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Scattering of elastic waves by periodic arrays of spherical bodies
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We develop a formalism for the calculation of the frequency band structure of a phononic crystal consisting
of nonoverlapping elastic spheres, characterized by Lame´ coefficients which may be complex and frequency
dependent, arranged periodically in a host medium with different mass density and Lame´ coefficients. We view
the crystal as a sequence of planes of spheres, parallel to and having the two-dimensional periodicity of a given
crystallographic plane, and obtain the complex band structure of the infinite crystal associated with this plane.
The method allows one to calculate, also, the transmission, reflection, and absorption coefficients for an elastic
wave ~longitudinal or transverse! incident, at any angle, on a slab of the crystal of finite thickness. We
demonstrate the efficiency of the method by applying it to a specific example.
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I. INTRODUCTION

The elastic properties of a locally homogeneous and
tropic composite material are characterized by a mass de
r and Lame´ coefficientsl andm which vary in space.1 The
composite materials we shall be concerned with in this p
per consist of homogeneous particles~solid or fluid inclu-
sions the dimensions of which must be large enough in o
for a macroscopic description of their elastic properties to
valid! distributed periodically in a host medium characte
ized by different mass density and Lame´ coefficients. We
assume, throughout this paper, that the particles do not o
lap with each other~cermet topology2!. The alternative case
when the particles connect with each other to form a c
tinuous network is also interesting but will not concern
here. When identical particles are distributed periodically
a host medium, the composite material may be referred t
a phononic crystal. In this case the mass density and
Lamécoefficients vary periodically in space:

r~r1Rn!5r~r !, m~r1Rn!5m~r !, l~r1Rn!5l~r !,

~1.1!
where$Rn% denotes a Bravais lattice.

In recent years there has been a growing interest in
study of phononic crystals which is inspired to a large deg
by corresponding work in photonic crystals.3,4 These are
composite materials with a dielectric function which vari
periodically in space. A typical example: identical particle
large enough to be describable by a macroscopic diele
function, are arranged periodically in a host material with
different dielectric function. Photonic crystals have many
teresting properties both in relation to basic physics and te
nological applications. In particular, the existence of abso
frequency gaps~photonic gaps! in certain such crystals, i.e
regions of frequency over which electromagnetic~EM!
waves can not exist within the crystal, has attracted a lo
attention, mainly because of promising applications in op
electronics, as pointed out initially by Yablonovich.5 In prin-
ciple, one can design a perfect mirror, nonabsorbing ove
PRB 620163-1829/2000/62~1!/278~14!/$15.00
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selected region of frequency~corresponding to a photoni
gap!, a nonabsorbing resonance cavity, etc.6 A number of
theoretical calculations predict the existence of such gaps
appropriately designed photonic crystals, but so far o
crystals which exhibit gaps up to the infrared region ha
been constructed.7 However, progress to higher frequenci
is expected in the near future. In relation to basic phys
photonic crystals are interesting in a number of ways.8 For
example, they can be the starting point in a process
gradual introduction of disorder and a study of consequ
phenomena, including Anderson localization.9

Now, phononic crystals have properties which mirr
those of photonic crystals and corresponding applicati
too.10–19 With an appropriate choice of the parameters
volved one may obtain phononic crystals with absolute f
quency gaps~phononic gaps! in selected regions of fre
quency. An elastic wave, whose frequency lies within
absolute gap of a phononic crystal, will be completely
flected by it; from which follows the possibility of construc
ing nonabsorbing mirrors of elastic waves and vibration-f
cavities which might be very useful in high-precision m
chanical systems operating in a given frequency range. A
in relation to basic physics, one can use elastic waves
study phenomena such as those associated with disorder20 in
more or less the same manner as with EM waves.

There are, however, some essential differences betw
EM and elastic waves and this means that the normal mo
of the elastic field in a phononic crystal are in some wa
quite different from those of the EM field in a photonic cry
tal. In a homogeneous isotropic medium the elastic wa
can, in general, be purely longitudinal@in which case the
displacement vectoru(r ) satisfies the condition¹3u50# or
purely transverse~in which case¹•u50). In a phononic
crystal this is no longer the case and a normal mode usu
has a longitudinal and a transverse component. One exp
that because of this coupling between longitudinal and tra
verse waves, it will be more difficult to obtain absolute fr
quency gaps in a phononic crystal. We recall that the nor
modes of the EM field in a photonic crystal are exclusive
278 ©2000 The American Physical Society
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transverse. On the other hand there are, in general, m
parameters relevant to the determination of phononic g
than there are in the determination of photonic gaps. In
case of a binary system~consisting of material 2 distribute
in material 1! we have for photonic crystals two independe
parameters: the ratio of the dielectric functions of the t
materialse2 /e1; and the fractional volume occupied by m
terial 2, to be denoted byf. For phononic crystals there ar
five independent parameters:m2 /m1 , l2 /l1 , r2 /r1 ,
m2 /l1 and f; where r j , l j , m j denote the mass density
and the Lame´ coefficients of materialj 51,2.

We have, so far, implicitly assumed that the Lame´ coef-
ficients describing the constituent materials of the phono
crystals are all different from zero, real quantities, and c
stant~independent of the frequency!. But this is not always
the case. The phononic crystal may consist, for example
solid particles~material 2! arranged periodically~at least ap-
proximately! in a liquid ~material 1!. If the liquid is a normal
fluid, like water,m150 and the transverse sound in the li
uid is suppressed. This, however, is not the case for a visc
fluid. The role of shear viscosity in phononic crystals h
been pointed out by Sprik and Wegdam.13 Shear viscosity is
equally important in phononic crystals consisting of liqu
particles in a solid host background~liquid-containing po-
rous solids21–24!. Colloidal suspensions of solid spheres in
liquid, also, have interesting acoustic properties.25 Finally, it
may be of some interest to consider composite materials
sisting of two liquids~e.g., drops of oil in water! although in
this case a periodic arrangement of the drops can only
rough approximation to the real system. It appears t
acoustic gaps are easily obtained in three-dimensional~3D!
fluid-fluid composites, whenm15m250.11

The few calculations published so far relating to 3
phononic crystals deal, almost exclusively, with the f
quency band structure of these crystals, which is obtained
a plane-wave expansion of the displacement field.10–13 On
the other hand, a lot of theoretical and experimental work
been done on systems with two-dimensional~2D! periodic-
ity, with translational invariance along the third dimensio
A typical example of such systems consists of a set of lo
identical cylinders parallel to thez direction, crossing thexy
plane at the sites of a 2D lattice. By considering wav
propagating normal to the cylinders, the problem is redu
to two dimensions.14–19 The above investigations hav
shown that phononic gaps are possible in both 2D and
systems.

Although knowing the frequency band structure of
phononic crystal is very useful, more is required for a f
interpretation and analysis of the experimental data. In
experiment one usually measures the reflection and/or tr
mission coefficients of an acoustic/elastic wave incident o
slab of the phononic crystal, and consequently theory sho
be able to provide reliable estimates of these, the experim
tally measured quantities, as well. The so-called on-s
methods developed in relation to photonic crystals can
exactly that, besides an accurate evaluation of the freque
band structure.26–28 In these methods one determines for
given frequencyv and a given reduced wave vector,ki ,
parallel to a given crystallographic plane of the crystal,
Bloch-wave solutions of the elastic field of the infinite cry
tal; these consist of propagating and evanescent waves.
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propagating waves constitute the normal modes of the i
nite phononic crystal. The evanescent waves do not repre
real waves, they are mathematical entities which enter
rectly or indirectly~depending on the method of calculatio!
into the evaluation of the reflection and transmission coe
cients of a wave, with givenv andki , incident on a slab of
the crystal parallel to the given crystallographic plane. O
shell methods have certain advantages over the plane-w
method, even if one is only interested in the frequency ba
structure and the corresponding normal modes of vibra
of the infinite phononic crystal. In an on-shell method o
can easily allow the Lame´ coefficients of any of the constitu
ent materials of the crystal to depend on the frequency, a
necessary in some cases, without any difficulty, which is
the case with the plane-wave method. And, as a rule, on-s
methods are computationally more efficient.26,29

The on-shell method we describe in the present pape
analogous to that which some of us have developed for p
tonic crystals.27 It applies to systems which consist of no
overlapping spherical particles arranged periodically in
host medium characterized by different mass density
Lamé coefficients. Sections II to VI are devoted to the d
velopment of the formalism.30 In Sec. VII we demonstrate
the applicability of the method on a specific system: an
crystal of silica spheres in ice. Finally the last section co
cludes this article.

