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Diffusion and transport coefficients in synthetic opals
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Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are
sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures.
The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the
transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The
theory presented is also applicable to the diffusion problem in other periodic structures.
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I. NANOSTRUCTURED THERMOELECTRICS

A good thermoelectric material has low thermal condu
tivity k, high electrical conductivitys, and a high Seebec
coefficient, in order to maximize the thermoelectric figure
merit

Z5
sS2

k
. ~1!

Z has units of inverse absolute temperature and is gene
quoted asZT. For more than 40 years, the search for be
thermoelectrics has not provided a material withZT signifi-
cantly larger than one.ZT of about four would make ther
moelectric coolers able to compete with gas-compress
technology.

For many years, there has been a large effort to impr
the efficiency of thermoelectric materials.1,2 The search for
better thermoelectrics can be classified by the materi
length scale, with research done in the microscopic, me
copic, and macroscopic scale. In the microscopic scale,
search has been done on chemical composition of cand
materials and alloys. The macroscopic range involves
design of the thermoelectric devices. So far, most of the
fort has been done in these length scales. Only recently,
the improvement of different nanofabrication techniques,
the search for better thermoelectrics been done in the m
scopic length scale. This includes the study of superlatti
quantum dots, and opals. It is interesting to mention an
sential difference between this and the previously mentio
length scales. The theoretical tools needed to evaluate
improvements in the micro- and macrolength scales
fairly well established. Both the transport properties of co
pounds and alloys and the macroscopic equations for de
modeling are well known. However, this is not the case
the mesoscopic scale. In many possible structures, we
still working on the basic theoretical framework to unde
stand and plan new designs. A clear example of this is
discussion of the thermoelectric application of superlattice3

The purpose of the present work is to develop theoret
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tools to evaluate the transport coefficients of one of th
mesoscopic structures: synthetic opals.

Synthetic opals are nanostructured materials compose
close-packed spheres with a uniform radiusa that can range
from nanometers to micrometers. They are often made w
glass spheres, but various techniques can be used to re
the glass spheres with almost any solid-state material.
opals are usually sintered so that the points of contact
tween neighboring spheres become small necks. Curren
electricity or heat can go from sphere to sphere through th
necks. Here we calculate the electrical and thermal cond
tivity of such opal structures. We ask the question: How do
the opal structure reduce the electrical and thermal cond
tivity? Assuming that the Seebeck coefficient will not b
affected by the opal structure, if the thermal conductivity
reduced much more than the electrical conductivity,
opals could be useful thermoelectric materials.

Currently, there is an experimental group at AlliedSign
Corporation preparing and developing these structures
evaluate their potential as thermoelectrics. Our theory p
vides a theoretical tool to guide this evaluation and design4,5

The thermal conductivity of nanocomposites with regu
structure have been studied by Bogomolov and collabora
and is reported in a series of publication starting fro
1995.6–11 The object of these studies has been a SiO2 nano-
composite opal with first order voids completely filled wi
NaCl. Their results are analyzed with a theory for compos
materials developed by Meredith and Tobias12 on the basis
of the original work of Lord Rayleigh.13 The theory is based
in the solution of the Laplace equation for a regular array
spheres embedded in a different medium. This theory can
be applied to the case for which the spheres are touch
each other, which is the focus of our present interest.

In Sec. II we relate the diffusion coefficient in the op
with the transport coefficients that are relevant for a therm
electric analysis. The diffusion coefficient is evaluated with
random-walk model as explained in Sec. III and this mode
analyzed and solved in Secs. IV and V. The results of app
ing this model to an fcc opal structure are discussed in S
VI.
2780 ©2000 The American Physical Society
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II. TRANSPORT COEFFICIENTS AND DIFFUSION

Given a bulk material with thermal conductivityk and
electrical conductivitys, we want to estimate the therma
and electrical conductivities,k (op) and s (op), of a synthetic
opal made of spheres of this material. The origin and m
nitude of the reduction in the transport coefficients depe
on the mean free path of the carriersl compared with the
diameter of the spheresd. If l !d, then the effect is due to a
change in the boundary conditions, i.e., the thermal cond
tivity of the overall structure can be obtained by solving t
Laplace equation in the opal geometry. Ifl'd, then the
boundary scattering produced by the sphere surface and
necks becomes important. In addition to the geometrical
fect, which is also present in this case, there is a reductio
the intrinsic conductivities due to the presence of the bou
aries. In order to cover both situations with our model c
culation, we will relate the transport coefficients to the d
fusion coefficient of the opal and calculate this diffusi
coefficient as a function of the mean free path and the o
geometric parameters, which are the diameter of the sph
d and the distance between its centersa.

