortions in carbon nanotubes are investigated. When the degen-
eracy of the ground states remains discrete, there are solitons or domain walls connecting the different
symmetry-broken vaccua. These solitons, similarly to the case of polyacetelene, are fractionally charged states.
In addition to the topological domain walls, there are polaron states with discrete energies within the energy
gap. The energies and shapes of these localized midgap states should be accessible via scanning tunneling
microscopy spectroscopy.
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I. INTRODUCTION

The electronic properties of carbon nanotubes have
cently become the subject of much attention.1 Single wall
nanotubes, in particular, provide a clean realization of qu
tum wires, as well as the opportunity to both engineer el
tronic device properties and study fundamental question
low-dimensional physics. Even within an independent el
tron approximation, the properties of the single wall tub
are rather rich and useful. Depending on how a graph
sheet is wrapped so as to make the tube, the system ca
either an insulator or a metal.2

A great deal of work has been done towards understa
ing the role of electron-electron interactions in the tub
Studies have been carried out by using the bosoniza
scheme,3–6 as well as by mapping the problem with sho
range interactions into a two-leg Hubbard model.7 Within the
bosonization studies, power-law correlations were found
the order parameter of different electronic instabilities, su
as charge-density wave~CDW!, spin-density wave~SDW!,
and superconductivity~SC!.

A different perspective is explored in this paper. Here
consider the effect of lattice deformations in the electro
properties of the nanotubes. The effects of stress-indu
long-wavelength distortions have been elegantly studied
Kane and Meele using a tight-binding model.8 Also, Peierls-
like distortions have been previously investigated by stu
ing displacements along the bond directions, and by ass
ing no spatial or quantum fluctuations of these distortion9

The objective of this paper is to identify what exactly t
symmetries of the displacement order parameters are, in
der to understand the nature of the possible topological s
tons in the nanotubes. Understanding the correct symme
of the order parameter is fundamental in determining
fractional charge associated with the topological solito
We also study the role of quantum fluctuations in the CD
order parameter.

Let us motivate the study of the symmetries of latti
distorsions by raising a question: are there fractiona
charged solitons in carbon nanotubes? If there is a disc
number of degenerate ground states corresponding to di
ent lattice distortions, topological excitations should ex
connecting the degenerate vaccua, and fractionally cha
excitations should be present in the domain walls. Th
PRB 620163-1829/2000/62~4!/2806~7!/$15.00
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ideas are familiar from another one-dimentional carb
based system: polyacetylene.10 The carbon nanotubes ar
structurally more complex than polyacetelene, and this co
plexity will be reflected in the nature of the dimerizatio
patterns that arise from breaking the lattice symmetries. C
sider, for example, the patterns shown in Fig. 1 for armch
nanotubes~the tube axis is aligned horizontally!.

The ALT structures have dimerizations similar to polya
etelene. However, pairs of rows along the axis have displa
ments in the opposite direction. There is aZ2 symmetry, and
there should be, at the domain walls between the twof
vaccua, quantum states with fractional charge6e/2 per spin
degree of freedom for each of the two species of Dirac f
mions present in the problem.11 The armchair tubes have, i
the low-energy spectrum, two species of Dirac fermio
while polyacetelene has just one. The vaccum flow of cha
for the two species of Dirac fermions goes in opposite dir
tions, and it can be interpreted as flowing chargee/2 from
one species to the other.~The precise discussion on the fra

FIG. 1. Dimerization patterns for armchair nanotubes.
2806 ©2000 The American Physical Society
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PRB 62 2807SOLITONS IN CARBON NANOTUBES
tional charge will be done later in the paper.!
The Kekulé bond-alternated structure contains sh

~double line! and long bonds~single line! between neighbor-
ing carbon atoms. The patterned cells are labeledA, B, andC
according to the relative position of the single and dou
lines in the hexagons. If one visualizes the Kekule´ structure
as a tiling or coloring of the hexagons in the nanotube w
the three labels or colorsA, B, andC, there should be three
degenerate vaccua corresponding to permutations of the
oring scheme. The domain walls between these three va
should be described by topological solitons with fraction
charge6e/3 per spin degree of freedom for each specie
Dirac fermion.