II. MULTIPOLE EXPANSION OF THE ELASTIC FIELD

The displacement vectorU(r ,t), in a homogeneous elas
tic medium of mass densityr and Lame´ coefficientsl, m,
satisfies the equation1

~l12m!¹~¹•U!2m¹3~¹3U!2r] t
2U50. ~2.1!

In the case of a harmonic elastic wave of angular freque
v, we have

U~r ,t !5Re@u~r !exp~2 i vt !#, ~2.2!

and Eq. ~2.1! reduces to the following time-independe
form:

~l12m!¹~¹•u!2m¹3~¹3u!1rv2u50. ~2.3!

We note that for ordinary elastic media the Lame´ coefficients
are real numbers. Media where loss is possible, assuming
time dependence given in Eq.~2.2!, are described by com
plex Lamécoefficients:31

l5le2 ivlv , m5me2 ivmv . ~2.4!

The most general solution of Eq.~2.3! consists of two
elastic waves which propagate independently. These ar
longitudinal~irrotational! wave, which satisfies the equation

¹2u1ql
2u50, ¹3u50, ~2.5!

where ql5v/cl , cl5A(l12m)/r being the speed o
propagation of this wave; and a transverse~divergenceless!
wave, which satisfies the equations

¹2u1qt
2u50, ¹•u50, ~2.6!
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whereqt5v/ct , ct5Am/r being the speed of propagatio
of this wave.

In the present paper we shall use, besides the more fa
iar solutions of Eqs.~2.5! and~2.6! representing longitudina
and transverse plane elastic waves@see Eq.~3.1! below#, the
so-called spherical-wave solutions of these equations
complete set of spherical-wave solutions of Eq.~2.5!, known
as irrotational vector wave functions, is given by32

ulm
L ~r !5

1

ql
¹@ f l~qlr !Yl

m~ r̂ !#, ~2.7a!

where f l may be any linear combination of the spheric
Bessel function, j l , and the spherical Hankel function
hl

1 . Yl
m( r̂ ) are the usual spherical harmonics, withr̂ denot-

ing the angular variables (u,f) of r in a system of spherica
coordinates.

A complete set of spherical-wave solutions of Eq.~2.6! is
given by32

ulm
M ~r !5 f l~qtr !X lm~ r̂ ! ~2.7b!

and

ulm
N ~r !5

i

qt
¹3 f l~qtr !X lm~ r̂ !, ~2.7c!

which are also known as solenoidal vector wave functio
The vector spherical harmonics, denoted byX lm( r̂ ), are de-
fined by

Al ~ l 11!X lm~ r̂ !5LYl
m~ r̂ ![2 i r3¹Yl

m~ r̂ !. ~2.8a!

By definition X00( r̂ )50; for l>1 we have

Al ~ l 11!X lm~ r̂ !5@a l
2mcosueifYl

m21~ r̂ !2m sinuYl
m~ r̂ !

1a l
mcosue2 ifYl

m11~ r̂ !#êu

1 i @a l
2meifYl

m21~ r̂ !

2a l
me2 ifYl

m11~ r̂ !#êf , ~2.8b!

where

a l
m5

1

2
@~ l 2m!~ l 1m11!#1/2, ~2.8c!

and êu , êf , are the usual polar and azimuthal unit vecto
respectively, in the chosen system of spherical coordina
il-

A

l

s.

,
s.

The most general displacement field can be written a
linear sum of the spherical waves given by Eqs.~2.7a!–
~2.7c!, as follows:

u~r !5(
lm

H alm
M f l~qtr !X lm~ r̂ !1alm

N i

qt
¹3 f l~qtr !X lm~ r̂ !

1alm
L 1

ql
¹@ f l~qlr !Yl

m~ r̂ !#J , ~2.9!

wherealm
P , P5M ,N,L, are coefficients to be determined

III. SCATTERING OF A PLANE WAVE BY A SPHERE

A plane elastic wave, of wave vectorq, propagating in a
homogeneous elastic medium has the form

uin~r !5u0~q!exp~ iq•r !, ~3.1!

with u0(q)5u0(q)ê, whereu0 denotes the magnitude andê,
a unit vector, the polarization of the displacement field.
the case of a longitudinal plane wave we can writeq5ql êq

and ê5êq . Since the plane wave is finite everywhere,
multipole expansion into spherical waves, according to
~2.7a!, involves only the radial functionsj l(qlr ); we have

uin~r !5(
lm

alm
0L 1

ql
¹@ j l~qlr !Yl

m~ r̂ !#. ~3.2!

One can easily show that the coefficientsalm
0L are given by

alm
0L5A lm

0L~ q̂!•u0~q!, ~3.3!

where

A lm
0L~ q̂!54p i l 11~21!m11Yl

2m~ q̂!êq . ~3.4!

In the case of a transverse plane wave we haveq5qtêq and
ê'êq . Such a wave can be written as a linear sum of
spherical waves given by Eqs.~2.7b! and ~2.7c!, and again
involves only the radial functionsj l(qtr ); we have

uin~r !5(
lm

H alm
0M j l~qtr !X lm~ r̂ !1alm

0N i

qt
¹3 j l~qtr !X lm~ r̂ !J .

~3.5!

The coefficientsalm
0P , with P5M ,N, can be written as

alm
0P5A lm

0P~ q̂!•u0~q!, ~3.6!

where
A lm
0M~ q̂!5

4p i l~21!m11

Al ~ l 11!
$@a l

mcosueifYl
2m21~ q̂!1m sinuYl

2m~ q̂!1a l
2mcosue2 ifYl

2m11~ q̂!#êu

1 i @a l
meifYl

2m21~ q̂!2a l
2me2 ifYl

2m11~ q̂!#êf%, ~3.7!

and
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A lm
0N~ q̂!5

4p i l~21!m11

Al ~ l 11!
$ i @a l

meifYl
2m21~ q̂!2a l

2me2 ifYl
2m11~ q̂!#êu2@a l

mcosueifYl
2m21~ q̂!

1m sinuYl
2m~ q̂!1a l

2mcosue2 ifYl
2m11~ q̂!#êf%, ~3.8!

whereu andf denote the angular variables ofq in the chosen system of spherical coordinates.
We now consider a sphere of radiusS, centered at the origin of coordinates. We assume that the sphere, which

uniform mass densityrs , is embedded in a homogeneous medium of mass densityr; the wave numbers of the elastic wav
in the sphere (qsn) and in the host medium (qn), wheren5 l or t, are also different. When a plane wave is incident on
sphere, it is scattered by it, so that the wave field outside the sphere consists of the incident wave and a scattered w
the scattered wave is outgoing at infinity, its expansion in spherical waves is given by Eq.~2.9! with f l5hl

1 , which has the
asymptotic form appropriate to an outgoing spherical wave:hl

1(qr)'(2 i ) lexp(iqr)/iqr as r→`. We have

usc~r !5(
lm

H alm
1Mhl

1~qtr !X lm~ r̂ !1alm
1N i

qt
¹3hl

1~qtr !X lm~ r̂ !1alm
1L 1

ql
¹@hl

1~qlr !Yl
m~ r̂ !#J . ~3.9!

