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Analysis of a special model for a grating coupler
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A special model of a thin transmission grating used to couple infrared radiation to electronic excitations in
guantum wells is examined. The grating is viewed as a periodic array of two-dimen&Xihatonducting
strips separated by completely open apertures. The 2D conductivity across each strip has a semielliptic profile.
This simple functional form allows considerable analytic progress. We examine both the recent approximation
scheme proposed by Mikhailov for this class of grating and more complete theories. By physical arguments
and numerical examples we show that Mikhailov's approximation can work very well, but that it is also rather
easy to correct for its small errors.

| INTRODUCTION stant 3D conductivity that is distorted to large length alang
For the study of electronic excitations in quantum We”Sand negligible thickness along. It also results from a

by i_nfrared absorptiqn one ofFen uses an agjacent,_ Plan%rtrictly 2D model of any conducting strip for which the car-
grating to create field profiles that provide efficient

coupling®2 This wide experimental use of grating couplers "€rs are parabolically confined aloyg® .

has led to a variety of theoretical descriptions. In this paper W€ concentrate on the case where the incident light has
we examine one particular class of models for which detailedts electric field polarized along; i.e., orthogonal to the
calculations are possible. Since our interest here is in th@rating strips. The macroscopic quantity we calculate is the
behavior of the grating itself, we will usually consider thesetransmission coefficient, which can be parametrizedi by
models in “isolation”; i.e., the grating lies in the plane be-

tween vacuum and a homogeneous dielectric with nothing 2 ‘2

else nearby. The incident light enters along the normal from T= 1+ \/e—+(477/c)2‘ Ve, 2
vacuum. We examine the currents in, the fields near, and the b

transmission through the grating. wherec is the speed of light in vacuum ar¥l is they-y

The models we consider share some common features artement of the effective conductance of the whole grating
approximations. The infrared wavelength, whichiis 1/vin  layer. To determin& requires a microscopic calculation.
vacuum, is assumed to be much greater than the perifd The analysis is based on separating the total electric field
the grating, and the thickness of the grating is negligibleinto smooth and fluctuating parts:

Thus the grating is viewed as a two-dimensiof2) sheet

whose conductivity is periodically modulated. With light in- E=E.+E;. (3)
cident along the normal andd<<1, none of the diffracted

waves can propagate away from the grating. They insteadhe smooth part is described at frequencyy
combine to form a complicated local field structure that is _ _

periodic parallel to the surface and decays exponentially R . [ePXHrem P, x<0
away from it. Es=EBincy X1 gippx 0<X

We assume the grating conductivity is local and isotropic, ° '
but it may be frequency dependent and complex valued. ThevhereE;,. is the amplitude of the incident electric field and
grating lies on they-z plane atx=0, between vacuumx( p,=w/c and p,=(w/c)€, are the wave vectors of the
<0) and the substratext>0) with (bulk) dielectric constant propagating solutions of Maxwell’s equations in vacuum and
€,. The axes are oriented so the 2D conductiitgnduc-  bulk, respectively. The transmission and reflection ampli-
tance o is independent oz and periodic iny: o(y+d) tudes that appear here determine the transmission and reflec-
=o(y).2 The particular class of models we consider is de-tion coefficients:T =|ty|2+e, andR=r,|2. For the fluctuat-
fined by the following form for the spatial modulation of  ing field we use a variety of expressions, in all of which the

4

(over one periogd speed of light is set to infinity, thereby suppressing retarda-
tion effects. This electrostatic approximation is reasonable as
3
[1-72 <w/2 long asvd<<1.
a(y)= 1=y, Yl (1) Before developing approaches to a solution of the model
0, w/2<|y|<d/2 outlined above we remark that there are of course physical

gratings and grating theories that do not use all of the sim-
wherey=2y/w. The conducting stripes have widthand a  plifications proposed here®®~'°> However, the extensions
“semielliptic” profile. They are separated by apertures of and refinements they introduce are beyond the scope of this
width d—w. This form for o arises if each 2D conducting paper and we do not consider them in detail. Our simple
strip is viewed as the limit of an oblate spheroid with con-treatment can be quite adequate for grating couplers of far-
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infrared radiation and the particular conductivity profile of -1, ly|<w/2
Eq. (1) allows considerable analytic progress. ~ o~
In Sec. Il we derive the equations behind several schemes =4 _ 14 y sgny o< 9
for determiningX. We start from the approximation intro- \/2— wi2<ly|.
duced by Mikhailov*=2°Then by examining when and how y°—1

