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A discrete drift-diffusion model is derived from a microscopic sequential tunneling model of charge trans-
port in weakly-coupled superlattices provided temperatures are low or high enough. Realistic transport coef-
ficients and contact current-field characteristic curves are calculated from microscopic expressions, knowing
the design parameters of the superlattice. Boundary conditions clarify when possible self-sustained oscillations
of the current are due to monopole or dipole recycling.

[. INTRODUCTION rived naturally and consistently from microscopic modéls.
On the other hand, the description of electric-field do-

At present, the theory of charge transport and pattern formains and self-sustained oscillations in SL has been made by
mation in superlatticeéSL) is in a fragmentary state. On the means of discrete drift models. These models use simplified
one hand, it is possible to establish a quantum kinetic theorforms of the tunneling current through SL barriers and dis-
from first principles by using Green-function formalisf’s. crete forms of the charge continuity and Poisson
However, the resulting equations are hard to solve, even niequations*~16 Although discrete drift models yield good de-
merically, unless a number of simplifications and assumpscriptions of nonlinear phenomena in SL, bridging the gap
tions are madé2 These include(i) a constant electric field, between them and more microscopic descripfiohs is
(i) simplified scattering models, artiii ) a stationary current greatly desirable for further advancing both theory and ex-
through the SL. These assumptions directly exclude the dggeriments.
scription of electric-field domains and their dynamics al- A step in this direction is attempted in the present paper.
though important results are still obtaine8The stationary ~Our starting point is a microscopic description of a weakly-
current density probes the difference between strongly- andoupled SL by means of discrete Poisson and charge conti-
weakly-coupled SL. It also indicates when simpler theorieshuity equations. In the latter the tunneling current through a
yield good agreement with quantum kinetics. The main sim-barrier is a function of the electrochemical potentials of ad-
pler theories aré¢see Fig. 1 of Ref. B jacent wells and the potential drops in them and in the bar-

(i) Semiclassical calculations of miniband transport usingrier. This function is derived by means of the transfer Hamil-
the Boltzmann transport equatibar simplifications thereof, tonian method provided the intersubband scattering and the
such as hydrodynanfior drift-diffusion” models. These cal-
culations hold for strongly coupled SL at low fields. In the —r————— 1
miniband transport regime, electrons traverse the whole SL W
miniband thereby performing Bloch oscillations and giving 05 |
rise to negative differential conductivity for large enough
electric fields$ The latter may cause self-sustained oscilla- | [LILILI I || § V.
tions of the current due to recycling of charge dipole do- 2
mains as in the Gunn effect of butkGaAs?® 2 00

(i) Wannier-StarKWS) hopping transport in which elec- &
trons move parallel to the electric field through scattering g
processes including hopping transitions between WSH
levels® Calculations in this regime hold for intermediate 0.5 |
fields, larger than those corresponding to collisional broad-
ening of WS levels, but lower than those corresponding to
resonant tunneling.

(iii) Sequential tunneling calculations valid for weakly- -1.0 ‘ s ‘ s ‘
coupled SL(coherence length smaller than one SL periad 25 75 125 175 225
basically any value of the electric field-*3 A great advan- Position(nm)
tage of this formulation as compared wiily, (ii) or Green’s-
function calculations is that boundary conditions can be de- FIG. 1. Sketch of the electrostatic potential profile in a SL.
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tunneling time are much smaller than the typical dielectriclocity, diffusion, and contact coefficients for several SL’s is
relaxation time:2 From this microscopic model and for suf- presented in Sec. IV. Section V contains our conclusions.
ficiently low or high temperatures, we derive discrete drift- The appendix contains an evaluation of the transport coeffi-
diffusion (DDD) equations for the field and charge at eachcients for negative values of the electric field.
SL period and appropriate boundary conditions. The drift
velocity and diffusion coefficients in the DDD equations are
nonlinear functions of the electric field that can be calculated
from first principles for any weakly coupled SL. These equa- The main charge transport mechanism in a weakly-
tions are of great interest for the study of nonlinear dynamicgoupled SL is sequential resonant tunneling. We shall as-
in SL. They are simpler to study than microscopic modelsume that the macroscopic time scale of the self-sustained
equations for which only numerical simulation results areoscillations is larger than the tunneling tim@efined as the
available'® time an electron needs to advance from one well to the next
In the present paper, natural boundary conditions fobne. In turn, this latter time is supposed to be much larger
DDD equations are derived from microscopic calculationsthan the intersubband scattering time. This means that we
for the first time. Previous authors had to propose boundargan assume the process of tunneling across a barrier to be
conditions with adjustable parameters that gave qualitativetationary, with well-defined Fermi-Dirac distributions at
agreement with experimental results!’ The present each well, which depend on the instantaneous values of the
boundary conditions relate current density and field at conelectron density and potential drops. These densities and po-
tacts and can be calculated for a given configuration of emittentials vary only on the longer macroscopic time scale.
ter and collector contact regions. As it is well-known, bound-
ary conditions select the stable charge and field profiles in
the SL, and therefore are crucial to understand which spa-
tiotemporal structures will be observed in the SL for given The tunneling current density across each barrier in the
values of the control parametérs’ SL may be approximately calculated by means of the transfer
The rest of the paper is as follows. In Sec. I, we reviewHamiltonian method. We shall only quote the results Hére.
the microscopic sequential resonant tunneling model. We ob-et eJ, ; andeJy . be the currents in the emitter and collec-
tain the minimal set of independent equations and boundartor contacts, respectively, and let) ., be the current
conditions describing this model. Our derivation of the DDD through theith barrier which separates well&andi+ 1. We
model is presented in Sec. lll. Numerical evaluation of ve-have