The wave field inside the sphere is given by Eq.~2.9! with f l5 j l , since it must be finite at the origin; we have

uI~r !5(
lm

H alm
IM j l~qstr !X lm~ r̂ !1alm

IN i

qst
¹3 j l~qstr !X lm~ r̂ !1alm

IL 1

qsl
¹@ j l~qslr !Yl

m~ r̂ !#J . ~3.10!
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The coefficientsalm
1P , alm

IP , P5M ,N,L, in Eqs. ~3.9! and
~3.10! are determined by the requirement of continuity of t
displacement vector,u(r ), and of the surface traction,t(r )
[s̄(r )• r̂ , at the surface of the sphere;s̄(r ) denotes the
stress tensor. The components of the surface traction
given by ~see, e.g., Ref. 1!

t r5l¹•u12m] rur , ~3.11a!

tu5mF1

r
]uur1] ruu2

uu

r G , ~3.11b!

tf5mF 1

r sinu
]fur1] ruf2

uf

r G . ~3.11c!

The continuity ofur , uu , uf , t r , tu , tf at the surface
of the sphere allows us to determine uniquely the coefficie
alm

1P (P5M ,N,L) of the scattered wave, given by Eq.~3.9!,
and the coefficientsalm

IP of the wave inside the sphere, give
by Eq. ~3.10!, in terms of the known coefficientsalm

0P of the
incident wave, given by Eqs.~3.2! or ~3.5!. After some
lengthy but straightforward algebra one obtains~see, e.g.,
Ref. 31!

alm
1P5 (

P8 l 8m8
Tlm; l 8m8

PP8 al 8m8
0P8 . ~3.12!

Explicit expressions for the nonzero elements of theT matrix
in the case of a solid scatterer in a solid host are given
Appendix A. Similar expressions for the cases involving
liquid scatterer or host can be found in Ref. 31.

IV. SCATTERING BY A PLANE OF SPHERES

We consider a plane of spheres atz50: an array of
spheres centered on the sites of a 2D lattice specified b

Rn5n1a11n2a2 , ~4.1!
re

ts

in

wherea1 and a2 are primitive vectors in thexy plane and
n1 ,n250,61,62,63, . . . .

The corresponding 2D reciprocal lattice is obtained in
usual manner33,34 as follows:

g5m1b11m2b2 , ~4.2!

wherem1 ,m250,61,62,63, . . . andb1 ,b2 are defined by

bi•aj52pd i j . ~4.3!

We now assume that a plane wave~it can be longitudinal
or transverse! is incident on the plane of spheres. We wri
the displacement vectoruin(r ) corresponding to it as follows

uin
s8~r !5(

i 8
@uin#g8 i 8

s8 exp~ iKg8n8
s8

•r !êi 8 , ~4.4!

where s851(2) corresponds to a wave incident on th
plane of spheres from the left~right!; n8 specifies the polar-
ization of the incident wave:qn85ql5v/cl for a longitudi-
nal wave andqn85qt5v/ct for a transverse wave;

Kg8n8
6 [ki1g86@qn8

2
2~ki1g8!2#1/2êz , ~4.5!

where êz is the unit vector along thez axis, and we have
written the component of the incident wave vector paralle
the plane of spheres as the sum of a reduced wave vectoki ,
which lies in the surface Brillouin zone~SBZ! of the given
lattice, and an appropriate reciprocal-lattice vectorg8. This is
always possible and it facilitates the subsequent calculat
For n85 l , i 851 denotes the only nonzero component
the displacement vector,ê1 being the radial unit vector along

the direction ofKg8 l
s8 . For n85t, i 852,3 denote the only

nonzero components of the displacement vector;ê2 ,ê3 being
the polar and azimuthal unit vectors, respectively, which

perpendicular toKg8t
s8 . In the same manner@as in Eq.~4.5!#

we define, for givenki , v, a wave vectorKgn
s and the cor-
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respondingêi for any g and anyn. We remember that thei
51 component of the displacement vector is always ass
ated with a longitudinal plane wave (n5 l ), and that thei
52,3 components of the displacement vector are always
sociated with a transverse plane wave (n5t), so that the
character~longitudinal or transverse! of a given plane wave
is automatically determined by the non-vanishing com
nents of the displacement vector associated with it, and n
not be stated explicitly in every case. When (ki1g)2.qn

2 the
corresponding wave decays to the right fors51, and to the
left for s52; and the corresponding unit vectorsêi become
complex. Indeed, the unit vectorsêi are defined in a Carte
sian system of coordinates as follows:

ê15êxsinu cosf1êysinu sinf1êzcosu, ~4.6a!

whereu andf denote the angular variables ofKgl
s , and

ê25êxcosu cosf1êycosu sinf2êzsinu, ~4.6b!

ê352êxsinf1êycosf, ~4.6c!

whereu andf here denote the angular variables ofKgt
s . We

note that thez component ofKgn
s ~denoted byKgnz

s ) is real if
(ki1g)2,qn

2 and imaginary if (ki1g)2.qn
2 . In the latter

case, cosuKgn
s in Eqs. ~4.6a! and ~4.6b! is replaced by

Kgnz
s /qn and sinuKgn

s by uki1gu/qn , so thatê1 andê2 become

complex.
Because of the 2D periodicity of the structure under c

sideration, the wave scattered from it, when the wave gi
by Eq. ~4.4! is incident upon it, has the form

usc~r !5(
lm

H blm
1M(

Rn

exp~ iki•Rn!hl
1~qtr n!X lm~ r̂n!

1blm
1N i

qt
¹3(

Rn

exp~ iki•Rn!hl
1~qtr n!X lm~ r̂n!

1blm
1L 1

ql
¹(

Rn

exp~ iki•Rn!hl
1~qlr n!Yl

m~ r̂n!J ,

~4.7!

where rn5r2Rn . We note that exp@i(ki1g)•Rn#
5exp(iki•Rn) because of Eq.~4.3!. Equation~4.7! tells us
that the scattered wave is a sum of outgoing spherical wa
centered on the spheres of the plane, and that the wave
tered from the sphere atRn differs from that scattered from
the sphere at the origin (Rn50) only by the phase facto
exp(iki•Rn). We note the presence in the scattered wavefi
of both longitudinal and transverse waves even when
incident wave is purely longitudinal or purely transverse.

The coefficientsblm
1P which determine the scattered wav

from the sphere at the origin are determined from thetotal
incident wave on that sphere, which consists of the incid
plane wave and the sum of the waves scattered from all
other spheres in the plane. The latter, denoted byusc8 (r ), is
obtained fromusc(r ) by the removal of the term correspon
ing to Rn50 in Eq. ~4.7!. usc8 (r ) can be expanded into spher
cal waves about the origin as follows:
i-

s-

-
ed

-
n

es
at-

ld
e

nt
e

usc8 ~r !5(
lm

H blm8
M j l~qtr !X lm~ r̂ !1blm8

N i

qt
¹3 j l~qtr !X lm~ r̂ !

1blm8
L 1

ql
¹@ j l~qlr !Yl

m~ r̂ !#J . ~4.8!

It can be shown~see Appendix B! that

blm8
P5 (

P8 l 8m8
V lm; l 8m8

PP8 bl 8m8
1P8 . ~4.9!