The conclusions above are based on displacements
along the bonds. In order to fully understand the validity
these naive arguments, we need to look more carefully
more general lattice distortions and their actual symmetr
One of the results of this paper is that, in reality, the Kek´
distorsion has a continuous U~1! symmetry. Therefore, the
naive conclusion that there should be fractional charge6e/3
should not hold. The ALT structure, on the other hand,
truly twofold symmetric, and does sustain topological ex
tations with charge6e/2.

The paper is organized as follows. In Sec. II we disc
the Kekulé-type distortions, and show that one can constr
a continuous order parameter that represents the triplin
the unit cell. To date, considerations of Peierls-like instab
ties in the armchair nanotubes were limited to threefold sy
metric distortions only.9 In this paper we argue that the righ
symmetry for the CDW order parameter is a continuo
U~1!. The effective U~1! symmetry, in contrast to the dis
creteZ3 which is naively expected, does not lead to a qu
tized value of the fractional charge associated with topolo
cal excitations connecting the different vaccua. Instead,
phase of the order parameter varies continuosly, and the l
accumulation of charge is simply the gradient of the ph
field, with no quantization condition as in the discrete sy
metry case. In Sec. III we discuss the simpler dimerizat
pattern in the ALT structures. These patterns have a t
discreteZ2 symmetry, and therefore will have topologic
excitations with fractional charge6e/2 for each flavor (Nf
52 species of Dirac fermions! and each spin (Ns52). We
also discuss, in addition to the topological solitons, polaro
states that correspond to a local depletion of the CDW or
parameter but without switching between the two degene
vaccua of the ALT distortion. The polaronic states have
ergies withing the CDW gap~midgap states!, which are cal-
culated, and could be in principle measured by scanning
neling microscopy~STM! spectroscopy. Finally, we briefly
discuss in Sec. IV the effects of electronic interactions, a
in the Appendix the effects of curvature.

II. KEKULE´ DISTORTIONS AND THE SYMMETRY OF
THE PEIERLS ORDER PARAMETER

In this section we will study the Kekule´ distortion in the
nanotubes. We will do so in the most general way, by allo
ing displacements of carbon atoms along arbritary directio
not only along bonds. We will calculate the changes in
electronic energies due to such distortions, as well as
elastic cost associated with these general displacement
t
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this way, we will be able to identify the correct symmet
group of the Kekule´ distortions in nanotubes, which will al
low us to determine if there are fractionally charged dom
walls connecting discrete vaccua.

We start with a tight-binding Hamiltonian for a graphi
sheet:

H52 (
rPR

(
j 51

3

@ t1dt j~r !#c1
†~r !c2~r1t j !1H.c., ~1!

where r spans the triangular lattice, and the vectorst j ( j
51,2,3) connect a carbon atom to its three nearest neigh
in the other sublattice. The fermion operatorsc1 andc2 act in
the two sublattices of the graphite sheet. The distortions
the lattice alter the bond lengths, and thus the hopping ma
elements change bydt j (r ).

In the absence of the distortions, the spectrum is given
E(k)56tuh(k)u, where h(k)5( j 51

3 eik•tj . The spectrum
contains two Dirac points atK65(64p/3a,0). The disper-
sion h(k) can be linearized near the Dirac points, i.e.,k
5K61p, so the energy near these points isE(p)
'6vFupu, with a Fermi velocityvF5 3

2 td (d5a/) is the
distance between neighboring carbon atoms!. The nanotubes
are obtained from the graphite sheet by wrapping aroun
certain direction, identifying the lattice points~0, 0! and ~N,
M!. This wrapping introduces a set of quantization con
tions on the momenta. In theN5M armchair tubes, the two
Dirac pointsK6 always lie on an allowed subband of state
The subband~which we identify aspy50 if the momentum
parallel to the tube axis ispx) corresponds to states that a
uniform along the circunference of the tube~the py direc-
tion!. In addition to the periodic boundary condition, th
wrapping of the tube brings in curvature effects; these
briefly discussed in the Appendix.