II. MICROSCOPIC SEQUENTIAL TUNNELING MODEL

A. Tunneling current

n

keT 1 1+ eler— kel
Je’]_EJO‘]_:ZWZh jgl fACj(f) BO,l(e) TO(E)“'] m de, (1)
fikeT i - 1+elew™</keT
Ji,i+1:m le fA01(6) Acj (€) Bi_1j(€)B;i+1(€)Ti(e) In PR de, 2
keT [ 1+ el6wy~e)/keT
‘JN,CEJN,NJrl:MJ Aci(€) By—1n(€)Tn(e) In L+ oler—ov-aikeT de. ()
|
In these expressions: Vi €
() i=1,... N—1, nis the number of subbands in each hay=\/2m*e| V,— W,——— — —|, (6)
well i with energiese'Cj (measured with respect to the com- 2 e
mon origin of potential dropse=0 at the bottom of the i1 Vv
emitter conduction bar)dgpzﬁz(SWZND)Z’SI(Zm\Tv) are the W= (V,+Vy)+ ﬁ’ %
Fermi energies of the emitter and collector regions calculated i=o ] 2

as functions of their doping densily, . m};, andm* are the

effective masses of the electrons at the wells and barrier

respectively.
(2) Bj_,; are given by

1 1)
+_
ai-1 a;

fiki=\2m} (e+eW),

Bi*l,i:ki w+

* , , -1
m—:vsinzk'TW + coszk'TW) } ,
(4)
5

wherek; and «; are the wave vectors in the wells and the
%arriers, respectivelyk; depends on the electric potential at
the center of thath well W,, whereasa; depends on the
potential at the beginning of thigh barrierWi+VWi/2. See
Fig. 1.V; andV,,, i=1,... N, are the potential drops at the
ith barrier and well, respectively. We assume that the poten-
tial drops at barrier and wells are non-negative and that the

electrons are singularly concentrated on a plane located at
the end of each wellwhich is consistent with the choice of
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a;; the choice ofk; is dictated by the transfer Hamiltonian respectivelyW, is given by Eq(7). The integrations now go
method. The potential drop®/, andVy correspond to the from €'=0 to infinity. Notice thatec; is independent of the
barriers separating the SL from the emitter and collector conwell indexi provided we assume that the energy level drops
tacts, respectiverAlzeVWOZZeWo is the energy drop at half of the potential drop for the whole w@lvWi with re-

the emitter region, anéV, is the barrier height in the ab- spect to its position in the absence of bias. Equatibd)

sence of potential drops. becomes
(3) T; is the dimensionless transmission probability
through theith barrier separating welisandi+1: mykgT (= —elkaT
ni(Mi):W Aci(e) In[1+elmi~ 9 keT]de. (13)
s 0

Ti(e)=

16kik; gl 2
2
K2 miy @ K2y mj, @ the first subband measured from the bottom of a given well,
! m* LT g therefore independent of electrostatizsstead ofe, in Eq.
(9). Notice that Eq.(13) defines a one-to-one relation be-
provided a;;d>1. tweenn; and w; that is independent of the indexor the
(4) w andd are the widths of wells and barriers, respec-potential drops. The inverse function
tively.
(5) Scattering is included in our model by means of mi=p(n;,T)

Lorentzian functions: gives the chemical potential or free energy per electron. This
is the entropic part of the electrochemical potentigFermi

)2] , (8) Here Ac1(€) is obtained by substitutingc, (the energy of

. y ener
Acj(e)= i 2. .2 ©) W
(e—€c))“ty i-1 eV,
(for the ith well). The Lorentzian half-width isy=1i/ 7., €w, = (1, ’T)‘GJZO VitVu)———. (19

whererg. is the lifetime associated to any scattering process
dominant in the samplénterface roughness, impurity scat- According to Eq(14), the Fermi energy,, (electrochemical
tering, phonon scattering, .).**"??For the samples consid- potentia) is the sum of the electrostatic energy at itle
ered here,y ranges from 1 to 10 meV. Of course this well,
phenomenological treatment of scattering could be improved

by calculating microscopically the self-energy associated to !