It is worth noting that the matrix elements ofV depend on
the geometry~4.1! of the plane and, throughqn , on the
frequency, the mass density and the Lame´ coefficients of the
medium surrounding the spheres of the plane; they dep
also on the reduced wave vectorki of the incident wave; but
they do not depend on the scattering properties of the in
vidual sphere.

The coefficientsblm
1P , which describe the scattered wav

from the sphere at the origin of the coordinates, are given

blm
1P5 (

P8 l 8m8
Tlm; l 8m8

PP8 ~al 8m8
0P8 1bl 8m8

8P8 !. ~4.10!

The coefficients on the right-hand side of Eq.~4.10! describe
the total wave incident on the sphere at the origin of coor
nates;alm

0P derive from the incident plane wave given by E

~4.4! via Eqs.~3.3! and~3.6!, andblm
8P from the field defined

by Eq. ~4.8!. Combining Eqs.~4.9! and ~4.10!, we obtain

(
P8 l 8m8

FdPP8d l l 8dmm82 (
P9 l 9m9

Tlm; l 9m9
PP9 V l 9m9; l 8m8

P9P8 Gbl 8m8
1P8

5 (
P8 l 8m8

Tlm; l 8m8
PP8 al 8m8

0P8 . ~4.11!

Equation~4.11! determines the coefficientsblm
1P of the wave

scattered from the plane of spheres, given by Eq.~4.7!, in
terms of the coefficientsalm

0P of the incident wave. According
to Eqs.~3.3! and ~3.6!, we write the coefficientsalm

0P of the
incident plane wave, defined by Eq.~4.4!, in the form

alm
0P5(

i 8
Alm; i 8

0P
~K̂ g8n8

s8 !@uin#g8 i 8
s8 , ~4.12!

whereA lm
0P are given by Eqs.~3.4!, ~3.7!, and ~3.8!. Due to

the linearity of Eqs.~4.11!, the coefficients blm
1P can be writ-

ten as follows:

blm
1P5(

i 8
Blm; i 8

1P
~Kg8n8

s8 !@uin#g8 i 8
s8 , ~4.13!

so that the system of Eqs.~4.11! reduces to
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(
P8 l 8m8

FdPP8d l l 8dmm82 (
P9 l 9m9

Tlm; l 9m9
PP9 V l 9m9; l 8m8

P9P8 G
3Bl 8m8; i 8

1P8 ~Kg8n8
s8 !5 (

P8 l 8m8
Tlm; l 8m8

PP8 Al 8m8; i 8
0P8 ~K̂ g8n8

s8 !.

~4.14!

We remember thati 8, s8, andg8 are parameter values cha
acterizing the incident wave~we remember also thatn8 is
determined byi 8: n85 l for i 851 andn85t for i 852,3).
Equations~4.14! @or, equivalently, Eqs.~4.11!# constitute a
system of infinitely many linear equations. It is solved
introducing an angular momentum cutoff,l max, truncating all
angular momentum expansions tol max, thus reducing the
dimension of the system to 3l max

2 16lmax11. Moreover, by

using the properties of the matrix elementsV lm; l 8m8
PP8 given by

Eqs.~B11! of Appendix B, this system can be reduced to tw
independent systems of (3l max

2 15lmax)/2 and (3l max
2 17lmax

12)/2 linear equations, respectively.
Finally, the scattered wave given by Eq.~4.7! can be ex-

pressed as a sum of plane waves using the following iden
e

s,
y:

(
Rn

exp~ iki•Rn!hl
1~qnr n!Yl

m~ r̂n!

5(
g

2p~2 i ! l

qnA0Kgnz
1

Yl
m~K̂ gn

6 !exp~ iKgn
6
•r !,

~4.15!

whereA0 denotes the area of the unit cell of the lattice giv
by Eq. ~4.1!. The plus~minus! sign onKgn must be used for
z.0 (z,0). We note thatKgnz

6 can be real or imaginary. In

the latter case cosuKgn
6 in the standard formulas forYl

m(K̂ gn
6 )

is replaced byKgnz
6 /qn @see text following Eq.~4.6c!#.

Using Eq.~4.15! we can expand the scattered wave into
series of longitudinal and transverse plane waves, as follo

usc
s ~r !5(

g
(
Plm

blm
1PDlm

P ~Kgn
s !exp~ iKgn

s
•r !, ~4.16!

where
Dlm
L ~Kgl

s !5
2p~2 i ! l 21

qlA0Kglz
1

Yl
m~K̂ gl

s !ê1 , ~4.17a!

Dlm
M ~Kgt

s !5
2p~2 i ! l

qtA0Kgtz
1 Al ~ l 11!

$@a l
2mcosueifYl

m21~K̂ gt
s !2m sinuYl

m~K̂ gt
s !1a l

mcosue2 ifYl
m11~K̂ gt

s !#ê2

1 i @a l
2meifYl

m21~K̂ gt
s !2a l

me2 ifYl
m11~K̂ gt

s !#ê3%, ~4.17b!

Dlm
N ~Kgt

s !5
2p~2 i ! l

qtA0Kgtz
1 Al ~ l 11!

$ i @a l
2meifYl

m21~K̂ gt
s !2a l

me2 ifYl
m11~K̂ gt

s !#ê22@a l
2mcosueifYl

m21~K̂ gt
s !2m sinuYl

m~K̂ gt
s !

1a l
mcosue2 ifYl

m11~K̂ gt
s !#ê3%, ~4.17c!
um-

r
ffi-

he
ted
with u andf denoting the angular variables ofKgt
s . Substi-

tuting blm
1P from Eq. ~4.13! into Eq. ~4.16! we obtain

usc
s ~r !5(

gi
@usc#gi

s exp~ iKgn
s
•r !êi , ~4.18!

with

@usc#gi
s 5(

i 8
(
Plm

D lm; i
P ~Kgn

s !Blm; i 8
1P

~Kg8n8
s8 !@uin#g8 i 8

s8 ,

~4.19!

where the superscripts51(2) holds forz.0 (z,0). We
note that theKgn

s in Eq. ~4.18! have the same frequencyv
~the same wave numberqn) and the same reduced wav
vector ki as the incident wave. We remember that fori

51, n5 l and, for a giveng, ê1 is the radial unit vector
along the direction ofKgl

s . Similarly, for i 52,3, n5t and,

for given g, ê2 ,ê3 are the polar and azimuthal unit vector
respectively, which are orthogonal toKgt
s . Equation~4.18!

tells us that the scattered wave consists, in general, of a n
ber of diffracted beams, of the samev andki , correspond-
ing to differentg vectors and polarization modes~longitudi-
nal or transverse!. We note, however, that only beams fo
which Kgnz

s is real constitute propagating waves. The coe
cients in Eq.~4.18!, given by Eq.~4.19!, are functions of the

Blm; i 8
1P (Kg8n8

s8 ) coefficients and through them depend on t
incident plane wave. These coefficients are to be evalua
for an incident longitudinal (i 851) or transverse (i 852,3)

plane wave, with a wave vectorKg8n8
s8 given by Eq.~4.5!,

incident from the left (s851) or from the right (s852),
with a displacement vector along thei 8th direction of mag-

nitude equal to unity. In other words,Blm; i 8
1P (Kg8n8

s8 ) are cal-

culated from Eq.~4.14!, substitutingAlm; i 8
0P (K̂ g8n8

s8 ), given by
Eqs. ~3.4!, ~3.7!, and ~3.8!, on the right-hand side of this
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equation. Obviously, wheni 851, only the coefficients

Alm; i 8
0L (K̂ g8 l

s8 ) are nonzero, and wheni 852,3 only

Alm; i 8
0M (K̂ g8t

s8 ) andAlm; i 8
0N (K̂ g8t

s8 ) are nonzero.
Let us for the sake of clarity assume that a plane w

given by Eq.~4.4! is incident on the plane of spheres fro
the left as in Fig. 1~a!. Then the transmitted wave~incident
1scattered! on the right of the plane of spheres can be w
ten as

utr
1~r !5(

gi
@utr#gi

1exp~ iKgn
1
•r !êi , z.0, ~4.20!

with

@utr#gi
15@uin#g8 i

1 dgg81@usc#gi
15(

i 8
Mgi ;g8 i 8

11
@uin#g8 i 8

1

~4.21!

and the reflected wave as

urf
2~r !5(

gi
@urf#gi

2exp~ iKgn
2
•r !êi , z,0, ~4.22!

with

@urf#gi
25@usc#gi

25(
i 8

Mgi ;g8 i 8
21

@uin#g8 i 8
1 . ~4.23!