In the Kekulédistortion, the size of the unit cell is tripled
due to the dimerizations, because the hexagonsA, B, andC
become distinct. This corresponds to coupling points in
original Brillouin zone, which are separated byG5K1

2K2 , such as the two Dirac points.
Consider displacements of carbon atoms that can be w

ten ~in terms of the undistorted lattice positionsr ! as Ar
5Ae2 iG•r andBr5Be2 iG•r. Complex numbers are used t
represent the displacement vectors, andAr and Br are in
separate sublattices@see Fig. 2~a!#. Notice that the textures in
the two sublattices spiral in opposite directions. The Kek´
distortion triples the size of the unit cell, hence the displa
ments of the three neighbors to any carbon atom are rel
by a rotation of62p/3. It is useful at this point to introduce
the cubic roots of unit

FIG. 2. Displacement vectors for the carbon atoms.~a! Textured
displacements in the Kekule´ and ~b! uniform displacements in the
ALT structures.
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2808 PRB 62CLAUDIO CHAMON
zj5eiK1tj5ei ~2p/3!~ j 21!

and

z̄j5eiK2tj5e2 i ~2p/3!~ j 21!.

It is also convenient to think oft j as complex numberst j

52 idzj . Notice that( j 51
3 zj5( j 51

3 zj
250 and ( j 51

3 zj
353.

In this notation one can writeBr1t j
5BeiG•r z̄j .

Given the displacement vectorsAr andBr for the carbon
atoms in the two sublattices, one can proceed and calcu
the change in bond lengthdj (r ), at siter and in the direction
of t j :

ddj~r !

d
5Ut j

d
2

Ar

d
1

Br1t j

d
U21'2

1

2

t̄ j

d
S Ar

d
1

Br1t j

d
D 1H.c.

Using the properties ofzj , it is simple to show that the
expression above leads to

ddj~r !

d
5 i ēzje

iG•r2 i e z̄je
2 iG•r, ~2!

where

e5
A1B̄

2d

is the effective lattice displacement vector that alters bon
The other combination, namely,h5(A2B̄)/2d, changes
bond angles without stretching them, only costing elastic
ergy without any electronic energy gain. The reason is t
the electronic overlaps are independent of angle for thp
orbitals, and thus only depend on how much the bonds
stretched. Therefore,h50 or A5B̄ is chosen.

The elastic energy per hexagon is

dE5
1

N (
r

(
j 51

3
1

2
K@dj~r !2d#2.

Using Eq.~2! and the properties of the cubic roots of un
zj , one easily finds

dE53Kd2ueu2. ~3!

This energy cost is independent of the phase, i.e., the d
tion of the distortion of the carbon atoms. This is consist
with a continuous U~1! symmetry, not a discreteZ3 . Terms
that lower the symmetry appear to higher orders in the
pansion of the changes in bond length~as well as bond
angle!. The nonlinearities, however, are more pronounced
the hopping overlaps, which are exponentially sensitive
the changes in distance.

Consider a change in bond hopping that is related to
change in bond length by an exponential:t j (r )
5te2addj (r )/d. Expanding to second order, and usingdj (r )
as given by Eq.~2!, one finds

dt j~r !

t
5l je

iG•r1l̄ je
2 iG•r1a2ueu2, ~4!

wherel j5@2 iaē2(a2/2)e2#zj .
te
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The wave vectorG5K12K2 mixes the two species o
Dirac fermions. Substituting Eq.~4! into Eq.~1!, one obtains

H5(
p

C†~p!Fh 0

0 2hGC~p!, h5S p D

D̄ 2pD , ~5!

where

C†5~c1,S
† c2,S

† c1,A
† c2,A

† !

and

c6,S/A~p!5
1

&
@c1~K61p!6c2~K61p!#

are the symmetric and antisymmetric linearized fermion
erators near the Dirac points. The order parameter is

D

t
523iaē1

3

2
a2e2.