one of the scattering processes mentioned above. However _eZO (Vjt+ V) —eVuil2,
this restriction to one scattering mechanism would result in a .
loss of generality and simplicity of the model. and the chemical potential;= u(n;,T).
(6) The integration variable takes on values from the After the change of variable in the integrals, the wave
bottom of theith well to infinity. vectors in Eq.(2) become
Of course this model can be improved by calculating mi-
croscopically the self-energies, which could include other fiki=2mje,
scattering mechanism&.g., interface roughness, impurity
effectd"!) or even exchange-correlation effett¢hich affect eV,
the electron charge distribution in a self-consistent wye fia;="\/ 2m*| eVy— > ¢
have assumed that the electrons at each well are in local
equilibrium with Fermi energieswi, which define the elec- VARERY,
tron number densities; : fik . = \/Zm\’,‘v e+ e\/i+e%),
*
Ni(ey)= mW—kBTJ AL (e)In[1+elw~9keT] de. eV,
N e hai_="\/2m*| eVy+ ——+eViii—¢],

(10

Notice that the complicated dependence of the wave vectors eV,
k, and «; with the potential W;, may be transferred to the haip ="\ 2m*| eV,————eVi—eVy  —€],
Fermi energies by changing variables in the integrals of the (15)

system(2) so that the lower limit of integratiothe bottom
of the ith well) is zero: e’ =e+e W . Then the resulting Where nowe=0 at the bottom of theth well. This shows

expressions have the same forms as E2)sand(10) if e;,,,  that the tunneling current densidly; .., in Eq. (2) is a func-
€icJ]1: ande,, in them are replaced by tion of the temperature and u;, 4 (therefore ofn; and
: n; 1), and the potential dropg;, V,, 1, VWi, andVWHl:
ecr=€r e W, (12) ~
Jii+1=EMi N1, VinVien, Vi, Vi, ) (16)
MiEGWi+e\A/|7 (12)

Similarly, we have
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‘]e,].: Ee(nl ’ ND 1VO lvwl)a
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‘JN,C:EC(anNDavaVWN)' (18)

B. Balance and Poisson equations

The two-dimensional2D) electron densities evolve ac-
cording to the following rate equations:

dni

E I=1,..

=Ji—1i—Jdii+1 - N. 19

The voltage drops through the structure are calculated as

follows. The Poisson equation yields the potential drops i
the barriersv,, and the wellsv,,; (see Fig. L

VWi Vi.; e(ni—Np)

Sy =g > 0
Vi Vi.; e(n—Np)
E_ d + e ) (21)

wheree,, ande are the GaAs and AlAs static permittivities
respectivelyp; is the 2D(area) electron number densitifo

be determinedwhich is singularly concentrated on a plane

located at the end of thigh well, andNy is the 2D inten-
tional doping at the wells.

C. Boundary conditions

The emitter and collector layers can be described by the

following equations:

€ Al SeVO VO
V(vsl =—g e=2eg=eNle)Aio, (22
SWAZ _ 8VN _ eND52 _ EwEF (23)
652 d 2 653 ,
€p 1
g-C=28We—53=6ND 52+ 553 . (24)

To write the emitter equation®2), we assume that there are
no charges in the emitter barri&rThen the electric field
acrossé; (see Fig. 1is equal to that in the emitter barrier.
Furthermore, the areal charge density required to create
this electric field is provided by the emitteN(eg)
=m¥%h2(3Np/7m*) 13 is the density-of-states at the emitter
Fermi energy ee=#2(3m*Np)?¥(2m%). The collector
equations(23) and (24) ensure that the electrons tunneling
through theNth (last barrier are captured by the collector.
They hold if the bias is large enougéee below. We assume
that: (i) the region of length, in the collector is completely
depleted of electrongji) there is local charge neutrality in
the region of lengthd; between the end of the depletion
layer 8, and the collector, andii) the areal charge density
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Vy<eyepd/(ee83), a boundary condition similar to Eq.
(22) should be used instead of Eq23) and (24):

SWZZ _SeVN
5, d ’

N~

d

eN(EF)Zzsz. (25)

oc.=2¢

Notice thatA, and'$, have different meanings from, and
S, in Eq. (23).

The condition of overall voltage bias closes the set of
equations:

1+ A2+ €E

N N A
V=2 Vi+ > Vit (26)
i=0 i=1 e

rhis condition holds only ifVy=e,exd/(eed3); otherwise

(A,+ €¢) should be replaced b, in Eq. (26).
Notice that we can find; andA, as functions oV from
Eq. (22):

A;=0=V,, &; indetermined or
B [ 2, _ hm?¥28e,)"? R _esVgd,
eN(er) eml/Z(SND)lIG’ 7 e, d
(27)

Similarly we can findd; by solving Egs.(23) and (24) in
terms ofVy and Ny . From this equation and E@23), we
can find &, andA, as functions oiV:

2e
83= gipal VUn+ (2ewerNpd?)/a” = V],

28W6|: eVN538 e8VN53

5,= — -1},
eZND63 SWEFd SWGFd
2e€t [eeVyo esVyo

A= F2( NO3 0( N 3_1), (28)
eZND53 eywerd eyerd

whered(x) is the Heaviside unit step function. The boundary
conditions (23) and (24) do not hold if esVyd;<e,€rd.
This occurs ifVy<(372)*NJ%%d /e, /[2e2mZ]. In this
case, we should impose the alternative boundary conditions
(25). From these, we obtain

