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We report on a study of the temperature and Zeeman-coupling-strength dependence of the one-particle
Green’s function of a two-dimensional~2D! electron gas at a Landau-level filling factorn51, where the
ground state is a strong ferromagnet. Our work places emphasis on the role played by the itinerancy of the
electrons which carry the spin magnetization, and on analogies between this system and conventional itinerant
electron ferromagnets. We go beyond self-consistent-field theory by evaluating the one-particle Green’s func-
tion using a self-energy, which accounts for quasiparticle spin-wave interactions. Our calculations predict a
sharp peak at a large bias voltage in the 2D-2D tunneling current, with an integrated strength that increases
approximately linearly with temperature. We compare calculated properties with experiment, where available,
and with predictions based on numerical exact diagonalization and other theoretical approaches.
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I. INTRODUCTION

The physics of a two-dimensional electron system~2DES!
in a magnetic field is in many respects unique. Since
degeneracy of the discrete Landau levels increases in pro
tion to the magnetic-field strength, all electrons can be
commodated in the lowest Landau level~LLL ! for suffi-
ciently strong fields. A Landau level then behaves, in ma
respects, like a band of zero width, and the system can
regarded as the extreme limit of a strongly correla
narrow-band electronic system. In this paper we focus
spin magnetism of the electron system at a Landau-level
ing factorn51 corresponding, when the spin degree of fre
dom is accounted for, to the case of a half-filled ‘‘Land
band.’’ At this filling factor, it is known1,2 that, when disor-
der can be neglected, the ground state of the 2DES is fe
magnetic. We are motivated to study this system becau
encompasses many of the difficulties3 which have con-
founded attempts to build a complete theory of metallic f
romagnetic systems, yet is free of the troubling but inciden
consequences of a complex band structure. The fin
temperature properties of metallic ferromagnets are more
volved than those of insulating ferromagnets, because of
importance of both spin and charge degrees of freedom
much so that much early theory was based on misgui
attempts to assign magnetic and conducting propertie
separate classes of electrons. Despite an immense effor
many advances,3 no completely satisfactory theory of meta
lic ferromagnets exists. Progress toward understanding
tallic ferromagnets has been hampered in part by the qua
tative importance of details of the electronic band structu
which may not be accurately known or which may be dif
cult to render faithfully in going beyond mean-field theori
of many-body effects. The present system has no such d
culties. We regard the quantum Hall ferromagnet as a la
ratory for testing theories of interplay between quasipart
and collective magnetic degrees of freedom in metallic m
nets. In this work we predict the appearance at finite te
PRB 620163-1829/2000/62~4!/2640~19!/$15.00
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peratures of a large-bias peak in the tunneling conducta
between these 2D ferromagnets due to long-wavelength
lective fluctuations in the spin-magnetization organization

Our work is also motivated in part by recent experimen
progress. Barrettet al.4 were able to measure the temperatu
dependence of the spin-polarization and nuclear-sp
relaxation rates at fixed filling factors aroundn51 using
nuclear magnetic resonance techniques. Later, Manfraet al.5

extracted the spin magnetization from magneto-optic
absorption measurements. It is our hope that critical co
parison between experiment and theory will yield insigh
with wider relevance to the finite temperature properties
itinerant electron ferromagnets. It is, however, important
recognize that the 2DES atn51 is different from conven-
tional itinerant electron ferromagnets in several import
ways. Most importantly, two dimensionality implies that i
spontaneous spin magnetic moment will not survive at fin
temperatures (Tc50.) In addition, the strong magnetic field
which through its coupling to the electron’s orbital degre
of freedom produces Landau levels, also produces a Zee
coupling to electron’s spin degree of freedom. For the m
studied 2DES’s, those formed at GaAs/AlxGa12xAs hetero-
junctions, the Zeeman coupling is quite small compared
both Landau-level separations and the characteristic inte
tion energy scale. As we discuss below, the main effec
Zeeman coupling at low temperatures is to cut off the
crease of the magnetization due to the thermal excitation
very long-wavelength spin waves, and to mitigate con
quences of the system’s reduced dimensionality.

