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Diffusion and transport coefficients in synthetic opals
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Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are
sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures.
The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the
transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The
theory presented is also applicable to the diffusion problem in other periodic structures.

I. NANOSTRUCTURED THERMOELECTRICS tools to evaluate the transport coefficients of one of these
mesoscopic structures: synthetic opals.
A good thermoelectric material has low thermal conduc- Synthetic opals are nanostructured materials composed of
tivity «, high electrical conductivityr, and a high Seebeck close-packed spheres with a uniform radiuthat can range
coefficient, in order to maximize the thermoelectric figure offrom nanometers to micrometers. They are often made with

merit glass spheres, but various techniques can be used to replace
the glass spheres with almost any solid-state material. The
o2 opals are usually sintered so that the points of contact be-

Z= - (1) tween neighboring spheres become small necks. Currents of

electricity or heat can go from sphere to sphere through these
) ] ) necks. Here we calculate the electrical and thermal conduc-
Z has units of inverse absolute temperature and is generallﬁwity of such opal structures. We ask the question: How does
quoted asZT. For more than 40 years, the search for bettefne opal structure reduce the electrical and thermal conduc-
thermoelectrics has not provided a material vith signifi- i 2 Assuming that the Seebeck coefficient will not be
cantly larger than oneZT of about four would make ther-  a¢acted by the opal structure, if the thermal conductivity is
moelectric coolers able to compete with 9as-Compressiofaqyyced much more than the electrical conductivity, the
teclgg:)lr%g)r/{ ears, there has been a large effort to im rov(e)IOaIS could be useful thermoelectric materials.

manyy ’ . _égg P Currently, there is an experimental group at AlliedSignal
the efficiency of thgrmoelectnc materl_ 1§.The search for. orporation preparing and developing these structures to
better thermoelectrics can be classified by the matenal’g . ) .

valuate their potential as thermoelectrics. Our theory pro-

length scale, with research done in the microscopic, meso&

copic, and macroscopic scale. In the microscopic scale, re\4ides a theoretical tool to guide this evaluation and de$yn.

search has been done on chemical composition of candidafd'® theérmal conductivity of nanocomposites with regular
materials and alloys. The macroscopic range involves th&tructure have been studied by Bogomolov and collaborators
design of the thermoelectric devices. So far, most of the efand is reported in a series of publication starting from
fort has been done in these length scales. Only recently, with995°~** The object of these studies has been a,Si@no-

the improvement of different nanofabrication techniques, hasomposite opal with first order voids completely filled with
the search for better thermoelectrics been done in the mesdlaCl. Their results are analyzed with a theory for composite
scopic length scale. This includes the study of superlatticesnaterials developed by Meredith and Tobfasn the basis
quantum dots, and opals. It is interesting to mention an essf the original work of Lord Rayleigh® The theory is based
sential difference between this and the previously mentioneéh the solution of the Laplace equation for a regular array of
length scales. The theoretical tools needed to evaluate trspheres embedded in a different medium. This theory cannot
improvements in the micro- and macrolength scales arbe applied to the case for which the spheres are touching
fairly well established. Both the transport properties of com-each other, which is the focus of our present interest.
pounds and alloys and the macroscopic equations for device In Sec. Il we relate the diffusion coefficient in the opal
modeling are well known. However, this is not the case inwith the transport coefficients that are relevant for a thermo-
the mesoscopic scale. In many possible structures, we ardectric analysis. The diffusion coefficient is evaluated with a
still working on the basic theoretical framework to under- random-walk model as explained in Sec. Il and this model is
stand and plan new designs. A clear example of this is thanalyzed and solved in Secs. IV and V. The results of apply-
discussion of the thermoelectric application of superlattices.ing this model to an fcc opal structure are discussed in Sec.
The purpose of the present work is to develop theoreticaV/I.
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Il. TRANSPORT COEFFICIENTS AND DIFFUSION movement. In this situation the diffusion coefficient is given
Given a bulk material with thermal conductivity and by
electrical conductivityo, we want to estimate the thermal (r(H?
and electrical conductivitiess(°® and o°P, of a synthetic D= IimT, (6)
opal made of spheres of this material. The origin and mag- t—e