28W B ﬁ7T2/3(28W)1/2

e2N(ep) - ent, 1/2(3ND)1/6’

>t

(29

esVyo
)= N 20<

1 eSVN(Sg) .
e,d

eywerd
The critical potentialVy=g,,erd/(esd;) corresponds to

Vy=¢eyerd/ ({3 eed,). There is a small mismatch between
Egs. (28) and (29) at this critical potential: esVy/d

=g, €r /83 butesVy/d#e,er /5, This imperfection can

o, required to create the local electric field is supplied by thebe fixed by using a more precise relation between the charge

collector. Notice thaeNy(5,+ 3 83) in Eq. (24) is the posi-

at the collectoro, A,, andd,, but we choose not to delve

tive 2D charge density depleted in the collector region.more in these details. In all cases, we have shown that the

Equations(23) and(24) hold providedVy= e, ed/(ec 83),
A,=0, 6,=0, and §3=0. For smaller biases resulting in

potential drops at the barriers separating the SL from the
contact regions uniquely determine the contact electrostatics.
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In Ref. 12 global charge conservation Notice that the three last equations are constitutive rela-
N tions obtained by substituting E¢31) in the functionsZ,
Tet D (Ni—eNY)=eNp(8,+165) (30) Ee, and =. of Egs.(16), (17), and (18), respectively. The
i=1 functions A;(Vy) and A,(Vy) are given by Egs(27) and

(29), respectively. Equation@3) for i =0,N may be consid-
ered the real boundary conditions for the barriers separating
the SL from the contacts. These boundary conditions are the
balance of current density including special tunneling current
constitutive relationd, ; andJy .. The latter depend on the
electron densities at the extreme wells of the SL and the
potential drops at the adjacent barriers.

The previous model has too many equations. We can
eliminate the potential drops at the wells from the systemJii. DERIVATION OF THE DISCRETE DRIFT-DIFFUSION

was used instead of E4) [which is a condition similar to
the one we impose at the emitter contact, E9)]. Substi-
tution of Eq.(24) instead of Eq(30) modifies minimally the
numerical results reported in Refs. 12 and 18.

D. Elimination of the potential drops at the wells

For Egs.(20) and(21) imply MODEL
ewVw,  V,_ +V; It is interesting to consider the relatig0) between the
W = — >4 = (31) chemical potential and the electron density at a well for dif-

ferent temperature ranges:
Then the bias conditio26) becomes

my kT [ ui—e€
W | & e (Vo+ V)W  Aj+A,+er ()= —%% fAm(e)ln 1+ekeT | de.
wWESEo v (32) Assuming thatu;>kgT, we may approximate this expres-
sion b
where A;=A;(Vy) and A,=A,(Vy). Instead of the rate Y
equations(19), we can derive a form of Ampe’s law that A
explicitly contains the total current densidyt). We differ- ni(ui)=~ ?J Aci(€) (ni—e) de. (39
entiate Eq.(21) with respect to time and eliminate; by mh=Jo
using Eq.(19). The result is Thusn; approaches a linear function pf if w;>kgT. For
the SL used in the experiments we have been referring to,
iﬂ+J_ 1=J(t), i=01,...N, (33) Mi— € is typically abo_ut 20 meV or 232 K. Thus _“Iow tem-
ed dt o perature” can be “high enough temperature” in practice.

Provided the LorentzianAcq(€) is sufficiently narrow,

whereeJ(t) is the sum of displacement and tunneling cur-
(0 P 9 U Acy(€)~ 7 8(e— ecy), SO that

rents. The time-dependent model consists of thie+2
equationg21), (32), and(393) [the currents are given by Egs.
(2), (10), (27), (28), and (31)], which contain the R+ 2
unknownsn; (j=1,...N), V; (j=0,1,...N), and J.
Thus we have a system of equations which, together with . _ .

appropriate initial conditions, determine completely and selfnterestingly enough, a linear relation betweggrandn; also

consistently our problem. For convenience, let us list agairﬁ10Ids at high temperatures. To derive it, notice that In(1

the minimal set of equations we need to solve in order to" &)~IN2+x/2 if x<1 and use this relation in E413):

determine completely all the unknowns:

Wﬁzni )
Him €™ if (ui—€c1)>kgT, €c1>vy. (40)

W

*

m o)
e dV, 3 g od ni(/v‘i)*?;;izjo Aci(€) (2kgTIn2+ pi—€) de.
od gt TJiierT (t), i=01,...N, (a1)
Vi Vi, e(m-NY If we now setAc (€) ~ 7 8(e—ec1), the result is
—= + , i=1,...N, (34
d d & 2mh2n,
,u,i—émm—ZkBTln 2+ -
N m
Ve 1+ﬂ 2 Vi (Vot+Vn) ew w
SWd i=0 : 28Wd if (Mi_601)<kBT<(6C2_601)1 and EC1> Y- The addi-
tional condition(thermal energy small compared to the dif-
N A1(Vo) +Ax(Vy) + er (35 ference between the energies of the two lowest subbasds
e ' needed to keep all electrons in the first subband. Otherwise
the second subband may be populated and BRj).should be
Jiir1=E;,ni+1,Vio1,Vi,Vis), (36)  transformed accordingly. Thus our “high temperature” ap-
proximation can be satisfied in SL with large enough energy
Je1=Ee(N1,Vo,Vy), (37)  differences €c,— €cy).