it can fail, we develop better solutions. These formal result%erej — 4x/c3. and the dimensionless paramefeis de-
are evaluated in Sec. Il in a set of model calculations. Thesﬁned t;)y 0 P

are chosen to illustrate both the physical content and the

numerical accuracy of the different approaches. Finally, in 5 5
Sec. IV we discuss how the theories for an isolated grating = 7T_Vd(lJr Eb)"L (10)
can be generalized to include the effect of a nearby two- 4 dz’

dimensional electron gas. ) o
with v=w/2mc. The electric field normal to the surface can

also be readily found. We use the requirement that the dis-
Il. FORMAL SOLUTIONS continuity in the normal displacement field is determined by
p in the grating plane. We shall refer to this constraint as

In this section we develop several approaches to solvin : 5 (0 H
e Poisson boundary condition. Here it implies near0

our basic model.
o - - Jo
A. Mikhailov’'s approximation X-Eing(Y)=E,(y)= |ng(y)sgr(x), (1D
A remarkable feature of our model for the conducting
strips is that any isolated strip when subjected to a unifornwith
applied electric field along responds so that the total elec-

tric field along§/ inside that strip is independent of position. y ly|<wi2

This property is well known for 3D ellipsoids with constant & (y)= 1_~2’ y (12)
conductivity?* We examine how it arises in 2D for a single * y

strip because that will also show why it fails for an array of 0, w/2<l|y| .

strips.

If a constant applied field does lead to a constant internal In order for our description to be consisteff, should be
field, then the induced current would be of semielliptic form, constant within the conducting strips. If only one strip is
present, this is true by Eq9). However, for a grating we
o 4_ _ have a periodic array of strips and must use linear superpo-
y-J(y)=J3(y)=—=IV1-y% |y|<w/2 (5)  sition. This is a trivial change fad, 5p, andE, nearx=0
™ since all of these gquantities vanish away from the conducting

— ) ) strips. But when we rewrit& as
whereJ=(d/w)J, is the current density (esu/cmsec) aver-

aged over the width of the strip whilg, is its average over i
one period of an array. From the equation of continuity, the Ej(y)=Eo+ =0 > g(y—1d), (8"
induced charge density (esu/@nin the strip would be I A

5 with | running over all integers, Eq9) then implies that the
i 8d y induced field is no longer constant across any strip. The de-
Sp(y)=———Jo —, |y[<w/2 (6)  caying tails of the fields produced by neighboring strips ex-
©mwW 1-y? tend into each strip, and the current distribution should
change.
where thew is the frequency of the applied field. Now use  In Mikhailov’'s approximation®?°one ignores this incon-
Eqg. (6) in Coulomb’s law to find the induced electric field sistency and assumes that the current density, even with a
along§/ atx=0-: grating array, has a nearly semielliptic form. This physical
ansatz is introduced as follows into a mathematical descrip-
20 dy’ tion based on Fourier series. In the electrostatic limit the full
J.E. — _p o 22X ' electric field near théisolated grating can be expanded for
V-Eina(y)=Ej(y)~Eo=— f oy P e

where k=(1+¢,)/2 allows for the screening by the sub- = - _ » _ . —Glx|
strate dielectric an&, is the amplitude of the applied field. E(x)= Eoy+r§0 En(=sgrix)sinGyy,cosGyy,0)e '
The integral yield%’ (13

5 where G,=27n/d with n running over positive integers.
_ Yo The three components of the vectors in the sum are for the
Ei(y)=Eo* r i), ® X,y,z directions, respectively. In reference to Eg), what
we have called the(smooth applied field Eq=E\tg
with =E;,o(1+r), while theE, for n# 0 describe the fluctuating
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field. A similar expansion can be made for the current dennot happen withs (M) becausd™ of Eq. (10) saturates and
sity in the plane of the grating A1, decreases only to 0.285wt=d. So the ansatz definitely
fails in this extreme.