nitude of the reduction in the transport coefficients depends N .
on the mean free path of the carridreompared with the where(r ()"} is the mean-square displacement of the par-

diameter of the spheras If | <d, then the effect is due to a ticle andt the totall time of the random walk. This can be
: o . calculated by running a random walker that performs a step
change in the boundary conditions, i.e., the thermal conduc:

tivity of the overall structure can be obtained by solving theOf length | at every time step of lengf. Chandra;eké?
o solved the diffusion problem of a random walker in an ho-
Laplace equation in the opal geometry. |Hd, then the

boundary scattering produced by the sphere surface and thaogeneous media and obtained

necks becomes important. In addition to the geometrical ef- (r)=I12N )
fect, which is also present in this case, there is a reduction of '

the intrinsic conductivities due to the presence of the boundwhereN is the number of steps. By replacing this expression
aries. In order to cover both situations with our model cal-for (r?) in Eq. (6) for the diffusion coefficient, we obtain
culation, we will relate the transport coefficients to the dif-

fusion coefficient of the opal and calculate this diffusion 1

coefficient as a function of the mean free path and the opal D= gv" ®

geometric parameters, which are the diameter of the spheres

d and the distance between its centars wherev is the velocity of the random walker, i.e., the ratio

The lattice thermal conductivity is proportional to the dif- /7.

fusion coefficient for phonons The expression given in Eq7) for the mean-square dis-

placement is only valid in a bulk material. If the carrier
k=CDpp, (2) moves inside the spheres forming the opal structure, then we

have to calculatér?) in a different way in order to use Eq.

where C is the specific heat of the material. Since we are 6) and obtain the diffusion coefficient of the ofa(°P.
mostly interested in semiconductors at room temperature, |(t

is accurate to use Einstein’s relatiérno relate the mobility

to the diffusion coefficient for electrical carriers, IV. DIFFUSION COEFFICIENT IN OPALS

We consider the carriers as classical particles performing

_ % 3) a diffusive motion inside the material that forms the opal.

K kgT'’ The particle will move inside a sphere crossing from time to

, , time the neck to a neighboring sphere. If the length of the
wheree is the electron charge arig is the Boltzmann con-  ;ymps is smaller than the diameter of the spheres, the diffu-
stant. Under these assumptions, neglecting the electronigy, coefficient inside a sphere will be that of the bulk ma-
contribution to the thermal conductivity and using=new,  terjal with a microstructure corresponding to grains of the
the thermoelectric figure of merit can be estimated as size of the spheres. The effective diffusion coefficient of the

opal structure will be determined by the diffusion from

(4) sphere to sphere.

One method to evaluate this diffusion coefficient is the

. . e . numerical simulation of the walker in the opal structure.
proportional to the r_at|0 _between_the diffusion coefficient forHowever, if the diameter of the necks is small, as it is the
electrons and the diffusion coefficient for phonons. case for the experimental situation, the walker will spend
With Egs.(2) and(3) in mind, to estimate the themoelec- 1, of the time wandering inside a sphere and only sporadi-

tric figurg of merit of opals we have to solve the diffusion cally crossing to the next sphere. As a consequence, most of
problem in the opal structure for phonons and electrons. If,o computer time will be lost in a diffusive movement in-

this way, assuming that the Seebeck coefficient is not afgjge the spheres and the diffusion coefficient calculation,
fected by the opal structure, we can estimate the figure Qfhich, is essentially related with this motion from sphere to
merit of the opal as sphere, will become extremely expensive in computer time.
A different method is needed.
ne’s? Dé?p) Here we present such a method. The central idea is to
ksTC plop’ ® integrate out the motion of the carrier inside a sphere while
P focusing attention on the motion from sphere to sphere. The
where the superscripb) identifies quantities related to the diffusion in opals, with this picture in mind, is similar to the
opal structure. diffusion of a particle in a lattice, the lattice made up by the
spheres. The standard theory of diffusion in a lattice is due to
Chudley and Elliot® However, their theory was for a par-
ticle diffusing from site to site without spending any time in
Consider a particle moving with velocity between col- the site. The diffusion in an opal is different and the theory
lisions, each collision randomly changing the direction of themust include the fact that there is a residence time within the

