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Analysis of a special model for a grating coupler

W. L. Schaich
Department of Physics, Indiana University, Bloomington, Indiana 47405

~Received 14 January 2000!

A special model of a thin transmission grating used to couple infrared radiation to electronic excitations in
quantum wells is examined. The grating is viewed as a periodic array of two-dimensional~2D! conducting
strips separated by completely open apertures. The 2D conductivity across each strip has a semielliptic profile.
This simple functional form allows considerable analytic progress. We examine both the recent approximation
scheme proposed by Mikhailov for this class of grating and more complete theories. By physical arguments
and numerical examples we show that Mikhailov’s approximation can work very well, but that it is also rather
easy to correct for its small errors.
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I. INTRODUCTION
For the study of electronic excitations in quantum we

by infrared absorption one often uses an adjacent, pla
grating to create field profiles that provide efficie
coupling.1,2 This wide experimental use of grating couple
has led to a variety of theoretical descriptions. In this pa
we examine one particular class of models for which deta
calculations are possible. Since our interest here is in
behavior of the grating itself, we will usually consider the
models in ‘‘isolation’’; i.e., the grating lies in the plane be
tween vacuum and a homogeneous dielectric with noth
else nearby. The incident light enters along the normal fr
vacuum. We examine the currents in, the fields near, and
transmission through the grating.

The models we consider share some common features
approximations. The infrared wavelength, which isl51/n in
vacuum, is assumed to be much greater than the periodd of
the grating, and the thickness of the grating is negligib
Thus the grating is viewed as a two-dimensional~2D! sheet
whose conductivity is periodically modulated. With light in
cident along the normal andnd,1, none of the diffracted
waves can propagate away from the grating. They inst
combine to form a complicated local field structure that
periodic parallel to the surface and decays exponenti
away from it.

We assume the grating conductivity is local and isotrop
but it may be frequency dependent and complex valued.
grating lies on they-z plane atx50, between vacuum (x
,0) and the substrate (x.0) with ~bulk! dielectric constant
eb . The axes are oriented so the 2D conductivity~conduc-
tance! s is independent ofz and periodic iny: s(y1d)
5s(y).3 The particular class of models we consider is d
fined by the following form for the spatial modulation ofs
~over one period!:

s~y!5H smaxA12 ỹ2, uyu,w/2

0, w/2,uyu,d/2
~1!

whereỹ52y/w. The conducting stripes have widthw and a
‘‘semielliptic’’ profile. They are separated by apertures
width d2w. This form for s arises if each 2D conductin
strip is viewed as the limit of an oblate spheroid with co
PRB 620163-1829/2000/62~4!/2721~10!/$15.00
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stant 3D conductivity that is distorted to large length alongẑ

and negligible thickness alongx̂. It also results from a
strictly 2D model of any conducting strip for which the ca
riers are parabolically confined alongŷ.4,5

We concentrate on the case where the incident light
its electric field polarized alongŷ; i.e., orthogonal to the
grating strips. The macroscopic quantity we calculate is
transmission coefficient, which can be parametrized by3

T5U 2

11Aeb1~4p/c!S
U2

Aeb, ~2!

wherec is the speed of light in vacuum andS is the y-y
element of the effective conductance of the whole grat
layer. To determineS requires a microscopic calculation.

The analysis is based on separating the total electric fi
into smooth and fluctuating parts:

EW 5EW s1EW f . ~3!

The smooth part is described at frequencyv by

EW s5Eincŷ3H eipvx1r oe2 ipvx, x,0

toeipbx, 0,x
~4!

whereEinc is the amplitude of the incident electric field an
pv5v/c and pb5(v/c)Aeb are the wave vectors of th
propagating solutions of Maxwell’s equations in vacuum a
bulk, respectively. The transmission and reflection am
tudes that appear here determine the transmission and re
tion coefficients:T5ut0u2Aeb andR5ur 0u2. For the fluctuat-
ing field we use a variety of expressions, in all of which t
speed of light is set to infinity, thereby suppressing retar
tion effects. This electrostatic approximation is reasonable
long asnd!1.3

Before developing approaches to a solution of the mo
outlined above we remark that there are of course phys
gratings and grating theories that do not use all of the s
plifications proposed here.1,2,6–15 However, the extensions
and refinements they introduce are beyond the scope of
paper and we do not consider them in detail. Our sim
treatment can be quite adequate for grating couplers of
2721 ©2000 The American Physical Society
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2722 PRB 62W. L. SCHAICH
infrared radiation and the particular conductivity profile
Eq. ~1! allows considerable analytic progress.

