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Ab initio phonon dispersions of Fe and Ni

Andrea Dal Corso and Stefano de Gironcoli
SISSA, Via Beirut 2/4, 34014 Trieste and INFM Trieste, Italy

~Received 1 February 2000!

We present theab initio phonon dispersions of magnetic bcc Fe and fcc Ni. Our calculations are carried out
in the framework of density functional perturbation theory~DFPT!, using ultrasoft pseudopotentials, spin-
polarized generalized gradient approximations, and nonlinear core corrections. The implementation of the
above techniques within DFPT is discussed. We find that these approximations, together, provide phonon
dispersions which are in good agreement with experiment, while the local spin density approximation system-
atically overestimates the experimental frequencies.
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The lattice dynamics of magnetic transition metals is
sential in many applications andab initio calculations of
their phonon dispersions could provide insight into lon
standing problems. For instance, the extremely low ther
expansion coefficient of Invar, a Fe-Ni alloy,1 could depend
on an unusual behavior of the phonon frequencies upon
ume changes.

The structural and dynamical properties of magnetic tr
sition metals are determined by the interplay between m
netic and electronic effects which are well described by sp
polarized density functional theory~DFT!.2 The local spin
density approximation~LSDA! for the exchange and corre
lation energy is sufficient to reproduce the magnetic m
ments of transition metals.3 However, this approximation
sometimes fails to predict their ground-state crystal struct
In Fe, for instance, one must include spin-polarized gene
ized gradient corrections (s-GGA) to get the lowest energ
for the experimental bcc Bravais lattice.4,5 State-of-the-art
electronic structure codes provide readily the equilibriu
properties of transition metals, and the phonon dispers
can be calculated either with density functional perturbat
theory6,7 ~DFPT! or with frozen phonon techniques, relaxin
large supercells. The latter route has been followed in Re
to compute the phonon dispersion of Fe, while in this pa
we present the lattice dynamics of Fe and Ni calculated w
DFPT. The advantages of this technique have been stre
in several papers,6,9 and therefore it is important to genera
ize it to magnetic transition metals.

We describe Fe and Ni atoms with ultrasoft pseud
potentials,10 and freeze the 3s and 3p electrons in the core
accounting for the nonlinear interaction between the core
the valence charge.11 In Ref. 7, DFPT was generalized t
ultrasoft pseudopotentials, and in Ref. 12 the spin-unpo
ized GGA has been included in DFPT and applied to Si,
Al, and Cu. In this paper we discuss DFPT withs-GGA and
with nonlinear core corrections~NLCCs!: we analyze the
variation of the self-consistent exchange and correlation
tential due to a general perturbation, and describe the e
of the spin and of the GGA on the part of the interatom
force constants due to NLCCs. A detailed derivation of
whole theory at this general level will be given elsewhere13

We find that thes-GGA, with ultrasoft pseudopotentials an
NLCCs, predicts accurately the phonon dispersions of b
Fe and Ni. In contrast, the LSDA overestimates the pho
frequencies in both elements.
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In the s-GGA, the exchange and correlation energy is
functional of the spin-up and spin-down charge densit
@n↑(r ) andn↓(r )#.14 Thanks to the spin-scaling relation, th
exchange energy is the sum of two spin (s) contributions:
Ex5(s*d3rGx(ns ,u¹nsu). Instead, the correlation energ
is written as a functional of the total chargen(r )
5n↑(r )1n↓(r ), of its gradient, and of the local spin pola
ization z(r )5@n↑(r )2n↓(r )#/n(r ): Ec
5*d3rGc(n,z,u¹nu). There are several functional forms o
Gx and Gc available in the literature, and our theory com
prises any exchange and correlation functional for whichGx
and Gc can be defined. NLCCs are introduced in th
scheme, taking as the spin-up and spin-down charge de
ties ns(r ) the sum of the valence@rs(r )# and the core
charge@rc,s(r )#: ns(r )5rs(r )1rc,s(r ). Core spin polar-
ization is neglected, assuming thatrc,s(r )5 1

2 rc(r ), where
rc(r ) is the total core charge calculated together with
pseudopotential in the neutral, spin-unpolarized, isola
atom.