S ne?s? D,
~ kgTC Dpp’

z(op) —

IIl. DIFFUSION COEFFICIENT AND RANDOM WALKS
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spheres. The opals are on a lattice, but the theory must ircuss some properties of the mathik and the propagatorg

clude the diffusion within the spheres. that will be helpful in obtaining a form for the diffusion
Define y;;(t) as the probability per unit time that a par- coefficient in opalD©P),
ticle departs through the nedkat timet if it entered the (i) If there is no absorption, then all of the particles which

sphere through negkatt=0. Definef,(R,,t) as the flux of  enter the sphere eventually must leave it sometime:
particles departing a sphere centeredRatthrough the neck

labeledi at timet. Note that this quantity isot the net flux, _ f“ N — B
which is the number of particles leaving minus the number 1 ; 0 7ii(H) 2 I';(0)-
entering. It is just the number leaving. The number enterin ) o

the sphere through that neck is included as the flux leavingYMmetry shows that this result is independent.df we

the neighboring sphere &,+ & through necki . Here we  define
define the conjugate to nedkasi. It is the label of the

(19

corresponding neck on the neighboring sphere. A rieak FT(p):; Lij(p), (16)
one sphere is connected itmn the neighbor. ) o
The rate equations for particle motion are the identity in Eq.(15) takes the form

I'+(0)=1. (17)

t
fi(R, ,t)=2 fodt’yij(t—t’)fﬂRn—Fﬁj )+ 8,16,6(1).

(i) If k=0 andp=0, then ddtM|=0. If k=0 each row
(9)  of the matrix has the same elements, but in different order.

The first term on the right is the outgoing flux due to all of A5 @ conselquence, :]he eki]gefnvectm hWhiCh has all ele-
the incoming particles at an earlier time. The last term on th&"€Nts equal to one, has the feature that
right is the source term that starts the particle diffusion. The M ho=[1—T+(p)]to. (18)

time integral can be eliminated by a Laplace transform
Therefore atp=0 thenM ¢,=0. The vectory, has an ei-

® o genvalue of zero go=0. Since the determinant is the prod-
Fi(Rn.p)= fo dte”P'fi(R,,b), uct of the eigenvalues, this also means that the determinant
of Mj; is zero in this case.
m (iii) At k=0 de{M| has a factor +I'(p). This is a di-
Fij(p)zf dte*p‘yij(t). (20 rect consequence of the previous property.
0 All of the above results are &=0. For diffusion one
After transforming Eq(9), which describes the particle mo- Wants large values aR,, which means small values @i
tion. it becomes The expansion of the determinant at smalbnd smallk
' =|k| has the general form

Fi(Ry,p)=> Ti(p)Ff(Ry+6,,p)+8,. (1D de{M|=pu(p)U(p)+(ka)*V(p), (19
J

where U(p) and V(p) are polynomials in the propagators
The lattice properties are taken into account by taking a FOUFi'J-(p), a is the nearest-neighbor distance, am)=[1

rier transform —I'1(p)]/p. As a result, the diffusion coefficient of the opal
is given by
Gi(k,p)=2 e'FFi(Ry,p), (12 op_ 82 V(0)
“ “U0) U’ 20

which leads to the final form of the equation of motion . o
whereu(0) is the limit ofu(p) for p—0.

