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Scattering of elastic waves by periodic arrays of spherical bodies
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We develop a formalism for the calculation of the frequency band structure of a phononic crystal consisting
of nonoverlapping elastic spheres, characterized by Lemedficients which may be complex and frequency
dependent, arranged periodically in a host medium with different mass density andbaffieients. We view
the crystal as a sequence of planes of spheres, parallel to and having the two-dimensional periodicity of a given
crystallographic plane, and obtain the complex band structure of the infinite crystal associated with this plane.
The method allows one to calculate, also, the transmission, reflection, and absorption coefficients for an elastic
wave (longitudinal or transverseincident, at any angle, on a slab of the crystal of finite thickness. We
demonstrate the efficiency of the method by applying it to a specific example.

I. INTRODUCTION selected region of frequendyorresponding to a photonic
gap, a nonabsorbing resonance cavity, &#. number of
The elastic properties of a locally homogeneous and isotheoretical calculations predict the existence of such gaps for
tropic composite material are characterized by a mass densigppropriately designed photonic crystals, but so far only
p and Lamecoefficients\ and x which vary in spacé.The crystals which exhibit gaps up to the infrared region have
composite materials we shall be concerned with in this pa-been constructelHowever, progress to higher frequencies
per consist of homogeneous partickeslid or fluid inclu-  is expected in the near future. In relation to basic physics,
sions the dimensions of which must be large enough in ordqghotonic crystals are interesting in a number of W%\y@r
for a macroscopic description of their elastic properties to b%xample, they can be the starting point in a process of
valid) distributed periodically in a host medium character-gradual introduction of disorder and a study of consequent
ized by different mass density and Lameefficients. We  phenomena, including Anderson localizatibn.
assume, throughout this paper, that the particles do not over- Now, phononic crystals have properties which mirror
lap with each othefcermet topolog$). The alternative case, those of photonic crystals and corresponding applications
when the particles connect with each other to form a contogo1°-1° with an appropriate choice of the parameters in-
tinuous network is also interesting but will not concern usyolved one may obtain phononic crystals with absolute fre-
here. When identical particles are distributed periodically inquency gaps(phononic gapsin selected regions of fre-
a host medium, the composite material may be referred to aguency. An elastic wave, whose frequency lies within an
a phononic crystal. In this case the mass density and thghsolute gap of a phononic crystal, will be completely re-

Lame coefficients vary periodically in space: flected by it; from which follows the possibility of construct-
_ B B ing nonabsorbing mirrors of elastic waves and vibration-free
p(r+Ry)=p(r),  pu(r+Ry)=pu(r), Ar+Rp)=A(r), cavities which might be very useful in high-precision me-
(1.1 chanical systems operating in a given frequency range. And
where{R,} denotes a Bravais lattice. in relation to basic physics, one can use elastic waves to

In recent years there has been a growing interest in thetudy phenomena such as those associated with disOritter,
study of phononic crystals which is inspired to a large degreenore or less the same manner as with EM waves.
by corresponding work in photonic crystdl$.These are There are, however, some essential differences between
composite materials with a dielectric function which variesEM and elastic waves and this means that the normal modes
periodically in space. A typical example: identical particles,of the elastic field in a phononic crystal are in some ways
large enough to be describable by a macroscopic dielectriguite different from those of the EM field in a photonic crys-
function, are arranged periodically in a host material with atal. In a homogeneous isotropic medium the elastic waves
different dielectric function. Photonic crystals have many in-can, in general, be purely longitudinfih which case the
teresting properties both in relation to basic physics and techdisplacement vectau(r) satisfies the conditioR X u=0] or
nological applications. In particular, the existence of absolutgurely transversdin which caseV-u=0). In a phononic
frequency gaps$photonic gapsin certain such crystals, i.e., crystal this is no longer the case and a normal mode usually
regions of frequency over which electromagnetiEM) has a longitudinal and a transverse component. One expects
waves can not exist within the crystal, has attracted a lot ofthat because of this coupling between longitudinal and trans-
attention, mainly because of promising applications in optoverse waves, it will be more difficult to obtain absolute fre-
electronics, as pointed out initially by Yablonovighn prin-  quency gaps in a phononic crystal. We recall that the normal
ciple, one can design a perfect mirror, nonabsorbing over aodes of the EM field in a photonic crystal are exclusively
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transverse. On the other hand there are, in general, momopagating waves constitute the normal modes of the infi-
parameters relevant to the determination of phononic gapsite phononic crystal. The evanescent waves do not represent
than there are in the determination of photonic gaps. In théeal waves, they are mathematical entities which enter di-
case of a binary systeficonsisting of material 2 distributed rectly or indirectly(depending on the method of calculation

in material 2 we have for photonic crystals two independentinto the evaluation of the reflection and transmission coeffi-
parameters: the ratio of the dielectric functions of the twocients of a wave, with givew andk;, incident on a slab of
materialse, /€;; and the fractional volume occupied by ma- the crystal parallel to the given crystallographic plane. On-
terial 2, to be denoted bly For phononic crystals there are shell methods have certain advantages over the plane-wave

five independent parametersiu,/my, Aa/\i, palpy method, even if one is only interested in the frequency band
wp/\, andf. wherepi, N\ denote the mass denéity structure and the corresponding normal modes of vibration
and the Lameoefficients of majlteriajzl o " of the infinite phononic crystal. In an on-shell method one

We have, so far, implicitly assumed that the Laomef-  ¢@n easily allow the Lameoefficients of any of the constitu-
ficients describing the constituent materials of the phononi€nt materials of the crystal to depend on the frequency, as is
crystals are all different from zero, real quantities, and con€cessary in some cases, without any difficulty, which is not
stant(independent of the frequenicyBut this is not always (he case with the plane-wave method. Anéj?’]fgs arule, on-shell
the case. The phononic crystal may consist, for example, diéthods are computationally more efficient.

solid particlegmaterial 3 arranged periodicallyat least ap- The on-shell method we describe in the present paper is
proximately in a liquid (material . If the liquid is a normal ~ @nalogous o that which some of us have developed for pho-

fluid, like water, ;=0 and the transverse sound in the lig- tonic crystals’’ It applies to systems which consist of non-

uid is suppressed. This, however, is not the case for a viscol@/€"aPPing spherical particles arranged periodically in a
fluid. The role of shear viscosity in phononic crystals has0St medium characterized by different mass density and

been pointed out by Sprik and Wegda#Shear viscosity is Lame coefficients. Sections Il to VI are devoted to the de-
equally important in phononic crystals consisting of liquid V&lopment of the formalisrif In Sec. VIl we demonstrate

particles in a solid host backgrountiquid-containing po- the appllcab_lllty of the m_ethod on a specific system: an fee
rous solidé'29. Colloidal suspensions of solid spheres in acrystal of silica spheres in ice. Finally the last section con-

liquid, also, have interesting acoustic properfieBinally, it~ cludes this article.
may be of some interest to consider composite materials con-
sisting of two liquids(e.g., drops of oil in wateralthough in Il. MULTIPOLE EXPANSION OF THE ELASTIC FIELD
this case a periodic arrangement of the drops can only be a
rough approximation to the real system. It appears tha{iC
acoustic gaps are easily obtained in three-dimensi(3ial
fluid-fluid composites, whep;= u,=0.11