The exchange and correlation potential has two com
nents, one acting on the spin-up and the other on the s
down wave functions. These components are evaluate
functional derivatives of the exchange and correlation ene
with respect to the spin-up and spin-down charges:

Vxc
s ~r !5

]G

]ns
2 (

a51

3
]

]r a
F ]G

]~]ans!G
5

]Gx

]ns
1

]Gc
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]Gc

]z

]z

]ns

2 (
a51

3
]

]r a
@Ax~ns ,u¹nsu!]ans

1Ac~n,z,u¹nu!]an#, ~1!

where G5(sGx1Gc , ]z/]n↑5(12z)/n, ]z/]n↓
52(11z)/n, and the two functionsAx andAc are defined
as

Ax~ns ,u¹nsu!5
1

u¹nsu
]Gx

]u¹nsu
, ~2!

Ac~n,z,u¹nu!5
1

u¹nu
]Gc

]u¹nu
. ~3!
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In a plane-wave implementation, it is numerically convenie
to calculate Eq.~1! as it is, without taking explicitly ther
derivatives ofAx]ans1Ac]an, but computing these deriva
tives numerically with Fourier techniques. In this way,Vxc

s is
the functional derivative of the exchange and correlation
ergy even at finite cut offs.15

Within DFPT, the calculation of the dynamical matrix o
a solid requires first-order changes of the wave functions
to phonon perturbations. These quantities are solutions
at
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self-consistent linear system. In order to set up this syst
the change of the exchange and correlation potential (DVxc

s )
must be calculated. This quantity is modified by the intr
duction of thes-GGA in the theory. At linear order,DVxc

s is
proportional to the induced charge densityDns and to itsr
derivatives. Since the correlation energy depends on the
charge and on its gradient, the change of one spin compo
of the charge modifies both spin componentsVxc

s . We have
DVxc
s ~r !5(

s8
F ]2Gx

]2ns
dss81

]Bc
s
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whereBc
s are defined as

Bc
s5

]Gc

]n
1

]Gc

]z

]z

]ns
, ~5!

and we used the relationships

Du¹nsu5
1

u¹nsu (b51

3

]bns]bDns , ~6!

Du¹nu5
1

u¹nu (s8s9
(
b51

3

]bns8]bDns9 . ~7!

Again Eq. ~4! is the correct functional derivative even
finite cutoffs. Within the LSDA,Gx and Gc do not depend
upon the density gradient. Thus only the first term in Eq.~4!
is nonvanishing and one recognizes the LSDA expressio

f xc
s,s8 ~the functional derivative of the exchange and corre

tion potential with respect to the charge!. As in Ref. 12, we
compute analyticallyGx ,Gc ,Ax , Ac , and Bc

s and numeri-
cally their derivatives with respect tons , n, z, u¹nsu, and
u¹nu. The gradient ofDns is instead evaluated via Fourie
techniques.

The introduction of thes-GGA has no effect on the for
mal expressions of the second derivatives of the total ene
given in Ref. 7 provided thatDVxc

s are computed using Eq
~4! and a sum over spin components is done in each te
NLCCs yield two additional contributions as shown in Re
16 for the norm-conserving, spin-unpolarized case. In
case, with the notations of Ref. 7 we have
of

-

gy

.
.
r

Fs,s85Fs,s8
(0)

1(
s

E d3r 1DusVxc
s ~r1!

drc,s~r1!

dus8

1(
s

E d3r 1Vxc
s ~r1!

d2rc,s~r1!

dusdus8

. ~8!

where Fs,s8
(0) are the interatomic force constants of Ref.

When the local density approximation is used, one recov
in Eq. ~8! the NLCC terms given in Ref. 16 by averagin
over spins and by separatingDusVxc

s into a valence and a

core contribution: DusVxc
s (r )5(s8 f xc

s,s8(r )(Dusrs8
1drc,s8 /dus).