The recent experimental work stimulated two differe
theoretical approaches, which focus on different aspect
the spin-magnetization physics. Read and Sachdev6 com-
pared experimental data with large-N limits of a quantum
continuum field theory model, which provides an accur
description of the long-wavelength collective behavior of t
electronic spins. In this theory, physical properties are
pendent only on the two independent ratios between the t
mal energykBT, the Zeeman coupling strengthDz , and the
2640 ©2000 The American Physical Society
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spin-stiffness energyrs . Recently this work was extende
by Timm et al.7 The field-theory description is expected8 to
be accurate at low temperature when the Zeeman coup
strength is weak. This approach achieves a reasonable o
all agreement between theory and experiment, at least at
temperatures. Our work has a different motivation and f
lows a different line. We are interested in addressing
temperature dependence of the underlying electronic st
ture, as it changes in concert with the change in the s
magnetization. Hence we focus on the one-particle Gree
function. A brief account of some parts of this work w
published previously.9 From the Green’s function we ca
calculate the electronic spectral function and hence the m
netization, the tunneling density of states, and~if vertex cor-
rections are neglected! the nuclear-spin-relaxation time. Th
approximation we use is one which accounts for the inter
tion of quasiparticles with thermally excited spin waves. T
approximation has deficiencies. At low temperatures an
low Zeeman energies the magnetizations we calculate do
appear to be in quite as good agreement with experimen
magnetizations from large-N approximations in the field-
theory calculations. At medium and high temperatures,
do not account systematically for temperature-depend
screening effects which are likely to be important. So
progress in the latter direction was recently reported
Haussmann,10 whose bosonized self-consistent rando
phase approximation yields satisfying results at high te
peratures, but fails at low temperatures. Progress on t
fronts, which can be checked by comparison with expe
ment, may suggest routes toward more generically satis
tory theories of itinerant electron ferromagnets.

Our paper is organized as follows. In Sec. II we brie
review established results for the ground state and elem
tary excitations of the 2DES atn51, which will be impor-
tant for subsequent discussion. The ground state has all s
aligned by an arbitrarily weak Zeeman coupling. If we n
glect Landau-level mixing, and we do throughout this pap
this state has no pure charge excitations. Its elementary
citations all have a single reversed spin. It turns out that
the quantum Hall regime, the Hartree-Fock approximat
~HFA! is exact for the ground state, and the time-depend
Hartree-Fock approximation is exact for its elementary ex
tations. The situation is therefore similar to that for ma
typical metallic ferromagnets, where there is substantial e
dence that the ground state is well described by the Hart
Fock-like Kohn-Sham equations11 of the spin-density-
functional formalism, and that its elementary excitations
well described by a time-dependent generalization
density-functional theory. In Sec. III we discuss the appli
tion of the self-consistent Hartree-Fock approximation at
nite temperature. The failure of this approximation at fin
temperatures is analogous to the well-known failure of
band theory of magnetism to provide even a rough acco
of the ordering temperature. The approximation, on wh
the present work is based, is discussed in Sec. IV. We ob
an expression for the electronic self-energy by analytica
evaluating a particle-hole ladder summation involvi
Green’s functions of opposite spin. We emphasize that in
microscopic theory, it is essential to account for screen
even in the low-temperature limit. Section V discusses
sults for the spin magnetization, the spin-lattice relaxat
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rate, and the temperature-dependent 2D-2D tunnelingI -V
relation, all based on this self-energy approximation. In t
section we also compare our results with available exp
ments, with other approximate theories, and with data fr
finite-size numerical calculations of the magnetization a
magnetic susceptibility. We conclude that it is necessary
account for the finite thickness of the quantum well in co
paring with experiment, and that the magnetization will
overestimated at high temperatures by models which do
account for electronic itinerancy. We predict the occurren
of a sharp peak, with a strength approximately proportio
to the temperature, in the tunnelingI -V relation wheneV is
close to the zero-temperature spin-splitting. In Sec. VI
discuss some aspects of our calculation which point to d
culties in developing a completely satisfactory microsco
theory. Finally, we conclude in Sec. VII with a brief sum
mary.

II. STRONG-FIELD LIMIT PRELIMINARIES

In this paper we deal with a two-dimensional electr
system where the electrons are subject to a constant per
dicular magnetic field of strengthBW 5BeW z . We are particu-
larly interested in the situation at filling factorn51, so that
the number of electrons in the system~N! equals the numbe
of single-particle orbitals available in each Landau lev
Nf5AB/F0 . A is the area of the two-dimensional system
andF05h/e is the magnetic-flux quantum. One of the u
derlying assumptions in our model is that the Landau lev
separation is large enough that we can ignore fluctuation
which electrons occupy higher orbital Landau levels. T
requires that the Zeeman gap and the interaction strengt
sufficiently small in comparison to\vc wherevc5eB/m*
is the cyclotron frequency. The microscopic Hamiltonian
the Landau gauge@AW 5(0,Bx,0)# is then12

H52
1

2
Dz~N↑2N↓!1

l

2 (
p,p8,q
s,s8

W̃~q,p2p8!