The lattice thermal conductivity is proportional to the d
fusion coefficient for phonons

k5CDph , ~2!

where C is the specific heat of the material. Since we a
mostly interested in semiconductors at room temperatur
is accurate to use Einstein’s relation14 to relate the mobility
to the diffusion coefficient for electrical carriers,

m5
eDel

kBT
, ~3!

wheree is the electron charge andkB is the Boltzmann con-
stant. Under these assumptions, neglecting the electr
contribution to the thermal conductivity and usings5nem,
the thermoelectric figure of merit can be estimated as

Z5
ne2S2

kBTC

Del

Dph
, ~4!

proportional to the ratio between the diffusion coefficient
electrons and the diffusion coefficient for phonons.

With Eqs.~2! and~3! in mind, to estimate the themoelec
tric figure of merit of opals we have to solve the diffusio
problem in the opal structure for phonons and electrons
this way, assuming that the Seebeck coefficient is not
fected by the opal structure, we can estimate the figure
merit of the opal as

Z(op)5
ne2S2

kBTC

Del
(op)

Dph
(op)

, ~5!

where the superscript (op) identifies quantities related to th
opal structure.

III. DIFFUSION COEFFICIENT AND RANDOM WALKS

Consider a particle moving with velocityv between col-
lisions, each collision randomly changing the direction of t
-
s
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movement. In this situation the diffusion coefficient is give
by

D5 lim
t→`

^r ~ t !2&
6t

, ~6!

where ^r (t)2& is the mean-square displacement of the p
ticle and t the total time of the random walk. This can b
calculated by running a random walker that performs a s
of length l at every time step of lengtht. Chandrasekar15

solved the diffusion problem of a random walker in an h
mogeneous media and obtained

^r 2&5 l 2N, ~7!

whereN is the number of steps. By replacing this express
for ^r 2& in Eq. ~6! for the diffusion coefficient, we obtain

D5
1

6
v l , ~8!

wherev is the velocity of the random walker, i.e., the rat
l /t.

The expression given in Eq.~7! for the mean-square dis
placement is only valid in a bulk material. If the carrie
moves inside the spheres forming the opal structure, then
have to calculatêr 2& in a different way in order to use Eq
~6! and obtain the diffusion coefficient of the opalD (op).

IV. DIFFUSION COEFFICIENT IN OPALS

We consider the carriers as classical particles perform
a diffusive motion inside the material that forms the op
The particle will move inside a sphere crossing from time
time the neck to a neighboring sphere. If the length of
jumps is smaller than the diameter of the spheres, the di
sion coefficient inside a sphere will be that of the bulk m
terial with a microstructure corresponding to grains of t
size of the spheres. The effective diffusion coefficient of t
opal structure will be determined by the diffusion fro
sphere to sphere.

One method to evaluate this diffusion coefficient is t
numerical simulation of the walker in the opal structur
However, if the diameter of the necks is small, as it is t
case for the experimental situation, the walker will spe
most of the time wandering inside a sphere and only spor
cally crossing to the next sphere. As a consequence, mo
the computer time will be lost in a diffusive movement i
side the spheres and the diffusion coefficient calculati
which is essentially related with this motion from sphere
sphere, will become extremely expensive in computer tim
A different method is needed.

Here we present such a method. The central idea is
integrate out the motion of the carrier inside a sphere wh
focusing attention on the motion from sphere to sphere. T
diffusion in opals, with this picture in mind, is similar to th
diffusion of a particle in a lattice, the lattice made up by t
spheres. The standard theory of diffusion in a lattice is du
Chudley and Elliot.16 However, their theory was for a par
ticle diffusing from site to site without spending any time
the site. The diffusion in an opal is different and the theo
must include the fact that there is a residence time within
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spheres. The opals are on a lattice, but the theory mus
clude the diffusion within the spheres.

