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Microscopic derivation of transport coefficients and boundary conditions
in discrete drift-diffusion models of weakly coupled superlattices
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A discrete drift-diffusion model is derived from a microscopic sequential tunneling model of charge trans-
port in weakly-coupled superlattices provided temperatures are low or high enough. Realistic transport coef-
ficients and contact current-field characteristic curves are calculated from microscopic expressions, knowing
the design parameters of the superlattice. Boundary conditions clarify when possible self-sustained oscillations
of the current are due to monopole or dipole recycling.
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I. INTRODUCTION

At present, the theory of charge transport and pattern
mation in superlattices~SL! is in a fragmentary state. On th
one hand, it is possible to establish a quantum kinetic the
from first principles by using Green-function formalisms.1,2

However, the resulting equations are hard to solve, even
merically, unless a number of simplifications and assum
tions are made.2,3 These include:~i! a constant electric field
~ii ! simplified scattering models, and~iii ! a stationary curren
through the SL. These assumptions directly exclude the
scription of electric-field domains and their dynamics
though important results are still obtained.3,4 The stationary
current density probes the difference between strongly-
weakly-coupled SL. It also indicates when simpler theor
yield good agreement with quantum kinetics. The main s
pler theories are~see Fig. 1 of Ref. 3!:

~i! Semiclassical calculations of miniband transport us
the Boltzmann transport equation5 or simplifications thereof,
such as hydrodynamic6 or drift-diffusion7 models. These cal
culations hold for strongly coupled SL at low fields. In th
miniband transport regime, electrons traverse the whole
miniband thereby performing Bloch oscillations and givi
rise to negative differential conductivity for large enou
electric fields.8 The latter may cause self-sustained oscil
tions of the current due to recycling of charge dipole d
mains as in the Gunn effect of bulkn-GaAs.9,6

~ii ! Wannier-Stark~WS! hopping transport in which elec
trons move parallel to the electric field through scatter
processes including hopping transitions between
levels.10 Calculations in this regime hold for intermedia
fields, larger than those corresponding to collisional bro
ening of WS levels, but lower than those corresponding
resonant tunneling.

~iii ! Sequential tunneling calculations valid for weakl
coupled SL~coherence length smaller than one SL period! at
basically any value of the electric field.11–13 A great advan-
tage of this formulation as compared with~i!, ~ii ! or Green’s-
function calculations is that boundary conditions can be
PRB 620163-1829/2000/62~4!/2786~11!/$15.00
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rived naturally and consistently from microscopic models12

On the other hand, the description of electric-field d
mains and self-sustained oscillations in SL has been mad
means of discrete drift models. These models use simpli
forms of the tunneling current through SL barriers and d
crete forms of the charge continuity and Poiss
equations.14–16Although discrete drift models yield good de
scriptions of nonlinear phenomena in SL, bridging the g
between them and more microscopic descriptions12,13 is
greatly desirable for further advancing both theory and
periments.

A step in this direction is attempted in the present pap
Our starting point is a microscopic description of a weak
coupled SL by means of discrete Poisson and charge co
nuity equations. In the latter the tunneling current throug
barrier is a function of the electrochemical potentials of a
jacent wells and the potential drops in them and in the b
rier. This function is derived by means of the transfer Ham
tonian method provided the intersubband scattering and

FIG. 1. Sketch of the electrostatic potential profile in a SL.
2786 ©2000 The American Physical Society
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tunneling time are much smaller than the typical dielec
relaxation time.12 From this microscopic model and for su
ficiently low or high temperatures, we derive discrete dr
diffusion ~DDD! equations for the field and charge at ea
SL period and appropriate boundary conditions. The d
velocity and diffusion coefficients in the DDD equations a
nonlinear functions of the electric field that can be calcula
from first principles for any weakly coupled SL. These equ
tions are of great interest for the study of nonlinear dynam
in SL. They are simpler to study than microscopic mod
equations for which only numerical simulation results a
available.18

In the present paper, natural boundary conditions
DDD equations are derived from microscopic calculatio
for the first time. Previous authors had to propose bound
conditions with adjustable parameters that gave qualita
agreement with experimental results.13–17 The present
boundary conditions relate current density and field at c
tacts and can be calculated for a given configuration of em
ter and collector contact regions. As it is well-known, boun
ary conditions select the stable charge and field profile
the SL, and therefore are crucial to understand which s
tiotemporal structures will be observed in the SL for giv
values of the control parameters.13–17

The rest of the paper is as follows. In Sec. II, we revie
the microscopic sequential resonant tunneling model. We
tain the minimal set of independent equations and bound
conditions describing this model. Our derivation of the DD
model is presented in Sec. III. Numerical evaluation of v
h
-

te

ie
c

-

ft

d
-
s
l

r
s
ry
e

-
t-
-
in
a-

b-
ry

-

locity, diffusion, and contact coefficients for several SL’s
presented in Sec. IV. Section V contains our conclusio
The appendix contains an evaluation of the transport coe
cients for negative values of the electric field.

II. MICROSCOPIC SEQUENTIAL TUNNELING MODEL

The main charge transport mechanism in a weak
coupled SL is sequential resonant tunneling. We shall
sume that the macroscopic time scale of the self-susta
oscillations is larger than the tunneling time~defined as the
time an electron needs to advance from one well to the n
one!. In turn, this latter time is supposed to be much larg
than the intersubband scattering time. This means that
can assume the process of tunneling across a barrier t
stationary, with well-defined Fermi-Dirac distributions
each well, which depend on the instantaneous values of
electron density and potential drops. These densities and
tentials vary only on the longer macroscopic time scale.