Before developing a bett&, we briefly consider how to
evaluateA,;. A direct sum onn is possible, but converges
slowly. The convergence problems are alleviated if one uses
The terms in the seriegl3) already satisfy the boundary the Poisson summation formula to convert the sum tman

condition of continuous electric field parallel to the surface.integral and furthermore changes the contour for the
Using the equation of continuity the Poisson boundary conintegral®:17:19:25

J(y)=Jp+ 2, J,C0SG,y. (14)
n>0

dition implies
- 2mw s J2(Gw/2)
FrEn=Jn, (195 Au= d v Gw/2
with 2
© Ji(u) -
. =2f du—=—[1+2> cosuld
Fo=ivd(1+¢€p)/n. (16 0 u >0
Now write the spatially averaged current density as o Ii(u) ~
=1—4f do—— > e
0 >0

1 (di2 1
do=3 | ayeWEW=0Eet 5 S aiEn, (17 2
d —d/r2 2 n>0 * |1(U)/U
=1—4f do——, (23
where theo, are (cosing Fourier coefficients ofr(y). For o (e""=1)

th iellipti file of Eq(1),%* ~
e semielliptic profile of Eq(1), whered=2d/w andl, is a modified Bessel function of order

3 (GwWID) ) 1. The i_ntegralff)c duJ(u)/u=1/2 is from Ref. 26 and the

w2 - By, (18 integration contour was rotated hyw/2 between the second
" and third lines. Note that,, is real-valued and depends only

whereJ; is the Bessel function of order 1. Combining Egs. on the ratiow/d.

(15 and (18) into (17) yields

onlog=

B. Density and potentials

Jo= Bt 90 2 ﬂglrjn For a more systematic approach3o we next consider
0-r0=0t o = F explicitly how a single strip responds to the electrostatic po-
_ tentials produced by its neighbors. This analysis is straight-
7o < BMIL 3, forward for the case when the electrons in a grating strip are
=000 1= 2 HZO Fn ' (19 parabolically confined alon§ because the density response

functions of this system are known “exactly’.We put ex-
Equation(19) is exact but thel,, are unknown. However if actly in quotes because the following expressions are derived
J(y) is “close” to Eq. (5), one has), /3o~ B>, which pro- in a “classical continuum™ approximation that ignores pres-
duces Mikhailov’s approximation fo¥ =J,/E: sure gradient forces and quantum size effects on the motion

alongy.*>?"-2°This is reasonable for the systems of interest

4 M)~ here since the Fermi wavelength of the electrons in the grat-
TE ~oo/(1=Aq), (20 ing is much smaller than the strip widtla (~1 wm).
The key function is theself-) susceptibility x®, which
where determines thélinearly) induced density in one strip due to
an external potentia$® at frequencyw:®
PO > G EOA 21 wi2
T2d Ry T 2 3p(y)= J Ay X0y ey, (29

It is not easy yet to estimate the error in this result. On thg, or8°
one hand, asv/d—0, it is clear that within any strip the

tailing fields of i.ts neighbors’ gontributilons 6 are small 2i T, V) k02 [ 2] Tj(?')
and slowly varying. Then the intern&, is essentially con- & (y y")=> [ — — —
stant. On the other hand, consider Mikhailov’s prediction for P TW 12 w’— wjz ™ \J1-y2
large . Then (25)
A _ir and the magnitude of andy’ must be less thaw/2. The
TE(M)—> T (220 T;(y) are Chebyshev polynomials of the first kffiéind the
1 sum index onj is over positive integers. The confining po-

If we further letw—d we expectd to diverge because one tential alongy is described by m* Q2y? with m* the effec-
then has a continuous, perfectly conducting sheet. This dodive electron mass. The frequencies of normal modes con-
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fined alongy but independent of are w;=+jQ. Finally o e > T,(y)
w?=w(w+i/7), where 1f parametrizes the strength of re- (T NI=yT =] \/—~z (33
sistive scattering within the strip. 1=y
Corjsider first a single strip subjecied toNa uniform field\here primes denofg derivatives, transforms E32) into
alongy, so ¢®{(y) = —yE,. Then sincey=T,(y) and"* an expansion of the current density
1 dy ~ . W Ci_ ~ =
|| ——mom@ -2 (26) Ayp)=—ioy D ATEGNIF, lyl<we. (@34
-1, /l_y2 I
we find from Eqgs.(24) and (25) To integrate this over the strip we use from E6)
~ w/2 —_ — W
op(y)=—— Eo= o lyl<wi2. —wi2 4
TNy et to find
(27
Only the lowest frequencyKohn) mode is dipole-allowed. Jo= — 2—7Til“c (36)
This 8p® has the same form as our earlier res@); which 0 PR

may be rewritten as s . )
Hence to determind, we only needc,, which, however, is

Kk Jg Y coupled to the othec;’s through Eq.(31). A closed set of
Sp(y)=—— — . lyl<wi2. (6") equations can be obtained by truncating the sum in(&2).
2m il 1-y? and then projecting Eq31) onto successiva;.