In Sec. II we derive the equations behind several sche
for determiningS. We start from the approximation intro
duced by Mikhailov.16–20Then by examining when and how
it can fail, we develop better solutions. These formal res
are evaluated in Sec. III in a set of model calculations. Th
are chosen to illustrate both the physical content and
numerical accuracy of the different approaches. Finally,
Sec. IV we discuss how the theories for an isolated gra
can be generalized to include the effect of a nearby tw
dimensional electron gas.

II. FORMAL SOLUTIONS

In this section we develop several approaches to solv
our basic model.

A. Mikhailov’s approximation

A remarkable feature of our model for the conducti
strips is that any isolated strip when subjected to a unifo
applied electric field alongŷ responds so that the total ele
tric field alongŷ inside that strip is independent of positio
This property is well known for 3D ellipsoids with consta
conductivity.21 We examine how it arises in 2D for a sing
strip because that will also show why it fails for an array
strips.

If a constant applied field does lead to a constant inte
field, then the induced current would be of semielliptic for

ŷ•JW~y!5J~y!5
4

p
J̄A12 ỹ2, uyu,w/2 ~5!

where J̄5(d/w)J0 is the current density (esu/cm sec) ave
aged over the width of the strip whileJ0 is its average over
one period of an array. From the equation of continuity,
induced charge density (esu/cm2) in the strip would be

dr~y!5
i

v

8

p

d

w2
J0

ỹ

A12 ỹ2
, uyu,w/2 ~6!

where thev is the frequency of the applied field. Now us
Eq. ~6! in Coulomb’s law to find the induced electric fiel
along ŷ at x50:

ŷ•EW ind~y!5Ei~y!2E05
2

kE dy8

y2y8
dr~y8!, ~7!

where k5(11eb)/2 allows for the screening by the sub
strate dielectric andE0 is the amplitude of the applied field
The integral yields22

Ei~y!5E01
i J̃0

G
Ei~y!, ~8!

with
es

s
e
e

n
g
-

g

f

al
,

-

e

Ei~y!5H 21, uyu,w/2

211
ỹ sgnỹ

Aỹ221
, w/2,uyu .

~9!

Here J̃054p/cJ0 and the dimensionless parameterG is de-
fined by

G5
p2

4
nd~11eb!

w2

d2
, ~10!

with n5v/2pc. The electric field normal to the surface ca
also be readily found. We use the requirement that the
continuity in the normal displacement field is determined
dr in the grating plane. We shall refer to this constraint
the Poisson boundary condition. Here it implies nearx50

x̂•EW ind~y!5E'~y!5 i
J̃0

G
E'~y!sgn~x!, ~11!

with

E'~y!5H ỹ

A12 ỹ2
, uyu,w/2

0, w/2,uyu .

~12!

In order for our description to be consistent,Ei should be
constant within the conducting strips. If only one strip
present, this is true by Eq.~9!. However, for a grating we
have a periodic array of strips and must use linear supe
sition. This is a trivial change forJ, dr, andE' nearx50
since all of these quantities vanish away from the conduc
strips. But when we rewriteEi as

Ei~y!5E01
i J̃0

G (
l

Ei~y2 ld !, ~88!

with l running over all integers, Eq.~9! then implies that the
induced field is no longer constant across any strip. The
caying tails of the fields produced by neighboring strips e
tend into each strip, and the current distribution sho
change.

In Mikhailov’s approximation16–20one ignores this incon-
sistency and assumes that the current density, even w
grating array, has a nearly semielliptic form. This physic
ansatz is introduced as follows into a mathematical desc
tion based on Fourier series. In the electrostatic limit the
electric field near the~isolated! grating can be expanded fo
our models as23

EW ~xW !5E0ŷ1 (
n.0

En„2sgn~x!sinGny,cosGny,0…e2Gnuxu,

~13!

where Gn52pn/d with n running over positive integers
The three components of the vectors in the sum are for
x,y,z directions, respectively. In reference to Eq.~4!, what
we have called the~smooth! applied field E05Einct0
5Einc(11r 0), while theEn for nÞ0 describe the fluctuating
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field. A similar expansion can be made for the current d
sity in the plane of the grating

J~y!5J01 (
n.0

Jn cosGny. ~14!

The terms in the series~13! already satisfy the boundar
condition of continuous electric field parallel to the surfac
Using the equation of continuity the Poisson boundary c
dition implies

FnEn5 J̃n , ~15!

with

Fn5 ind~11eb!/n. ~16!

Now write the spatially averaged current density as

J05
1

dE2d/2

d/2

dy s~y!Ei~y!5s0E01
1

2 (
n.0

snEn , ~17!

where thesn are ~cosine! Fourier coefficients ofs(y). For
the semielliptic profile of Eq.~1!,24

s̃n /s̃054
J1~Gnw/2!