Define g i j (t) as the probability per unit time that a pa
ticle departs through the necki at time t if it entered the
sphere through neckj at t50. Definef i(Rn ,t) as the flux of
particles departing a sphere centered atRn through the neck
labeledi at time t. Note that this quantity isnot the net flux,
which is the number of particles leaving minus the num
entering. It is just the number leaving. The number enter
the sphere through that neck is included as the flux leav
the neighboring sphere atRn1di through neckī . Here we
define the conjugate to necki as ī . It is the label of the
corresponding neck on the neighboring sphere. A necki on
one sphere is connected toī on the neighbor.

The rate equations for particle motion are

f i~Rn ,t !5(
j
E

0

t

dt8g i j ~ t2t8! f j̄ ~Rn1dj ,t8!1d i ,1dnd~ t !.

~9!

The first term on the right is the outgoing flux due to all
the incoming particles at an earlier time. The last term on
right is the source term that starts the particle diffusion. T
time integral can be eliminated by a Laplace transform

Fi~Rn ,p!5E
0

`

dte2ptf i~Rn ,t !,

G i j ~p!5E
0

`

dte2ptg i j ~ t !. ~10!

After transforming Eq.~9!, which describes the particle mo
tion, it becomes

Fi~Rn ,p!5(
j

G i j ~p!F j̄ ~Rn1dj ,p!1dn . ~11!

The lattice properties are taken into account by taking a F
rier transform

Gi~k,p!5(
Rn

eik•RnFi~Rn ,p!, ~12!

which leads to the final form of the equation of motion

Gi~k,p!5(
j

G i j̄ Gj~k,p!e2 ik•dj11, ~13!

where we have useddj52d j̄ .
Equation~13! is a matrix equation that is solved for th

functionsGi(k,p). However, the diffusion properties are d
termined by the properties of the matrix

Mi j 5d i j 2G i j̄ exp~2 ik•dj !. ~14!

The poles ofGi are determined by the zeros of the determ
nant of this matrix. In taking the inverse Laplace transfor
the time dependence is given by the poles ofGi , which
again are the zeros of detuMi j u. The smallest pole is define
as that with the smallest value ofp. The long time behavior
~diffusion! is determined by the smallest pole. We now d
n-

r
g
g

e
e

u-

-
,

-

cuss some properties of the matrixM, and the propagatorsg
that will be helpful in obtaining a form for the diffusion
coefficient in opalsD (op).

~i! If there is no absorption, then all of the particles whi
enter the sphere eventually must leave it sometime:

15(
j
E

0

`

g i j ~ t !5(
j

G i j ~0!. ~15!

Symmetry shows that this result is independent ofi. If we
define

GT~p!5(
j

G i j ~p!, ~16!

the identity in Eq.~15! takes the form

GT~0!51. ~17!

~ii ! If k50 and p50, then detuM u50. If k50 each row
of the matrix has the same elements, but in different ord
As a consequence, the eigenvectorc0, which has all ele-
ments equal to one, has the feature that

Mc05@12GT~p!#c0 . ~18!

Therefore atp50 thenMc050. The vectorc0 has an ei-
genvalue of zero atp50. Since the determinant is the prod
uct of the eigenvalues, this also means that the determi
of Mi j is zero in this case.

~iii ! At k50 detuM u has a factor 12GT(p). This is a di-
rect consequence of the previous property.

All of the above results are atk50. For diffusion one
wants large values ofRn , which means small values ofk.
The expansion of the determinant at smallp and smallk
5uku has the general form

detuM u5pu~p!U~p!1~ka!2V~p!, ~19!

where U(p) and V(p) are polynomials in the propagator
G i , j (p), a is the nearest-neighbor distance, andu(p)5@1
2GT(p)#/p. As a result, the diffusion coefficient of the op
is given by

D (op)5
a2

u~0!