. ) To illustrate the method, let us keep oy andcs. They
The superscrips is a reminder that the only electron-electron may be(approximately determined from the projections of
interactions allowed are within an isolated single strip. EquaEq_ (31) onto T4, using Eq.(26)
tions (8) and (9) show that the internal field along in an

isolated single strip i€,—iJo/I" S0 2

K

C1= Cg_s) + — = [60 11C1+ ov 1303], (37)
~ o~ ~ - - 4 wZ_QZ
J0:0'0(E0_|J0/F):O'0E0/(1_0'0/|F) (28)

o . T
Substituting this into Eq(6’) we get complete agreement and ontoTy
with Eq. (27) if 9k 02
- - C3=—— —[ 5U3101+ ov 33C3], (38)
0o /iT=0% 2. (29) 4 »2-307

This result is consistent with the relation between the equiwhere from Eq(27) ¢{¥= — kEo/27[ Q?%/(0?—0?)] and
librium density and the fundamental frequericy.

In a grating array of strips we must augment the external 271 _ 21 _ TJ@ 5 Ty
potential felt by any one strip. Since there is no variation 5vik=—f dy—j dy’ — 5v(y,y’)—~.
alongi, the electrons interact like lines of charge with Cou- most md Vi-y? Vi-y'?

lomb coupling of the form (39
5 The tilde onév denotes a change in its meaning. We con-
v(y,y)=——Inly—y’l. (30)  sider the interaction between electronsyah one strip and
K

electrons ahd+y’ in another stripn# 0 periods away. Fur-
thermore, we sum over all possibiend drop constant terms

to define
r\ 2
y-y
1‘( nd ) }

2 l(y_y/

Now formally separate into v(®+ sv where forv® bothy

andy’ lie in the same strip while fofv, y andy’ must be in

different strips. Then a mean-field argument yields for a pe- 2

riodic array in a uniform applied field Su(y,y')=— - > In
n>0

Sp=x9-[—y'Eg+ 6v-8p]=p D+ x9). 8v - 8p, @) 2 y=y’
A

4
+ ...

K n>0

= nd +2 nd '

where we use centered dots for convolution integrals. This
result implies thatdp can be expanded as (40

T'(?) where the expansion in the second line is reasonablevfor
_ J <d, since the maximum value 0§ —y’| is w. It is straight-
1 =2, C , <w/2 32 ' i .
p(Y) zj: ! ,/1_92 vl 32 forward to work out the separaté . Expansions of/ in
terms ofT; for j<I are in Ref. 31 and the sums of inverse
with only odd j’s contributing to the sum. Combining the powers ofn become Riemang functions, which also are in
equation of continuity with another identity Ref. 31. We find that Eq€37) and (38) become
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© 0?2 mw\?1 1 1 {7w)?2 aw\4 1 a7
c1=Ct '~ =7\ 2d) 8/ "10l 2d 1+ 29 380%) (37)
o 90?2 aw\4 1 3g

C3= T 0|\ 2d 360°1 T (38)

The ellipses denote terms missing because of the truncation i®8qEliminatec; to solve forc, and use Eq(36) to find
(4mlc)2=1Ty/Ey:

A7 irQ?

_2%
c 1 7'rW2111'n'W2
“\2d) 8/*T10l 20 T

(41)

Q2 w8 1)2 '
=2 3n2l2d) \1200 T

Although the algebra is tedious, the final result¥ors clear. We next equate Egs(44) and (45 and project onto
There is a slight shift of the dipole resonance of a single striprj' V1-y2 over|y| <w/2. One then needs two different sorts

to of integrals. The first is
02l 1 aw\21 1 1 [ 7w\?
“\2d] 8|* 10| 2d

1/mw\8 1\2
_5(%) (1_20) e ] (42 which follows after an integration by parts from Eqg6)
and(33). For the second set of integrals we define

+o.

o~ 52T/ T! 71--2
_1dy 1=y T =510, (46)

due to interactions between the strips and anotiarak
resonance neaf3). To compare with Mikhailov's approxi-