Equations~4.19!, ~4.21! and ~4.23! define the transmission
(M 11) and reflection (M 21) matrix elements for a plane
wave incident on the plane of spheres from the left. Sim
larly, we can define the transmission matrix eleme
Mgi ;g8 i 8

22 and the reflection matrix elementsMgi ;g8 i 8
12 for a

plane wave incident on the plane of spheres from the r
@see Fig. 1~b!#. We obtain

Mgi ;g8 i 8
ss8 5dss8dgg8d i i 81(

Plm
D lm; i

P ~Kgn
s !Blm; i 8

1P
~Kg8n8

s8 !.

~4.24!

One can show that the above matrix elements obey the
lowing symmetry relations:

Mgi ;g8 i 8
2s2s85~21! i 1 i 8Mgi ;g8 i 8

ss8 . ~4.25!

FIG. 1. Scattering of a plane elastic wave by a plane of sphe
~a! the wave is incident from the left;~b! the wave is incident from
the right.
e
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V. SCATTERING BY A SLAB

In what follows we need to evaluate the scattering pro
erties of a slab which by definition consists of a number
layers~planes of spheres!. For this purpose it is convenient t
express the plane waves on the left of a given plane
spheres with respect to an origin,A l , on the left of the plane
at 2dl from its center, and the plane waves on the right
this plane with respect to an origin,Ar , on the right of the
plane atdr from its center, i.e., a wave on the left of th
plane will be written as(giugi

s exp@iKgn
s
•(r2A l)#êi and a

wave on the right of the plane will be written a
(giugi

s exp@iKgn
s
•(r2Ar)#êi . The relationships between th

amplitudes of the incident and of the reflected and transm
ted waves, when these are expressed with respect to
above origins, follow directly from the corresponding equ
tions of Sec. IV. Accordingly, the amplitudes of these wav
are related through theQ-matrix elements given below:

Qgi ;g8 i 8
I

5Mgi ;g8 i 8
11 exp@ i ~Kgn

1
•dr1Kg8n8

1
•dl !#,

Qgi ;g8 i 8
II

5Mgi ;g8 i 8
12 exp@ i ~Kgn

1
•dr2Kg8n8

2
•dr !#,

Qgi ;g8 i 8
III

5Mgi ;g8 i 8
21 exp@2 i ~Kgn

2
•dl2Kg8n8

1
•dl !#,

Qgi ;g8 i 8
IV

5Mgi ;g8 i 8
22 exp@2 i ~Kgn

2
•dl1Kg8n8

2
•dr !#, ~5.1!

whose physical meaning is made obvious by their one-to-
correspondence with theM -matrix elements of Sec. IV
From this point on, we shall write the above matrices
compact form asQI, QII , QIII andQIV.

We obtain the transmission and reflection matrices fo
pair of two successive layers,N andN11, to be denoted by
Q(N,N11), by combining the matricesQ(N) and Q(N
11) of the two layers, as shown schematically in Fig. 2. O
can easily show that

QI~N,N11!5QI~N11!@ I2QII~N!QIII ~N11!#21QI~N!,

QII~N,N11!5QII~N11!1QI~N11!QII~N!

3@ I2QIII ~N11!QII~N!#21QIV~N11!,

QIII ~N,N11!5QIII ~N!1QIV~N!QIII ~N11!

3@ I2QII~N!QIII ~N11!#21QI~N!,

s: FIG. 2. TheQ matrices for two successive layers are obtain
from those of the individual layers.
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QIV~N,N11!5QIV~N!@ I2QIII ~N11!

3QII~N!#21QIV~N11!. ~5.2!

For example, knowing that

@ I2QII~N!QIII ~N11!#21

5I1QII~N!QIII ~N11!1QII~N!QIII ~N11!

3QII~N!QIII ~N11!1•••, ~5.3!

we can write the first of Eqs.~5.2! as follows:

QI~N,N11!5QI~N11!QI~N!1QI~N11!QII~N!

3QIII ~N11!QI~N!1QI~N11!QII~N!

3QIII ~N11!QII~N!QIII ~N11!QI~N!1•••.

~5.4!

The meaning of the terms is obvious. The first term signifi
transmission through theNth layer, followed by transmission
through the (N11)th layer. The second term signifies tran
mission through theNth layer, followed by reflection by the
(N11)th layer, followed by reflection by theNth layer, fol-
lowed by transmission through the (N11)th layer. The third
and higher terms can be interpreted in the same way: a w
incident from the left on the pair of layers will be multipl
reflected, any number of times, between the layers be
exiting the pair by transmission through the second layer
similar fashion one can understand the remaining Eqs.~5.2!.
All matrices refer of course to the samev and ki . We re-
member that the waves on the left~right! of the pair of layers
are referred to an origin at2dl(N) @1dr(N11)# from the
center of theNth @(N11)th# layer. The choice ofdl(N) and
dr(N) is to some degree arbitrary, but it must be such t
Ar(N) coincides with A l(N11), in accordance with the
definition of these quantities~see Fig. 3!.

It is obvious that by the same process we can obtain
transmission and reflection matrices of three layers, by c
bining those of the pair of layers with those of the thi
layer; and that we can in similar fashion obtain the transm
sion and reflection matrices for a slab consisting of any fin
number of layers. In particular, having calculated t
Q-matrix elements of a single layer, we can obtain those
slab ofNmax52M identical layers by a doubling-layer schem
as follows: we calculate theQ-matrix elements of two con
secutive layers in the manner described above, then, usin
units theQ-matrix elements of a pair of layers, we obta

FIG. 3. Putting together a pair of planes of spheres.
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those of four consecutive layers, and in this way, by do
bling the number of layers at each stage, we obtain
Q-matrix elements of the slab.

In summary, for a plane wave of polarizatio
n8, ( i@uin#g8 i

1 exp@iKg8n8
1

•(r2AL)#êi , incident on the slab
from the left, we finally obtain a reflected wav
(gi@urf#gi

2exp@iKgn
2
•(r2AL)#êi on the left of the slab and a

transmitted wave(gi@utr#gi
1exp@iKgn

1
•(r2AR)#êi on the right

of the slab, whereAL (AR) is the appropriate origin on the
left ~right! of the slab. We have

@utr#gi
15(

i 8
Qgi ;g8 i 8

I
@uin#g8 i 8

1 , ~5.5!