A. Tunneling current

The tunneling current density across each barrier in
SL may be approximately calculated by means of the tran
Hamiltonian method. We shall only quote the results here12

Let eJe,1 andeJN,c be the currents in the emitter and colle
tor contacts, respectively, and leteJi ,i 11 be the current
through thei th barrier which separates wellsi and i 11. We
have
Je,1[J0,15
kBT

2p2\
(
j 51

n E AC j
1 ~e! B0,1~e! T0~e!lnF11e~eF2e!/kBT

11eew1
2e/kBT G de, ~1!

Ji ,i 115
\kBT

2p2m*
(
j 51

n E AC1
i ~e! AC j

i 11~e! Bi 21,i~e!Bi ,i 11~e!Ti~e! lnF 11e~ewi
2e!/kBT

11eewi 11
2e/kBTGde, ~2!

JN,c[JN,N115
kBT

2p2\
E AC1

N ~e! BN21,N~e!TN~e! lnF 11e~ewN
2e!/kBT

11e~eF2eV2e!/kBTG de. ~3!
e
at

e

ten-
the
d at
f

In these expressions:
~1! i 51, . . . ,N21, n is the number of subbands in eac

well i with energieseC j
i ~measured with respect to the com

mon origin of potential drops:e50 at the bottom of the
emitter conduction band!. eF5\2(3p2ND)2/3/(2mw* ) are the
Fermi energies of the emitter and collector regions calcula
as functions of their doping densityND . mw* andm* are the
effective masses of the electrons at the wells and barr
respectively.

~2! Bi 21,i are given by

Bi 21,i5ki Fw1S 1

a i 21
1

1

a i
D S m*

mw*
sin2

kiw

2
1cos2

kiw

2 D G21

,

~4!

\ki5A2mw* ~e1eWi !, ~5!
d

rs,

\a i5A2m* eFVb2Wi2
Vwi

2
2

e

e
G , ~6!

Wi[(
j 50

i 21

~Vj1Vwj
!1

Vwi

2
, ~7!

whereki and a i are the wave vectors in the wells and th
barriers, respectively.ki depends on the electric potential
the center of thei th well Wi , whereasa i depends on the
potential at the beginning of thei th barrierWi1Vwi

/2. See

Fig. 1.Vi andVwi
, i 51, . . . ,N, are the potential drops at th

i th barrier and well, respectively. We assume that the po
tial drops at barrier and wells are non-negative and that
electrons are singularly concentrated on a plane locate
the end of each well~which is consistent with the choice o
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a i ; the choice ofki is dictated by the transfer Hamiltonia
method!. The potential dropsV0 and VN correspond to the
barriers separating the SL from the emitter and collector c
tacts, respectively.D1[eVw0

52eW0 is the energy drop a

the emitter region, andeVb is the barrier height in the ab
sence of potential drops.

~3! Ti is the dimensionless transmission probabil
through thei th barrier separating wellsi and i 11:

Ti~e!5
16kiki 11a i

2e22a i d

F ki
21S mw* a i

m*
D 2GF ki 11

2 1S mw* a i

m*
D 2G , ~8!

provideda id@1.
~4! w andd are the widths of wells and barriers, respe

tively.
~5! Scattering is included in our model by means

Lorentzian functions:

AC j
i ~e!5

g

~e2eC j
i !21g2

~9!

~for the i th well!. The Lorentzian half-width isg5\/tsc ,
wheretsc is the lifetime associated to any scattering proc
dominant in the sample~interface roughness, impurity sca
tering, phonon scattering, . . .!.19–22For the samples consid
ered here,g ranges from 1 to 10 meV.17 Of course this
phenomenological treatment of scattering could be impro
by calculating microscopically the self-energy associated
one of the scattering processes mentioned above. How
this restriction to one scattering mechanism would result
loss of generality and simplicity of the model.

~6! The integration variablee takes on values from the
bottom of thei th well to infinity.

Of course this model can be improved by calculating m
croscopically the self-energies, which could include oth
scattering mechanisms~e.g., interface roughness, impuri
effects4,13! or even exchange-correlation effects~which affect
the electron charge distribution in a self-consistent way!. We
have assumed that the electrons at each well are in l
equilibrium with Fermi energiesewi

, which define the elec-

tron number densitiesni :

ni~ewi
!5

mw* kBT

p2\2 E AC1
i ~e!ln@11e~ewi

2e!/kBT# de.

~10!

Notice that the complicated dependence of the wave vec
ki and a i with the potential,Wi , may be transferred to th
Fermi energies by changing variables in the integrals of
system~2! so that the lower limit of integration~the bottom
of the i th well! is zero: e85e1e Wi . Then the resulting
expressions have the same forms as Eqs.~2! and~10! if eC1

i ,
eC j

i 11 , andewi
in them are replaced by

eC15eC1
i 1e Wi , ~11!

m i[ewi
1e Wi , ~12!
-

-

f

s

d
o
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a

-
r
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rs

e

respectively.Wi is given by Eq.~7!. The integrations now go
from e850 to infinity. Notice thateC j is independent of the
well index i provided we assume that the energy level dro
half of the potential drop for the whole welleVwi

with re-
spect to its position in the absence of bias. Equation~10!
becomes

ni~m i !5
mw* kBT

p2\2 E
0

`

AC1~e! ln@11e~m i2e!/kBT#de. ~13!