3cp1(q/2),s
† cp82(q/2),s8

† cp81(q/2),s8cp2(q/2),s , ~1!

where l5e2/(4pe l c) is the interaction coupling constan
Dz5ugmBBu is the Zeeman energy, andp5ky52p l /Ly , (l
50,61, . . . ) are themomenta iny direction. The magnetic
length l c5A\/ueBu is used as the unit of length below
When Landau-level mixing is neglected, the kinetic-ener
term in the Hamiltonian is constant (N\vc/2), and is there-
fore neglected. In Eq.~1!, Ns5(pcp,s

† cp,s is the number
operator for an electron with spins. We chooses5↑ as the
direction parallel to the external magnetic field.

In the Landau gauge the two-particle matrix element
given by12

W̃~q,p2p8!5
1

Ly
E

2`

` dkx

2p
Ṽ~kx ,q!e2[(kx

2
1q2)/2] l c

2
eikx(p2p8) l c

2
,

~2!

whereṼ(kW ) is the Fourier transform of the effective 2D Cou
lomb interaction, which may include modifications to a
count for the finite thickness of the quantum well containi
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the electrons or, as we discuss below, thead hocincorpora-
tion of screening effects. The interaction vertex is a funct
only of q, the momentum transfer due to the interaction, a
p2p8, the momentum difference of the interacting particl
In the physically realistic case of long-range Coulomb int
actions between the electrons, it is necessary to incorpora

neutralizing positive background by settingṼ(kx ,ky)

}(pW̃(q50,p)50. Note that the interaction term is simila
to that of a one-dimensional interacting fermion model w
spin-split bands of zero width. However, in the present c

W̃ depends not only on the transferred momentumq, but also
on the momentum difference of the incoming or outgoi
particles. This would be true even if we choose a hard-c

interaction in real spaceV(rW)54pV0d (2)(rW/ l c). For this

model, the matrix element W̃(q,p2p8) becomes

V0A2/pe2(q2/22(p2p8)2) l c
2/2.

Unlike most interacting electron systems, screening
mutual interactions does not play a major role in the cor
lation physics of a quantum Hall ferromagnet, at least at l
temperatures. In fact, static screening in this limit is we
because of the gap for charged excitations of the gro
state. Nevertheless, below we obtain the somewhat sur
ing result that the electron self-energy has a weak diverge
if screening is completely neglected. For this reason we
low for the ad hocinclusion of screening effects in our ca
culations by substituting for the Fourier transform of t

Coulomb interaction, Ṽc(kW )52p l c /k, the local static

screening formṼ(kW )52p l c /(k1ksc). The constant value
assigned to the screening wave vectorksc is discussed below

The Green’s functions we calculate at a particular te
perature depend, up to an overall energy scale, only on
ratio Dz /l. At typical field strengths this ratio is small, eve
thoughl varies approximately asB1/2 while Dz is propor-
tional to B. For example,4 at a magnetic field ofB
57T, Dz /l.2.2K/136K50.016. Thus we will be inter-
ested primarily in the case where the interaction term do
nates over the one-particle spin-dependent term.

We now briefly recount some known results for t
ground state and low-lying excitations of the strong-fie
Hamiltonian. We start by considering the case of vanish
Zeeman coupling. If the interaction is of the hard-core ty
the ground state at filling factorn51 can be determined1 by
identifying zero-energy eigenstates of the positive defin
Hamiltonian. It turns out that these must be the product
the the Slater determinant (uCS&) constructed from allNf
one-particle orbitals in the lowest Landau level and a ma
particle spinor. The antisymmetry property of the man
fermion wave function then requires that the spinor be co
pletely symmetric. From this it follows that it has total sp
quantum numberS5N/2. By this argument we are able t
establish with some rigor that the ground state atn51 is a
strong ferromagnet, in agreement13 with the Hartree-Fock
approximation discussed in Sec. III, and if we regard
degenerate Landau level as analogous to an open at
shell, with Hund’s rule arguments. An infinitesimal Zeem
coupling selects from this spin multiplet a ground state,
which all spins are aligned; for a Zeeman field in theẑ di-
rection the ground state hasSz5S5N/2, and the nondegen
n
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erate ground-state wave function is given exactly by the o
state in then51 many-fermion Hilbert space, which ha
these quantum numbers:

uCn51&5u↑↑↑↑↑↑↑↑↑•••↑&uCS&. ~3!

Finite-size exact diagonalization calculations14–16 can be
used to establish that these conclusions remain valid for
realistic case of Coulomb interactions.