A different approximation is obtained if we first impose
Ine=Ec(Nn,Vn-1,VN)- (38) thatec;>y:
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M kT almost constant at the energies contributing most to the inte-
ni( i)~ — - In[ 1+ e(#i~eci)/keT], gral). This controlling factor is uniquely determined by the
h potential drop
This yields VotV . [d w)_
Vi+—% —+ — & F|:(W+d) Fi!
2 g &y

pi~ ecy + KgT IN[(™ M/MikaT — 1]

and therefore provided we define the average permittivity as

5 — d+w 42
h n; . E= .
Mi— €Ec1™ |f ﬁzni>m\’,’kaT, g+£
w € &y
52 This expression corresponds to the equivalent capacitance of
wi—eci~KgT In mhn if #2n,<m*kgT. two capacitors in series. Thus the behavior of forward and
' my kg T ' v backward drift velocities is most influenced by the potential

drop Vi+(Vy, +Vy,, )/2~Fi(d+w) and the new DDD

At low temperatures, the chem_lcal potent_|al again dePendﬁ'lodel(see belowshould yield results similar to those of the
linearly on thg electron de’?s'ty_ according to E@F‘.O)’ microscopic sequential tunneling model. We have
whereas it has ideal-gas logarithmic dependence at high tem-

peratures. _ _ . niv(f)(Fi)_ni+1U(b)(Fi)
The same considerations used to obtain E§9). or (41) Jiiv1= T w
would indicate that the electron flux across ftle barrier
becomes
nv(Fi) niy—n;
N i RoE), G
no"—n;,v® (d+w)
M T

v(F)=v(F)—v®(F), D(F)=(d+w)v®(F).

either at low or high enough temperatures. Helfé andv (*) (44)

are functions oV;, Vi..;. They have dimensions of velocity T¢ calculater(F) andv®(F) from J; ., in Eq. (2), we

and correspond to the forward and backward tunneling CUlreplacee,, EiC L, € . andes? '
i’ ! i+1

rents that were invoked in the derivation of phenomenologi- ci DY pir €cr, pisa—eld
P g +w)F, andec;—e(d+w)F, respectively. The wave vectors

cal discrete drift models. WheﬂNisziH’ or equivalently, in the integrand should be

,qu:,u,i+e\/i+e(VWi+VWi+1)/2, J;i+1=0 according to

Eqg. (2). Equation(13) implies thatu;, 1= u; if Ny ,=n;, fiki=\2mj e,
and therefore we conclude that”=v" at zero potential
dropsV;+ (V. +V,. )/2=0. Notice thate,, — e becomes ewF
i it . i+l . . haj=\/2m*| eV,— ———¢€
Mmiri—eVi— eVWiH/Z— €' after changing variables in the in- | b o '
tegral (2). Thenv(™ is approximately zero unless<Oec;
+vei/2<Mi+1—eVi—veiH/2- For voltages larger than fiki, 1= \/ijv[e+e(d+w)F],
those in the first plateau of the current-voltage characteristic
curve this condition does not hold. In fact for these voltages, 5 _ \/2 eV +el d+ w F
the levelC1 of well i is at a higher or equal potential than di-17 m* eVpre 2 €
the level C2 of well i+1. Then ec1>,ui+l—e\/i—e(v\,\,i
V)i h —\/2 rlevy—el dr 2| E 45
The previous results yield DDD models with the potential 1™ m|eVo—€ 2 bk (45

drops at the barriers and the total current density as un- . _ .
knowns, the same as in E83)—(38). The main difference and the integration variable ranges from 0 tae. We sub-
with previously used discrete drift models is that the velocityStitute x(n) according to Eq(13) in the result. Then we
depends on more than one potential drop. To obtain theg®Ptain a function(n;,n;.4,F):

simpler_models, we further assume thav; /ed arg ( =Fd =Fd s_Fd)
eV,.1/ed are approximately equal to an average fig|d e Jmni,n 1, F)=E|n,nj ., —, , (46)

is an average permittivity to be chosen latefhen Vi, e € €
=wsF;/e, according to Eq(31). This assumption departs [equivalent to settingV;=eFd/e, or Vit (Vy, +Vy,, )2
from previous approximations and yields a new model. The=(d+w) F after transforming this formula to the form
point of contact with our previous results is that (36)]. Notice that(as said above
Aci(€)Acj(e+eVi+e[Vy, +V,, 1/2) is the controlling

factor in the expressions farl”) andv® (the transmission (0(0) = ®(0) = D(0)