Gnw/2
[bn

(1) , ~18!

whereJ1 is the Bessel function of order 1. Combining Eq
~15! and ~18! into ~17! yields

J05s0E01
s0

2 (
n.0

bn
(1)J̃n

Fn

5s0E0Y S 12
s̃0

2 (
n.0

bn
(1)J̃n / J̃0

Fn
D . ~19!

Equation~19! is exact but theJ̃n are unknown. However if
J(y) is ‘‘close’’ to Eq. ~5!, one hasJ̃n / J̃0'bn

(1) , which pro-
duces Mikhailov’s approximation forS[J0 /E0:

4p

c
S (M )'s̃0 /~12A11!, ~20!

where

A115
s̃0

2 (
n.0

bn
(1)bn

(1)

Fn
5

s̃0

iG
A11. ~21!

It is not easy yet to estimate the error in this result. On
one hand, asw/d→0, it is clear that within any strip the
tailing fields of its neighbors’ contributions toEi are small
and slowly varying. Then the internalEi is essentially con-
stant. On the other hand, consider Mikhailov’s prediction
large s̃0. Then

4p

c
S (M )→ 2 iG

A11
. ~22!

If we further letw→d we expectS to diverge because on
then has a continuous, perfectly conducting sheet. This d
-

.
-

.

e

r

es

not happen withS (M ) becauseG of Eq. ~10! saturates and
A11 decreases only to 0.285 atw5d. So the ansatz definitely
fails in this extreme.

Before developing a betterS, we briefly consider how to
evaluateA11. A direct sum onn is possible, but converge
slowly. The convergence problems are alleviated if one u
the Poisson summation formula to convert the sum onn to an
integral and furthermore changes the contour for
integral:16,17,19,25

A115
2pw

d (
n.0

J1
2~Gnw/2!

Gnw/2

52E
0

`

du
J1

2~u!

u F112(
l .0

cosuld̃G
5124E

0

`

dv
I 1

2~v !

v (
l .0

e2v l d̃

5124E
0

`

dv
I 1

2~v !/v

~evd̃21!
, ~23!

whered̃52d/w andI 1 is a modified Bessel function of orde
1. The integral*0

` duJ1
2(u)/u51/2 is from Ref. 26 and the

integration contour was rotated by6p/2 between the secon
and third lines. Note thatA11 is real-valued and depends on
on the ratiow/d.

B. Density and potentials

For a more systematic approach toS, we next consider
explicitly how a single strip responds to the electrostatic p
tentials produced by its neighbors. This analysis is straig
forward for the case when the electrons in a grating strip
parabolically confined alongŷ because the density respon
functions of this system are known ‘‘exactly.’’5 We put ex-
actly in quotes because the following expressions are der
in a ‘‘classical continuum’’ approximation that ignores pre
sure gradient forces and quantum size effects on the mo
along ŷ.4,5,27–29This is reasonable for the systems of intere
here since the Fermi wavelength of the electrons in the g
ing is much smaller than the strip widthw (;1 mm).

The key function is the~self-! susceptibilityx (s), which
determines the~linearly! induced density in one strip due t
an external potentialfext at frequencyv:5

dr~y!5E
2w/2

w/2

dy8x (s)~y,y8!wext~y8!, ~24!

where30

x (s)~y,y8!5(
j

S 2 j

pw

Tj~ ỹ!

A12 ŷ2
D kV2

ṽ22v j
2 S 2 j

pw

Tj~ ỹ8!

A12 ỹ82
D

~25!

and the magnitude ofy and y8 must be less thanw/2. The
Tj ( ỹ) are Chebyshev polynomials of the first kind26 and the
sum index onj is over positive integers. The confining po
tential alongŷ is described by12 m* V2y2 with m* the effec-
tive electron mass. The frequencies of normal modes c
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2724 PRB 62W. L. SCHAICH
fined along ŷ but independent ofz are v j5Aj V. Finally

ṽ25v(v1 i /t), where 1/t parametrizes the strength of re
sistive scattering within the strip.

Consider first a single strip subjected to a uniform fie
along ŷ, sowext(y)52yE0. Then sinceỹ5T1( ỹ) and31

E
21

1 dỹ

A12 ỹ2
Tj~ ỹ!Tk~ ỹ!5

p

2
d j ,k , ~26!

we find from Eqs.~24! and ~25!

dr (s)~y!52
k

2p

ỹ

A12 ỹ2
E0

V2

ṽ22V2
, uyu,w/2.

~27!

Only the lowest frequency~Kohn! mode is dipole-allowed.
This dr (s) has the same form as our earlier result~6!, which
may be rewritten as

dr (s)~y!52
k

2p

J̃0

iG

ỹ

A12 ỹ2
, uyu,w/2. ~68!