Here AC1(e) is obtained by substitutingeC1 ~the energy of
the first subband measured from the bottom of a given w
therefore independent of electrostatics! instead ofeC1

i in Eq.
~9!. Notice that Eq.~13! defines a one-to-one relation be
tween ni and m i that is independent of the indexi or the
potential drops. The inverse function

m i5m~ni ,T!

gives the chemical potential or free energy per electron. T
is the entropic part of the electrochemical potential~Fermi
energy!

ewi
5m~ni ,T!2e(

j 50

i 21

~Vj1Vwj
!2

eVwi

2
. ~14!

According to Eq.~14!, the Fermi energyewi
~electrochemical

potential! is the sum of the electrostatic energy at thei th
well,

2e(
j 50

i 21

~Vj1Vw j!2eVwi/2,

and the chemical potentialm i5m(ni ,T).
After the change of variable in the integrals, the wa

vectors in Eq.~2! become

\ki5A2mw* e,

\a i5A2m* S eVb2
eVwi

2
2e D ,

\ki 115A2mw* S e1eVi1e
Vwi

1Vwi 11

2
D ,

\a i 215A2m* S eVb1
eVwi

2
1eVi 212e D ,

\a i 115A2m* S eVb2
eVwi

2
2eVi2eVwi 11

2e D ,

~15!

where nowe50 at the bottom of thei th well. This shows
that the tunneling current densityJi ,i 11 in Eq. ~2! is a func-
tion of the temperature,m i and m i 11 ~therefore ofni and
ni 11), and the potential dropsVi , Vi 11 , Vwi

, andVwi 11
:

Ji ,i 115J̃~ni ,ni 11 ,Vi ,Vi 11 ,Vwi
,Vwi 11

!. ~16!

Similarly, we have
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Je,15J̃e~n1 ,ND ,V0 ,Vw1
!, ~17!

JN,c5J̃c~nN ,ND ,VN ,VwN
!. ~18!

B. Balance and Poisson equations

The two-dimensional~2D! electron densities evolve ac
cording to the following rate equations:

dni

dt
5Ji 21,i2Ji ,i 11 , i 51, . . . ,N. ~19!

The voltage drops through the structure are calculated
follows. The Poisson equation yields the potential drops
the barriersVi , and the wellsVwi ~see Fig. 1!:

«w

Vwi

w
5«

Vi 21

d
1

e ~ni2ND
w!

2
, ~20!

Vi

d
5

Vi 21

d
1

e ~ni2ND
w!

«
, ~21!

where«w and« are the GaAs and AlAs static permittivitie
respectively,ni is the 2D~areal! electron number density~to
be determined! which is singularly concentrated on a plan
located at the end of thei th well, andND

w is the 2D inten-
tional doping at the wells.

C. Boundary conditions

The emitter and collector layers can be described by
following equations:

«wD1

d1
5

«eV0

d
, se52«

V0

d
.eN~eF!D1d1 , ~22!

«wD2

ed2
5

«VN

d
2

eNDd2

2
5

«weF

ed3
, ~23!

sc52«w

eF

ed3
5eNDS d21

1

2
d3D . ~24!

To write the emitter equations~22!, we assume that there ar
no charges in the emitter barrier.23 Then the electric field
acrossd1 ~see Fig. 1! is equal to that in the emitter barrie
Furthermore, the areal charge densityse required to create
this electric field is provided by the emitter.N(eF)
5mw* \22(3ND /p4)1/3 is the density-of-states at the emitt
Fermi energy eF5\2(3p2ND)2/3/(2mw* ). The collector
equations~23! and ~24! ensure that the electrons tunnelin
through theNth ~last! barrier are captured by the collecto
They hold if the bias is large enough~see below!. We assume
that: ~i! the region of lengthd2 in the collector is completely
depleted of electrons,~ii ! there is local charge neutrality i
the region of lengthd3 between the end of the depletio
layer d2 and the collector, and~iii ! the areal charge densit
sc required to create the local electric field is supplied by
collector. Notice thateND(d21 1

2 d3) in Eq. ~24! is the posi-
tive 2D charge density depleted in the collector regio
Equations~23! and ~24! hold providedVN>«weFd/(e«d3),
D2>0, d2>0, and d3>0. For smaller biases resulting i
as
n

e

e

.

VN,«weFd/(e«d3), a boundary condition similar to Eq
~22! should be used instead of Eqs.~23! and ~24!:

«wD̃2

d̃2

5
«eVN

d
, sc52«

VN

d
.eN~eF!D̃2d̃2 . ~25!

Notice thatD̃2 and d̃2 have different meanings fromD2 and
d2 in Eq. ~23!.

The condition of overall voltage bias closes the set
equations:

V5(
i 50

N

Vi1(
i 51

N

Vwi1
D11D21eF

e
. ~26!

This condition holds only ifVN>«weFd/(e«d3); otherwise
(D21eF) should be replaced byD̃2 in Eq. ~26!.

Notice that we can findd1 andD1 as functions ofV0 from
Eq. ~22!:

D1505V0 , d1 indetermined or

d15A 2«w

e2N~eF!
5

\p2/3~2«w!1/2

emw*
1/2~3ND!1/6

, D15
e«V0d1

«wd
.