The mean field gapuDu that opens is given by

uDu2/t259a2ueu219a3i ~e32 ē3!, ~6!

and the cubic terms ine restore aZ3 symmetry.
Let us now start a detailed discussion of what, effective

is the symmetry of the Kekule´ distortion, as well as the size
of the gap due to the dimerization. Although the second te
in the right side of Eq.~6! does restore the discrete symm
try, these terms are smaller than the rotational symme
leading term by a factor of the orderuDu/t. Basically, the
terms that restore theZ3 are down from the first term in the
right side of Eq.~6! by a factoraueu, which itself is of order
uDu/t.

The ratio of the gapuDu to the bandwidth is obtained in th
following way. Minimizing the sum of the elastic and ele
tronic energy for the filled levels, one finds~ignoring the
nonlinear effects!

uDu5vFL expS 2
p

)a2

Kd2

t
ND ,

where vFL is an energy cutoff scale of the order of th
bandwidtht. Using typical parameters for graphite sheets

t'2.4 eV,

K'19.4 eV/Å2,

a'3.7,

d'1.42 Å,

one findsuDu}te22.1N, so for a~5,5! tube the gap is of the
order 1 K, as previously found.9 The anisotropy that restore
the Z3 symmetry is a factoruDu/t lower than the gap scale
and it only becomes apparent at temperatures of the orde
20 mK. This is a very low scale, and so the symmetry for t
Kekulé distortion is effectively U~1!, occurring on a tem-
perature scale of the order of 1 K.

Even atT50 quantum fluctuations can restore the U~1!
symmetry. This can be studied using a simple rotor mod
where the arm of the rotor is the magnitude of the displa
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PRB 62 2809SOLITONS IN CARBON NANOTUBES
ment of the carbon atoms from equilibrium. One finds th
the anisotropy is irrelevant even for smallN tubes~the esti-
matedNc is less than 2, smaller than that for realistic tube!.
This result is obtained as follows. Focusing on the line
pieces, one obtains a problem equivalent to a U~1! or O~2!
rigid rotor, whose length isueu. Slow spatial rotations of the
displacement vector cost very little energy, and can be
culated from the Hamiltonian Eq.~5! for slow phase twists in
D. The presence of the nonlinear terms introduces a co
potential and turns the problem into a clock model. The
ergy scale for rotations, however, is still much smal
@O(e2)# than that for closing the gap altogether and open
it again at the new angle@O(e)#. In simple terms, the shap
of the potential energy is that of a mexican hat with thr
little bumps along its bottom. Now consider the kinetic e
ergy for rotations of the lattice displacement vector. He
only the angular component of the rotor motion is accoun
for, and the massive fluctuations of the length of the ro
arm are neglected. The kinetic rotation energy for a car
atom is given byEK51/2MCd2ueu2ḟ2. Using this, a La-
grangian for the fluctuating fieldf(t,x) can be written

L5
1

2 S 2N

a
MCd2ueu2D ~] tf!22

1

2
vF~]xf!2

2h3 cos@3~f1p/2!#. ~7!

Let us define

Keff
2 5

2N

a
MCd2ueu2vF'

2

)
N

MC

me
ueu2,

where the numerical value formevFd/\ was substituted
above. Because of the exponential dependence ofueu on N,
Keff}(MC /me)ANe22.1N. Hence, the quantum fluctuation
are controlled by the diameter of the tube throughN. How-
ever, Keff is typically quite small. For example, numeric
estimates forN55 yield Keff'531024. Therefore, 8pKeff
,32 for anyN ~with a possible exception to the pathologic
N51 case!, and the cosine term is irrelevant. Along th
same lines of thought, one can study the role of vortices
Keff,2/p vortices are relevant, which in practice is alwa
the case. Notice that, even in principle, there is no range oN
such that both the vortices and the anisotropy are irrelev
since the anisotropy is threefold and 3,pc54.13 The con-
clusion here is that, even atT50, the symmetry for the
Kekulédistortions are, contrary to previous studies,9 continu-
ous U~1! due to quantum fluctuations.