The superscripts is a reminder that the only electron-electro
interactions allowed are within an isolated single strip. Eq
tions ~8! and ~9! show that the internal field alongŷ in an
isolated single strip isE02 i J̃0 /G so

J̃05s̃0~E02 i J̃0 /G!5s̃0E0 /~12s̃0 / iG!. ~28!

Substituting this into Eq.~68! we get complete agreemen
with Eq. ~27! if

s̃0 / iG5V2/ṽ2. ~29!

This result is consistent with the relation between the eq
librium density and the fundamental frequency.5

In a grating array of strips we must augment the exter
potential felt by any one strip. Since there is no variati
along ẑ, the electrons interact like lines of charge with Co
lomb coupling of the form

v~y,y8!52
2

k
lnuy2y8u. ~30!

Now formally separatev into v (s)1dv where forv (s) bothy
andy8 lie in the same strip while fordv, y andy8 must be in
different strips. Then a mean-field argument yields for a
riodic array in a uniform applied field

dr5x (s)
•@2y8E01dv•dr#5dr (s)1x (s)

•dv•dr,
~31!

where we use centered dots for convolution integrals. T
result implies thatdr can be expanded as

dr~y!5(
j

cj

Tj~ ỹ!

A12 ỹ2
, uyu,w/2 ~32!

with only odd j ’s contributing to the sum. Combining th
equation of continuity with another identity31
-

i-

l

-

-

is

@Tj8~ ỹ!A12 ỹ2#852 j 2
Tj~ ỹ!

A12 ỹ2
, ~33!

where primes denoteỹ derivatives, transforms Eq.~32! into
an expansion of the current density

J~y!52 iv
w

2 (
j

cj

j 2
Tj8~ ỹ!A12 ỹ2, uyu,w/2. ~34!

To integrate this over the strip we use from Eq.~26!

E
2w/2

w/2

dy Tj8~ ỹ!A12 ỹ25
pw

4
d j ,1 ~35!

to find

J̃052
2p i

k
Gc1 . ~36!

Hence to determineJ̃0 we only needc1, which, however, is
coupled to the othercj ’s through Eq.~31!. A closed set of
equations can be obtained by truncating the sum in Eq.~32!
and then projecting Eq.~31! onto successiveTj .

To illustrate the method, let us keep onlyc1 andc3. They
may be~approximately! determined from the projections o
Eq. ~31! onto T1, using Eq.~26!,

c15c1
(s)1

k

4

V2

ṽ22V2
@dv11c11dv13c3#, ~37!

and ontoT3

c35
9k

4

V2

v223V2
@dv31c11dv33c3#, ~38!

where from Eq.~27! c1
(s)52kE0/2p@V2/(ṽ22V2)# and

dv jk5
2

p
E

21

1

dỹ
2

p
E

21

1

dỹ8
Tj~ ỹ!

A12 ỹ2
d ṽ~y,y8!

Tk~ ỹ8!

A12 ỹ82
.

~39!

The tilde ondv denotes a change in its meaning. We co
sider the interaction between electrons aty in one strip and
electrons atnd1y8 in another strip,nÞ0 periods away. Fur-
thermore, we sum over all possiblen and drop constant term
to define

d ṽ~y,y8!52
2

k (
n.0

lnF12S y2y8

nd D 2G
'

2

k (
n.0

H S y2y8

nd D 2

1
1

2 S y2y8

nd D 4

1 . . . J ,

~40!

where the expansion in the second line is reasonable fow
!d, since the maximum value ofuy2y8u is w. It is straight-
forward to work out the separatedv jk . Expansions ofyl in
terms ofTj for j < l are in Ref. 31 and the sums of invers
powers ofn become Riemannz functions, which also are in
Ref. 31. We find that Eqs.~37! and ~38! become
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c15c1
(s)2

V2

ṽ22V2 H S pw

2d D 2 1

6 F11
1

10S pw

2d D 2

1 . . . Gc11S pw

2d D 4 1

360
c3J , ~378!

c3502
9V2

ṽ223V2 F S pw

2d D 4 1

360
c11 . . . G . ~388!

The ellipses denote terms missing because of the truncation in Eq.~40!. Eliminatec3 to solve forc1 and use Eq.~36! to find
(4p/c)S5 J̃0 /E0:

4p

c
S'

iGV2

ṽ22V2H 12S pw

2d D 2 1

6 F11
1

10S pw

2d D 2

1•••G1
V2

ṽ223V2 S pw

2d D 8S 1

120D
2

1•••J . ~41!
tri

ve

.
W
no

t

ts
Although the algebra is tedious, the final result forS is clear.
There is a slight shift of the dipole resonance of a single s
to

V2H 12S pw

2d D 2 1

6 F11
1

10S pw

2d D 2

1•••G
2

1

2 S pw

2d D 8S 1

120D
2

1•••J ~42!

due to interactions between the strips and another~weak!
resonance nearA3V. To compare with Mikhailov’s approxi-
mation rewrite Eq.~20! using Eq.~29!:

4p

c
S (M )' iGV2/~ṽ22V2A11!. ~43!