These general results are illustrated for some relevant

Gi(k,p)=2> TiGj(k,p)e *a+1, (13)  common lattices. For each particular lattice, the propagator
J I'; ; depends only on the angle between necésdj and we
where we have useé =— & will use the notatiol”,, where 6 is the angle between the

J
Equation(13) is a matrix equation that is solved for the normals to the neck surfaces.

functionsG;(k,p). However, the diffusion properties are de-
termined by the properties of the matrix A. Linear chain

e . We first present the simple case of the linear chain in

Mij =0 ~Tijexp —ik- 8). 14 Grder to illustrate the method. In this case, each sphere has
The poles ofG; are determined by the zeros of the determi-two necks. We will defind’{?(p)=T14(p) =T 2(p) as the
nant of this matrix. In taking the inverse Laplace transform,Laplace transform of the probability that the walker enters
the time dependence is given by the polesGyf, which  and leaves through the same neck, d?ﬁg(p)zl“lz(p)
again are the zeros of diMij|. The smallest pole is defined =1"54(p) corresponding to the probability of the walkers
as that with the smallest value pf The long time behavior leaving the sphere through the opposite side. In this case the
(diffusion) is determined by the smallest pole. We now dis-matrix M has the form



PRB 62 DIFFUSION AND TRANSPORT COEFFICIENTS IN . .. 2783

o 1—F(1|8C89ika _F(()Ic)e—ika 0.0003 I T ]
M= rgegke 1op(ge-ikal (Y e
The diffusion coefficient for this one-dimensional opal will 00002 - | T gzz‘go .
be < | —-— 0=180°
2 (o) 0.0001 [ | ]
D(OP)za_ @ (22) {
2u(0) 140
%0 100 200 300 400
B. Square lattice t (steps)

In the case of the two-dimensional square lattice we have FIG. 1. Propagators as a function of time of a random walker
three different possibilities, the walker can go back throughinside an opal structure with diameter of the spheteés larger
the same entry neck, can go out through one of the two neckban the intercenter spacirsg The mean free path=0.06a.
that form an angle of 90° degrees with the incoming trajec- _ _ o .
tory, or can leave the sphere through the opposite neck. The The final stage of our calculation of the diffusion coeffi-
first possibility is represented by$9(p), the second by ~cient in opals is the determination of the particle propagators
r&9(p), and the last by $9(p). In this case ;njéginthe spherey;j(t), and this is the focus of the next

rE(p)=rgd(p)+2rGP(p)+ridp), (23

. . _ L V. PROPAGATORS INSIDE THE SPHERES
and the diffusion coefficient is given by

The propagator inside the spherg;(t), was defined as
a? TEI+1reY the probability of a particle leaving through nejcht timet if
=20(0) TG94 1G9 (24) it entered the sphere through necitt=0. We obtain these
90 0 propagators by numerical simulation of the walker. A spe-
cific behavior of the walker when it hits the surface has to be
C. Simple cubic lattice specified to do the simulation. We found that the final result
is not strongly dependent on the particular scattering at the
surface as long as the particles are not absorbed. All the
results shown here have been performed assuming that the
(59 1~y — (59 (s9 (s0) walker starts a new random step after hitting the wall.
FF7 (P =T (p)+4Ts0"(P) + g (). (25 Since it is experimentally observed that the synthetic opal

D(©p)

The simple cubic lattice has four necks at an angle of 90°
and as a consequence

The diffusion coefficient is given by adopts a closed-packed arrangement of the spheres we will
concentrate in the simulation of an fcc arrangement of
a2 IEd+2reo spheres. In Fig. 1 we shoyv the timg dependence of the propa-
(°p)=6 0 59 19" (26) gators for an opal in which the diameter of the sphates
u(0) 2lg0" + 17 =1.0%a and the step length of the walkér=0.06a. The
propagator for leaving through the same neck of enggyt),
D. Face centered cubic lattice is the only one that does not go to zero fer0. There are

The fcc lattice corresponds to the close packing of s heremany events in which the walker spends just a few steps
. por P g orsp Nside the sphere and goes back through the same neck. To
observed experimentally in opals. In the fcc lattice eac

sphere is connected throuah twelve necks to its neare eave through another neck the walker needs at least a num-
nre)i hbors. Assume that we genter the sohere throuah neck 1" of steps equal to the ratio between the shortest distance

9 e P 9 . between these necks and the step length. Of course this con-
In the fcc lattice there are four necks with a normal formmgt