~27!

Similarly we can findd3 by solving Eqs.~23! and ~24! in
terms ofVN and ND . From this equation and Eq.~23!, we
can findd2 andD2 as functions ofVN :

d35
2«

eNDd
@AVN

2 1~2«weFNDd2!/«22VN#,

d25
2«weF

e2NDd3
S eVNd3«

«weFd
21D uS e«VNd3

«weFd
21D ,

D25
2«eF

2

e2NDd3
2 S e«VNd3

«weFd
21D uS e«VNd3

«weFd
21D , ~28!

whereu(x) is the Heaviside unit step function. The bounda
conditions ~23! and ~24! do not hold if e«VNd3,«weFd.
This occurs ifVN,(3p2)1/3ND

5/6\dA«w/@2«A2mw* #. In this
case, we should impose the alternative boundary condit
~25!. From these, we obtain

d̃25A 2«w

e2N~eF!
5

\p2/3~2«w!1/2

emw*
1/2~3ND!1/6

,

D̃25
e«VNd̃2

«wd
uS 12

e«VNd3

«weFd D . ~29!

The critical potentialVN5«weFd/(e«d3) corresponds to
VN5«weFd/(A3 e«d̃2). There is a small mismatch betwee
Eqs. ~28! and ~29! at this critical potential: e«VN /d
5«weF /d3, but e«VN /dÞ«weF / d̃2. This imperfection can
be fixed by using a more precise relation between the cha
at the collectorsc , D̃2, and d̃2, but we choose not to delve
more in these details. In all cases, we have shown that
potential drops at the barriers separating the SL from
contact regions uniquely determine the contact electrosta



ca
m

r

.

i
el
a
t

la-

ting
the

ent

the

if-

-

to,
-
e.

(1

if-
s
ise

p-
rgy

e

2790 PRB 62L. L. BONILLA, G. PLATERO, AND D. SÁNCHEZ
In Ref. 12 global charge conservation

se1(
i 51

N

~ni2eND
w!5eND~d21 1

2 d3! ~30!

was used instead of Eq.~24! @which is a condition similar to
the one we impose at the emitter contact, Eq.~22!#. Substi-
tution of Eq.~24! instead of Eq.~30! modifies minimally the
numerical results reported in Refs. 12 and 18.

D. Elimination of the potential drops at the wells

The previous model has too many equations. We
eliminate the potential drops at the wells from the syste
For Eqs.~20! and ~21! imply

«wVwi

«w
5

Vi 211Vi

2d
. ~31!

Then the bias condition~26! becomes

V5S 11
«w

«wdD (
i 50

N

Vi2
« ~V01VN! w

2«wd
1

D11D21eF

e
,

~32!

where D15D1(V0) and D25D2(VN). Instead of the rate
equations~19!, we can derive a form of Ampe`re’s law that
explicitly contains the total current densityJ(t). We differ-
entiate Eq.~21! with respect to time and eliminateni by
using Eq.~19!. The result is

«

ed

dVi

dt
1Ji ,i 115J~ t !, i 50,1, . . . ,N, ~33!

whereeJ(t) is the sum of displacement and tunneling cu
rents. The time-dependent model consists of the 2N12
equations~21!, ~32!, and~33! @the currents are given by Eqs
~2!, ~10!, ~27!, ~28!, and ~31!#, which contain the 2N12
unknowns ni ( j 51, . . . ,N), Vj ( j 50,1, . . . ,N), and J.
Thus we have a system of equations which, together w
appropriate initial conditions, determine completely and s
consistently our problem. For convenience, let us list ag
the minimal set of equations we need to solve in order
determine completely all the unknowns:

«

ed

dVi

dt
1Ji ,i 115J~ t !, i 50,1, . . . ,N,

Vi

d
5

Vi 21

d
1

e ~ni2ND
w!

«
, i 51, . . . ,N, ~34!

V5S 11
«w

«wdD (
i 50

N

Vi2
~V01VN! «w

2«wd

1
D1~V0!1D2~VN!1eF

e
, ~35!

Ji ,i 115J~ni ,ni 11 ,Vi 21 ,Vi ,Vi 11!, ~36!

Je,15Je~n1 ,V0 ,V1!, ~37!

JN,c5Jc~nN ,VN21 ,VN!. ~38!
n
.

-

th
f-
in
o

Notice that the three last equations are constitutive re
tions obtained by substituting Eq.~31! in the functionsJ̃,
J̃e , and J̃c of Eqs. ~16!, ~17!, and ~18!, respectively. The
functions D1(V0) and D2(VN) are given by Eqs.~27! and
~28!, respectively. Equations~33! for i 50,N may be consid-
ered the real boundary conditions for the barriers separa
the SL from the contacts. These boundary conditions are
balance of current density including special tunneling curr
constitutive relationsJe,1 andJN,c . The latter depend on the
electron densities at the extreme wells of the SL and
potential drops at the adjacent barriers.

III. DERIVATION OF THE DISCRETE DRIFT-DIFFUSION
MODEL

It is interesting to consider the relation~10! between the
chemical potential and the electron density at a well for d
ferent temperature ranges:

ni~m i !5
mw* kBT

p2\2 E AC1~e!lnF11e
m i2e

kBT G de.