Let us discuss the implications of the continuous ph
fluctuations of the U~1! order parameter in the local accum
lation of charge. Phase fluctuations of the order param
D(x) imply a charge accumulationDQ656(e/2p) Df,12

whereDf is the phase twist ofD(x). The accumulation due
to twisted phases ofD(x) coming from theS, Achannels has
opposite signs. Notice that these continuous phase tw
and the accompanied charge compensation between the
metric and antisymmetric channels, can be understood
terms of a neutral boson. This is indeed the same situa
that emerges when nearest-neighbor electronic interact
are included, and the system is in the so-called CDW2 ph
t
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of Krotov, Lee, and Louie.3 The charge transferred betwee
S/A is not quantized because the symmetry is a continu
U~1!.

In conclusion, we find that the Kekule´ distortions have a
continuous U~1! symmetry, and therefore will not have frac
tionally charged states with6e/3 charge as the naive expe
tation, based on dimerizations along bonds only, would
ply.

III. THE ALT DISTORTION

In this section we will show that the symmetry for th
ALT distortion is truly a discreteZ2 symmetry. This will
imply that there will be fractionally charged states wi
charge 6e/2 for each of the species of Dirac fermion
present in the low-energy description of the problem. W
will also discuss the energies of the midgap polaronic sta
associated with local suppression of the ALT dimerizatio
but which are not topological in nature.

In the case of the ALT distortion, the change in bo
lengthdj in the direction oft j is now the same for all lattice
points @see Fig. 2~b!#, in contrast to the textured Kekul´
structure that was treated previously. One has

ddj

d
5 izj ū2 i z̄ ju, ~8!

where

u5
A2B

2d
.

Analogously to the previous section, the elastic energy
hexagon can be related tou:

dE53~K1Ku!d2uuu2,

where in this case there is an extra contribution due
changes in bond angle, as well as bond length (Ku is defined
usingd to convert from angle to length displacements—s
Ref. 14 for values in graphene!. Again, this energy cost is
independent of the phase, i.e., the direction of the distor
of the carbon atoms.

The correction to the Hamiltonian due to the new hopp
amplitudes, however, is not independent of the direction
the displacements. It is not necessary to keep the chang
bond hopping beyond lowest order. Similarly to the previo
case, one can show that the Hamiltonian is

H5vF(
p

C̃†~p!FhA 0

0 2h2Ā
GC̃~p!, ~9!

where

hA5S 0 p2A

p̄2Ā 0 D , A52iau/d.

The spinor

C̃†5~c1,1
† ,c1,2

† ,c2,1
† ,c2,2

† !,

wherec6,1/2 are the fermions nearK6 in the two sublattices:

c6,1/2~p!5c1,2~K61p!.
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2810 PRB 62CLAUDIO CHAMON
For thepy50 band, the distortion opens the largest g
for real values ofu, in which caseA5Ā and

D05vFuAu53atuuu.

The energy gap scale for this distortion is estimated to b
K @essentially, the electronic energy gain and the elastic
ergy loss are both similar to the U~1! Kekulé scale#. There
are only two vaccua (Z2), corresponding to positive or nega
tive realu, as in polyacetelene. Notice thathA5h2Ā , and the
spectrum has positive and negative energies in pairs. Ifu is
purely imaginary, i.e., if the displacement is orthogonal
the tube axis, then there is no gap and hence no electr
gain from the negative energy states. There is only ela
cost for imaginaryu, so the minimum energy path connec
ing the two vaccua should be like in polyacetelene: a reau
changes sign.