The few calculations published so far relating to 3D O 22—
phononic crystals deal, almost exclusively, with the fre- (A +2w)V(V-U) = u¥ X (VXU) =pdiU=0. (2.0
quency band structure of these crystals, which is obtained vim the case of a harmonic elastic wave of angular frequency
a plane-wave expansion of the displacement fi&fld*On 4, we have
the other hand, a lot of theoretical and experimental work has
been done on systems with two-dimensio(&D) periodic- U(r,t)=Rq u(r)exp(—i wt)], (2.2
ity, with translational invariance along the third dimension.
A typical example of such systems consists of a set of lon
identical cylinders parallel to thedirection, crossing they
plane at the sites of a 2D lattice. By considering waves 2
propagating normal to the cylinders, the problem is reduced AF2)V(V-U) = p VX (VX +pou=0. (2.9
to two dimensions!™® The above investigations have we note that for ordinary elastic media the Laauefficients
shown that phononic gaps are possible in both 2D and 3[re real numbers. Media where loss is possible, assuming the

systems. . time dependence given in E¢R.2), are described by com-
Although knowing the frequency band structure of aplex Lamecoefficients!

phononic crystal is very useful, more is required for a full

interpretation and analysis of the experimental data. In an A=Neg—io\,, u=pe—iou,. (2.9
experiment one usually measures the reflection and/or trans-

mission coefficients of an acoustic/elastic wave incident on a The most general solution of E¢2.3) consists of two
slab of the phononic crystal, and consequently theory shouldlastic waves which propagate independently. These are: a
be able to provide reliable estimates of these, the experimenengitudinal(irrotationa) wave, which satisfies the equations
tally measured quantities, as well. The so-called on-shell

methods developed in relation to photonic crystals can do V2u+ q|2u=0, VXu=0, (2.5
exactly that, besides an accurate evaluation of the frequency

band structuré®=?8 In these methods one determines for awhere q=w/c;, ¢;=v(A+2u)/p being the speed of
given frequencyw and a given reduced wave vectdq,, ~ Propagation of this wave; and a transvefdevergenceless
parallel to a given crystallographic plane of the crystal, thevave, which satisfies the equations

Bloch-wave solutions of the elastic field of the infinite crys- 5 )

tal; these consist of propagating and evanescent waves. The Veutqiu=0, V-u=0, (2.6)

The displacement vectadd(r,t), in a homogeneous elas-
medium of mass density and Lamecoefficients\, u,
satisfies the equatidn

nd Eq.(2.1) reduces to the following time-independent
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whereq,= w/c,, c,=+/ulp being the speed of propagation ~ The most general displacement field can be written as a
of this wave. linear sum of the spherical waves given by E¢3.79—

In the present paper we shall use, besides the more fami(2.79, as follows:
iar solutions of Eqs(2.5 and(2.6) representing longitudinal .
and transverse plane elastic waysse Eq(3.1) below], the B M - N -
so-called spherical-wave solutions of these equations. A u(r)—% a|mf|(qtr)X|m(r)+a,maV>< f1(0er) Xim(r)
complete set of spherical-wave solutions of Ej5), known

as irrotational vector wave functions, is given®by Lal iV[ﬁ(q,r)Ym(F)] 2.9
Im | ) .
qi

L 1 - wherea,,, P=M,N,L, are coefficients to be determined.
Uim(r) = av[fl(QIr)Yl (01, (2.79

. L . Ill. SCATTERING OF A PLANE WAVE BY A SPHERE
where f; may be any linear combination of the spherical
Bessel function,j;, and the spherical Hankel function,
h,". Y[(r) are the usual spherical harmonics, witdenot-

ing the angular variables9(¢) of r in a system of spherical

A plane elastic wave, of wave vectqr propagating in a
homogeneous elastic medium has the form

coordinates. Uin(r) =Ug(q)exp(ig-r), (3.2
A complete set of spherical-wave solutions of E2}6) is ln ol@exia A
given by* with uy(q) =uo(q)e, whereu, denotes the magnitude aed

a unit vector, the polarization of the displacement field. In
- the case of a longitudinal plane wave we can wdteq,éq
M = ~ ~
Uim() = F1(G) Xim(r) (279 and e=g,. Since the plane wave is finite everywhere, its
and multipole expansion into spherical waves, according to Eg.
(2.7, involves only the radial functiong(q;r); we have

i N 1 n
um<r>=q'—vxn<qtr>xlm(r>, (2.79 um<r>=2 aﬂh—vnmq'r)vr‘(r)]. (3.2

which are also known as solenoidal vector wave functionsqna can easily show that the coefficieafs are given by
The vector spherical harmonics, denotedXjy,(r), are de-

fined by Bl = Al (9)  Uo(@), 33
T+ DXin() =LYP( == irx VYD), (289 Where
By definition Xoo(F) =0: for =1 we have Aln(@)=4mi" (= 1)™ 1Y ™(g)e,. (3.9
[(I1+ 1) X, () =[ &y "cosfe' Y~ 1(r) —msinoY(r) In the case of a transverse plane wave we havqtéq and
Lm0 elLe,. Such a wave can be written as a linear sum of the
+aj"cosfe Y (1) e, spherical waves given by Eq&.7b and (2.79, and again

. A involves only the radial functionj r); we have
Filar ™Y™Y Y R0

- R i -
—a"e! Y Jey, (28D un(r)= 2 ) &G Xim(D) + eV X1 () Xim (1) [
m t
where 3.5
1 Th ffi t , with P=M,N, b itt
01|m=§[(| —my(l4m D], (2.80 e coefficients’ , wi can be written as
S =AN(q)-un(q), (3.6)
ande,, e,, are the usual polar and azimuthal unit vectors, im (@ Uol( )
respectively, in the chosen system of spherical coordinateswhere
AM(q) = Ll)mﬂ{[amcosee‘ Py M@y +msingY; ™(q)+ a; Mcosfe Y, ™ (q)]e
Im |(| T 1) | | | | | 6
+ila e Y ™R @) — o Me Y M) Ty}, 37

and
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ON, A 4ari' (=™t Maidy—m—1,7 —Ma—idy—M+1, A2 m ipy—m—1,7
Alm(Q):W{'[%e Y (@)—a; "7, (a)]ey—[aj'cosoe'?Y, (a)

+msingY, ™(q)+a; cosfe Y, ™ (q) ey, (3.9

where # and ¢ denote the angular variables @fin the chosen system of spherical coordinates.