Assuming thatm i@kBT, we may approximate this expres
sion by

ni~m i !'
mw*

p2\2E0

m i
AC1~e! ~m i2e! de. ~39!

Thusni approaches a linear function ofm i if m i@kBT. For
the SL used in the experiments we have been referring
m i2e is typically about 20 meV or 232 K. Thus ‘‘low tem
perature’’ can be ‘‘high enough temperature’’ in practic
Provided the LorentzianAC1(e) is sufficiently narrow,
AC1(e);p d(e2eC1), so that

m i2eC1'
p\2ni

mw*
if ~m i2eC1!@kBT, eC1@g. ~40!

Interestingly enough, a linear relation betweenm i andni also
holds at high temperatures. To derive it, notice that ln
1ex);ln 21x/2 if x!1 and use this relation in Eq.~13!:

ni~m i !'
mw*

2p2\2E0

`

AC1~e! ~2kBT ln 21m i2e! de.

~41!

If we now setAC1(e);p d(e2eC1), the result is

m i2eC1'22kBT ln 21
2p\2ni

mw*

if ( m i2eC1)!kBT!(eC22eC1), and eC1@g. The addi-
tional condition~thermal energy small compared to the d
ference between the energies of the two lowest subband! is
needed to keep all electrons in the first subband. Otherw
the second subband may be populated and Eq.~13! should be
transformed accordingly. Thus our ‘‘high temperature’’ a
proximation can be satisfied in SL with large enough ene
differences (eC22eC1).

A different approximation is obtained if we first impos
that eC1@g:
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ni~m i !'
mw* kBT

p\2
ln@11e(m i2eC1)/kBT#.

This yields

m i'eC11kBT ln@e(p\2ni )/mw* kBT21#,

and therefore

m i2eC1'
p\2ni

mw*
if \2ni@mw* kBT,

m i2eC1'kBT ln
p\2ni

mw* kBT
if \2ni!mw* kBT.

At low temperatures, the chemical potential again depe
linearly on the electron density according to Eq.~40!,
whereas it has ideal-gas logarithmic dependence at high
peratures.

The same considerations used to obtain Eqs.~39! or ~41!
would indicate that the electron flux across thei th barrier
becomes

Ji ,i 11'
niv i

( f )2ni 11v i
(b)

d1w
,

either at low or high enough temperatures. Herev i
( f ) andv i

(b)

are functions ofVi , Vi 61. They have dimensions of velocit
and correspond to the forward and backward tunneling c
rents that were invoked in the derivation of phenomenolo
cal discrete drift models. Whenewi

5ewi 11
, or equivalently,

m i 115m i1eVi1e(Vwi
1Vwi 11

)/2, Ji ,i 1150 according to

Eq. ~2!. Equation~13! implies thatm i 115m i if ni 115ni ,
and therefore we conclude thatv i

( f )5v i
(b) at zero potential

dropsVi1(Vwi
1Vwi 11

)/250. Notice thatewi 11
2e becomes

m i 112eVi2eVwi 11
/22e8 after changing variables in the in

tegral ~2!. Then v i
(b) is approximately zero unless 0,eC1

1eVwi
/2,m i 112eVi2eVwi 11

/2. For voltages larger than
those in the first plateau of the current-voltage character
curve this condition does not hold. In fact for these voltag
the levelC1 of well i is at a higher or equal potential tha
the level C2 of well i 11. Then eC1>m i 112eVi2e(Vwi

1Vwi 11
)/2.

The previous results yield DDD models with the potent
drops at the barriers and the total current density as
knowns, the same as in Eqs.~33!–~38!. The main difference
with previously used discrete drift models is that the veloc
depends on more than one potential drop. To obtain th
simpler models, we further assume that«Vi / «̄d and
«Vi 61 / «̄d are approximately equal to an average fieldFi ( «̄
is an average permittivity to be chosen later!. Then Vwi

5w«̄Fi /«w according to Eq.~31!. This assumption depart
from previous approximations and yields a new model. T
point of contact with our previous results is th
AC1(e)AC j(e1eVi1e@Vwi

1Vwi 11
#/2) is the controlling

factor in the expressions forv ( f ) and v (b) ~the transmission
coefficient contains an exponential factore22a i d, which is
s

m-

r-
i-

ic
,

l
n-

se

e

almost constant at the energies contributing most to the i
gral!. This controlling factor is uniquely determined by th
potential drop

Vi1
Vwi

1Vwi 11

2
'S d

«
1

w

«w
D «̄ Fi5~w1d! Fi ,

provided we define the average permittivity as

«̄5
d1w

d

«
1

w

«w

. ~42!

This expression corresponds to the equivalent capacitanc
two capacitors in series. Thus the behavior of forward a
backward drift velocities is most influenced by the potent
drop Vi1(Vwi

1Vwi 11
)/2'Fi(d1w) and the new DDD

model~see below! should yield results similar to those of th
microscopic sequential tunneling model. We have

Ji ,i 11'
niv

( f )~Fi !2ni 11v (b)~Fi !

d1w

5
niv~Fi !

d1w
2

ni 112ni

~d1w!2
D~Fi !, ~43!

v~F !5v ( f )~F !2v (b)~F !, D~F !5~d1w! v (b)~F !.
~44!