coefficient contains an exponential factr?«9, which is vT(0)=vT(0)

d+w
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for the tunneling current to vanish at zero field and equal

electron densities at adjacent wells. Furthermore, notice that 18 08 03 16
D(F) vanishes ifeci—pi+1=—€(2Vi+Vy +V,, )2~ Z 5|06 ’," 0l 5@
—e(d+w)F;. Thus according to Eq40), D(F) vanishes if mE 04l ' mé
h%n; . <mke(d+w)F;, which is certainly satisfied for all z 12 ' 01 142
average fields larger than the first resonant fiek},( -g‘ 0.9 0.2 ‘ 13 g‘
—ecy)/[e(d+w)]. In the low-temperature limifor in the s o e o ¥ =
high-temperature limit mentioned earlier in this section, pro- ; 0.6 00 05 1.0 15 00 05 1.0 1.5 |12 ;
vided it exist3, we have £ o . &
(a) J \\\ (b)J
n; Niy1—N; 0 0
j(ni,niH,F):dTv(F)——zD(F). (47 0 2 4 6 8 10 0 1 2 3 4 5
w (d+w) Electric field (10° V/em)  Electric field (10° V/em)
Then we may use FIG. 2. (a) Electron drift velocityv(F) for the 9/4 SL. Inset:
comparison of the drift velocitycontinuous ling with the forward
(d+w) JINS,NJ ,F) (dashed ling and backwarddot-dashed ling velocities. (b) The
v(F)= w , (48)  same for the 13.3/2.7 SL. Notice that the backward velocity or,
Np equivalently the diffusivity, decreases with electric field much more
rapidly for this SL.
(d+w)2 JIONS ,F)
D(F)=- (49)

N\g S_dFl niU(Fi)

e dt d+w

=J(t), (53
to calculate the drift velocity and the diffusion coefficient
from the tunneling current. The integrals from H@) ap- L ) . . .
pearing in these expressions may be approximated by meatdich is the usual discrete drift model used in previous the-

: - d5-17
of the Laplace method: we should just expand their controlretical studies: , o
ling factor mentioned before about its maximum valee In Sec. 2.1 of Ref. 13, A. Wacker derived a formula simi-

= ith o (® = (f)
=¢(F). The resulting formulas are cumbersome and Welar to Eq. (33) vzwth Y 0 and p™(F)I'/{[eF(d+w)
choose not to write them here. We show in the appendix that €c1_ el + T }, for fields comparable to ec;

' —ecy)/[e(d+w)]. At low fields, the resonant tunneling cur-

vO(=F)=v®(F)=D(F)/(d+w) andv(~F)=—u(F). rent between level€1 of adj i
. . ) jacent fields was found to be
Ami(gj:tlsxsétn_mg) may be used in Eq33) to write the proportional toW(F)=eF(d+w)/[e?F?(d+w)?+T?] and
independent oh;. While the first approximation of Wack-
= dE no(F) no—n er's (for fields close to higher resonanceG1—Cj, |j
U b)) (500 =2.3,...) iscompatible with our result43), the second
e dt d+w ' (d+w)? approximation is an artifact of the extra unnecessary assump-
tion €, = €, > We shall show in Sec. IV that our drift

velocity (48) may have at low fields the same shape as func-
tion W(F) for certain SL; see Fig.(2). Then the correspond-
o :E W ing stationary current for a space homogeneous field profile
FI Fl—l _(nl D) (51) . AW . . . . . .
with n;=NJ (which implies equality of chemical potentials
) . . at adjacent fieldswill be proportional toW(F) and our re-
fori=1,... N. Equations(50) and (51) constitute a DDD gyt will agree with Wacker'sfor this special case Figure
model that may be analyzed on its own together with approg(p) shows that things may be different for a different SL
priate bias and boundary conditions. As a bias condition Weonfiguration.
adopt The boundary conditions foF, and Fy are also Am-
pere’s law but now the tunneling current$) and (3) (from
the emitter and to the collector, respectiydhave to be used
instead of Eq(2). The same approximations as before yield

fori=1,... N—1. The Poisson equatidi34) becomes

N
(d+w) D, Fi=V. (52
i=1

Notice that potential drops at the contacts are represented
only by the termFy (d+w). Equation(52) is obtained by
insertingV;+(Vy, +Vy, . )/2=(w+d)F; into Eq. (26), and

‘]e,l: Ee(nl ,8—F0d/8 ,;Fod/S)

n

omitting ~jP(Fo) - d+WW(b)(Fo), (54)
A1+A2+ 26|: o -
(d+W)F0+ T JNYCZEC(nN,SFNd/E,sFNd/S)
for the sake of simplicity. For fields higher than the first _ NN wO(E). (55

resonanceD (F)~0, and Eq.(50) becomes d+w
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Notice that there is no backward tunneling from the collector 500 300 400
region to the SL because we are assuming that the potentic
drop Vy is larger thane,exd/(ee 53). Assuming now that 400 -
Egs.(54) and(55) are identities, we find 300 |
- 200
()= Ost eFd o g0 @ @
e( )_'—*e rT:T ’ (5) 3 5 E 200
~ 200 s <
- B B
o) d+w ) _( , eFd st” - St 100 |
W e — _: 1 H 1 r
NE Je el No. 7= 100 | 100
oo drw_ [ eFd sFd oL e L@
WHR) =~ Be| No» = (58) =30 30 90 ~30 30 90 0 50 100
P F (kV/cm) F (kV/cm) F (kV/cm)