N4y =
mation rewrite Eq(20) using Eq.(29): ,89)=;J_1dy 1—y2TJ-’ cosG,y. (47)
4 - N . N
TE(M)MFQZ/((»Z—QZA“). (43  If jis an odd integer these may be transformed®hto
His result follows in effect from keeping only thje=1 term () 4j2ji-1 J;(G,w/2)
in Eq. (32). For the dipole mode the amounts to a relative Bn'= W (48)

error of o(w/d)®, which is very small for reasonable/d
values. The resonance af3Q is, however, completely whereJ; is a Bessel function of ordgr Then Egs(44) and
missed, but its amplitude in E¢41) is also small. Equation (45) together yield

(42) has noticeable differences wnﬁzA‘ for w/d=0.5.

These are mostly due to the expansion in EH40). ~ ~

Mikhailov's approximation keeps only one term in E§2), S _ 90ko 81t 0 S E.BU. (49)
' Jo n>

but all terms in Eq(40). Including higher-order terms in Eq. €1 Jy
(40) within the present approach is possible but clumsy. We

turn instead to a slightly different approach that does noNow replaceE, via Eq. (15) with J,/F, and use from Eq.
need such an expansion. (34)

C. Current and fields _ w2 _ _ w0 Ck
Our last approach t& is based on equating two different Jn=af_W/2dycoany J(y)=J02k B K2c, (50
expansions of(y). We first useJ(y)=o(y)E(y) com-

bined with o(y) = (4/7) (d/w)oo\1—Yy? inside a strip and tO re-express Eq49) as
Egs.(34) and(36) to obtain

C; ‘a'oEo Ck
JO Ck C—J: — > Ajk (51)

Biy)== 2 5 -Ti, Iyl<w2 (44) T

0'0 C
The alternative expansion comes from Et) at x=0: where
(7) g(k)

g0 Br’B (o
Ej(y)=Eo+ >, E,COSGyy. (45) A= 2 —=——=—Aj. (52)

n>0 2 S0 Fyu ir
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For j=1 this implies

Ck
/(1—§ Alkkz—cl), (53)

which nicely generalizes Mikhailov's approximatigi20).
Thecy's for oddk>1 can be found by truncating the set of
equations

TEEjO/EOZBO

Cj Ck

—=Aj;+ Ay—, |j>1. 54
c, ‘1 szl JkkzCl J (54)
For numerical work the4;,c can be reduced as in E@®3):
27W o J:i (G W/2)J (Gyw/2)
- 2) 2 j+k—2"11 2N n
Ak="g nzoj K- G wi2
. © Ji(u)Jy(u ~
:2j2k2i1+"‘2J duM 1+2> cosuld
0 >0
o (o)l ~
:j35j,k_4j2k2f do i(0)1(v) S e vid
0 v >0
= | (v)l(v)lv
=135j,k—4j2k2f gy LY )d"( o (55)
0 (e"“—=1)
The integral used in the third line,
» 1
f du J](U)Jk(u)/uz—ﬁl K (56)
0 2] >

is from Ref. 32. Some insight is gained by separatitg
= A+ 54, where A is independent ofi, while for
small w/d, sAjec(w/d)*¥. One has forj>1 [using Eq.
(29)]

G

SAji| |G
j2

[EZ—QZ(H
C1

Ck
2 1
kec,

=0%5A;,+07? gl S Ak (54)

(k#1])
which suggests that the highey will be of small influence
unlessw/d—1 and/or the frequencw is near one of the

higher (dipole-forbidden modes: w;= JjQ. In turn if the
higher c; are unimportant, then Mikhailov's approximation

should be good. To quantify these claims requires numeric

work.

Ill. MODEL CALCULATIONS
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1.0

0.0

20 35

15 4
viem)

40

FIG. 1. Transmissiol through an isolated grating versus fre-
guencyv. The solid(dashedl curve is for the full(Mikhailov) ..
The conducting strips of the grating have the response of quantum-
well wires; see text for parameter choices. The insert expands the
plot near the two sharp structures.