@urf#gi
25(

i 8
Qgi ;g8 i 8

III
@uin#g8 i 8

1 , ~5.6!

where theQ-matrix elements are those of the slab. In t
present formulation of the problem we assume that the h
material between the spheres extends to the left and righ
the slab to infinity. However, the extension of the formalis
to deal with different materials on the left and right sides
the slab can be easily effected by treating the interface
scattering elements described by appropriateQ matrices, as
in the case of photonic crystals.27

A transmitted beam~a plane wave with a realKgnz
1 com-

ponent of the corresponding wave vector! carries with it an
energy flux density which, averaged over a time periodT
52p/v, gives ~a formal proof of this formula can be ob
tained by applying the standard definition of the Poynti
vectorP for elastic waves,Pi52s iku̇k , to a plane wave35!

Pgn
tr 5

1

2
rvcn

2H(
i

@utr#gi
1~@utr#gi

1!* J Kgn
1 . ~5.7!

We recall that for a longitudinal wave (n5 l ) i 51, while
for a transverse wave (n5t) i 52,3; and * denotes, as usua
complex conjugation. We note that the quantity in braces
Eq. ~5.7! gives the square of the amplitude of the displac
ment associated with the given plane wave. The transmi
energy per unit area of the slab per unit time, associated w
theg,n beam, is given by the magnitude of thez component,
uPgnz

tr u, of Pgn
tr . A similar formula gives the energy flux as

sociated with any of the propagating reflected beams, or w
the incident wave. For the reflected beams we have

Pgn
rf 5

1

2
rvcn

2H(
i

@urf#gi
2~@urf#gi

2!* J Kgn
2 . ~5.8!

And for the incident wave~of given ki1g8 and polarized
along thei 8 direction! we obtain

Pg8 i 8
in

5
1

2
rvcn8

2 $@uin#g8 i 8
1

~@uin#g8 i 8
1

!* %Kg8n8
1 . ~5.9!

The reflected energy per unit area of the slab per unit t
associated with theg,n reflected beam is given by the mag
nitude of thez component,uPgnz

rf u, of Pgn
rf and the incident

energy per unit area of the slab per unit time is given by
magnitude of thez component,uPg8 i 8z

in u, of Pg8 i 8
in . By defini-

tion the reflectance is given by
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R~v,ki1g8,i 8!5

(
gn

uPgnz
rf u

uPg8 i 8z
in u

5

(
gi

cn
2@urf#gi

2~@urf#gi
2!* Kgnz

1

cn8
2

@uin#g8 i 8
1

~@uin#g8 i 8
1

!* Kg8n8z
1 ,

~5.10!

and the transmittance by

T~v,ki1g8,i 8!5

(
gn

uPgnz
tr u

uPg8 i 8z
in u

5

(
gi

cn
2@utr#gi

1~@utr#gi
1!* Kgnz

1

cn8
2

@uin#g8 i 8
1

~@uin#g8 i 8
1

!* Kg8n8z
1 ,

~5.11!

where we have denoted explicitly the dependence of th
coefficients on the incident parameters. As long as there
no energy losses in the slab, we have

T1R51. ~5.12!

VI. THE COMPLEX BAND STRUCTURE

We view the infinite crystal as a sequence of identi
layers parallel to thexy plane, extending over all space~from
z→2` to z→1`). If Eq. ~4.1! is the 2D space lattice fo
the layer, anda3 is a vector which takes us from a point
the Nth layer to an equivalent point in the (N11)th layer,
then$a1 ,a2 ,a3% is a set of primitive vectors for the crystal

In the region between theNth and the (N11)th layers the
wavefield, of givenv andki , has the form

u~r !5(
gi

$ugi
1~N!exp@ iKgn

1
•„r2Ar~N!…#

1ugi
2~N!exp@ iKgn

2
•„r2Ar~N!…#%êi . ~6.1!

The coefficientsugi
s (N) are related to theugi

s (N11) co-
efficients through the scattering properties of theNth layer.
We have

ugi
2~N!5(

g8 i 8
Qgi ;g8 i 8

IV ug8 i 8
2

~N11!1(
g8 i 8

Qgi ;g8 i 8
III ug8 i 8

1
~N!,

ugi
1~N11!5(

g8 i 8
Qgi ;g8 i 8

I ug8 i 8
1

~N!1(
g8 i 8

Qgi ;g8 i 8
II ug8 i 8

2
~N11!,

~6.2!

whereQ are the transmission/reflection matrices of the lay
A generalized Bloch wave, by definition, has the prope

ugi
s ~N11!5exp~ ik•a3!ugi

s ~N!, ~6.3!

with
se
re

l

r.
y

k5„ki ,kz~v,ki!…, ~6.4!

where kz is, for a givenki , a function ofv, to be deter-
mined.

We choose the reducedk zone of reciprocal space as fo
lows: (ki ,kz) where ki5(kx ,ky) extends over the SBZ o
the given crystallographic plane, and2ub3u/2,kz<ub3u/2,
where b3[2pa13a2 /a1•(a23a3)5êz2p/a3z . The period-
icity of the frequency band structure parallel to thexy plane
follows from Eq. ~6.1!; for replacing ki by ki1g in this
equation renames the coefficients without changing the fo
of the wave function. Also, because the eigenvalues of
~6.5! below are of the form exp(ik•a3), values ofkz differing
by an integral multiple ofub3u correspond to the same Bloc
wave; which establishes the periodicity of the band struct
normal to thexy plane. Substituting Eq.~6.3! into Eq. ~6.2!
we obtain, after some algebra~see Appendix C!, the follow-
ing system of equations:

S QI QII

2@QIV#21QIIIQI @QIV#21@ I2QIIIQII#
D S u1~N!

u2~N11!
D

5exp~ ik•a3!S u1~N!

u2~N11!
D , ~6.5!

where u6 are column matrices with element
ug11

6 , ug12
6 , ug13

6 , ug21
6 , ug22

6 , ug23
6 , ug31

6 , . . . . In prac-

tice we keepgmax g vectors~those of the smallest magn
tude! in which caseu6 are column matrices with 3gmax ele-
ments. The enumeration of theg vectors implied in the above
definition ofu6 is of course the same with the one implied
relation to theQ matrices, each of which has 3gmax33gmax
elements;I is the 3gmax33gmax unit matrix. For givenki and
v, we obtain 6gmax eigenvalues ofkz from the eigenvalues
of the 6gmax36gmax matrix on the left-hand side of Eq.~6.5!.
The eigenvalueskz(v;ki), looked upon as functions of rea
v, define, for eachki , 6gmax lines in the complexkz space.
Taken together they constitute the complex band structur
the infinite crystal associated with the given crystallograp
plane. A line of givenki may be real~in the sense thatkz is
real! over certain frequency regions, and be complex~in the
sense thatkz is complex! for v outside these regions. It turn
out that for givenki andv, out of the 6gmax eigenvalues of
kz(v;ki) none or, at best, a few are real; the eigensolutio
of Eq. ~6.5! corresponding to them, represent propagat
modes of the elastic field in the given infinite crystal. T
remaining eigenvalues ofkz(v;ki) are complex and the cor
responding eigensolutions represent evanescent wa
These have an amplitude which increases exponentiall
the positive or negativez direction and, unlike the propaga
ing waves, do not exist as physical entities in the infin
crystal. However, they are an essential part of the phys
solutions of the elastic field in a semi-infinite crystal~extend-
ing from z→2` to z50) or in a slab of finite thickness. A
region of frequency where propagating waves do not e
for given ki constitutes a frequency gap of the elastic fie
for the givenki . If over a frequency region no propagatin
wave exists whatever the value ofki , then this region con-
stitutes an~absolute! frequency gap.

Finally, it is worth noting that, when there is a plane
mirror symmetry associated with the surface under consid
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ation, the eigensolutions~Bloch waves! of Eq. ~6.5! appear
in pairs:kz(v;ki) and2kz(v;ki).