To calculatev ( f )(F) andv (b)(F) from Ji ,i 11 in Eq. ~2!, we
replaceewi

, eC1
i , ewi 11

and eC j
i 11 by m i , eC1 , m i 112e(d

1w)F, andeC j2e(d1w)F, respectively. The wave vector
in the integrand should be

\ki5A2mw* e,

\a i5A2m* S eVb2
ewF

2
2e D ,

\ki 115A2mw* @e1e~d1w!F#,

\a i 215A2m* FeVb1eS d1
w

2 DF2eG ,
\a i 115A2m* FeVb2eS d1

3w

2 DF2eG , ~45!

and the integration variablee ranges from 0 tò . We sub-
stitute m i(ni) according to Eq.~13! in the result. Then we
obtain a functionJ(ni ,ni 11 ,F):

J~ni ,ni 11 ,F !5JS ni ,ni 11 ,
«̄Fd

«
,
«̄Fd

«
,
«̄Fd

«
D ~46!

@equivalent to settingVi5 «̄Fd/«, or Vi1(Vwi
1Vwi 11

)/2

5(d1w) F after transforming this formula to the form
~36!#. Notice that~as said above!

v ( f )~0!5v (b)~0!5
D~0!

d1w
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for the tunneling current to vanish at zero field and eq
electron densities at adjacent wells. Furthermore, notice
D(F) vanishes if eC12m i 11>2e (2Vi1Vwi

1Vwi 11
)/2'

2e(d1w)Fi . Thus according to Eq.~40!, D(F) vanishes if
\2ni 11<mw* e(d1w)Fi , which is certainly satisfied for al
average fields larger than the first resonant field (eC2
2eC1)/@e(d1w)#. In the low-temperature limit~or in the
high-temperature limit mentioned earlier in this section, p
vided it exists!, we have

J~ni ,ni 11 ,F !5
ni

d1w
v~F !2

ni 112ni

~d1w!2
D~F !. ~47!

Then we may use

v~F !5
~d1w! J~ND

w ,ND
w ,F !

ND
w

, ~48!

D~F !52
~d1w!2 J~0,ND

w ,F !

ND
w

~49!

to calculate the drift velocity and the diffusion coefficie
from the tunneling current. The integrals from Eq.~2! ap-
pearing in these expressions may be approximated by m
of the Laplace method: we should just expand their cont
ling factor mentioned before about its maximum valuee

5 ẽ(F). The resulting formulas are cumbersome and
choose not to write them here. We show in the appendix
v ( f )(2F)5v (b)(F)[D(F)/(d1w) andv(2F)52v(F).

Equations~47!–~49! may be used in Eq.~33! to write the
Ampère law as

«̄

e

dFi

dt
1

niv~Fi !

d1w
2D~Fi !

ni 112ni

~d1w!2
5J~ t ! ~50!

for i 51, . . . ,N21. The Poisson equation~34! becomes

Fi2Fi 215
e

«̄
~ni2ND

w! ~51!

for i 51, . . . ,N. Equations~50! and ~51! constitute a DDD
model that may be analyzed on its own together with app
priate bias and boundary conditions. As a bias condition
adopt

~d1w! (
i 51

N

Fi5V. ~52!

Notice that potential drops at the contacts are represe
only by the termFN (d1w). Equation~52! is obtained by
insertingVi1(Vwi

1Vwi 11
)/25(w1d)Fi into Eq. ~26!, and

omitting

~d1w!F01
D11D212eF

2e

for the sake of simplicity. For fields higher than the fir
resonance,D(F)'0, and Eq.~50! becomes
l
at

-

ns
l-

e
at

-
e

ed

«̄

e

dFi

dt
1

niv~Fi !

d1w
5J~ t !, ~53!

which is the usual discrete drift model used in previous t
oretical studies.15–17

In Sec. 2.1 of Ref. 13, A. Wacker derived a formula sim
lar to Eq. ~43! with v (b)50 and v ( f )(F)}G/$@eF(d1w)
1eC12eC j#

21G2%, for fields comparable to (eC j
2eC1)/@e(d1w)#. At low fields, the resonant tunneling cu
rent between levelsC1 of adjacent fields was found to b
proportional toW(F)5eF(d1w)/@e2F2(d1w)21G1

2# and
independent ofni . While the first approximation of Wack
er’s ~for fields close to higher resonances,C1→C j , j
52,3, . . . ) is compatible with our result~43!, the second
approximation is an artifact of the extra unnecessary assu
tion ewi

5ewi 11
.13 We shall show in Sec. IV that our drif

velocity ~48! may have at low fields the same shape as fu
tion W(F) for certain SL; see Fig. 2~a!. Then the correspond
ing stationary current for a space homogeneous field pro
with ni5ND

w ~which implies equality of chemical potential
at adjacent fields! will be proportional toW(F) and our re-
sult will agree with Wacker’s~for this special case!. Figure
2~b! shows that things may be different for a different S
configuration.

The boundary conditions forF0 and FN are also Am-
père’s law but now the tunneling currents~1! and ~3! ~from
the emitter and to the collector, respectively! have to be used
instead of Eq.~2!. The same approximations as before yie

Je,15Je~n1 ,«̄F0d/«,«̄F0d/«!

' j e
( f )~F0!2

n1

d1w
w(b)~F0!, ~54!

JN,c5Jc~nN ,«̄FNd/«,«̄FNd/«!

'
nN

d1w
w( f )~FN!. ~55!