V~0!

U~0!
, ~20!

whereu(0) is the limit of u(p) for p→0.
These general results are illustrated for some relev

common lattices. For each particular lattice, the propaga
G i , j depends only on the angle between necksi andj and we
will use the notationGu , whereu is the angle between th
normals to the neck surfaces.

A. Linear chain

We first present the simple case of the linear chain
order to illustrate the method. In this case, each sphere
two necks. We will defineG0

( lc)(p)5G11(p)5G22(p) as the
Laplace transform of the probability that the walker ente
and leaves through the same neck, andG180

( lc)(p)5G12(p)
5G21(p) corresponding to the probability of the walke
leaving the sphere through the opposite side. In this case
matrix M has the form
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M ( lc)5F12G180
( lc)eika 2G0

( lc)e2 ika

2G0
( lc)eika 12G180

( lc)e2 ikaG . ~21!

The diffusion coefficient for this one-dimensional opal w
be

D (op)5
a2

2u~0!

G180
( lc)

G0
( lc)

. ~22!

B. Square lattice

In the case of the two-dimensional square lattice we h
three different possibilities, the walker can go back throu
the same entry neck, can go out through one of the two ne
that form an angle of 90° degrees with the incoming traj
tory, or can leave the sphere through the opposite neck.
first possibility is represented byG0

(sq)(p), the second by
G90

(sq)(p), and the last byG180
(sq)(p). In this case

GT
(sq)~p!5G0

(sq)~p!12G90
(sq)~p!1G180

(sq)~p!, ~23!

and the diffusion coefficient is given by

D (op)5
a2

4u~0!

G180
(sq)1G90

(sq)

G90
(sq)1G0

(sq)
. ~24!

C. Simple cubic lattice

The simple cubic lattice has four necks at an angle of 9
and as a consequence

GT
(sc)~p!5G0

(sc)~p!14G90
(sc)~p!1G180

(sc)~p!. ~25!

The diffusion coefficient is given by

D (op)5
a2

6u~0!

G180
(sq)12G90

(sq)

2G90
(sq)1G0

(sq)
. ~26!

D. Face centered cubic lattice

The fcc lattice corresponds to the close packing of sphe
observed experimentally in opals. In the fcc lattice ea
sphere is connected through twelve necks to its nea
neighbors. Assume that we enter the sphere through nec
In the fcc lattice there are four necks with a normal formi
an angle of 60° with the normal of neck 1, two at 90°, fo
at 120°, and one neck in the opposite side of neck 1 at 18

The result for the fcc lattice is

GT
( f cc)~p!5G0

( f cc)~p!14G60
( f cc)~p!12G90

( f cc)~p!14G120
( f cc)~p!

1G180
( f cc)~p! ~27!

and

D (op)

5
d2

3u~0!

G60
( f cc)~0!1G90

( f cc)~0!13G120
( f cc)~0!1G180

( f cc)~0!

G0
( f cc)~0!13G60

( f cc)~0!1G90
( f cc)~0!1G120

( f cc)~0!
.

~28!
e
h
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°.

The final stage of our calculation of the diffusion coef
cient in opals is the determination of the particle propagat
inside the sphere,g i j (t), and this is the focus of the nex
section.

V. PROPAGATORS INSIDE THE SPHERES

The propagator inside the sphere,g i j (t), was defined as
the probability of a particle leaving through neckj at timet if
it entered the sphere through necki at t50. We obtain these
propagators by numerical simulation of the walker. A sp
cific behavior of the walker when it hits the surface has to
specified to do the simulation. We found that the final res
is not strongly dependent on the particular scattering at
surface as long as the particles are not absorbed. All
results shown here have been performed assuming tha
walker starts a new random step after hitting the wall.