The simplest neutral excitations of the ferromagne
ground state are those with a single reversed spin. It turns
that it is possible to analytically solve for the wave functio
and eigenenergies of these excited states.17,18The normalized
eigenstates may be labeled by a wave vectorkW , and in second
quantized notation are given by

ukW &5
1

AN
(

q
e2 iqkxl c

2
cq,↓

† cq1ky ,↑uCn51&. ~4!

The operator relating this state to the ground state is pro
tional to the Fourier transform of the projection of the sp
lowering operator onto the lowest Landau level,ukW &
5ek2l c

2/4S̄2(kW )uCn51&/AN, where S̄2(kW ) is S2(kW )5Sx(kW )
2 iSy(kW ) projected onto the LLL. These states appear to
similar to the single-magnon states of a localized-spin fer
magnet, but there is an important distinction, which is m
easily explained by considering a finite-size system. The
mension of theSz5N/221 subspace isNf

2 5N2, since there
are N possible states for the minority-spin electron andN
possible states for the majority-spin hole. It is possible
show19 that for a finite-size quantum Hall system, the num
ber of inequivalent values of the wave vectorkW is alsoN2.
Since there is one wave vector for each state and tran
tional invariance decouples states with different wave v
tors, the eigenstates can be constructed by symmetry a
ments alone. This should be contrasted with the case
localized spin Heisenberg ferromagnets for which sing
spin-flip states can also be constructed by symmetry a
ments alone, but the number of such states is onlyN. The
much larger number of states in the present problem oc
because of the possibility in itinerant electron systems
changing the orbital occupied by an electron whose spin
been reversed.

The nature of the single-spin-flip excitations of quantu
Hall ferromagnets gradually changes from having collect
spin-wave character at long wavelengths to having sing
particle character at larger wave vectors.18,20This property is
reflected by the dispersion relation17,18 for single-spin-flip
states,

eSW~kW !5Dz1l@ ã~0!2ã~kW !#, ~5!

where the quantity21

ã~kW !5E d2qW

~2p!2
Ṽ~qW !e2(q2l c

2/2)ei [qW •( ẑ3kW )] l c
2
. ~6!

Equation~6! is easy to understand.18 It represents the attrac
tive interaction between a minority-spin electron and
majority-spin hole, quantum mechanically smeared o
their respective cyclotron orbits, and separated in real sp



ly
o

he
i.

ur
ve
ir

il-
r,

om
-
ne

a

n
it

d
in

the
he
n
is

-

m
it,

au
pen-
o-
b-

nic
are
n
-
on
s-

the

at

n-

e

HF
ter-
cy-
ose

zing

PRB 62 2643QUASIPARTICLE PROPERTIES OF QUANTUM HALL . . .
by l c
2ẑ3kW . The attractive interaction contributes negative

to the excitation energy. This magnetoexcitonic picture
spin-flip excitations is especially appropriate when t
electron-hole separation exceeds the cyclotron orbit size,
whenl cukW u.1. We use this picture in Sec. IV to interpret o
result for the interaction between electrons and spin wa
The gap for creating infinitely separated electron-hole pa
Dz1lã(0), is associated with the incompressible22 property
of quantum Hall states. The propertyeSW(kW→0)5Dz is re-
quired by spin-rotation invariance of the interaction Ham
tonian. For smallk the excitations are collective in characte
and

eSW~kW !5Dz14prsl c
2k2, ~7!

where rs5 limk→0l@ ã(0)2ã(kW )#/(4p l c
2k2) is the spin-

stiffness parameter, which appears in field theory phen
enologies. In Fig. 1 we ploteSW(kW ) and the above long
wavelength approximation for the case of a weakly scree
Coulomb interaction.

The elementary charged excitations of theuCn51& are
also known exactly:

uk&e5ck,↓
† uCn51&,

~8!

uk&h5ck,↑uCn51&.

These single Slater determinant states are the maxim
spin-polarized states withN5Nf61, and have energiesE
5En511m1j↓

HF andE5En512m2j↓
HF , respectively. Ex-

plicit expressions for the Hartree-Fock energies are give
Sec. III. Recently it has become clear that for systems w
weak Zeeman energies, charged Skyrmion23 excitations can
have lower energies than these states. However, as we
cuss below, Skymion states will have little spectral weight
the one-particle Green’s function.