. . ribution corresponds to events with very low probability in
an a”%'e of 60° with th_e normal of _necl_< 1, two at 90°, fourowhich the walker reaches the other neck in an almost ballistic
at 120°, and one neck in the opposite side of neck 1 at 180

- way. All the propagators converge to the same exponential
The result for the fcc lattice is decay for long times. It is clear that after a long time of
wandering inside the sphere, the walker looses all memory of

L{9(p) =T (p) + 4T () + 2T &7 (P) 4T (P) 4o entry neck,

+ (e 2 To calculate the diffusion coefficient we need the Laplace
180" (P) (27) ; . .
transform of these functions far=0 that is the integral over
and all times, and the function also evaluated gi=0. From its
op) definition we see that
Dlop
2 (fcc) (fco) (fco) (fce) u(0)=- dl'+(p) = °°t (t)dt (29

:3u 0) 1(fco) (fco) (fco) (fce) :
(9 T5*9(0)+3T'65%(0) +T'o5%(0) + I'1z5(0) Both integrals are very easy to obtain from the numerical
(28 simulation.
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FIG. 2. Diffusion coefficient as a function of the mean free path  FiG. 3. Effective velocity as a function of the diameter of the
for different diameters of the spheres. The diffusion coefficient isspheres in the opal.

expressed in units of the velocity of the carriers times the lattice
constant. The mean free path used for the plot is an average of the The experimentally most relevant lattice is the fcc lattice.
time step. The diffusion coefficient of the bulk matefia-=v1/6is  The application of this theory to a synthetic fcc opal struc-
shown as a reference. ture shows that the diffusion coefficient is linear with the
mean free path of the carriers. This result holds for mean free
paths up to about 15% the diameter of the spheres. The effect
of the opal structure is to reduce the effective speed of the
We have used the theory described above to evaluate tr@rriers. We calculate the dependence of this effective veloc-
diffusion coefficient of a fcc opal structure. Figure 2 showsity with the size of the spheres.
the result as a function of the step length, for different sphere The linear dependence of the diffusion coefficient on the
diameters. From the figure, the linear behavior of the diffu-mean free path indicates that the overall reduction for elec-
sion coefficient with the step length is clear, at least when itrons and phonons will be the same. Assuming that the See-
is shorter than 15% the sphere diameter. The diffusion coefoeck coefficient is not affected by the opal structure, we do
ficient of the bulk material is shown as a reference. not expect any increase in the thermoelectric figure of merit
The result that the diffusion coefficient of the opal is aof opals compared with the bulk material. A major effect of
linear function of the mean free path of the carriers is nothe opal structure is expected in the case of a mean free path
promising for the opals as thermoelectric materials. This linfor phonons larger or of the order of the sphere diameter.

VI. DIFFUSION COEFFICIENT OF A FACE CENTERED
CUBIC OPAL

earity implies that the ratidi)f;l’p)/DE)%p) will be approxi- However, this will correspond to a material that is a good
mately the same as the raii, /D, and no increase of the thermal _conductor in bulk _and the reduction should over-
thermoelectric figure of merit is to be expected. come this unfavorable starting point.

The slope depends on the diameter of the spheres and AS a final comment, there is an interesting property of all
defines an effective speed of the carrier. This dependence {8€ expressions obtained for the diffusion coefficient in the
shown in Fig. 3. This figure shows clearly that the diffusion different lattices, Eqs(22), (24), (26), and(28). In all these
coefficient goes to zero if the diameter of the spheres i§ases, adding the numerator and denominBtg0) is ob-
smaller than the distance between the centers. This is béained, i.e., the sum is equal to 1. Even though this relation is
cause we assume a zero conductivity for the intersphere m¥€ry suggestive we could not find a good explanation for it.
terial. When the diameter is increased the effective velocitylhe theory developed in this work is applicable not only to

increases approaching that of the bulk material. SynthetiC Opal structures but, can be used to solve the diffu-
sion problem in any periodic structure in which the walker
VII. SUMMARY AND CONCLUSIONS spends some time inside the unit cell.
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