Since it is experimentally observed that the synthetic o
adopts a closed-packed arrangement of the spheres we
concentrate in the simulation of an fcc arrangement
spheres. In Fig. 1 we show the time dependence of the pr
gators for an opal in which the diameter of the sphered
51.05a and the step length of the walkerl 50.06a. The
propagator for leaving through the same neck of entry,g0(t),
is the only one that does not go to zero fort→0. There are
many events in which the walker spends just a few st
inside the sphere and goes back through the same neck
leave through another neck the walker needs at least a n
ber of steps equal to the ratio between the shortest dista
between these necks and the step length. Of course this
tribution corresponds to events with very low probability
which the walker reaches the other neck in an almost balli
way. All the propagators converge to the same exponen
decay for long times. It is clear that after a long time
wandering inside the sphere, the walker looses all memor
the entry neck.

To calculate the diffusion coefficient we need the Lapla
transform of these functions forp50 that is the integral over
all times, and the functionu also evaluated atp50. From its
definition we see that

u~0!52
dGT~p!

dp U
p50

5E
0

`

tgT~ t !dt. ~29!

Both integrals are very easy to obtain from the numeri
simulation.

FIG. 1. Propagators as a function of time of a random wal
inside an opal structure with diameter of the spheresd 5% larger
than the intercenter spacinga. The mean free pathl 50.06a.
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VI. DIFFUSION COEFFICIENT OF A FACE CENTERED
CUBIC OPAL

We have used the theory described above to evaluate
diffusion coefficient of a fcc opal structure. Figure 2 sho
the result as a function of the step length, for different sph
diameters. From the figure, the linear behavior of the dif
sion coefficient with the step length is clear, at least whe
is shorter than 15% the sphere diameter. The diffusion c
ficient of the bulk material is shown as a reference.

The result that the diffusion coefficient of the opal is
linear function of the mean free path of the carriers is
promising for the opals as thermoelectric materials. This
earity implies that the ratioDel

(op)/Dph
(op) will be approxi-

mately the same as the ratioDel /Dph and no increase of the
thermoelectric figure of merit is to be expected.

The slope depends on the diameter of the spheres
defines an effective speed of the carrier. This dependen
shown in Fig. 3. This figure shows clearly that the diffusi
coefficient goes to zero if the diameter of the spheres
smaller than the distance between the centers. This is
cause we assume a zero conductivity for the intersphere
terial. When the diameter is increased the effective velo
increases approaching that of the bulk material.

VII. SUMMARY AND CONCLUSIONS

We have developed a theory for diffusion of particles
an opal structure. With this theory, we calculate the diffus
coefficient of the opal as a function of the diffusion coef
cient of the constituent material, the size of the spheres,
the necks between them. We apply this theory to some of
most common lattices and provide an explicit expression
the diffusion coefficient in each case.

FIG. 2. Diffusion coefficient as a function of the mean free pa
for different diameters of the spheres. The diffusion coefficien
expressed in units of the velocity of the carriers times the lat
constant. The mean free path used for the plot is an average o
time step. The diffusion coefficient of the bulk materialD5v l /6 is
shown as a reference.
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The experimentally most relevant lattice is the fcc lattic
The application of this theory to a synthetic fcc opal stru
ture shows that the diffusion coefficient is linear with th
mean free path of the carriers. This result holds for mean
paths up to about 15% the diameter of the spheres. The e
of the opal structure is to reduce the effective speed of
carriers. We calculate the dependence of this effective ve
ity with the size of the spheres.

The linear dependence of the diffusion coefficient on
mean free path indicates that the overall reduction for e
trons and phonons will be the same. Assuming that the S
beck coefficient is not affected by the opal structure, we
not expect any increase in the thermoelectric figure of m
of opals compared with the bulk material. A major effect
the opal structure is expected in the case of a mean free
for phonons larger or of the order of the sphere diame
However, this will correspond to a material that is a go
thermal conductor in bulk and the reduction should ov
come this unfavorable starting point.

As a final comment, there is an interesting property of
the expressions obtained for the diffusion coefficient in
different lattices, Eqs.~22!, ~24!, ~26!, and~28!. In all these
cases, adding the numerator and denominatorGT(0) is ob-
tained, i.e., the sum is equal to 1. Even though this relatio
very suggestive we could not find a good explanation for
The theory developed in this work is applicable not only
synthetic opal structures but, can be used to solve the d
sion problem in any periodic structure in which the walk
spends some time inside the unit cell.
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