FIG. 1. Spin-wave dispersioneSW(k) at zero temperature, with a
Zeeman gapDz50.016l and a static screening wave vectorksc

50.01l c
21 . Note the small value ofDz compared with the spin-

wave bandwidthlã(0). Thedashed line showsDz14prsk
2l c
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III. HARTREE-FOCK APPROXIMATION AND
SHORTCOMINGS OF THE BAND THEORY

OF ITINERANT ELECTRON FERROMAGNETISM

In anticipation of subsequent sections we discuss
Hartree-Fock approximation using the lexicon of t
imaginary-time thermodynamic Green’s-functio
technique.24–26 When only the one-particle Zeeman term
retained in Eq.~1!, the thermal Green’s functionG (0) is
given by

G s
(0)~ inn!5

1

i\nn2js
(0)

, ~9!

where nn5(2n11)p/(\b) is a fermion Matsubara fre
quency, b51/kBT, and js

(0)52sDz/22m (s511 for
↑, s521 for ↓) is the single-particle energy measured fro
the chemical potential. In the strong-magnetic-field lim
translational invariance implies27 not only that the Green’s
function is diagonal in the momentum labels of the Land
gauge states, but also that the diagonal elements are inde
dent of momentum. This general property leads to therm
dynamic Green’s functions, which depend only on Matsu
ara frequency and spin.

In the diagram sum we use to approximate the electro
self-energy in Sec. IV. The propagators which appear
self-consistent Hartree-Fock~SHF! propagators rather tha
the bare propagators of Eq.~9!. The Hartree-Fock propaga
tors are obtained by self-consistently solving the Dys
equation with the lowest-order self-energy diagram illu
trated in Fig. 2. This leads to an algebraic equation for
self-energy:

Ss
HF5js

HF2js
(0)52lã~0!nF~js

HF!. ~10!

The SHF Green’s function is

G s
HF~ inn!5

1

i\nn2js
HF

. ~11!

Since the chemical potential atn51 is determined by the
equation nF(j↑)1nF(j↓)51, it follows that j↑

HF(T)
52j↓

HF(T),0, and that the chemical potential is fixed

m52lã(0)/2 independentof temperature and Zeeman e
ergy. ForkBT,lã(0)/4 andweak Zeeman coupling it can
happen that Eq.~10! has three solutions. In this cas
we choose the lowest value ofj↑

HF , since this is the
solution which minimizes the grand potential„V

FIG. 2. Proper self-energy diagram in the self-consistent
approximation. The propagator line in this diagram must be de
mined self-consistently. This approximation leads to a frequen
independent self-energy, and hence to a Green’s function wh
spectral weight consists of a singled function. The first-order tad-
pole diagram is absent because of the introduction of a neutrali
background charge.
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522NkBT ln@2 cosh(bj↑/2#…. In Fig. 3 we plot the Hartree
Fock eigenvaluej↓

HF and the spin magnetization as a fun
tion of temperature. The differencej↓

HF2j↑
HF52j↓

HF is the
exchange enhanced spin splitting28,29 of the lowest Landau
level. Its maximum value occurs atT50 and is ã(0)l
1Dz , dominated by the interaction term forDz!l. In the
high-temperature limit (T→`) this gap reduces to the bar
Zeeman splittingDz .

The sharp inflection point in the spin magnetization cu
for Dz50.016l in Fig. 3 is a remnant of the spontaneo
magnetization that occursincorrectly in the SHF Green’s
function at low temperatures. Forn51 andDz50 it follows
from Eq. ~10! that x[bj↑

HF satisfies

x5bã~0!lS 1

2
2

1

~ex11!
D . ~12!

At high temperatures the only solution to this equation isx
50 so thatnF(j↑

HF)5nF(j↓
HF)51/2 and there is no spin

polarization. Expanding the right-hand side of Eq.~12!, we
see thatxÞ0 solutions are possible when the coefficient
the linear term exceeds 1, i.e., forT,Tc

HF5ã(0)l/(4kB).
Expanding Eq.~12! up to third order, we find the expecte
mean-field behavior forT nearTc

HF :

M ~T!

M ~T50!
5A3

T

Tc
HF S 12

T

Tc
HFD 1/2

. ~13!

Similarly, atTc
HF we obtain

M ~T5Tc
HF ,Dz!

M ~T50!
5S 3Dz

ã~0!l
D 1/3

, ~14!

FIG. 3. Hartree-Fock eigenenergyj↓
HF ~solid line! as a function

of temperature atn51; j↑
HF52j↓

HF , because of particle-hole sym
metry atn51. The magnetizationM5M0(n↑2n↓) within the SHF
is depicted forDz50.016l ~dashed curve! and Dz50.0l ~long
dashed curve!, respectively. Note the finite magnetization at lowT
in the latter case, incorrectly indicating the existence of an orde

phase forT below Tc5ã(0)l/(4kB). The uniform static inverse
susceptibility is plotted as a dotted line in units
(16p l c

2l)/(gmB)2 for T>Tc , as well forT,Tc .
e

f

with mean field exponentd53. The SHF spontaneous mag
netization is plotted in Fig. 3.