We now consider a sphere of radi@s centered at the origin of coordinates. We assume that the sphere, which has a
uniform mass density,, is embedded in a homogeneous medium of mass demsthe wave numbers of the elastic waves
in the sphere ds,) and in the host mediung(), wherev=1 or t, are also different. When a plane wave is incident on the
sphere, it is scattered by it, so that the wave field outside the sphere consists of the incident wave and a scattered wave. Since
the scattered wave is outgoing at infinity, its expansion in spherical waves is given 69.8iquith f,=h,", which has the
asymptotic form appropriate to an outgoing spherical wéyegqr)~(—i)'exp(qr)/igr asr —o. We have

R [ R 1 R
Ued 1) =2, {aWhﬁ(qtr)x'm(rHaﬁn“avxhﬁ(qu'm(r)+a.TnLaV[hr<q.r>Y{“<r>]}. (3.9
The wave field inside the sphere is given by E219) with f,=j,, since it must be finite at the origin; we have
) . i ) - 1 -
w(r =2, [a:MJ.(qsmx'm(r)+a:r“nq—tVXJ|(qstr>x|m(r>+a:;aV[qu'r)Yr“(r)]}. (3.10
S S

The coefficientsa;.”, ajf,, P=M,N,L, in Egs.(3.9 and wherea; anda, are primitive vectors in they plane and
(3.10 are determined by the requirement of continuity of then; ,n,=0,£1,=2,+3, . ...
displacement vectomy(r), and of the surface tractior(r) The corresponding 2D reciprocal lattice is obtained in the

~ 34 .
=o(r)-T, at the surface of the sphere(r) denotes the usual manner*as follows:
stress tensor. The components of the surface traction are .
given by (see, e.g., Ref.)1 g=myb; +maby, 4.2
wherem;,m,=0,=1,+2,+3,... andb,,b, are defined by
7.=AV-u+2ud,u,, (3.11a
bi'a.j:2775ij . (43)
1 u
rgz,u[Fagu,Jr A Up— TH} (3.11b We now assume that a plane waltecan be longitudinal
or transversgis incident on the plane of spheres. We write
1 u, the displacement vector,(r) corresponding to it as follows:
Tp= M mﬂ(ﬁur‘FﬁrU(ﬁ— T} (311()

- U (N=2 [upnls ©XiKE,,-Nar, (4.4
The continuity ofu,, u,, U4, 7, 74, 7, atthe surface i’
of the sphere allows us to determine uniquely the coefficient§ ;o o s'=+(—) corresponds to a wave incident on the

+P (p_ ;
am (P=M,N,L) Of“Ehe scattered wave, given by H§.9,  jane of spheres from the lefight); »' specifies the polar-
and the coefficientay,, of the wave inside the sphere, given jzation of the incident waveq, = g,= w/c, for a longitudi-

by Eqg. (31@, in terms of the known Coefficient!ion'? of the nal wave anctlv,:qt: w/ct for a transverse wave;
incident wave, given by Eqgs(3.2) or (3.5. After some

:gg?t?]/) but straightforward algebra one obtaisse, e.g., K;V,Ekujug'i[qi,_(k”ng')Z]l/Zéz, (4.5
wheree, is the unit vector along the axis, and we have
atP= 2 PP 0P (3.12 written the component of the incident wave vector parallel to
m = i T, Il S me ' the plane of spheres as the sum of a reduced wave viegtor

. ) . which lies in the surface Brillouin zon€SB2) of the given
Explicit expressions for the nonzero elements of Thaatrix lattice, and an appropriate reciprocal-lattice vegtorThis is

in the case of a solid scatterer in a solid host are given inyays possible and it facilitates the subsequent calculation.
Appendix A. Similar expressions for the cases involving agqy. ,/—=| i’=1 denotes the only nonzero component of

liqui rer or h n be found in Ref. 31. . - : . .
quid scatterer or host can be found ef. 3 the displacement vectog; being the radial unit vector along

. B S, _ . _
IV. SCATTERING BY A PLANE OF SPHERES the direction ofK . For»'=t, i’'=23 dencA)teAthe only
nonzero components of the displacement ve@gpye; being
the polar and azimuthal unit vectors, respectively, which are
perpendicular thS,t. In the same mannédas in Eq.(4.5]
R,=n;a;+n,a,, (4.2 we define, for giverk;, », a wave vectoKSV and the cor-

We consider a plane of spheres &t0: an array of
spheres centered on the sites of a 2D lattice specified by
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respondinge, for any g and anyv. We remember that thie

=1 component of the displacement vector is always associ-
ated with a longitudinal plane waver€1), and that thd

=2,3 components of the displacement vector are always as-
sociated with a transverse plane wave=(t), so that the
character(longitudinal or transvergeof a given plane wave

is automatically determined by the non-vanishing COMPOYt can be showr(see Appendix Bthat
nents of the displacement vector associated with it, and need
not be stated explicitly in every case. Wheq{ 0)? >qV the

dr) =3 | bii qtr>xlm<F>+b.’xéwmqtr)xlm(?)

1 R
+b.’rhavn.<qlr)v.m<r>] . (4.9

corresponding wave decays to the right $ef +, end to the 2 QPP _ 4.9
left for s= —; and the corresponding unit vectasbecome piry mitm’ by

complex. Indeed, the unit vectoes are defined in a Carte-

sian system of coordinates as follows: It is worth noting that the matrix elements 6§ depend on

L ~ R the geometry(4.1) of the plane and, through,, on the
e;=gsingcosp+esindsing+e,cosd, (468  frequency, the mass density and the Lasnefficients of the
medium surrounding the spheres of the plane; they depend
also on the reduced wave vectgrof the incident wave; but
A A - ) -~ they do not depend on the scattering properties of the indi-
€,=€,C0s0 Cosp+eccoshsing—esing, (4.6D  \iqual sphere.
. . . The coeff|C|entsb|m , Which describe the scattered wave
€= —€sSin¢+e,0sd, (4.60  from the sphere at the origin of the coordinates, are given by

where# and ¢ denote the angular variables kf; , and

where 6 and ¢ here denote the angular variableskc& We
note that the component oK g, (denoted b>KgVZ) is real if S TP
(kj+9)?<d’ and imaginary |f (<H+g)2>qy In the latter 'm (@
case, c0§Ks in Egs. (4.6a and (4.6b is replaced by

LB (410

P'l'm’

gyzlqy and S|n9Ks by |kH+g|/q,,, so thate; ande, become  The coefficients on the right-hand side of E4.10 describe
complex. the total wave incident on the sphere at the origin of coordi-
Because of the 2D periodicity of the structure under conlates:ajy, derive from the incident plane wave given by Eq.
sideration, the wave scattered from it, when the wave giveri4.4) via Egs.(3.3) and(3.6), andbmﬁ’ from the field defined

by Eq.(4.4) is incident upon it, has the form by Eq. (4.8). Combining Eqs(4.9) and (4.10, we obtain

u I’)ZZ b+MZ ex |k ‘R )h+( r )X (F ) 1" "ot ’