His result follows in effect from keeping only thej 51 term
in Eq. ~32!. For the dipole mode the amounts to a relati
error of o(w/d)8, which is very small for reasonablew/d
values. The resonance atA3V is, however, completely
missed, but its amplitude in Eq.~41! is also small. Equation
~42! has noticeable differences withV2Ai for w/d*0.5.
These are mostly due to the expansion in Eq.~40!.
Mikhailov’s approximation keeps only one term in Eq.~32!,
but all terms in Eq.~40!. Including higher-order terms in Eq
~40! within the present approach is possible but clumsy.
turn instead to a slightly different approach that does
need such an expansion.

C. Current and fields

Our last approach toS is based on equating two differen
expansions ofEi(y). We first useJ̃(y)5s̃(y)Ei(y) com-

bined with s̃(y)5(4/p)(d/w)s̃0A12 ỹ2 inside a strip and
Eqs.~34! and ~36! to obtain

Ei~y!5
J̃0

s̃0
(

k

ck

k2c1

Tk8 , uyu,w/2. ~44!

The alternative expansion comes from Eq.~13! at x50:

Ei~y!5E01 (
n.0

En cosGny. ~45!
p

e
t

We next equate Eqs.~44! and ~45! and project onto

Tj8A12 ỹ2 over uyu,w/2. One then needs two different sor
of integrals. The first is

E
21

1

dỹA12 ỹ2Tk8Tj85
p

2
j 2dk, j , ~46!

which follows after an integration by parts from Eqs.~26!
and ~33!. For the second set of integrals we define

bn
( j )5

4

pE21

1

dỹA12 ỹ2Tj8 cosGny. ~47!

If j is an odd integer these may be transformed into31

bn
( j )54 j 2i j 21

Jj~Gnw/2!

Gnw/2
, ~48!

whereJj is a Bessel function of orderj. Then Eqs.~44! and
~45! together yield

cj

c1
5

s̃0E0

J̃0

d j ,11
s̃0

2J̃0
(
n.0

Enbn
( j ) . ~49!

Now replaceEn via Eq. ~15! with J̃n /Fn and use from Eq.
~34!

J̃n5
2

dE2w/2

w/2

dy cosGny J̃~y!5 J̃0(
k

bn
(k) ck

k2c1

~50!

to re-express Eq.~49! as

cj

c1
5

s̃0E0

J̃0

1(
k

Ajk

ck

k2c1

, ~51!

where

Ajk5
s̃0

2 (
n.0

bn
( j )bn

(k)

Fn
[

s̃0

iG
Ajk . ~52!
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For j 51 this implies

4p

c
S[ J̃0 /E05s̃0Y S 12(

k
A1k

ck

k2c1
D , ~53!

which nicely generalizes Mikhailov’s approximation~20!.
The ck’s for odd k.1 can be found by truncating the set
equations

cj

c1
5Aj 11 (

k.1
Ajk

ck

k2c1

, j .1. ~54!

For numerical work theAjk can be reduced as in Eq.~23!:

Ajk5
2pw

d (
n.0

j 2k2i j 1k22
Jj~Gnw/2!Jk~Gnw/2!

Gnw/2

52 j 2k2i j 1k22E
0

`

du
Jj~u!Jk~u!

u F112(
l .0

cosuld̃G
5 j 3d j ,k24 j 2k2E

0

`

dv
I j~v !I k~v !

v (
l .0

e2v l d̃

5 j 3d j ,k24 j 2k2E
0

`

dv
I j~v !I k~v !/v

~evd̃21!
. ~55!

The integral used in the third line,

E
0

`

du Jj~u!Jk~u!/u5
1

2 j
d j ,k , ~56!

is from Ref. 32. Some insight is gained by separatingAjk

5A jk
(s)1dAjk , whereA jk

(s) is independent ofd, while for
small w/d, dAjk}(w/d) j 1k. One has forj .1 @using Eq.
~29!#

F ṽ22V2S j 1
dA j j

j 2 D G cj

c1

5V2dAj 11V2 (
k.1

(kÞ j )

dAjk

ck

k2c1

, ~548!

which suggests that the highercj will be of small influence
unlessw/d→1 and/or the frequencyv is near one of the
higher ~dipole-forbidden! modes:v j5Aj V. In turn if the
higher cj are unimportant, then Mikhailov’s approximatio
should be good. To quantify these claims requires numer
work.