VII. AN EXAMPLE

We demonstrate the applicability of our method by app
ing it to a specific example, which has also been conside
by Sprik and Wegdam:13 a system of silica spheres of radiu
S50.25 mm centered on the sites of an fcc lattice with
lattice constant of 1mm; the host material being ice. Th
relevant parameters are, for silica:r52200 kg m23, cl
55970 m s21, ct53760 m s21, and for ice~at 216 °C):
r5940 kg m23, cl53830 m s21, ct51840 m s21. We
view the crystal as a succcession of planes of spheres pa
to the ~001! direction of the fcc lattice. Figure 4 shows th
frequency band structure normal to the~001! plane (ki50)
and the corresponding transmission spectrum for both lo
tudinal and transverse waves incident normally on a slab
the above crystal consisting of 16 layers.

To begin with, we compare the band structure norma
the ~001! plane with the results of Sprik and Wegdam13 ob-
tained by the plane-wave method~using 343 plane waves!
with an accuracy, as stated by the above authors, of a
percent. Our results obtained with an angular momen
cutoff l max54 and 13g vectors are converged within a
accuracy of 1023, and they agree with those of Sprik an
Wegdam13 within the stated accuracy of their results. Fu
thermore, the evaluation of the transmission coefficient, e
ily obtainable by our method but not possible by the pla
wave method, confirms the validity of the band-structu
calculation. The transmittance curves are shown in Fig. 4
the shaded curve for the transverse waves and by the
line for the longitudinal waves. The oscillations in the tran
mittance curves are due to multiple reflections at the edge
the slab~Fabry-Pe´rot like oscillations!. As expected, for fre-
quencies within a gap the corresponding transmission c
ficient vanishes.

FIG. 4. The phononic band structure at the center of the SBZ
a ~001! surface of an fcc crystal of silica spheres in ice~a!; and the
corresponding transmittance curve of a slab of 16 layers paralle
the same surface~b!. The lattice constant is 1mm and the radius of
the spheres is 0.25mm. In ~a! the black lines represent longitudina
modes~in the sense defined in the text!, the grey lines transvers
modes, and the dotted lines are deaf bands. Correspondingly i~b!
the solid line shows the transmittance for longitudinal incident e
tic waves; and the shaded curve that for transverse incident wa
-
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The eigenmodes of the phononic crystal are strictly spe
ing always hybrid, having a longitudinal and a transve
component. However, along symmetry directions the follo
ing situation may arise. We consider for simplicity the no
mal modes corresponding toki50 ~the direction normal to
the surface!. In this case the component of the field asso
ated with theg50 beam is either longitudinal or transvers
the field associated with thegÞ0 components need not be o
the same type. However, only theg50 component couples to
the external field~incident, reflected and transmitted wave!,
if ( ki1g)2.qn

2 for gÞ0. Therefore an incident longitudina
or transverse wave will excite a mode~or modes! in the
interior of the crystal with ag50 component of the same
type. As long as the amplitude of theg50 component of
these modes is much greater than those of thegÞ0 compo-
nents, which is the case in the example we have conside
the transmitted and reflected waves will be of the same t
as the incident wave, but this need not be the case in gen
Our results shown in Fig. 4 are termed longitudinal or tra
verse in the above sense. For waves incident at an angl
the surface of the slab (kiÞ0) the above distinction betwee
longitudinal and transverse waves no longer applies~the g
50 component of the elastic field inside the crystal is
hybrid one! and therefore an incident wave of a specific ty
~longitudinal or transverse! will give rise to reflected and
transmitted waves of a mixed type.

In Fig. 5 we show the projection of the frequency ba
structure on the SBZ of the~001! plane along its symmetry
lines. This is obtained, for a givenki , as follows: the regions
of v for which there are no propagating states in the infin
crystal @the corresponding values of allkz(v,ki) are com-
plex# are shown shaded, against the white areas which
respond to regions over which propagating states do e
@for a givenv there is at least one solution corresponding
kz(v,ki) real#. We note the existence of a narrow absolu
gap, denoted byDvG , extending from 2.82 GHz to 2.89
GHz. An absolute gap at approximately the same freque
and of approximately the same width was found by Sp
and Wegdam.13

A considerable number of bands of longitudinal and tra
verse waves exist above the absolute gap~see Fig. 4!. Below

f

to

-
es.

FIG. 5. Projection of the frequency band structure on the SBZ
the ~001! surface of the fcc phononic crystal described in the c
tion of Fig. 4. The shaded areas show the frequency gaps in
considered frequency region. The inset shows the SBZ of the~001!
surface.
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this gap we have two bands of transverse waves, which
doubly degenerate, extending from 0 GHz to 1.77 GHz a
from 2.01 GHz to 2.82 GHz, with a gap in between. On t
other hand, a nondegenerate band of longitudinal waves
tends from 0 GHz to 2.48 GHz. In addition to these ban
we find a nondegenerate band, extending from 2.40 GH
2.82 GHz, for which theg50 component of the correspond
ing eigenmodes of the elastic field vanishes. Because tg
50 beam is the only one which matches~couples with! a
propagating wave outside the crystal, an internal mode w
a vanishingg50 component is not excited by the incide
wave. Therefore, if this were the only band over the sta
frequency region, the wave would be totally reflected. Ho
ever, in our example transmission through the slab in
frequency range of this deaf band occurs, because o
bands with nonvanishingg50 components exist in the sam
re
d

x-
,

to

th

d
-
e
er

frequency region. We note that analogous deaf bands
known to exist in photonic crystals.36

The long wavelength limit (kz→0) is represented by the
linear segments of the dispersion curves, the slopes of w
determine the propagation velocities of longitudinal a
transverse waves (c̄l53893 m s21,c̄t52033 m s21) in a
corresponding effective medium.

VIII. CONCLUSION

We have shown that for a system of nonoverlapping e
tic spheres arranged periodically in a host medium of diff
ent elastic coefficients one can, using the formalism of
present paper, calculate accurately and efficiently the pho
spectrum of the infinite crystal and, also, the transmissi
reflection, and absorption coefficients of elastic waves in
dent on a slab of the material of finite thickness.
APPENDIX A

The nonzero elements of theT matrix for a solid sphere in a solid host are

Tlm; l 8m8
MM

5
~rszt

2/rxt
2! j l~zt!@xt j l8~xt!2 j l~xt!#2 j l~xt!@zt j l8~zt!2 j l~zt!#

j l~xt!@zthl
18~zt!2hl

1~zt!#2~rszt
2/rxt

2!hl
1~zt!@xt j l8~xt!2 j l~xt!#

d l l 8dmm8 , l ,l 8>1,

Tlm; l 8m8
NN

5
Wl

NN

Dl
d l l 8dmm8 , l ,l 8>1,

Tlm; l 8m8
NL

5~zt /zl !
Wl

NLAl ~ l 11!