SC( Im m Rp F( H " ! qt " i 2 |:5pp/5||/ mm 2 TIPmPI”m" ::/)/nl]:u”/m/ b|+/r|:]/
P’'1'm’ P

i ) "
+biN—Vx X expliky- Ry (G o) Xim(Tp)
qt Rn 2 T|m 1"'m’ |/m/ . (41])

P'lI'm’

1 i -
bJrrnL_VE EX[XI kH' Rn)hIJr(qun)Ylm(rn)] )
4 R Equation(4.11) determines the coefficients;, P of the wave
(4.79  scattered from the pIane of spheres, g|ven by &d?), in
terms of the coeff|C|enta of the incident wave. Accordmg

where r,=r—R,. We note that exXpkj+9)-R.] jE

) gs.(3.3) and (3.6), we write the coefﬁuenta of the
=exp(k-Ry) because of Eq(4.3). Equation(4.7) tells us 4oy plane wave, defined by E@t.4), in the form
that the scattered wave is a sum of outgoing spherical waves

centered on the spheres of the plane, and that the wave scat-

tered from the sphere &,, differs from that scattered from P

the sphere at the originR,=0) only by the phase factor z Alm w(Kg/w)[Um]g i (4.12

exp(k;-R,). We note the presence in the scattered wavefield

of both longitudinal and transverse waves even when the ]

incident wave is purely longitudinal or purely transverse. WhereAfT are given by Eqs(3.4), (3.7), and(3.8). Due to
The coefficients,,” which determine the scattered wave the Ilneanty of Eqs(4.11), the coefficients j can be writ-

from the sphere at the origin are determined fromtttal  ten as follows:

incident wave on that sphere, which consists of the incident

plane wave and the sum of the waves scattered from all the , ,

other spheres in the plane. The latter, denotedir), is E BIm i Z,V,)[um]z,i,, (4.13

obtained fromug(r) by the removal of the term correspond-

ingtoR,=0in Eq.(4.7). u/(r) can be expanded into spheri-

cal waves about the origin as follows: so that the system of Eq&4.11) reduces to
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pp" PHPr
rlzr , 5PP’ 5||’ mm’ "2 , T|m |nm/r 1"m’: 1" m’
P'I'm Pl
B P _ PP’ 0P’ 2s’
X I'm’; |r grvr) E T|I’T‘I 1'm’ I’m’;i’(Kg’v’)'

P'lI'm

(4.14)

We remember that', s’, andg’ are parameter values char-

acterizing the incident wavéwve remember also that’ is
determined byi’: »'=I fori'=1 andv’'=t for i’=2,3).
Equations(4.14) [or, equivalently, Eqs(4.11)] constitute a
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; exp(iky- Ry (a,r) Y'(r )
Y
_y 2ml) VMR expiK e, 1),
g qvAO gvz
(4.15

whereA, denotes the area of the unit cell of the lattice given
by Eq.(4.1). The plus(minus sign onKg, must be used for
z>0 (z<0). We note thaKgVZ can be real or imaginary. In

system of infinitely many linear equations. It is solved bythe |atter case ng(+ in the standard formulas for" (Kgy)

introducing an angular momentum cutdff,,, truncating all
angular momentum expansions ltQ,,, thus reducing the
dimension of the system tolﬁax+6lmax+1. Moreover, by

using the properties of the matrix elemem,%f:;,m, given by

Egs.(B11) of Appendix B, this system can be reduced to two

is replaced by< /q,, [see text following Eq(4.69].
Using Eq.(4.15) we can expand the scattered wave into a
series of longitudinal and transverse plane waves, as follows:

independent systems of I3, +5m2)/2 and (32t lmax us(r)= 2 E by PAIm(K JexpiKs, 1), (4.16
+2)/2 linear equations, respectively.
Finally, the scattered wave given by Ed.7) can be ex-
pressed as a sum of plane waves using the following identitywhere
|
2m(—i)'"t
ALK = ———Y"(K})ey, (4.173
"o qIAOKgIz ’
27(—i)' 1 _ -
AM(KS) = {[ Mcoshe'?Y"L(KS,) —msinY(KS) + of"cosfe "PYML(KS) e,
e grAoK gtz\/ (I+1) ’ ’ ’
+iloy MY K — o"e YK Tes), (4.17H
2m(—i)'

R o

S i

+af'cosfe” YT HKS) &),

with # and ¢ denoting the angular variables Kﬁt Substi-
tuting b,/ P from Eq.(4.13 into Eq.(4.16 we obtain

u§c<r>=§[usc]ziexmK;V~r>é, (4.18

with

Im |’( Z:V')[uin];i/ ’
(4.19

where the superscrigt=+ (—) holds forz>0 (z<0). We
note that theKZV in Eq. (4.18 have the same frequeney

[usc];izz

i’ PIm

AIm|(K

(the same wave numbey,) and the same reduced wave

vector k; as the incident wave. We remember that for
=1, v=I and, for a giveng, ¢, is the radial unit vector
along the direction oK, . Similarly, fori=2,3, »=t and,

e YK 1e— [ oy Mcosoe Y

K3 —msingY(Kg)

(4.179

respectively, which are orthogonal tozt. Equation(4.18

tells us that the scattered wave consists, in general, of a num-
ber of diffracted beams, of the sameandk|, correspond-

ing to differentg vectors and polarization modésngitudi-

nal or transverse We note, however, that only beams for
which Kgyz is real constitute propagating waves. The coeffi-
C|ents in Eq (4.18), given by Eq.(4.19, are functions of the

|m .f(Kngf) coefficients and through them depend on the
incident plane wave. These coefficients are to be evaluated
for an incident longitudinali( =1) or transversei(=2,3)
plane wave, with a wave vectd(j,y, given by Eq.(4.5),
incident from the left §'=+) or from the right §' = —),
with a displacement vector along théh direction of mag-
nitude equal to unity. In other Wordﬁﬁnpl,( ) are cal-

culated from Eq(4.14), subsntutlngAIm #(K

glv/

g,V,) given by

for giveng, &,,&; are the polar and azimuthal unit vectors, Eds. (3.4), (3.7), and (3.8), on the right-hand side of this
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Q'(N) Q'(N+1) Q'(N,N+1)
—_— — —
')l QU NN+D)|
—_— A
w2 Q OC ' | ¥
é’“?c Ww} IQSH(N) I
o \ 1(Q'~N+1) 1(Q" (N N+1)
-

- -
(a) (b) Q'(N) QY(N+1) QY(N,N+1)