FIG. 2. ~a! Electron drift velocityv(F) for the 9/4 SL. Inset:
comparison of the drift velocity~continuous line! with the forward
~dashed line! and backward~dot-dashed line! velocities. ~b! The
same for the 13.3/2.7 SL. Notice that the backward velocity
equivalently the diffusivity, decreases with electric field much mo
rapidly for this SL.
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Notice that there is no backward tunneling from the collec
region to the SL because we are assuming that the pote
drop VN is larger than«weFd/(e«d3). Assuming now that
Eqs.~54! and ~55! are identities, we find

j e
( f )~F !5JeS 0,

«̄Fd

«
,
«̄Fd

«
D , ~56!

w(b)~F !5
d1w

ND
w F j e

( f )~F !2JeS ND
w ,

«̄Fd

«
,
«̄Fd

«
D G , ~57!

w( f )~F !5
d1w

ND
w

JcS ND
w ,

«̄Fd

«
,
«̄Fd

«
D . ~58!

The tunneling current across a barrier is zero if the Fe
energies of the adjacent wells are equal. This occurs if
electron density at the first well takes on an appropriate va
n1

w such that the corresponding Fermi energy equals tha
the emitter. Then

Je~n1
w,0,0!50,

and therefore

j e
( f )~0!5

n1
w w(b)~0!

d1w
.

IV. NUMERICAL CALCULATION OF DRIFT VELOCITY
AND DIFFUSION

In this section, we shall calculate the functionsv(F),
D(F), j e

( f )(F), w(b)(F), andw( f )(F) for different SL used in
experiments.17 Figure 2~a! depicts the electron drift velocity
v(F) for the 9nm/4nm GaAs/AlAs SL ~9/4 SL! of Ref. 17
calculated by means of Eq.~48! ~at zero temperature;m*
5mw* for simplicity!. The inset comparesv(F) to the back-
ward and forward velocities given byv (b)(F)5D(F)/(d
1w) @D(F) as in Eq.~49!# and v ( f )(F)5v(F)1v (b)(F).
The rapidly decreasing diffusivityD(F) determines the po
sition and height of the first peak inv(F). Notice thatv(F)
behaves as expected from general considerations: it incre
linearly for low-electric fields, it reaches a maximum a
then decays before the influence of the second resonan
felt. If D(F) decays faster, a rather differentv(F) is found.
Figure 2~b! showsv(F) for the 13.3/2.7 SL: there is a wid
region before the first peak in whichv9(F).0.

Figures 3 and 4 show the boundary functionsj e
( f )(F),

w(b)(F), and w( f )(F) for the 9/4 and 13.3/2.7 SL, respe
tively. Again they behave as expected:~i! the emitter forward
current peaks at the resonant values of the electric field@dif-
ferent from those ofv ( f )(F)#, ~ii ! the emitter backward tun
nel velocity decreases rapidly with field, and~iii ! the collec-
tor forward velocity increases monotonically with field give
the large difference between the Fermi energies of the
well and the collector.

The emitter forward currentj e
( f )(F) is compared in Figs. 5

and 6 to the drift current,ND
wv(F)/(d1w), for different

emitter doping values. Notice that the emitter current is s
tematically higher than the drift current for large emitter do
ing at positive electric fields. However, the total current de
r
ial

i
e
e

of

ses

is

st

-
-
-

sity should remain between the first maximum and
minimum of the drift current. This means that the conta
field F0 should be negative, so that j e

( f )(F0)
2n1 w(b)(F0)/(d1w)'J, with n1.ND

w . Because of Pois-
son equation~34!, F1 is larger thanF0 and, typically be-
comes positive. The electric field in the SL increases w
distance from the emitter and a charge accumulation laye
formed ~see Fig. 5 of Ref. 12 for a similar stationary fie
profile corresponding to the full microscopic sequential tu
neling model!. Self-consistent current oscillations in th
situation will be due to monopole recycling.18 Notice that
previous work on discrete drift models assumed a fixed
cess of electrons in the first SL well as a bounda
condition.16,17 Again an emitter accumulation layer appear
and monopole self-oscillation resulted.

For smaller emitter doping, j e
( f )(F) intersects

ND
wv(F)/(d1w) on its second branch, and a charge dep

tion layer may be formed in the SL. Then there may
self-oscillations due to dipole recycling. These findings a

FIG. 3. Functions of the electric field appearing in the bound
conditions for the 9/4 SL with a contact dopingND52
31018 cm23. ~a! e je

( f )(F) and ~b! w(b)(F) for the emitter and~c!
w( f )(F) for the collector.

FIG. 4. Same functions as in Fig. 3 for the 13.3/2.7 SL with
contact dopingND5231018 cm23. Notice thate je

( f )(F) is an in-
creasing function sinceeF.(eC22eC1) in this SL.
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fully consistent with the numerical results reported in Ref.
for the 13.3/2.7 SL. That paper reported coexistence and
stability of monopole and dipole self-oscillations. Coexi
ence and bistability were found for an intermediate emi
doping range~crossover range! lower than those used in
experiments.18 A different way to obtain dipole self-
oscillations is to decrease the well width without chang
contact doping. In this way, we have numerically check
that dipole self-oscillations are possible with emitter dop
similar to those used in current experimental setups.17