A. Quantum numbers for ALT domain walls

The accumulation of fractional charge in domain wa
between the twofold vaccua ise/2 per spin degree of free
dom, and the6 species contribute with opposite phase sh
~one may allow a small imaginary part inu to see this rela-
tive phase!, hence the two quantum states have oppo
charge. If filled or occupied, they have charge6e/2 and
7e/2, respectively. One can interpret the imbalance as tra
fer of chargee/2 from one specie of Dirac fermion to th
other.

In the case of polyacetelene, the presence of the two s
(Ns52) masks the6e/2 fractionally charged states. As
consequence of havingNs52 spin species, states with qua
tum numbers such as chargee and spinS50, which combine
two Q5e/2, S51/2 states, appear in the spectrum. In t
nantotubes, in addition to the two spin states (Ns52) there
are the two species of fermions (Nf52). BecauseNT
5NsNf54, the quantum numbers of the zero energy sta
in the nanotubes cannot be distinguished from those of e
trons. For example, one can assemble from the fraction
charged states an excitation with charge 2e and spinS50 on
the domain wall. Therefore, even though the ‘‘fundamenta
constituents are fractionally charged objects, they appea
quartets that have the same quantum numbers as elect
These quartets are ‘‘confined’’ together because they
forced to sit on the same domain wall that gives origin
each of the four quantum states.

B. Midgap states and STM probes

In contrast to polyacetelene chains, the nanotubes ca
individually laid on a substrate, and locally probed v
STM.15 One would then expect that the midgap states w
E50 corresponding to domain walls~kinks and antikinks!
could be probed by tunneling of electrons from a STM t
The position-dependent tunneling density of states wo
probe the shape of the soliton, as well as the energy of
state.

In addition to the topological zero energy states conne
ing the two ground states, there are also polaronic exc
tions. The difference between the polarons and the dom
walls is that the polarons correspond to depletions or dimp
in the order parameter without switching between the t
p
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ground states. More precisely, the polarons are s
consistent solutions for a position-dependent real order
rameterD(x) such thatD(2`)5D(`)56D0 , whereas the
solitons or kinks are solutions such thatD(2`)3D(`)
52D0

2 ~the sign switches!.
It is very simple to obtain the energy levels for the ele

tronic excitations, as well as the polaron and kink formati
energies. We start by recognizing that the Hamiltonian
the ALT distorsions Eq.~9! together with elastic energy cos
dE53 (K1Ku)d2uuu2 is simply a static version of the
Gross-Neveu model for a realu background field.16–18 The
energies of the electronic states and the formation ener
are thus given by

vn5D0 cosS np

2NT
D , EnD0

2NT

p
sinS np

2NT
D ,

where 1<n<NT2153 for the polarons, andn05NT for an
infinitely separated kink-antikink soliton pair~notice that the
topological electronic state has zero energy!. By means of
STM spectroscopy, one should be able to probe both
energies~thevn above! and the shapes of the solitonic state

IV. INTERACTION EFFECTS

The effects we described above were all derived tak
into account the coupling between the electrons and lat
distortions. We have not included the effects of the electr
electron interactions. Let us discuss here what we exp
when the electronic interactions are included. There are
issues that we need to address. The first one is whethe
effects we discuss in this paper could arise from electro
interactions alone. If not, the second issue is whether
effects survive in the presence of electronic interactions.

To address the first issue, we can connect our result
some of the results found previously using bosonization~or
‘‘ g-ology’’ ! in Refs. 3–7. To be more specific, let us direct
compare some of our results to those by Krotov, Lee, a
Louie usingg-ology.3 There they found that two of the pos
sible instabilities that led to energy gaps were charge-den
waves, termed CDW1 and CDW2. Basically, CDW2 corr
sponds to coupling between the two Dirac points in the a
chair spectrum (K6), which is equivalent to our Kekule´ dis-
tortion. They found that there was a continuous U~1!
symmetry for the order parameter, and that the density fl
tuations associated with slow twists of the order parame
phase did not couple to the electromagnetic field. In ot
words, they found that the low-energy excitations were n
tral. This is exactly the same situation that we found cons
ering the Kekule´ distortions, where the order parameter ha
continuous symmetry, and the charge accumulation in
symmetric and antisymmetric channels canceled each o
The reason that the results coincide is that electron-pho
or nearest neightbor electron-electron interactions~used, in
addition to on-site interactions, in Ref. 3! lead to the same
effective theory for theg-ology. Therefore, in this case, th
electron-electron interactions and the electron-phonon in
actions reinforce each other in opening a CDW gap.