16 Ne?
02=— (57
K m*w
then has the valueQ/27c=20.29 cm!. We set 7

=200 ps, andd=2 um. In Fig. 1 the transmission coeffi-
cient over a range of frequencies ndaris shown for the
choice ofw/d=0.9. Results are plotted for two differeht
expressions. One is from E¢7), cutting off thek sum at
k=9, and the other is from Ed20), Mikhailov’'s approxi-
mation. We have chosen a large valuevofd in order to
enhance the differences between fis. Loweringw/d to
0.7 or less makes the two curves essentially lie on top of
each other. The large structure centered an
=14.88 cm? is due to the(significantly shifted dipole-
allowed mode, while the small dip at,=34.68 cm? is
from the excitation of thg =3 mode at nearly/3Q. The |
=5 mode produces a blip at 45.3 ¢ but it only changes
T in the fourth digit.

The inset in Fig. 1 more clearly shows the two main struc-
tures. Mikhailov’'s approximation does quite well in the
Kohn mode: it gives the correct depth and width and misses
the resonance location by just 0.5%. The higher mode only
shows up in the improved theory. Its strength and width are,

Jjowever, quite small, basically because the mode is dipole-

forbidden. For instance, its linewidth is set by#@r) !
=0.03 cm! with negligible contribution from radiation
damping*®~?°which dominates the width of the Kohn mode.

The computational effort for the two sets of results is similar.

In all the calculations below we use for the dielectric sub-One only needs a few more Bessel functions to evaluate Eq.
strate e,= 12.8, which is appropriate for GaAs. The trans- (53). If |, is produced by a downward recursidtthe higher
mission into the bulk in the absence of any gratidg«0) is | are already generated.
thenT=0.683. We have also done a series of calculatior®d$ at fixed

For the grating strips we first chose parameters so theiirequency ¢d=0.005) when the grating strip conductance
intrinsic modes lie in the infrared. Mikhail8¥%describes the has metallic values, sayd~1 Q/C]. Again we compared
grating in this limit as quantum-well wires. We use an effec-yarious results fo¥ . As a function ofw/d, we find that the
tive mass ofm*/m=0.067 and an average equilibrium den- error in3™) does not exceed 1% untit/d>0.9. As noted
sity of N=3x10"%cn?. The fundamental frequency deter- earlier > should diverge wheno—d, but ™) saturates.
mined by° The S from Eq. (53) does not appear to saturate. It is inter-
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y/d

0.2

0.1

0.0 0.4 0.5

FIG. 2. Current density in an isolated grating versus positign
over half a period. The soliddashedl curve is for the full
(Mikhailov) theory. Only the real part a¥/J, is shown. The aver-
age conductance of the grating stripsas'=1 Q/O and w/d
=0.8.

esting that its growth tracks closely the results for an array of
perfectly conducting 2D strips. An expression for this ideal-
ized case can be found by a slight generalization of Lamb’s

century-old analysié* The model has strips of widtiv and
period d, across which the conductivity is constafrtot
semielliptio and infinite. In our notation the resultiry is®

4

TyO=- ; Pd

p- (1+eb)lnse({ 5 d)

which has a In divergence ag/d—1. We find that the
imaginary part of2, from Eq. (53) tracks this result fairly
well for - 1<1 Q/O. (The real part o is several orders
of magnitude smaller.For example atr =1 Q/O and
w/d=0.994, Img) differs from —i3 (") by less than 1%,
but differs from ImE&™)) by more than 20%.

To provide some microscopic insight into the grating’s

(58)

behavior we show in Figs. 2—4 plots of current and fields in

the grating plane. The calculations usel=0.005, o !
=1 /0, andw/d=0.8. For this cas&™) and the full>

of (53) differ by about 0.1%. The quantities plotted come
from either Sec. Il A or Secs. Il B and Il C. For the former
we use Eq(5) for J, Egs.(11) and(12) for E,(x=0"), and
Eqgs.(8") and(9) for E, . For the latter we use from Eq&34)
and(36)

1+E —T’
i>1j%c,

4 d
J(y)/JO:

w
yl<5
(59

from Eq. (32) and the Poisson boundary condition

/ﬂ, i<y

(60)

3o
Ex(Y)lxor =i |V 2 —T

]>1J Cl

and from Eq.(44)
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0j3 0:4 0.5
y/d

0:1 Of2

FIG. 3. Normal electric fieldE, just above the plane of an
isolated grating versus positionp over half a period. The solid
(dashed curve is for the full(Mikhailov) theory. Only the real part
of E, /Eq is shown. Parameters are the same as in Fig. 2.