FIG. 1. Scattering of a plane elastic wave by a plane of spheres: FIG. 2. TheQ matrices for two successive layers are obtained
(a) the wave is incident from the leftp) the wave is incident from from those of the individual layers.
the right.
V. SCATTERING BY A SLAB

egfat'?rl', Obviously, wheri’=1, only the coefficients In what follows we need to evaluate the scattering prop-
Am:i(Kg) are nonzero, and wheni’=23 only erties of a slab which by definition consists of a number of
oM > s’ ON os' i iti i
Alm;i’(KZ’t) andAIm;i’(KZ't) are nonzero. Iayers(plziges olf sphergsFor th|str|]3ur13(;tse |ft is cqnveannt to f
Let us for the sake of clarity assume that a plane way&*Press the plane waves on the Ieit of a given plane o
given by Eq.(4.4) is incident on the plane of spheres from spheres W'th_ respect to an origi,, on the left of the pl_ane
the left as in Fig. (a). Then the transmitted wavéncident &t —di from its center, and the plane waves on the right of
+scatterelon the right of the plane of spheres can be writ-thiS Plane with respect to an origiA, , on the right of the
ten as plane atd, from its center, i.e., a wave on the left of the
plane will be written asZgiu;exp:iKév-(r—A,)]éI and a
wave on the right of the plane will be written as
Squgexdiks, (r—A;)]e. The relationships between the
amplitudes of the incident and of the reflected and transmit-
with ted waves, when these are expressed with respect to the
above origins, follow directly from the corresponding equa-
tions of Sec. IV. Accordingly, the amplitudes of these waves
+_ + +_ ++ + ’
[U]g _[uin]g’i599’+[usc]gi _; Mgi;g’i’[uin]g'i' are related through th@-matrix elements given below:

(4.20)

u;(r):§[utr];exp(iKg*V-r)é, z>0, (4.20

QL =Mt exdi(KS,-d+K L -d)],
and the reflected wave as gt ghgt o =g
) . Qugir =M g exili(Kg, =K, d)],
urf<r>=§[urf]giexngy-na, z<0, (4.22
Qy.gri =Mgio X —i(Kg,-d =K, ,-dp)],
with
Qygri =Mgigiexd —i(Kg,-di+K,,-d)], (5.0

- - -+ +
[Urrlgi = [Usclgi = ;‘ Mgisgrir[Uinlgio - (423 whose physical meaning is made obvious by their one-to-one

correspondence with th&l-matrix elements of Sec. IV.
Equations(4.19, (4.21) and (4.23 define the transmission From this point on, we shall write the above matrices in
(M**) and reflection 1~ ) matrix elements for a plane compact form a®', Q", Q" andQ".
wave incident on the plane of spheres from the left. Simi- We obtain the transmission and reflection matrices for a
larly, we can define the transmission matrix elementgair of two successive layers,andN+ 1, to be denoted by

Mg.gi and the reflection matrix elemenmgi;_g,i, for a  Q(N,N+1), by combining the matriceQ(N) and Q(N
plane wave incident on the plane of spheres from the right-1) of the two layers, as shown schematically in Fig. 2. One
[see Fig. 1b)]. We obtain can easily show that
, , Q'(N,N+1)=Q'(N+1)[1-Q"(N)Q" (N+1)]7*Q'(N),
Mgﬁg,i,=5ssrﬁgg,5”,+§n Api(K5)B i (K3,

(4.24 Q"(N,N+1)=Q"(N+1)+Q'(N+1)Q"(N)

1l I} -1~V
One can show that the above matrix elements obey the fol- X[I=QW(N+1)QU(N)]""Q™(N+1),
lowing symmetry relations:

Q" (N,N+1)=Q"(N)+QV(N)Q" (N+1)
Mgt = (=DM (4.29 X[1-Q"(N)Q"(N+1)]1Q!(N),
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Wip . .

N E bling the number of layers at each stage, we obtain the
o ‘1> Q-matrix elements of the slab.
. In summary, for a plane wave of polarization
4’“ o

u, A (NH) v', ZilupnlyexdiKy, - (r—AL)]e, incident on the slab
2@

from the left, we finally obtain a reflected wave
AM) d,(N)

o /:’ i those of four consecutive layers, and in this way, by dou-

N+1) -
ZglulgexdiKg,-(r—Ap)]e on the left of the slab and a
transmitted waves 4[ u, ] exdfiK - (r—Ag)1& on the right
of the slab, wheré\| (Ag) is the appropriate origin on the
left (right) of the slab. We have

FIG. 3. Putting together a pair of planes of spheres.
[utr];ri:ZI ngi;g/i/[uin];—/i/ ) (5.9
QV(N,N+1)=QY(N)[1-Q"(N+1) |
xQUNITRY(N+1). (52 [Uilg =2 Qgirgrir[Unlgi (5.6
. i ’
For example, knowing that .
where theQ-matrix elements are those of the slab. In the

[1-Q"(N)Q"(N+1)] ¢ present formulation of the problem we assume that the host
material between the spheres extends to the left and right of
=1+Q"(N)Q"(N+1)+Q"(N)Q" (N+1) the slab to infinity. However, the extension of the formalism

to deal with different materials on the left and right sides of

1 1l
XQUN)QEN+ D)+, 53 the slab can be easily effected by treating the interfaces as
we can write the first of Eqg5.2) as follows: scattering elements described by appropr@tenatrices, as
in the case of photonic crystals.
Q'(N,N+1)=Q'(N+1)Q'(N)+ Q' (N+1)Q"(N) A transmitted beanfa plane wave with a rea{,, com-
" | | " ponent of the corresponding wave vegtoarries with it an
XQU(N+1)Q(N)+Q(N+1)Q'(N) energy flux density which, averaged over a time pefiod
X Q"(N+1)Q"(N)Q"(N+1)Q'(N)+ - - - :_27T/w, gives (z_i formal proof of this_ f_o_rmula can be ob-
5.4 tained by applying the standard definition of the Poynting

vectorP for elastic wavesP; = — o Uy, to a plane wav®)

The meaning of the terms is obvious. The first term signifies 1

transmission through thigth layer, followed by transmission P' =~ hwc? w1 Tu I bk 5.7)
through the N+ 1)th layer. The second term signifies trans- g PO Z g (Ltida)” 1K (
mission through thé&lth layer, followed by reflection by the
(N+1)th layer, followed by reflection by thith layer, fol-

o . for a transverse wavevEt) i=2,3; and * denotes, as usual,
Iowed_ by transmission thrpugh thej&.l)th layer. The third complex conjugation. We note that the quantity in braces in
and higher terms can be interpreted in the same way: a wa

incident from the left on the pair of layers will be multiply Vteq' (5.7 gives the square of the amplitude of the displace-

flected b £ betw the | bef ment associated with the given plane wave. The transmitted
reflected, any number of imes, between the fayers be OrSnergy per unit area of the slab per unit time, associated with

exit!ng the pair by transmission through the segond layer. Irfhe g,v beam, is given by the magnitude of taheomponent,
similar fashion one can understand the remaining E5g). PU ] of ng_ A similar formula gives the energy flux as-