However, there is a difference between what is found
the CDW1 phase of Ref. 3 and the case of the ALT dist
tion, even though both are instabilities that do not couple
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two Dirac points. The CDW1 order parameter has a conti
ous U~1! symmetry, whereas the ALT dimerization has
discreteZ2 symmetry. Although the electron-lattice couplin
effectively generates an interaction between the electron
naiveg-ology treatment in the case of the lattice distortio
would miss the fact that the order parameter for the e
tronic instability has a direct~and physical! connection to a
discrete symmetry that stems from the lattice displaceme
So, even though both the electron-lattice coupling and e
tron electron interactions tend to open CDW gaps, their sy
metry is different.

Therefore, the answer to the first question raised is
even though interactions alone lead to CDW instabiliti
they in general do not have the same symmetries as t
generated by the mechanisms we discuss here. The lo
symmetry has important consequences, such as the so
and polaron solutions with midgap energies discussed in
paper.

Let us now turn to the second issue about whether
effects of the lattice distortion survive in the presence
electronic interactions. Because the interactions also lead
CDW instability, one would expect that they reinforce t
effect found with the lattice distortions. Since the CDW sy
metry due to the ALT distortion (Z2) is lower than that of
the CDW1@U~1!#, the combined effects of electron-electro
interactions and lattice distortions should give rise to a d
creteZ2 ~the lower! symmetry at a temperature scale of
least 1 K asfound with the lattice distortions alone.

Finally, we would like to touch on the question o
whether other instabilities due to electronic interactions, s
as SDW or SC, could appear before the CDW. As found
Ref. 3, the prevailing instabilities depend on the details
the interaction potential. In addition, one would have to
consider these findings if the lattice distortion effects
combined to the electron-electron interaction effects.
though the CDW1 and CDW2 states can be dominant in
bilities depending on the interaction parameters, and
same should remain true when combined with the effect
lattice distortions, determining whether the physical inter
tion parameters fall within this parameter space window
beyond the scope of this paper.

V. CONCLUSIONS

We raised in this paper the question of whether there
fractionally charged states in carbon nanotubes, and ca
out a detailed analyses to address the problem. We h
studied the symmetries of spontaneous lattice deformat
in carbon nanotubes, so as to determine whether or not t
is a discrete number of ground states associated with la
deformations, and consequently fractionally charged qu
tum states associated with domain walls between such
crete vaccua.

We have shown that the Kekule´ distortion has a continu
ous U~1! symmetry, contrary to a naive expectation of
discreteZ3 . This implies that the continuous phase fluctu
tions of the U~1! order parameter imply a charge accumu
tion DQ656(e/2p) Df, which is not quantized. There
fore, there are no charge6e/3 states as naively expecte
from a Z3 symmetry for carbon atom displacements sol
along the original bond directions. In principle there a
-
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small anisotropies that reduce the U~1! symmetry toZ3 when
higher-order terms in the atomic displacements are includ
However, we showed here that these anisotropies are
evident at energies five orders of magnitude smaller than
CDW gap scale. In addition, even atT50, quantum fluctua-
tions restore the U~1! symmetry in spite of the presence o
the anisotropy.