The finiteT ferromagnetic instability of the SHF Green
function also appears in the random-phase-approxima
~RPA! expression for the spin susceptibility pe
area x̄21(qW ,ivn)51/\*0

\bdt eivntx̄21(qW ,t), where vn

52np/(\b) are bosonic Matsubara frequencies and

x̄21~qW ,t!5
~gmB!2

A
^TS̄2~qW ,t!S̄1~2qW ,0!&. ~15!

The overbar is intended to emphasize that the susceptib
is to be evaluated in the strong-field limit, where the Ham
tonian can be projected onto the LLL. The RPA express
can be obtained from a ladder diagram sum with S
Green’s functions, similar to the sum for the self-energy d
tailed in Sec. IV. The result is30

x̄21(RPA)~qW ,ivn!5
x̄21(HF)~qW ,ivn!

11I ~qW !x̄21(HF)~qW ,ivn!

5
~gmB!2e2q2l c

2/2

2p l c
2

~n↑
HF2n↓

HF!

@ i\vn1 ẽSW~qW !#

~16!

where the single-bubble HF spin susceptibility

x̄21(HF)~qW ,ivn!5
~gmB!2e2q2l c

2/2

2p l c
2

~n↑
HF2n↓

HF!

~ i\vn2j↑
HF1j↓

HF!
~17!

is the bubble with HF lines. The effective interactio
appearing in Eq. ~16! is defined by I (qW )

522p l c
2/(gmB)2eq2l c

2/2ã(qW )l. The quantityẽSW(qW ),

ẽSW~qW !5Dz1l~n↑
HF2n↓

HF!@ ã~0!2ã~qW !#, ~18!

reduces to the spin-wave spectrumeSW(qW ) of Eq. ~5! in the
T→0 limit. In this approximation, the spin-wave bandwid
is reduced in proportion to the spin polarization as the te
perature increases. Note that this approximation does
capture the finite lifetime of spin-wave–states, which w
result from spin-wave spin-wave interactions at higher te
peratures. This will be one of the important limitations of t
theory we present in Sec. IV.

For Dz50 the static limit of the RPA susceptibility, plot
ted in Fig. 3, diverges at the same temperature at which
spontaneous magnetization determined by the SHF equa
~10! vanishes. These results are in disagreement with
Mermin-Wagner theorem, which forbids continuous brok
symmetries at finite temperatures in two dimensions. T
disagreement is expected for mean-field theory. It clear
the SHF magnetizations calculated at relatively small
finite values ofDz , appropriate for experimental system
will be too large. In essence, the SHF calculations of t
section are equivalent to the Stoner band theory3,31 of metal-
lic ferromagnetism. In both cases the ground state is w
described.~In the present situation the SHF ground state a
the exact ground state are identical.! In both cases the mag
netization is overestimated at finite temperatures prima

d
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FIG. 4. The self-consistent integral equatio
for the scattering vertexG (4) in the particle-hole
ladder approximation.
re
ta
th
o
no
ro
ll
s
lli
-
si
ct
a
ple
th
e
e
p

H
p
a

s
si
p

ic
d
d
rit
, a
m

in
al
ex
io

e
d

o

in

pli-
Eq.

the
ral

ver-
ed

r

his
oid
the
der
because of the failure to account for magnetization supp
sion due to thermally excited collective spin-wave exci
tions. The approximation discussed in Sec. IV remedies
gross deficiency. The situation in the present tw
dimensional systems with a small Zeeman coupling is
unlike the situation in most three-dimensional metallic fer
magnets with no external field. For example it is genera
accepted32 that most but not all of the magnetization suppre
sion up to the critical temperature in the elemental meta
ferromagnets~Fe, Ni, and Co! is due to spin-wave excita
tions. Of course, the separation of magnetization suppres
into collective spin-wave effects and the particle-hole effe
cannot, in general, be made precise. In metallic ferrom
nets, and in the present two-dimensional systems, a com
theory valid at moderately high temperatures requires
interplay between collective spin fluctuations and the und
lying fermionic degrees of freedom to be accurately d
scribed. Section IV reports on an adaptation of microsco
theories of metallic ferromagnets to the present case.