5= (1% SET| <. @

In Figs. 2 and 3 the two sets of results are very similar.
The current profile is nearly semielliptic and the changes in
the charge distribution required by the full theory of Sec.
Il C are small. These behaviors arise numerically since the
higherc;’s are small:c3/c,~0.045, c5/c,;~0.0059,c;/c,
~0.00075,cqe/c;~0.00010, neglecting their much smaller
imaginary parts.

In Fig. 4 significant differences appear. The two results

being plotted differ roughly by a factor dt/i'o, which is
imaginary. The disagreement is not evidence for a serious
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FIG. 4. Parallel electric fielcE, in the plane of an isolated
grating versus positiog. The solid curve is the imaginary part of
E, for the full theory. Its value is within a few percent of
—0.000 55, while the real part is much smaller. The dashed curve is
one version of the real part &, for Mikhailov’s theory. Its imagi-
nary part is much smaller. The spatial variation is due to the tails of
the induced fields by neighboring strips. The parameters are the
same as in Fig. 2 and we do not attempt to Hgtoutside the
grating where it is much larger.
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" " cannot produce the singularity, whose influence slows the

S ey convergence foy~w/2. For the same reasons calculations
T ) based completely on Fourier seri@gth no T;) do not con-
oal ] verge well®>3® Similar convergence difficulties have been re-

cently discussed for theories that use Fourier expangions
determine the fields near gratings of non-negligible
003 | y thickness’®~*3 Although these calculations examine a differ-
ent geometrical parameter ran@éth A comparable to both
the period and thickness of the gratinthey find analogous
numerical difficulties. The cited authors have developed a
variety of techniques to get around these problems.

IE,VE

02

01 F

IV. GENERALIZATIONS

00 F 1 . . .
0o o3 op o8 04 Our aim here is to show that the schemes developed in

y/d Sec. Il can still be applied when the grating is not isolated,
but instead has a dynamic system nearby. We do this only
_ _ " X _ for the simple, but widely practical, case in which the nearby
the plane of an isolated grating versus posityorThe thick (thin) system is homogenous in tlyez plane‘.m Then its response

curves are for the fullMikhailov) theory. All parameters are the , yho grating's fields can be described in terms of reflection
same as in Figs. 2—4 except the conductancevhose inverse amplitudes.

equals 10, 100, and 100Q/0 for the solid, the long-dashed, and
the short-dashed curves, respectively.

FIG. 5. Absolute magnitude of the parallel electric fi&d in

Start with a Fourier expansion of the electrostatic field. If
the nearby system lies beyond=h, one can write forx

flaw in Mikhailov’'s approximation, but rather emphasizes<h as a generalization of EqL3)

how his scheme inconsistently tredg. The quantityE!” o )
plotted in Fig. 4 is the field produced by currents that are E(x)=Eyy+ >, E,(—sgnx)sinG,y,cosG,y,0)e” G
exactly semielliptic. If one instead conside®™)(y)/a(y), n>0
one will instead have a small value that lies clos&®(y).
This choice of two very distinct forms o, is the basic + > e,(sinG,y,cosG,y,0)e” Cnh=x), (62
inconsistency in Mikhailov’s approach. Although disconcert- n=0
ing in Fig. 4 it does not matter foE ™) of Eq. (20. A Now view thee, as arising from “reflections” of electro-
physical rationale for this seeming paradox is as follows. Ifg44ic waves off the system i>h. Then usingt, for the
one assumes a semi-elliptic form fafy), then anE, profile  (afection amplitudes
such as that shown b (y) in Fig. 4 is produced within
each strip. The electrons respond to this field, nearly screen- e,=t,E,e M, (63)
ing it out. The amount of charge rearrangement needed for
this screening is, however, rather sm@aiée Fig. 3and the soEj alongx=0 can be written as
profile of J remains close to semiellipticsee Fig. 2. One
ends up with an interndt like that plotted a£§a) in Fig. 2.