All matrices refer of course to the sameandk . We re- so%vi;ted with any of the propagating reflected beams, or with
member that the waves on the léfight) of the pair of layers y propagating '

are referred to an origin at d,(N) [+d,(N+1)] from the the incident wave. For the reflected beams we have

We recall that for a longitudinal wavevEl) i=1, while

center of theNth [ (N+ 1)th] layer. The choice ofl,(N) and 1

d,(N) is to some degree arbitrary, but it must be such that ngipwcﬁ 2 [udlg(Tuglg)* tKg, - (5.8
A, (N) coincides withA;(N+1), in accordance with the !

definition of these quantitiesee Fig. 3 And for the incident wave(of given k;+g’ and polarized

It is obvious that by the same process we can obtain th@long thei’ direction) we obtain
transmission and reflection matrices of three layers, by com-
bining those of the pair of layers with those of the third i
Iayer?and that we caﬁ in similgr fashion obtain the transmis- Plc;i':Epwci'{[ui“];r’i'([ui“];i')*}K;v’ - (59
sion and reflection matrices for a slab consisting of any finite ) o
number of layers. In particular, having calculated theThe rgflectedl energy per unit area of.the. slab per unit time
Q-matrix elements of a single layer, we can obtain those of &Ssociated with thg, v reflectefd beam Is given by the mag-
slab ofN,,.,=2" identical layers by a doubling-layer scheme hitude of thez component|Py,,|, of Py, and the incident
as follows: we calculate th@-matrix elements of two con- €nergy per unit area of the slab per unit time is given by the
secutive layers in the manner described above, then, using asagnitude of the component|P,, |, of P{,, . By defini-
units the Q-matrix elements of a pair of layers, we obtain tion the reflectance is given by
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grz . . .
Rlw,k+gi")= 9 _ Where k, is, for a givenk;, a function ofw, to be deter-
|Pg’i’z| mined.

We choose the reducddzone of reciprocal space as fol-
2 _ _ . lows: (k;,k,) wherek;=(k,,k,) extends over the SBZ of
% ¢, [Urlgi([Urlg)* Ky, the give”n crystallogrf‘:‘lphic pléne, and|b|/2<k,<|b;|/2,
=c2 (Ul ([l ) KD where by=27a; X azlal-(azxa3)=é227r/agz. The period-
p/Eindgrin i Eindgri! g'v'z icity of the frequency band structure parallel to theplane
(5.10 follows from Eq. (6.1); for replacingk by k;+g in this
equation renames the coefficients without changing the form
of the wave function. Also, because the eigenvalues of Eq.
(6.5 below are of the form exX - ag), values ok, differing

and the transmittance by

> |ngz| by an integral multiple ofb;| correspond to the same Bloch
Tk +g,i")= 9 wave; which establishes the periodicity of the band structure
ol ' |pi”,i/z| normal to thexy plane. Substituting Eq6.3) into Eq. (6.2
¢ we obtain, after some algeb¢see Appendix § the follow-
ing system of equations:
> Sluglg([uelg)* Kgn
_ gl QI QII U+(N)
¢ Ul (Ul V¥ KD \EREPNIIPN| V-1 Al -
v gt gt gtz —[Q7]QTQ [QT] I-QTQ]/{u"(N+1)
(513 | ut(N)
where we have denoted explicitly the dependence of these ~ =expik-as) u(N+1))" (6.9
coefficients on the incident parameters. As long as there are
no energy losses in the slab, we have where u* are column matrices with elements:
T+R=1. (5.12 Ug,1» Ug2: Ugz Ugis Ugar Ugz, Ugy, ... In prac-

tice we keepgmax 9 vectors(those of the smallest magni-
tude in which caseu™ are column matrices with@, ., ele-
VI. THE COMPLEX BAND STRUCTURE ments. The enumeration of tigevectors implied in the above
identiCaldefin_ition ofu® is of course the same With the one implied in
relation to theQ matrices, each of which hagy3.,<39max
elements] is the 3maX 3gmax UNit matrix. For giverk; and
o, we obtain @,. eigenvalues ok, from the eigenvalues
of the 692X 6gmax Matrix on the left-hand side of E¢6.5).
The eigenvalueg,(w;k), looked upon as functions of real
o, define, for eaclk|, 6gmaylines in the complex, space.
Taken together they constitute the complex band structure of
the infinite crystal associated with the given crystallographic
plane. A line of giverk; may be realin the sense thek, is
u(r)=2 {u;(N)exp{i K;V- (r—A,(N))] rea) over certain frequency regions, and be comgiexthe
g9 sense thalk, is complex for w outside these regions. It turns
- o= o - out that for giverk; and w, out of the &2« €igenvalues of
Tug(N)exiiKg, (r=A(N)]je. (6.1 k,(w;kj) none or, llat best, a few are real; the eigensolutions
of Eq. (6.5 corresponding to them, represent propagating
modes of the elastic field in the given infinite crystal. The
remaining eigenvalues &¢(w;k|) are complex and the cor-
responding eigensolutions represent evanescent waves.
These have an amplitude which increases exponentially in
ug(N)=2 QgY;grirUg}ir(NﬁLlH > Qgi';g,i,u;i,(N), the positive or negative direction and, unlike the propagat-
g'i’ g'i’ ing waves, do not exist as physical entities in the infinite
crystal. However, they are an essential part of the physical
+ — ot - solutions of the elastic field in a semi-infinite crystektend-
Ha(NFD) grzir Qg';g"'ugr"(N)ngrEir Qgigirtly (N1, ing from z— —< to z=0) or in a slab of finite thickness. A
(6.2) region of frequency where propagating waves do not exist
for given k| constitutes a frequency gap of the elastic field

whereQ are the transmission/reflection matrices of the layer,

A generalized Bloch wave, by definition, has the property/©" the givenk; . If over a frequency region no propagating

wave exists whatever the value kf, then this region con-
uzi(NJrl):exp(ik- aS)USi(N)’ 6.3 stitutes ar(at?solute frequ_ency gap. '
Finally, it is worth noting that, when there is a plane of
with mirror symmetry associated with the surface under consider-

We view the infinite crystal as a sequence of
layers parallel to they plane, extending over all spatfeom
z——w to z—+»). If EQ. (4.1) is the 2D space lattice for
the layer, andy; is a vector which takes us from a point in
the Nth layer to an equivalent point in théN(1)th layer,
then{a;,a,,as} is a set of primitive vectors for the crystal.