IV. ELECTRON SPIN-WAVE SCATTERING

Our theory is based on an expansion in terms of S
Green’s functions. The self-energy correction to these pro
gators can in principle be expressed in terms of the ex
scattering vertexG (4)(1,2,3,4) and the exact GF.@Here 1 is
short for (q1 ,in1,n).] We use an approximation, which, a
we shall demonstrate, captures much of the essential phy
It is the analog for quantum Hall ferromagnets of the a
proximation discussed by Hertz and Edwards33 for the case
of single-band Hubbard models with ground states, wh
are strong ferromagnets. The self-energy is approximate
a particle-hole ladder summation, which gives an exact
scription of interactions between a single hole in the majo
band and a single electron in the minority band. However
the density of spin-flip excitations increases at higher te
peratures, the approximation becomes less accurate.

The Bethe-Salpeter integral equation for the scatter
vertex is expressed diagrammatically in Fig. 4. Explicit c
culation of low-order ladder-diagram particle-hole vert
parts using Feynman rules shows that, in this approximat

G (4)~1,2,3,4!5G (4)~q1Dq/22q4 ,Dq; ivn! ~19!

depends only on two momenta and one frequency. Herq
5(q11q3)/2 and Dq5q12q3 are the center-of-mass an
the relative momenta, respectively, andivn5 i (n3,n2n1,n) is
the bosonic Matsubara frequency of the relative motion
the ingoing and outgoing particles.

The Bethe-Salpeter integral equation for the scatter
vertex is
s-
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Gs,s8
(4)

~q1Dq/22q4 ,Dq; ivn!

5lW̃~q1Dq/22q4 ,Dq!1lx̄s,s8~ ivn!l c

3E
2`

`

dq8W̃~q2q8,Dq!

3Gs,s8
(4)

~q81Dq/22q4 ,Dq; ivn!. ~20!

Here we have introduced the pair propagatorx̄s,s8( ivn),
defining

x̄s,s8~ ivn!52
1

b (
inn

Gs~ inn!Gs8@ i ~nn1vn!#. ~21!

It is important to note that theq independence of the GF
in the case of quantum Hall ferromagnets immensely sim
fies the solution of the Bethe-Salpeter equation. In fact,
~20! can be reduced to an algebraic equation because
second term on the right-hand side is a convolution integ
in the center of mass coordinate.18 We define a partial Fou-
rier transformation of the scattering function:

G̃s,s8
(4)

~p,Dq; ivn!5 l cE
2`

`

dqeipqlc
2
Gs,s8

(4)
~q,Dq; ivn!

5eip(Dq/22q4) l c
2
l cE

2`

`

dqeipqlc
2

3Gs,s8
(4)

~q1Dq/22q4 ,Dq; ivn!.

~22!

The corresponding transformation of the Landau-gauge
tex W̃(q,Dq) is the particle-hole interaction, which appear
previously in Eq.~18!,

ã~kW5~Dq,p!!

5 l cE
2`

`

dqeipqlc
2
W̃~q,Dq!

5E d2qW 8

~2p!2
Ṽ~qW 8!e2q82l c

2/2ei (qx8Dq1qy8p) l c
2
, ~23!

where we have defined the two-dimensional wave vectokW
5(Dq,p). With these definitions we find that

G̃s,s8
(4)

@kW5~p,Dq!; ivn#5
ã~kW !l

@12x̄s,s8~ ivn!ã~kW !l#
.

~24!

Our self-energy approximation consists of combining t
scattering vertex with the propagators. In order to av
double counting the first-order terms already present in
Hartree-Fock propagators, we must subtract the first or
term from the right-hand side of Eq.~24!. Inverting the trans-
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form of Eq. ~22! then gives the sum of second- and high
order terms in the Bethe-Salpeter equation. The approxim
self-energy for spins is obtained by contracting the incom
ing and outgoing lines of the opposite spin into a Hartr
Fock propagator. The result is that

S̃s~ inn!5
1

b (
ivn

Gs8@ i ~nn1vn!#G̃s,s8
(4)

~ ivn!, ~25!

where

G̃s,s8
(4)

~ ivn![2p l c
2E d2kW

~2p!2
G̃s,s8

(4)
~kW ; ivn!

52p l c
2E d2kW

~2p!2

3H ã~kW !l

@12x̄s,s8~ ivn!ã~kW !l#
2ã~kW !lJ .

~26!

The Dyson equation relating the SHF and full Gree
function is

@Gs~ inn!#212@G s
HF~ inn!#2152S̃s~ inn!. ~27!