This explanation invokes the notion of strong screening
by a good conductor to resolve the difference between vari-
ousE, profiles in Mikhailov's approach. One might wonder where
if it breaks down if the grating strips become less conduct- oG
ing. In Fig. 5 we plot the absolute magnitudef for sev- En=En(ltre” o). (65)

eral choices otr. This plotting scheme was chosen becauseEquations(64) and (65) generalize Eq(45). Next combine
the relative size of the real and imaginary part&gfdepend  Egs. (14) and (62) with the Poisson boundary condition
on o. A significant qualitative change occurs when!  acrossx=0. The result has the same form as ELp):

jumps from 100 to 1000Q2/. For large values ofr strong _

screening occurs to bring the differely’s into agreement, Fnén=Jn, (15)
while for small values the varioug,’s are initially nearly

Ej(y)=Eo+ ngo &,cosG,y, (64)

the same because so little screening is happefiiRgmark-  Where

ably Mikhailov’'s approximation for2 gives three-digit ac- ) Coeh

curacy for all the cases of Figs. 4 angd 5 P :ﬂ 14 e _Zfbtne " 66)
Before ending this section we comment on the fact that " n b 1+v,e 2Cn)

we did not attempt to ploE, pasty=w/2. The basic reason

is that we are avoiding numerical difficulties that do notWe now have sufficient information to reproduce the ap-
matter for the calculation af. Just outside each strifgy is ~ proach to either Mikhailov's™) or the full 3 of Sec. Il C,
divergent[see Eq(9)] and we have not found a general and with the only change being that ti#g, of Eq. (52) are to be
tractable expression for it, unliké, in Eq. (60). We did try  evaluated with theF,’s, rather thanF,’s. Because of the
to use the Fourier series of E@5), but a finite sum of terms  exponential factor in Eq66), only the first fewF,’s differ
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FIG. 6. Transmission spectrum of a grating and nearby 2DEG o .
versus frequencyv. The solid (thin) curve is for the full FIG. 7. Transmission spectrum of a grating and nearby 2DEG.

(Mikhailov) treatment. The diamonds locate the modes of an unperEVerything is the same as in Fig. 6 except that netd=0.7.
turbed 2DEG; see Eq.70). See text for parameter choices{d ‘2

= 2
0.3. ‘ \/E—b: (72)

1+ e+ (4mlc)E+(4mlc)y
significantly fromF’s. For calculations we call thé, of \/—b (4m/c)2 +(4mlc)2s

Eq. (52) A{Y and can use for them the analytic tricks in Eq. With > from either Eq.(20) or Eq. (53), using7,’s. Typical
(55). Then the new results are shown in Figs. 6 and 7 where we have chosen for

the 2DEGN=3x10'%cn?, m*/m=0.067, andr=15 ps.
?ro ' The grating is described by a frequency-independent
A=A+ 5 2 BYBYIUR—1F.] (67 1 /0 with d=2 wm andh/d=0.08. We are plotting
the relative change in the transmission when the 2DEG is
are readily found. present and absent. The structure running off-scale at low
To develop a model calculation, we make the further simfrequency is due t® alone. The modes described in Eq.
plification that the nearby system is(stationary 2D elec-  (70) are responsible for the sequence of peaks at higher fre-
tron gas(2DEG) in the x=h plane characterized by the 2D quencies. The grating coupler shifts the mode locations and
conductivity determines their strength in thReT/T spectrum in a fashion
N/ m* that depends ow/d. Our particular interest is in how these
=i — (68)  influences depend on the theory used for the grating. For
w+ilt w/d=0.3 in Fig. 6, Mikhailov’'s approximation works quite
well, but for w/d=0.7 in Fig. 7 it leads to 10% errors in
mode locations and sometimes more in mode strength. These
-1 discrepancies with respect to the full theoryXfare much
(69 larger at fixedv/d than they were for the grating in isolation.
In summary we have shown that Mikhailov's approximate
By ignoring 1/ the v, have simple poles at the frequencies analysis for a grating coupler with the special conductivity
profile of Eq.(5) can work quite well. The inconsistency of
ZWNGZG (70 its treatment of the internaE; is not a serious problem.
n However, the improved theory developed here avoids this
inconsistency and is nearly as easy to evaluate. It should be
The grating coupler will determine the extent that theseused to ensure quantitative accuracy over the whole range of
modes appear in a transmission experiment. To allow fow/d.
unpolarized incident light we replace tAeof Eq. (2) with
3(Ty,+T,), where ACKNOWLEDGMENTS

Tyy

The reflection amplitudes are then easily found to be

ty=—1+

142705 6
a)_eb s<n

wi=
n
m* €p

2 ‘2 Part of the calculations were done on the Cray Research-
= Ve, (71)  Inc. T90 system at NPACI, San Diego, CA. We are grateful
1+ \/5_b+(477/C)25‘ to Sergej Mikhailov for helpful correspondence.
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