In the region between théth and the N+ 1)th layers the
wavefield, of givenw andk;, has the form

The coefficientsug (N) are related to theig(N+1) co-
efficients through the scattering properties of M layer.
We have
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§ FIG. 5. Projection of the frequency band structure on the SBZ of

FIG. 4. The phononic band structure at the center of the SBZ othe (001 surface of the fcc phononic crystal described in the cap-
a(001) surface of an fcc crystal of silica spheres in {@ and the ~ tion of Fig. 4. The shaded areas show the frequency gaps in the
corresponding transmittance curve of a slab of 16 layers parallel t§onsidered frequency region. The inset shows the SBZ ofGb®
the same surfacd). The lattice constant is Jum and the radius of ~ Surface.
the spheres is 0.2 m. In (a) the black lines represent longitudinal

modes(in the sense defined in the tgxthe grey lines transverse The eigenmodes of the phononic crystal are strictly speak-

modesl_, dal_nd thﬁ dotttehd I;nes ar%deaf ?anlds. _(tioc;_resrpnc_ic;ngi? Iln ing always hybrid, having a longitudinal and a transverse
ne solid ine snows the transmitiance for fongitudinal Inclaent €1as«qo nonent, However, along symmetry directions the follow-
tic waves; and the shaded curve that for transverse incident wave

ﬁ‘lg situation may arise. We consider for simplicity the nor-
mal modes corresponding tg=0 (the direction normal to
the surfacg In this case the component of the field associ-
ated with theg=0 beam is either longitudinal or transverse;
the field associated with thggz 0 components need not be of
the same type. However, only tige- 0 component couples to
We demonstrate the applicability of our method by apply-the external fieldincident, reflected and transmitted wayes
ing it to a specific example, which has also been considere ( k;+g)*> g2 for g#0. Therefore an incident longitudinal
by Sprik and Wegdan®® a system of silica spheres of radius or transverse wave will excite a moder mode$ in the
S=0.25 um centered on the sites of an fcc lattice with ainterior of the crystal with ay=0 component of the same
lattice constant of 1um; the host material being ice. The type. As long as the amplitude of tlee=0 component of
relevant parameters are, for silica:=2200 kgm?3, ¢ these modes is much greater than those ofgth® compo-
=5970 ms?! ¢,=3760 ms? and for ice(at —16°C):  nents, which is the case in the example we have considered,
p=940 kgm3, ¢,=3830 ms?, ¢,=1840 ms!. We the transmitted and reflected waves will be of the same type
view the crystal as a succcession of planes of spheres paralie$ the incident wave, but this need not be the case in general.
to the (001) direction of the fcc lattice. Figure 4 shows the Our results shown in Fig. 4 are termed longitudinal or trans-
frequency band structure normal to tt@01) plane k;=0) verse in the above sense. For waves incident at an angle on
and the corresponding transmission spectrum for both longithe surface of the slalk(# 0) the above distinction between
tudinal and transverse waves incident normally on a slab ofongitudinal and transverse waves no longer appligs g
the above crystal consisting of 16 layers. =0 component of the elastic field inside the crystal is a
To begin with, we compare the band structure normal tchybrid ong and therefore an incident wave of a specific type
the (001) plane with the results of Sprik and Wegd&mob-  (longitudinal or transversewill give rise to reflected and
tained by the plane-wave methddsing 343 plane waves transmitted waves of a mixed type.
with an accuracy, as stated by the above authors, of a few In Fig. 5 we show the projection of the frequency band
percent. Our results obtained with an angular momentunstructure on the SBZ of théd01) plane along its symmetry
cutoff |,,,=4 and 13g vectors are converged within an lines. This is obtained, for a giveq, as follows: the regions
accuracy of 103, and they agree with those of Sprik and of @ for which there are no propagating states in the infinite
Wegdant® within the stated accuracy of their results. Fur-crystal[the corresponding values of d#l(w,k|) are com-
thermore, the evaluation of the transmission coefficient, eaplex] are shown shaded, against the white areas which cor-
ily obtainable by our method but not possible by the plane+espond to regions over which propagating states do exist
wave method, confirms the validity of the band-structure[for a givenw there is at least one solution corresponding to
calculation. The transmittance curves are shown in Fig. 4 bk,(w,k|) reall. We note the existence of a narrow absolute
the shaded curve for the transverse waves and by the solghp, denoted byAwg, extending from 2.82 GHz to 2.89
line for the longitudinal waves. The oscillations in the trans-GHz. An absolute gap at approximately the same frequency
mittance curves are due to multiple reflections at the edges @nd of approximately the same width was found by Sprik
the slab(Fabry-Peot like oscillation$. As expected, for fre- and Wegdant®
guencies within a gap the corresponding transmission coef- A considerable number of bands of longitudinal and trans-
ficient vanishes. verse waves exist above the absolute e Fig. 4. Below

ation, the eigensolution@loch waves of Eq. (6.5 appear
in pairs:k,(w;k|) and —k,(w;k).

VII. AN EXAMPLE
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this gap we have two bands of transverse waves, which arfeequency region. We note that analogous deaf bands are
doubly degenerate, extending from 0 GHz to 1.77 GHz andnown to exist in photonic crystafs.

from 2.01 GHz to 2.82 GHz, with a gap in between. On the The long wavelength limitK,—0) is represented by the
other hand, a nondegenerate band of longitudinal waves efinear segments of the dispersion curves, the slopes of which
tends from 0 GHz to 2.48 GHz. In addition to these bandsdetermine the propagation velocities of longitudinal and
we find a nondegenerate band, extending from 2.40 GHz ttransverse wavesc(=3893 ms1,c,=2033 ms?) in a

2.82 GHz, for which they=0 component of the correspond- corresponding effective medium.

ing eigenmodes of the elastic field vanishes. Because the

=0 beam is the only one which matchésouples with a Viil. CONCLUSION

propagating wave outside the crystal, an internal mode with e have shown that for a system of nonoverlapping elas-
a vanishingg=0 component is not excited by the incident tic spheres arranged periodically in a host medium of differ-

wave. Therefore, if this were the only band over the state@nt elastic coefficients one can, using the formalism of the

frequency region, the wave would be totally reflected. How-present paper, calculate accurately and efficiently the phonon
ever, in our example transmission through the slab in thgpectrum of the infinite crystal and, also, the transmission,

frequency range of this deaf band occurs, because otheeflection, and absorption coefficients of elastic waves inci-

bands with nonvanishing=0 components exist in the same dent on a slab of the material of finite thickness.