We have also shown that the ALT structure has a disc
Z2 symmetry. We discuss the implications of topological d
main walls between the twofold ground states, the fracti
ally charged states on the walls, and the consequence
havingNT5Ns Nf54 in masking the fractional states. Qua
tets ofQ56e/2 fractionally charged constituents appear
gether so that the combined quantum numbers are the s
as those for electrons. We obtain the energies of the k
states, as well as the polaron states, by recognizing tha
Hamiltonian for the ALT distorsion is a version of a Gros
Neveu model with a static real background field. These m
gap states could be probed by STM spectroscopy, resol
experimentally both the energies and the shapes of the
tonic states.
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APPENDIX: CURVATURE EFFECTS

In this appendix we discuss how the curvature of t
nanotubes affect the spontaneous lattice distortions con
ered in this paper. The tube curvature causes the hop
amplitudes to be different in the directions parallel and p
pendicular to the tube axis. There is a simple way to acco
for these effects within the formulation we used when d
cussing the ALT structures, which are zero wave-vector
tice distortions. Consider a displacementu ~as used in Sec
III ! that is perpendicular to the tube axis. The orthogona
between the displacementu and the tube axis implies tha
u52ū. Such displacement vectoru stretches the bonds pe
pendicular and parallel to the tube axis unevenly, which c
rectly mimics the effects of curving the graphite sheet.

The effect ofu on the electronic spectrum can be obtain
from Eq. ~9! with

A52ia u/d,

which is now real. The spectrum is obtained from the eig
states of the submatriceshA andh2Ā , which for realA give

E~p!56up7Au,

and correspond to shifting the two Dirac points by

K6→K66A.

These results are well known, and they can be obtained
just solving the tight-binding Hamiltonian for the graphi
sheet with two different hopping amplitudest andt' ~see, for
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example, Ref. 7!. The reason for the above derivation
terms of the displacementsu is that we can now combine th
effects of the tube curvature and the Kekule´ distortion in a
very simple way.

The elastic energy cost of the Kekule´ distortion remains
the same to lowest order in the curvature because the
form displacementu and the Kekule´ displacemente corre-
spond to orthogonal modes, since they have different w
vectors. The extra energy cost of having a nonzeroe is,
therefore, still dE53Kd2ueu2. The electronic spectrum
however, is changed due tou. The new Hamiltonian for the
combined distortions is

H5(
p

C†~p!Fh 0

0 2hGC~p!, ~A1!

h5S p2A D

D̄ 2p2AD , ~A2!

with

C†~c1,S
† c2,S

† c1,A
† c2,A

† !

as defined in Sec. II, and to lowest order ine, D/t
523iaē. The new spectrum is given by

E56A6Ap21uDu2,

and it is easy to show that the shift in energyA leads to the
cancellation of the logarithmic divergence lnL/D from inte-
grating the negative energy states, which is replaced
pp

tt.
.

ni-

e

y

ln L/A. Hence, there is no longer a spontaneous distor
with wave vectorG5K12K2 . Because of the curvature
with its associated shift in the Dirac points, the instabil
moves away from the commensurate wave vectorK1

2K2 . Instead, there will be an incommensurate distort
with wave vectorG85K12K212A. For this new wave
vector there will still be the logarithmic divergence for sma
D. In more physical terms, the singularity just moves to
new ~incommensurate! phonon wave vectorG8. The elastic
energy cost remains almost unchanged, and can just be
tained from the phonon dispersion~see, for example, Ref
14! at the new incommensurate wave vectorG8.

In the incommensurate problem the symmetry of the or
parameter is a continuous U~1!. The absence of commensu
ration with a discrete symmetry washes away any anisotro
The gradient of the phase of the order parameter gives c
tinuous fluctuations of the charge density. So the conclus
reached in this paper that there are no fractionally~quan-
tized! charged solitons for lattice distortions other than t
ALT structures is unchanged.

Finally, we would like to discuss whether the curvatu
effects could restore a discrete symmetry for the Kekule´ dis-
tortion, should there be any mechanism favoring a comm
surate distortion. The answer is negative, because eve
there is an anisotropy that tries to pin the phase of the o
parameterD, this anisotropy is irrelevant, as we showed
Sec. II using the sine-Gordon Lagrangian Eq.~7!. Therefore,
the only effect of the tube curvature on the Kekule´ structure
is not to restore the anisotropy, but just to suppress the
tortion at the wave vectorG as described in this appendix.
only
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