III. MODEL CALCULATIONS

In all the calculations below we use for the dielectric su
strateeb512.8, which is appropriate for GaAs. The tran
mission into the bulk in the absence of any grating (S50) is
thenT50.683.

For the grating strips we first chose parameters so t
intrinsic modes lie in the infrared. Mikhailov20 describes the
grating in this limit as quantum-well wires. We use an effe
tive mass ofm* /m50.067 and an average equilibrium de
sity of N̄5331011/cm2. The fundamental frequency dete
mined by4,5
al

-

ir

-

V25
16

k

N̄e2

m* w
~57!

then has the valueV/2pc520.29 cm21. We set t
5200 ps, andd52 mm. In Fig. 1 the transmission coeffi
cient over a range of frequencies nearV is shown for the
choice ofw/d50.9. Results are plotted for two differentS
expressions. One is from Eq.~57!, cutting off thek sum at
k59, and the other is from Eq.~20!, Mikhailov’s approxi-
mation. We have chosen a large value ofw/d in order to
enhance the differences between theT’s. Lowering w/d to
0.7 or less makes the two curves essentially lie on top
each other. The large structure centered onn0
514.88 cm21 is due to the~significantly shifted! dipole-
allowed mode, while the small dip atn0534.68 cm21 is
from the excitation of thej 53 mode at nearlyA3V. The j
55 mode produces a blip at 45.3 cm21, but it only changes
T in the fourth digit.

The inset in Fig. 1 more clearly shows the two main stru
tures. Mikhailov’s approximation does quite well in th
Kohn mode: it gives the correct depth and width and mis
the resonance location by just 0.5%. The higher mode o
shows up in the improved theory. Its strength and width a
however, quite small, basically because the mode is dip
forbidden. For instance, its linewidth is set by (2pct)21

50.03 cm21 with negligible contribution from radiation
damping,16–20which dominates the width of the Kohn mod
The computational effort for the two sets of results is simil
One only needs a few more Bessel functions to evaluate
~53!. If I 1 is produced by a downward recursion,33 the higher
I k are already generated.

We have also done a series of calculation ofS ’s at fixed
frequency (nd50.005) when the grating strip conductan
has metallic values, say 1/s̄51 V/h. Again we compared
various results forS. As a function ofw/d, we find that the
error in S (M ) does not exceed 1% untilw/d.0.9. As noted
earlier S should diverge whenv→d, but S (M ) saturates.
The S from Eq. ~53! does not appear to saturate. It is inte

FIG. 1. TransmissionT through an isolated grating versus fre
quencyn. The solid~dashed! curve is for the full~Mikhailov! S.
The conducting strips of the grating have the response of quan
well wires; see text for parameter choices. The insert expands
plot near the two sharp structures.
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esting that its growth tracks closely the results for an array
perfectly conducting 2D strips. An expression for this ide
ized case can be found by a slight generalization of Lam
century-old analysis.34 The model has strips of widthw and
period d, across which the conductivity is constant~not
semielliptic! and infinite. In our notation the resultingS is35

4p

c
S (L)52 i

pvd

p
~11eb!ln secS p

2

w

d D , ~58!

which has a ln divergence asw/d→1. We find that the
imaginary part ofS from Eq. ~53! tracks this result fairly
well for s̄21&1 V/h. ~The real part ofS is several orders
of magnitude smaller.! For example ats̄2151 V/h and
w/d50.994, Im(S) differs from 2 iS (L) by less than 1%,
but differs from Im(S (M )) by more than 20%.

To provide some microscopic insight into the grating
behavior we show in Figs. 2–4 plots of current and fields
the grating plane. The calculations usend50.005, s̄21

51 V/h, andw/d50.8. For this caseS (M ) and the fullS
of ~53! differ by about 0.1%. The quantities plotted com
from either Sec. II A or Secs. II B and II C. For the form
we use Eq.~5! for J, Eqs.~11! and~12! for Ex(x501), and
Eqs.~88! and~9! for Ey . For the latter we use from Eqs.~34!
and ~36!

J~y!/J05
4

p

d

w F11(
j .1

cj

j 2c1

Tj8GA12 ỹ2, uyu,
w

2
~59!

from Eq. ~32! and the Poisson boundary condition

Ex~y!ux5015 i
J̃0

G F ỹ1(
j .1

cj

j 2c1

Tj G Y A12 ỹ2, uyu,
w

2
~60!

and from Eq.~44!