Ultrasoft pseudopotentials10 for Fe and Ni have been gen
erated according to a modified Rappe-Rabe-Kaxir
Joannopoulos~RRKJ! scheme17 with three Bessel functions
following the method of Ref. 18. Relativistic effects are i
cluded in the pseudopotentials by solving the Koellin
Harmon scalar relativistic equation19 to calculate the all-
electron reference atomic configuration. Our numeri
results are obtained using the Perdew-Burke-Ernzerh20

~PBE! expressions ofGx and Gc . All GGAs calculations
have been performed with pseudopotentials generated
sistently within the PBE scheme.21 A kinetic energy cutoff of
25 Ry is used for both Fe and Ni. The augmentation char
are expanded up to 400 Ry. This large cutoff for the au
mentation charges is needed to minimize the errors in
linear response calculations with thes-GGA. For the Bril-
louin zone~BZ! integration we use 240~bcc! and 60~fcc! k
points in the irreducible BZ. Integration up to the Fermi su
face is done with the smearing technique of Ref. 22 with
smearing parameters50.01 Ry ~Fe! ands50.03 Ry ~Ni!.
These parameters are sufficient to provide phonon frequ
cies converged within 3 cm21. The dynamical matrices hav
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PRB 62 275Ab initio PHONON DISPERSIONS OF Fe AND Ni
been computed on a 43434 q-point mesh, and a Fourie
interpolation has been used to obtain complete phonon
persions.

We focus on magnetic bcc Fe and magnetic fcc Ni wh
are the experimental zero-temperature crystal structures
Table I, we report the equilibrium lattice constants, bu
moduli, and cohesive energies of Fe and Ni obtained fro
fit with the Murnaghan equation for the total energy as
function of volume. In the same table we report also
magnetic moment (m0) calculated at the theoretical equilib
rium lattice constant.~The values ofm0 have been compute
on a mesh of 408k points withs50.01 Ry in Ni.! Results
obtained using both the LSDA~Ref. 23! and s-GGA are
reported. The experimental lattice constants of Fe and Ni
equal~within the theoretical precision! to thes-GGA values,
and 3.7%~Fe! and 2.6%~Ni! higher than the LSDA values
Our theoretical parameters are in very good agreement
the results of Ref. 24 where pseudopotentials similar to o
have been used. All phonon calculations are performed a
theoretical lattice constants reported in Table I.

The calculated PBE phonon dispersions of magnetic
Fe are shown in Fig. 1 along the main high-symmetry lin
of the BZ of the bcc lattice and compared with experimen
inelastic neutron scattering data. If thermal effects are
glected, very good agreement is found between theory
experiment. The average difference, computed as in Ref
is 6 cm21 and the maximum error~20 cm21) is found for the

TABLE I. Calculated lattice constants (a0), bulk modulus (B0),
magnetic moment (m0), and cohesive energy (Ec) of bcc Fe and
fcc Ni. The atomic energy is obtained at the magnetic ground s
(d5s1d1.2s0.8 for Fe andd5s1d4s0 for Ni!. Experimental data are
taken from Ref. 24.

a0 ~a.u.! B0 ~Mbar! m0 (mB) Ec ~eV/atom!

bcc-Fe
LDSA 5.22 2.33 2.10 6.64
s-GGA 5.41 1.50 2.38 5.15
Expt. 5.42 1.68 2.22 4.28

fcc-Ni
LDSA 6.48 2.53 0.59 6.08
s-GGA 6.65 1.91 0.64 4.88
Expt. 6.65 1.86 0.61 4.44

FIG. 1. Calculateds-GGA phonon dispersions~solid lines! for
magnetic bcc Fe compared to inelastic neutron scattering data~solid
diamond! and to calculated LSDA dispersions~dotted lines!.
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transverse acoustic branch along theG-H direction. The re-
ported experimental inelastic neutron scattering data
taken atT5295 K.25 Temperature and zero-point motion a
not included in our calculation. In order to estimate the ma
nitude of these effects, we have used the experimental t
mal expansion coefficient26 and the method of Ref. 27, re
spectively. FromT50 K to T5295 K the lattice constan
increases by about 0.2%. Furthermore, to account for z
point motion we have to augment the theoretical lattice c
stant by 0.14%. The PBE phonon frequencies calculatedN
with an expanded lattice constanta055.43 a.u. are 7 cm21