Dl
d l l 8dmm8 , l>1, l 8>0,

Tlm; l 8m8
LN

5~zl /zt!
Wl

LN

DlAl ~ l 11!
d l l 8dmm8 , l>0, l 8>1,

Tlm; l 8m8
LL

5
Wl

LL

Dl
d l l 8dmm8 , l ,l 8>0, ~A1!
al
with zn5Sqn , xn5Sqsn and n5 l ,t. The elements of the
434 determinantDl are given by

d115zthl
18~zt!1hl

1~zt!,

d215 l ~ l 11!hl
1~zt!,

d315@ l ~ l 11!2zt
2/221#hl

1~zt!2zthl
18~zt!,

d415 l ~ l 11!@zthl
18~zt!2hl

1~zt!#,

d125hl
1~zl !,

d225zlhl
18~zl !,

d325zlhl
18~zl !2hl

1~zl !,

d425@ l ~ l 11!2zt
2/2#hl

1~zl !22zlhl
18~zl !, ~A2!

d135xt j l8~xt!1 j l~xt!,
d235 l ~ l 11! j l~xt!,

d335~rszt
2/rxt

2!$@ l ~ l 11!2xt
2/221# j l~xt!2xt j l8~xt!%,

d435~rszt
2/rxt

2!l ~ l 11!@xt j l8~xt!2 j l~xt!#,

d145 j l~xl !,

d245xl j l8~xl !,

d345~rszt
2/rxt

2!@xl j l8~xl !2 j l~xl !#,

d445~rszt
2/rxt

2!$@ l ~ l 11!2xt
2/2# j l~xl !22xl j l8~xl !%,

wherej l8 andhl
18 denote the first derivatives of the spheric

Bessel and Hankel functions, respectively.Wl
PP8 are given

by the following determinants:

Wl
NN52Ud1

N d12 d13 d14

d2
N d22 d23 d24

d3
N d32 d33 d34

d4
N d42 d43 d44

U ,
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Wl
NL5Ud1

L d12 d13 d14

d2
L d22 d23 d24

d3
L d32 d33 d34

d4
L d42 d43 d44

U ,

Wl
LN5Ud11 d1

N d13 d14

d21 d2
N d23 d24

d31 d3
N d33 d34

d41 d4
N d43 d44

U ,

Wl
LL52Ud11 d1

L d13 d14

d21 d2
L d23 d24

d31 d3
L d33 d34

d41 d4
L d43 d44

U , ~A3!
where

d1
N5zt j l8~zt!1 j l~zt!,

d2
N5 l ~ l 11! j l~zt!,

d3
N5@ l ~ l 11!2zt

2/221# j l~zt!2zt j l8~zt!,

d4
N5 l ~ l 11!@zt j l8~zt!2 j l~zt!#, ~A4!

and

d1
L5 j l~zl !,

d2
L5zl j l8~zl !,

d3
L5zl j l8~zl !2 j l~zl !,

d4
L5@ l ~ l 11!2zt

2/2# j l~zl !22zl j l8~zl !. ~A5!
e
r

e

in Eq.
APPENDIX B

A longitudinal ~transverse! spherical wave aboutRnÞ0 remains a longitudinal~transverse! wave when expanded about th
origin of coordinates (Rn50), and therefore the matrix elements ofV defined by Eq.~4.9! are obtained independently fo
longitudinal and transverse waves.

For the transverse waves the evaluation of these elements proceeds as in the case of the electromagnetic~EM! field
described in Ref. 37. We note that theM transverse elastic wave corresponds to theH component of the electric field of th
EM wave and theN transverse elastic wave corresponds to theE component of the electric field of the EM wave@compare
Eqs. ~15! and ~16! of Ref. 37 with Eqs.~4.7! and ~4.8! of the present article#. Therefore, theVPP8-matrix elements withP
5M ,N andP85M ,N can be taken directly from Ref. 37. Taking into account the fact that the expansion coefficients
~4.7! above and those in Eq.~15! of Ref. 37 are multiplied by different constants, one readily obtains

V lm; l 8m8
MM

5
2a l

2ma l 8
2m8Zl 8m821

lm21
~qt!1mm8Zl 8m8

lm
~qt!12a l

ma l 8
m8Zl 8m811

lm11
~qt!

@ l ~ l 11!l 8~ l 811!#1/2
, l ,l 8>1,

V lm; l 8m8
NN

5V lm; l 8m8
MM , l ,l 8>1, ~B1!

V lm; l 8m8
MN

52V lm; l 8m8
NM

5~2l 11!@ l ~ l 11!l 8~ l 811!#21/23$~8p/3!1/2~21!ma l 8
m8Zl 8m811

l 21m11
~qt!Bl 21,m11~1,

21;lm!2~8p/3!1/2~21!ma l 8
2m8Zl 8m821

l 21m21
~qt!Bl 21,m21~1,1;lm!

1m8Zl 8m8
l 21m

~qt!@~ l 1m!~ l 2m!/~2l 21!~2l 11!#1/2%, l ,l 8>1, ~B2!

where

Zlm
l 8m8~qt![ (

RnÞ0
exp~ iki•Rn!Glm; l 8m8~2Rn ;qt!, ~B3!

Glm; l 9m9~2Rn ;qt![4p (
l 8m8

~21!( l 2 l 82 l 9)/2~21!m81m9Blm~ l 8m8; l 9m9!hl 8
1

~qtRn!Yl 8
2m8~2R̂n!, ~B4!

Blm~ l 8m8; l 9m9![E dr̂Yl
m~ r̂ !Yl 8

m8~ r̂ !Yl 9
2m9~ r̂ !. ~B5!

The expression forVMN can be simplified further by the evaluation of theBlm coefficients defined by Eq.~B5!. Using standard
formulas~see, e.g., Ref. 38! one finally obtains

V lm; l 8m8
MN

5~2l 11!
22a l 8

2m8g l
mZl 8m821

l 21m21
~qt!1m8z l

mZl 8m8
l 21m

~qt!12a l 8
m8g l

2mZl 8m811
l 21m11

~qt!

@ l ~ l 11!l 8~ l 811!#1/2
, l ,l 8>1,

V lm; l 8m8
NM

52V lm; l 8m8
MN , l ,l 8>1, ~B6!
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where

g l
m5

1

2
@~ l 1m!~ l 1m21!#1/2/@~2l 21!~2l 11!#1/2,

z l
m5@~ l 1m!~ l 2m!#1/2/@~2l 21!~2l 11!#1/2. ~B7!
w

y

h
l-

f

The derivation of the above formulas is based on the follo
ing relation:37

hl
1~qrn!Yl

m~ r̂n!5 (
l 8m8

Glm; l 8m8~2Rn ;q! j l 8~qr !Yl 8
m8~ r̂ !,

~B8!

which expresses a scalar spherical wave aboutRnÞ0, as a
sum of spherical waves about the origin (Rn50). The lon-
gitudinal wave, described by the third term of Eq.~4.7!, is
obtained by multiplying Eq.~B8! with exp(iki•Rn) and sum-
ming over allRnÞ0, which immediately tells us that

V lm; l 8m8
LL

5Zl 8m8
lm

~ql !, l ,l 8>0. ~B9!

The evaluation of the matricesV involves the evaluation
of the matrixZ which is a well known quantity in the theor
of low-energy electron diffraction~LEED! and a computer
program for its evaluation is already available in t
literature.33 Further calculation is made simpler by the fo

lowing property ofZlm
l 8m8(qn):33

Zlm
l 8m8~qn!50, unless l 1m1 l 81m8: even.

~B10!

It follows from Eq. ~B10! that

V lm; l 8m8
MM

5V lm; l 8m8
NN

5V lm; l 8m8
LL

50,

unless l 1m1 l 81m8: even,
-

e

V lm; l 8m8
MN

5V lm; l 8m8
NM

50,

unless l 1m1 l 81m8: odd. ~B11!

APPENDIX C

Equation~6.5!, initially derived by McRae for the case o
electron scattering by atomic layers39 can be proven as fol-
lows. We replace the quantities on the left of Eqs.~6.2! with
the aid of Eq.~6.3! to obtain

exp~ ik•a3!S I 0

QIII QIV D S u1~N!

u2~N11!
D

5S QI QII

0 I D S u1~N!

u2~N11!
D . ~C1!

The inverse of the matrix on the left of Eq.~C1! is given by

S I 0

2@QIV#21QIII @QIV#21D . ~C2!

Multiplying both sides of Eq.~C1! with the above matrix we
obtain Eq.~6.5!.
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