FIG. 2. Current densityJ in an isolated grating versus positiony
over half a period. The solid~dashed! curve is for the full
~Mikhailov! theory. Only the real part ofJ/J0 is shown. The aver-

age conductance of the grating strips iss̄2151 V/h and w/d
50.8.
f
-
’s

n

Ey~y!5
J̃0

s̃0
F11(

j .1

cj

j 2c1

Tj8G , uyu,
w

2
. ~61!

In Figs. 2 and 3 the two sets of results are very simil
The current profile is nearly semielliptic and the changes
the charge distribution required by the full theory of Se
II C are small. These behaviors arise numerically since
higher cj ’s are small:c3 /c1'0.045, c5 /c1'0.0059,c7 /c1
'0.00075,c9 /c1'0.00010, neglecting their much smalle
imaginary parts.

In Fig. 4 significant differences appear. The two resu
being plotted differ roughly by a factor ofG/ i s̃0, which is
imaginary. The disagreement is not evidence for a seri

FIG. 3. Normal electric fieldEx just above the plane of an
isolated grating versus positiony over half a period. The solid
~dashed! curve is for the full~Mikhailov! theory. Only the real part
of Ex /E0 is shown. Parameters are the same as in Fig. 2.

FIG. 4. Parallel electric fieldEy in the plane of an isolated
grating versus positiony. The solid curve is the imaginary part o
Ey for the full theory. Its value is within a few percent o
20.000 55, while the real part is much smaller. The dashed curv
one version of the real part ofEy for Mikhailov’s theory. Its imagi-
nary part is much smaller. The spatial variation is due to the tails
the induced fields by neighboring strips. The parameters are
same as in Fig. 2 and we do not attempt to plotEy outside the
grating where it is much larger.
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flaw in Mikhailov’s approximation, but rather emphasiz
how his scheme inconsistently treatsEi . The quantityEy

(b)

plotted in Fig. 4 is the field produced by currents that a
exactlysemielliptic. If one instead considersJ(M )(y)/s(y),
one will instead have a small value that lies close toE(a)(y).
This choice of two very distinct forms ofEy is the basic
inconsistency in Mikhailov’s approach. Although disconce
ing in Fig. 4 it does not matter forS (M ) of Eq. ~20!. A
physical rationale for this seeming paradox is as follows
one assumes a semi-elliptic form forJ(y), then anEy profile
such as that shown byE(b)(y) in Fig. 4 is produced within
each strip. The electrons respond to this field, nearly scre
ing it out. The amount of charge rearrangement needed
this screening is, however, rather small~see Fig. 3! and the
profile of J remains close to semielliptic~see Fig. 2!. One
ends up with an internalEi like that plotted asEy

(a) in Fig. 2.
This explanation invokes the notion of strong screen

by a good conductor to resolve the difference between v
ousEy profiles in Mikhailov’s approach. One might wonde
if it breaks down if the grating strips become less condu
ing. In Fig. 5 we plot the absolute magnitude ofEy for sev-
eral choices ofs̄. This plotting scheme was chosen becau
the relative size of the real and imaginary parts ofEy depend
on s̄. A significant qualitative change occurs whens̄21

jumps from 100 to 1000V/h. For large values ofs̄ strong
screening occurs to bring the differentEy’s into agreement,
while for small values the variousEy’s are initially nearly
the same because so little screening is happening.36 Remark-
ably Mikhailov’s approximation forS gives three-digit ac-
curacy for all the cases of Figs. 4 and 5!.

Before ending this section we comment on the fact t
we did not attempt to plotEy pasty5w/2. The basic reason
is that we are avoiding numerical difficulties that do n
matter for the calculation ofS. Just outside each strip,Ei is
divergent@see Eq.~9!# and we have not found a general a
tractable expression for it, unlikeE' in Eq. ~60!. We did try
to use the Fourier series of Eq.~45!, but a finite sum of terms

FIG. 5. Absolute magnitude of the parallel electric fieldEy in
the plane of an isolated grating versus positiony. The thick ~thin!
curves are for the full~Mikhailov! theory. All parameters are th

same as in Figs. 2–4 except the conductances̄ whose inverse
equals 10, 100, and 1000V/h for the solid, the long-dashed, an
the short-dashed curves, respectively.
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cannot produce the singularity, whose influence slows
convergence fory'w/2. For the same reasons calculatio
based completely on Fourier series~with no Tj ) do not con-
verge well.5,35 Similar convergence difficulties have been r
cently discussed for theories that use Fourier expansions37 to
determine the fields near gratings of non-negligib
thickness.38–43Although these calculations examine a diffe
ent geometrical parameter range~with l comparable to both
the period and thickness of the grating!, they find analogous
numerical difficulties. The cited authors have developed
variety of techniques to get around these problems.