For the usual drift-diffusion model of the Gunn effect
bulk n-GaAs, the effect of boundary conditions on the se
oscillations of the current has been well-studied.24,25 In par-
ticular, asymptotic and numerical calculations for realis
metal-semiconductor contacts were performed some t
ago.25 Despite the different equations used in bulk semic
ductors, these calculations provide results consistent with
present findings in SL: a boundary condition that yields
accumulation~depletion! layer near injecting contact ma
yield current self-oscillations due to monopole~dipole!
recycling.25,24 However these similarities between discre
~SL! and continuous~bulk! drift-diffusion models should no
tempt us into reaching hasty conclusions: discrete and c
tinuous drift-diffusion models may have rather different tra
eling wave solutions.26 In fact, it has been shown that~de-
pending on current and doping!, the DDD model may have
monopole wave solutions that travel in the same direction
the motion of electrons, in the opposite direction, or rem
stationary. In the continuum limit~continuous drift-diffusion
model!, wavefronts travel always in the same direction as
electrons.26 These features of the DDD equations may ha
experimentally observable consequences that will be
plored elsewhere.

V. CONCLUSIONS

Starting from a microscopic sequential tunneling mode
transport in weakly-coupled SL, a DDD model is derived
the limits of low or high temperature. Realistic transport c
efficients and contact current-field characteristic curves

FIG. 5. Comparison of the drift tunneling current densi
eND

w v(F)/(d1w) ~continuous lines! with the emitter current den
sity e je

( f )(F) ~dashed lines! for the 9/4 SL with two different emitter
dopings:~a! ND5231018 cm23 corresponding to monopole recy
cling, and ~b! ND5231017 cm23 corresponding to dipole recy
cling.
8
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d
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e
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n
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s
n

e
e
x-
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-
re

calculated from microscopic expressions, knowing the
sign parameters of the superlattice. Boundary conditions
lect stable spatiotemporal charge or field profiles in the S
In particular, they clarify when possible self-sustained os
lations of the current are due to monopole or dipole re
cling.
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APPENDIX: MODELS FOR NEGATIVE BIAS

When a negative voltage is applied, we should make s
that our formulas transform appropriately. For negative b
the charge will be singularly concentrated on planes loca
at the beginning of the wells. Then we should write

\a i5A2m* FeVb2e(
j 50

i

~Vj1Vwj
!2eG ,

instead of Eq.~6! in expressions~2!. The change of variable
e85e1eWi 11 ~i.e., e850 corresponds to zero energy at th
bottom of well i 11) in the integral~2!, then changes the
wave vectors to

\ki 115A2mw* e,

\a i5A2m* S eVb1
eVwi 11

2
2e D ,

\ki5A2mw* S e2eVi2e
Vwi

1Vwi 11

2
D ,

FIG. 6. Same functions as in Fig. 5 for the 13.3/2.7 SL~a! ND

5231018 cm23 ~monopole recycling!, and ~b! ND51016 cm23

~dipole recycling!.
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\a i 215A2m* S eVb1eVwi
1eVi1

eVwi 11

2
2e D ,

\a i 115A2m* S eVb2eVi 112
eVwi 11

2
2e D , ~A1!

instead of Eq.~15!.
Given the new location of the singular charge planes~at

the beginning of wells!, Eq. ~20! still holds, but Eq.~21!
should be replaced by

Vwi

w
5

Vwi 21

w
1

e ~ni2ND
w!

«w
. ~A2!

Then we find

«Vi

«wd
5

Vwi
1Vwi 11

2w
, ~A3!

instead of Eq.~31!. Inserting this equation in the functionsJ̃
~tunneling current under negative bias!, we obtain new func-
tions J* (ni ,ni 11 ,Vwi

,Vwi 11
,Vwi 12

), instead of

J(ni ,ni 11 ,Vi 21 ,Vi ,Vi 11) valid for positive voltage. To ob-
tain a reduced model, we now set

eC1
i 5eC11e~d1w!F,

eC j
i 115eC j ,

ewi
5m i1e~d1w!F,

ewi 11
5m i 11 ,

\ki 115A2mw* e,

\a i5A2m* S eVb1
ewF

2
2e D ,
s

H

d
.

lt
\ki5A2mw* @e2e~d1w!F#,

\a i 215A2m* FeVb1eS d1
3w

2 DF2eG ,
\a i 115A2m* FeVb2eS d1

w

2 DF2eG , ~A4!

in the integrals~2! and let the variable of integratione range
from 0 to `. This is equivalent to settingVwi

, Vwi 11
, and

Vwi 12
equal to «̄wF/«w in J* (ni ,ni 11 ,Vwi

,Vwi 11
,Vwi 12

).
Equations~2!, ~45!, and~A4! and the previous definitions in
this appendix imply

JS ni ,ni 11 ,
«̄Fd

«
,
«̄Fd

«
,
«̄Fd

«
D

52J* S ni 11 ,ni ,2
«̄Fw

«w
,2

«̄Fw

«w
,2

«̄Fw

«w
D .

~A5!

The Poisson equation~A2! still yields Eq. ~51!. Notice that
the symmetry~A5! implies

v ( f )~2F !5v (b)~F ![
D~F !

d1w
, v~2F !52v~F !.

~A6!

Given the difference between the states at the contac
gions and the wells, the previous arguments cannot be u
to extend the contact current-field characteristic curves
negative fields. Direct calculation of Eqs.~56!–~58! by
means of Eqs.~1! and~3! yields the results depicted in Figs
3 and 4.
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