The tunneling current across a barrier is zero if the Fermi _ o o

energies of the adjacent wells are equal. This occurs if the FIG. 3. Functions of the electric field appearing in the boundary
electron density at the first well takes on an appropriate valuéon(‘)jl';g'ons_3f°r th?(f) 9/4 SL W'”(‘b) a contact dopinglp=2

n" such that the corresponding Fermi energy equals that of 20~ €M °. (@ eje”(F) and(b) w(F) for the emitter andc)

the emitter. Then
Ee( n\ivaoyo) = O;
and therefore

ny w®(0)

iMo)=
i90= "

IV. NUMERICAL CALCULATION OF DRIFT VELOCITY
AND DIFFUSION

In this section, we shall calculate the functionéF),
D(F), j(F), w®(F), andw("(F) for different SL used in

experiments! Figure 2a) depicts the electron drift velocity

v(F) for the \nm/4nm GaAs/AlAs SL(9/4 SU) of Ref. 17
calculated by means of E@48) (at zero temperaturen*
=my, for simplicity). The inset compares(F) to the back-
ward and forward velocities given by®(F)=D(F)/(d
+w) [D(F) as in Eq.(49)] and v (F)=v(F)+v®(F).
The rapidly decreasing diffusivitp (F) determines the po-
sition and height of the first peak (F). Notice thatv (F)

w((F) for the collector.

sity should remain between the first maximum and the
minimum of the drift current. This means that the contact
field Fo, should be negative, so thatj{"(F)
—n, wP)(Fo)/(d+w)~J, with n;>NJ. Because of Pois-
son equation34), F, is larger thanF, and, typically be-
comes positive. The electric field in the SL increases with
distance from the emitter and a charge accumulation layer is
formed (see Fig. 5 of Ref. 12 for a similar stationary field
profile corresponding to the full microscopic sequential tun-
neling model. Self-consistent current oscillations in this
situation will be due to monopole recyclift.Notice that
previous work on discrete drift models assumed a fixed ex-
cess of electrons in the first SL well as a boundary
condition!®” Again an emitter accumulation layer appeared
and monopole self-oscillation resulted.
For smaller emitter doping, j{"(F) intersects

Bv(F)/(d+w) on its second branch, and a charge deple-
tion layer may be formed in the SL. Then there may be
self-oscillations due to dipole recycling. These findings are

behaves as expected from general considerations: it increases
linearly for low-electric fields, it reaches a maximum and
then decays before the influence of the second resonance
felt. If D(F) decays faster, a rather differemtF) is found. 4!t
Figure 2Zb) showsv (F) for the 13.3/2.7 SL: there is a wide
region before the first peak in whiai'(F)>0.

Figures 3 and 4 show the boundary functioi8(F),
w®(F), andw()(F) for the 9/4 and 13.3/2.7 SL, respec-
tively. Again they behave as expectéi:the emitter forward
current peaks at the resonant values of the electric ffafel
ferent from those of(V(F)], (ii) the emitter backward tun-
nel velocity decreases rapidly with field, afid) the collec- 17}
tor forward velocity increases monotonically with field given
the large difference between the Fermi energies of the las
well and the collector.

The emitter forward currerjt”(F) is compared in Figs. 5
and 6 to the drift currentNjv(F)/(d+w), for different
emitter doping values. Notice that the emitter current is sys- FIG. 4. Same functions as in Fig. 3 for the 13.3/2.7 SL with a
tematically higher than the drift current for large emitter dop-contact dopingNp=2x 10" cm~3. Notice thatej"(F) is an in-
ing at positive electric fields. However, the total current den-creasing function sincer> (ec,— €cy) in this SL.
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FIG. 5. Comparison of the drift tunneling current density,

eNp v(F)/(d+w) (continuous lineswith the emitter current den-
sity ej{"(F) (dashed linesfor the 9/4 SL with two different emitter
dopings:(a) Np=2X10'® cm™2 corresponding to monopole recy-
cling, and(b) Np=2x10 cm 2 corresponding to dipole recy-
cling.