(T1), 1 cm21 (T2), and 13 cm21 ~L! lower than the values
plotted in Fig. 1. Therefore, taking into account thermal
fects, we find that, in Fe, the GGA tends to slightly unde
estimate the phonon frequencies as in Si, C, and Cu.12 How-
ever, the phonon spectra calculated using the LSDA~Fig. 1!
show severe discrepancies with respect to experiment.
average error is 18 cm21 with a maximum error of 44 cm21

along theH-N direction.
The s-GGA phonon dispersions of Fe, computed alo

theN-G,G-H, andH-G directions, have been presented al
in Ref. 8. These authors used the all-electron projec
augmented-wave method28 to deal with Fe. Overall the
agreement between the two calculations is good. For
stance, the frequency of theT1 mode at theN point is over-
estimated by about 22 cm21 in Ref. 8 and 18 cm21 in our
calculation.

The calculated PBE phonon dispersions of magnetic
Ni are shown in Fig. 2 along the main high-symmetry lin
of the BZ of the fcc lattice, and compared with inelas
neutron scattering experimental data. Neglecting thermal
fects, excellent agreement is found between theory and
periment. The average error is of 2 cm21 with a maximum
error of 11 cm21 for a single point on theT2 branch along
G-K. The reported experimental inelastic neutron scatter
data are taken atT5296 K.29 At this temperature, therma
expansion and zero-point motions, estimated as in Fe, lea
an increase of the lattice constant of about 0.2310.15
50.38%. The PBE phonon frequencies at theX point of the
BZ computed witha056.675 a.u. are 4 cm21 ~TA! and 6
cm21 ~LA ! lower than the values plotted in Fig. 2. Therefo
thermal effects on phonon dispersions are small in Ni and
s-GGA provides accurate phonon frequencies. In Fig. 2
display also the LSDA theoretical results. The LSDA tur
out to overbind, and the phonon frequencies are correspo

te

FIG. 2. Calculated PBE phonon dispersions~solid lines! for
magnetic fcc Ni compared to inelastic neutron scattering data~solid
diamond! and to calculated LSDA dispersions~dotted lines!.
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ingly too high. The average error of theory with respect
experiment becomes 15 cm21 with a maximum error of 29
cm21.

We have estimated the effect of magnetism on the pho
frequencies of Ni by doing one calculation with the sp
unpolarized GGA. The magnetic effects turn out to be qu
small. Spin-unpolarized GGA frequencies are, on avera
higher of about 3 cm21 with respect to thes-GGA ones. In
Ni, different exchange and correlation functionals, LSD
versuss-GGA, produce effects much larger than magn
tism. On the contrary, in Fe, a proper account of magn
effects is mandatory, since nonmagnetic bcc Fe is unstab30

In Figs. 3 and 4, we compare thes-GGA and LSDA
phonon dispersions of Fe and Ni calculated at the experim
tal lattice constant in order to quantify the effect of t
s-GGA lattice expansion on the final result. Thes-GGA
frequencies are stiffer than the LSDA ones when compu
at the same lattice constant. The average differences ar

FIG. 3. Calculated PBE~solid lines! and LSDA ~dotted lines!
phonon dispersions for magnetic bcc Fe, both computed at the
perimental lattice constant.
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cm21 in Fe and 15 cm21 in Ni. These results are similar to
those found in Al and Cu in the spin-unpolarized case.12

To conclude we have found that phonon dispersions in
and Ni are very well reproduced by the combined use of
GGA, spin polarization, ultrasoft pseudopotentials, a
NLCCs. LSDA phonon dispersions are systematically hig
than experimental data. Consistently with previous GG
phonon calculations it is found that gradient correctio
added to the LSDA, act as a negative pressure which
larges the lattice constant and softens the phonon freq
cies. In the case of Fe and Ni, this softening brings the
and experiment into much better agreement.

This work has been supported by INFM/F, INFM/G
INFM ‘‘Iniziativa trasversale calcolo parallelo,’’ and
MURST ~Cofin99!. All calculations have been performe
with the PWSCFand PHONON codes, to which spin polariza
tion, thes-GGA, and NLCCs have been added.

x-
FIG. 4. Calculated PBE~solid lines! and LSDA ~dotted lines!

phonon dispersions for magnetic fcc Ni, both computed at the
perimental lattice constant.
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