APPENDIX A

The nonzero elements of tile matrix for a solid sphere in a solid host are

- (psZe pXD) 1 (Z) X (%) = 11 (X) 1= 110 [ zef{ (z) = 1(20)] ,
Tlm;l’m’:- + + 2 2 1+ .y . I"fmm’ » Ivl =1,
Jixolzeh™ " (zo) —hy" (z0) 1= (pszi! pXe) Dy (Z)[Xed | (X)) — 1 (%) ]
WNN
NN I ,
Tlm;l’m’: D, O Ommy,  1LI'=1,
WS +1)
Tmﬁl’m’:(ztlzl)D—lé\ll’amm’- =1, 1"=0,
TEN (z1z,) Wi 811, =0, I'=1
1y — (2 12y) ——F—— ' ’ =V, =1,
Im;1’m | tDl |(|+1) I"“mm
LL WILL ,
Tlm;l’m’:D_|5||’5mm’! |,| 20! (Al)
|
with z,=Sq,, Xx,=Sq, and v=I,t. The elements of the dos=1(14+1)j,(x),

4X 4 determinanD, are given by . ) _ _
daz=(pszi/ pXOL[N (1 + 1) = x¢72— 1]j1 (X)) = X4j{ (X))},

d — h+/ h+ :
a2y (2) das= (psZ2l X1+ DX, (%) — 1 (x0)],

dy=1(1+1)h/" (2,

dis=Ji(x)),
dar=[1(1+1) = /2= 11N (z) —zh' (), doa=Xj{ (X)),
da=1(1+1)[zh " (z)—h] (2], das= (psZ pXOXi] (%) =11 (x0)],
du=h (2 dag= (pszi!pXOALN 1+ 1) = XE121110x0) = 2] (x)},
A wherej| andh,”’ denote the first derivatives of the spherical
dy=2h,"(z), Bessel and Hankel functions, respectival'yf'j' are given
by the following determinants:
ds=2/h""(z)—h/"(2), dY dy, dig dig
— _ ;2 + _ + dlz\‘ d22 d23 d24
dpo=[1(I1+1)=2z/2]h]" () —2zh|"" (7)), (A2) WN= —

d3 ds dgg dagf
3= Xej | (Xe) +[1(X0), di dsp dig dag
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di dip diz dyg where
WNL= d; dzp dy dY=zj{(z)+]i(z0),
[ — L 1]
d; ds, diz d
poom s dY=1(1+1)j(2),
dg dgp dsz dys
g d e d dy=[1(1+1)~z7/2-11j(z) ~ zj{ (2),
11 Oy Oiz3 Qg
LN d21 drz\l d23 d24 d?: | (l + 1)[ZtJ II(Zt)_jI(Zt)]r (A4)
WhN=
| dg; d3 da3 da’ and
das dT dgz dug d§=j|(z|),
L
i di dis Oug d5=zj{(z),
L da dlé dyz dog L, )
Wir=- da; d5 daz dagl’ (A3) dz=2zj(z)—]i(z),
3
dyy df dgz dyy dz=[1(1+1)—2{/21j)(z) —2zj{ (2). (A5)
APPENDIX B

A longitudinal (transversgspherical wave abolR,# 0 remains a longitudinatransversgwave when expanded about the
origin of coordinates R,=0), and therefore the matrix elements @f defined by Eq(4.9) are obtained independently for
longitudinal and transverse waves.

For the transverse waves the evaluation of these elements proceeds as in the case of the electr@Bidyrfetld
described in Ref. 37. We note that thetransverse elastic wave corresponds totheomponent of the electric field of the
EM wave and theN transverse elastic wave corresponds to Eh@omponent of the electric field of the EM wajeompare
Egs. (15 and(16) of Ref. 37 with Eqs(4.7) and (4.8) of the present article Therefore, theQ PP’ -matrix elements wittP
=M,N andP’=M,N can be taken directly from Ref. 37. Taking into account the fact that the expansion coefficients in Eq.
(4.7) above and those in Eq15) of Ref. 37 are multiplied by different constants, one readily obtains

QM :Zal’ma;m ™t (q)+mmZ" (g0 +2aMa ZT (g0 g
Im;1’m [|(|+1)|/(|/+1)]1/2 ! ! !
P NS &
QI == QN = (I DI+ D11+ 1] 2 {(87/3) Y~ 1)) Z), W (0B 1mea(1,
—1;Im)—(8/3) Y~ 1)"ay, " Z}, 1" (@) By -1 m-1(1.1]m)
+m’Z), MM qo[(1+m)(I—-m)/(21 - 1) (21 + 1)]YA,  1,1'=1, (B2)
where
Zi" (a)= 2 explikj" Ro)Gimytrm(~Ra 30, (B3)
G~ Rs@) =4 >, (=)0~ =21y +m'g(1'm’;1"m") b (R Y, ™ (= Ry), (B4)
1"m’
B|m(l’m’;l”m”)EJ drYP YD ()Y, (). (B5)

The expression faMN can be simplified further by the evaluation of tBg, coefficients defined by E¢B5). Using standard
formulas(see, e.g., Ref. 3&ne finally obtains

" =20, Y20 @)+ T2 (A0 + 200 2 )
QN =(21+1) — L=t
’ [+ (1" +1)]
QI’\rIn'\;AI’m’:_QI,\:n,?‘I’m" L1'=1, (BG)
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y{“:l[u +m)(I+m—1)]"3[ (21 -1)(21 +1)]*?,

2

M=[A+m)(I—m) Y[ (21— 1) (21 +1)]V2

The derivation of the above formulas is based on the follow-

ing relation®

(@)Y (F) = > Gimrme(— R i1 ()Y (),
1'm’
(B8)

which expresses a scalar spherical wave alfyut 0, as a
sum of spherical waves about the origiR,(=0). The lon-
gitudinal wave, described by the third term of E4.7), is
obtained by multiplying Eq(B8) with exp(kj- R,) and sum-
ming over allR,# 0, which immediately tells us that
Q:_nl;;l'm’:Z:r’nm’(ch)’

[,I"=0. (B9)

The evaluation of the matriceQ involves the evaluation

of the matrixZ which is a well known quantity in the theory

of low-energy electron diffractioflLEED) and a computer

program for its evaluation is already available in the
literature®® Further calculation is made simpler by the fol-

lowing property ofz},™ (q,):%3

z.™(q,)=0,

unless [+m+I1"+m’: even.
(B10)
It follows from Eq. (B10) that
MM _ NN _ lLL _
le;l’m’_le;l’m’_QIm;I’m’_0’
unless |+m+I1"+m’: even,
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(B7)
I
MN NM
le;l’m’:QIm;l'm’:O'
unless |+m+1'"+m’; odd. (B1l1)
APPENDIX C

Equation(6.5), initially derived by McRae for the case of
electron scattering by atomic lay&tsan be proven as fol-
lows. We replace the quantities on the left of E@2) with
the aid of Eq.(6.3) to obtain

_ I 0 u™(N)

exﬂlk'as)(Qm QIV)(U—(N-I—l)
_(d QU(UWN)

o 1 /Jlu(N+2)

The inverse of the matrix on the left of EGC1) is given by

. (C1)

I 0
(_[le]—lQm [Q|v]—1)- (C2

Multiplying both sides of Eq(C1) with the above matrix we
obtain Eq.(6.5).
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