IV. GENERALIZATIONS

Our aim here is to show that the schemes developed
Sec. II can still be applied when the grating is not isolat
but instead has a dynamic system nearby. We do this o
for the simple, but widely practical, case in which the near
system is homogenous in they-z plane.44 Then its response
to the grating’s fields can be described in terms of reflect
amplitudes.

Start with a Fourier expansion of the electrostatic field
the nearby system lies beyondx5h, one can write forx
,h as a generalization of Eq.~13!

EW ~xW !5E0ŷ1 (
n.0

En„2sgn~x!sinGny,cosGny,0…e2Gnuxu

1 (
n.0

en~sinGny,cosGny,0!e2Gn(h2x). ~62!

Now view theen as arising from ‘‘reflections’’ of electro-
static waves off the system inx.h. Then usingrn for the
reflection amplitudes

en5rnEne2Gnh, ~63!

so Ei alongx50 can be written as

Ei~y!5E01 (
n.0

En cosGny, ~64!

where

En5En~11rne22Gnh!. ~65!

Equations~64! and ~65! generalize Eq.~45!. Next combine
Eqs. ~14! and ~62! with the Poisson boundary conditio
acrossx50. The result has the same form as Eq.~15!:

FnEn5 J̃n , ~158!

where

Fn5
ind

n S 11eb2
2ebrne22Gnh

11rne22GnhD . ~66!

We now have sufficient information to reproduce the a
proach to either Mikhailov’sS (M ) or the full S of Sec. II C,
with the only change being that theAjk of Eq. ~52! are to be
evaluated with theFn’s, rather thanFn’s. Because of the
exponential factor in Eq.~66!, only the first fewFn’s differ
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significantly fromFn’s. For calculations we call theAjk of
Eq. ~52! Ajk

(o) and can use for them the analytic tricks in E
~55!. Then the new

Ajk5Ajk
(o)1

s̃0

2 (
n.0

bn
( j )bn

(k)@1/Fn21/Fn# ~67!

are readily found.
To develop a model calculation, we make the further s

plification that the nearby system is a~stationary! 2D elec-
tron gas~2DEG! in the x5h plane characterized by the 2
conductivity

Ss5 i
Ne2/m*

v1 i/t
. ~68!

The reflection amplitudes are then easily found to be

rn5211S 11
2p i

veb
SsGnD 21

. ~69!

By ignoring 1/t the rn have simple poles at the frequencie

vn
25

2pNe2

m* eb

Gn . ~70!

The grating coupler will determine the extent that the
modes appear in a transmission experiment. To allow
unpolarized incident light we replace theT of Eq. ~2! with
1
2 (Tyy1Tzz), where5

Tzz5U 2

11Aeb1~4p/c!Ss
U2

Aeb, ~71!

FIG. 6. Transmission spectrum of a grating and nearby 2D
versus frequencyn. The solid ~thin! curve is for the full
~Mikhailov! treatment. The diamonds locate the modes of an un
turbed 2DEG; see Eq.~70!. See text for parameter choices;w/d
50.3.
.

-

e
r

Tyy5U 2

11Aeb1~4p/c!S1~4p/c!Ss
U2

Aeb, ~72!

with S from either Eq.~20! or Eq. ~53!, usingFn’s. Typical
results are shown in Figs. 6 and 7 where we have chosen
the 2DEGN5331011/cm2, m* /m50.067, andt515 ps.
The grating is described by a frequency-independents̄21

51 V/h with d52 mm andh/d50.08. We are plotting
the relative change in the transmission when the 2DEG
present and absent. The structure running off-scale at
frequency is due toSs alone. The modes described in E
~70! are responsible for the sequence of peaks at higher
quencies. The grating coupler shifts the mode locations
determines their strength in theDT/T spectrum in a fashion
that depends onw/d. Our particular interest is in how thes
influences depend on the theory used for the grating.
w/d50.3 in Fig. 6, Mikhailov’s approximation works quite
well, but for w/d50.7 in Fig. 7 it leads to 10% errors in
mode locations and sometimes more in mode strength. Th
discrepancies with respect to the full theory ofS are much
larger at fixedw/d than they were for the grating in isolation

In summary we have shown that Mikhailov’s approxima
analysis for a grating coupler with the special conductiv
profile of Eq.~5! can work quite well. The inconsistency o
its treatment of the internalEi is not a serious problem
However, the improved theory developed here avoids
inconsistency and is nearly as easy to evaluate. It should
used to ensure quantitative accuracy over the whole rang
w/d.

ACKNOWLEDGMENTS

Part of the calculations were done on the Cray Resea
Inc. T90 system at NPACI, San Diego, CA. We are grate
to Sergej Mikhailov for helpful correspondence.

G

r-
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Everything is the same as in Fig. 6 except that noww/d50.7.
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