FIG. 6. Same functions as in Fig. 5 for the 13.3/2.7 @LNp
=2x10"% cm 3 (monopole recycling and (b) Np=10'% cm 2
(dipole recycling.

calculated from microscopic expressions, knowing the de-
sign parameters of the superlattice. Boundary conditions se-
fully consistent with the numerical results reported in Ref. 18lect stable spatiotemporal charge or field profiles in the SL.
for the 13.3/2.7 SL. That paper reported coexistence and bin particular, they clarify when possible self-sustained oscil-
stability of monopole and dipole self-oscillations. Coexist-lations of the current are due to monopole or dipole recy-
ence and bistability were found for an intermediate emittercling.
doping range(crossover rangelower than those used in
experiments® A different way to obtain dipole self-
oscillations is to decrease the well width without changing
contact dopmg In this way, we have numerica”y checked One of usg(L.L.B.) thanks Dr. Andreas Wacker for fruitful
that dipole self-oscillations are possible with emitter dopingdiscussions and collaboration on discrete drift-diffusion
similar to those used in current experimental sefups. models. We thank Dr. RamoAguado and Dr. Miguel
For the usual drift-diffusion model of the Gunn effect in Moscoso for fruitful discussions. This work was supported
bulk n-GaAs, the effect of boundary conditions on the self-Py the Spanish DGES through Grant Nos. PB98-0142-
oscillations of the current has been well-studiéé In par-  C04-01 and PB96-0875, by the European Union TMR con-
ticular, asymptotic and numerical calculations for realistictracts ERB FMBX-CT97-0157 and FMRX-CT98-0180, and
metal-semiconductor contacts were performed some timBy the Community of Madrid, Project No. 07N/0026/1998.
ago?® Despite the different equations used in bulk semicon-
ductors, these calculations provide results consistent with our
present findings in SL: a boundary condition that yields an
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APPENDIX: MODELS FOR NEGATIVE BIAS

eVb—ez (Vj+VWj)—e ,
=0

accumulation(depletion layer near injecting contact may  When a negative voltage is applied, we should make sure
yield current self-oscillations due to monopoleipole)  that our formulas transform appropriately. For negative bias,
recycling®®2?* However these similarities between discretethe charge will be singularly concentrated on planes located
(SL) and continuougbulk) drift-diffusion models should not at the beginning of the wells. Then we should write

tempt us into reaching hasty conclusions: discrete and con-

tinuous drift-diffusion models may have rather different trav-

eling wave solutioné® In fact, it has been shown théade- hia;= \/Zm*

pending on current and dopinghe DDD model may have

monopole wave solutions that travel in the same direction ag,stead of Eq(6) in expressiong2). The change of variable
the motion of electrons, in the opposite direction, or remain,r — e+eW,, (i.e., e’ =0 corresponds to zero energy at the
stationary. In the continuum limitontinuous drift-diffusion o iom of welli+1) in the integral(2), then changes the
mode), wavefronts travel always in the same direction as thg, 5ve vectors to

electrons?® These features of the DDD equations may have

experimentally observable consequences that will be ex-
plored elsewhere.

V. CONCLUSIONS

eV,+
Starting from a microscopic sequential tunneling model of
transport in weakly-coupled SL, a DDD model is derived in
the limits of low or high temperature. Realistic transport co-
efficients and contact current-field characteristic curves are

eV,
ha;= \/Zm* I+1—6),
i it1

2
k= \/va*v( e-eVi—e——p—

hki+l: \lzmtvf,
Vy +Vy )
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eV, hki=2m%[ e—e(d+w)F],
haj_1="\/2m* eVp+eVv, +eVi+ > €l,
3w
ev,, haj_ 1= \/Zm* eVp,+e d+7 F—el,
hai = 2m*(eVb—e\/i+l—T'+l—e), (A1)
instead of Eq(15). _ \/ * _ Wic_
Given the new location of the singular charge plafets hai = 2m* eV, —e| d+ 2 Fel, (A4)
the beginning of wells Eq. (20) still holds, but Eq.(21)
should be replaced by in the integralg2) and let the variable of integrationrange
from O to <. This is equivalent to setting’wi, VWM, and

Vwi Vwi,1+e(ni— ‘g)

- (A2) V., equal toewF/z, in E* (NN, Vo, Vi Vi )
Ew Equations(2), (45), and(A4) and the previous definitions in
Then we find this appendix imply
V.tV —_
S_V':M (A3) _ eFd eFd eFd
e,d 2w ' Bl N Nigy, —, )
& € &
instead of Eq(31). Inserting this equation in the functiofs SEw  eEw  sFw
(tunneling current under negative biage obtain new func- =_g* ( Nitg,Ni,— - - )
tions  E*(ni,nit1, Ve, Ve, V), instead of Ew Ew Ew
Z(n;,ni+1,Vi-1,Vi,V,,1) valid for positive voltage. To ob- (A5)

tain a reduced model, we now set
The Poisson equatiofA2) still yields Eq.(51). Notice that

ec1=ecite(d+w)F, the symmetry(A5) implies

el l=eci,
. v(f)(—F)=v(b)(F)E£, o(—F)=—u(F).
€w,= mi+e(d+w)F, (A6)

Wiy~ Hitls Given the difference between the states at the contact re-
gions and the wells, the previous arguments cannot be used

ki 1= V2mye, to extend the contact current-field characteristic curves to

= negative fields. Direct calculation of Eq$56)—(58) by

ew g . i

ha= \/Zm*(evb+ ) means of Eqs(1) and(3) yields the results depicted in Figs.

2 € 3 and 4.
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