Below we address the question of whether the SHF Gre
function or the corrected Green’s function should be used
the expression for the pair propagator. If we use S
Green’s functions, the particle-hole ladder diagram of or
n is proportional to (ns

HF2ns8
HF)(n21). At low temperature

this factor is close to 1 and larger than the combinations
filling factors, which result from other diagrams of the sam
order. For instance, the corresponding particle-particle lad
is proportional to (12ns

HF2ns8
HF)(n21), which is zero for

any T when sÞs8. This observation may be used at lo
temperatures to systematically justify the class of diagra
we have included. At higher temperatures we expect that
sums of ring diagrams, which describe screening physi34

will be among the important omissions.
It is possible to require that the Green’s functions used

the pair-propagator and self-energy expressions be obta
from the Dyson equation. This leads to a set of coup
equations, which can be solved numerically. For this purp
it is convenient10 to express the equations in the followin
mixed imaginary-time imaginary-frequency representatio

G s
21~ inn!2@G s

HF~ inn!#2152S̃s~ inn!,

S̃s~t!5G̃s,s8
(4)

~2t!Gs8~t!,

~28!

G̃s,s8
(4)

~ ivn!52p l c
2E d2kW

~2p!2

3H ã~kW !l

~12x̄s,s8~ ivn!ã~kW !l!
2ã~kW !lJ ,

x̄s,s8~t!52Gs~2t!Gs8~t!
-
te

-

’s
in
F
r

f

er

s
e

n
ed
d
e

As we discuss below, we have found that these s
consistent equations tend not to have stable solutions at
temperature.

Our work is based mainly on the approximation in whi
the pair propagator and the self-energy are evaluated
SHF Green’s functions. The pair-propagator frequency s
may then be evaluated analytically,

x̄s,s8
HF

~ ivn!52
@nF~js

HF!2nF~js8
HF

!#

~ i\vn1js
HF2js8

HF
!

, ~29!

leading to the following explicit expressions for the corre

tions S̃s( ivn) of the majority- spin and minority-spin SHF
self-energies:

S̃↑~ inn!5l2~n↑
HF2n↓

HF!E
0

`

dS k2l c
2

2 D ã2~k!

3
$nB@ ẽSW~k!#1nF~j↓

HF!%

@ i\nn1 ẽSW~k!2j↓
HF#

~30!

and

S̃↓~ inn!5l2~n↑
HF2n↓

HF!E
0

`

dS k2l c
2

2 D ã2~k!

3
$nB@ ẽSW~k!#112nF~j↑

HF!%

@ i\nn2 ẽSW~k!2j↑
HF#

. ~31!

Here nB@ ẽSW(k)# is the Bose-Einstein distribution functio
for the spin-waves whose dispersion is specified in Eq.~18!.
For T50 the occupation factors in the numerators of bo
self-energy expressions vanish, and the SHF result, whic
exact in this limit, is recovered.

These electronic self-energy expressions resemble th
due to virtual phonon exchange in an electron-phon
system.26 The majority-spin self-energy includes contrib
tions from processes where a majority-spin electron scat
out to a minority-spin state upon absorption of a spin wa
and processes where a minority-spin electron scatters in
majority-spin state upon emission of a spin wave. Beca
the spin wave carries spinSz521, there are no processe
where a majority-spin electron scatters to a minority-s
state and emits a spin wave or a minority-spin electron s
ters to a majority-spin state and absorbs a spin wave. T
distinction explains both the difference between t
majority-spin self-energy in Eq.~30! and the minority-spin
self-energy in Eq.~31! and the difference between these se
energies and the phonon exchange self-energy where
classes of contribution appear at once.26 The electron self-
energy expressions are identical to those which would
obtained for a model where the electrons and spin wa
were regarded as independent fermion and boson part
with an interaction in which fermions are scattered by em
ting or absorbing spin waves. The effective electron sp
wave interaction, which can be read off from the self-ene
expressions, is proportional tolã(kW ). Note that, unlike the
case of deformation potential electron-phonon coupling,
matrix element approaches a constant ask→0. If the long-
range Coulomb interaction is not screened, the electron s
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wave interaction falls off only asuku21 for largek. @For ideal

2D Coulomb interactionsã(kW )5Ap/2e2k2l c
2/4I 0(k2l c

2/4).]
The electron spin-wave interaction at largek can be under-
stood in terms of the excitonic picture discussed in Sec
and is proportional to the electron-electron interaction
real-spaceseparationklc

2 . If the Coulomb interaction is

screenedã(kW ) will begin to fall off more quickly onceklc
2

exceeds;ksc
21 . The slow falloff of these large momentum

transfer scattering events requires us to take accoun
screening when we evaluate the self-energy expressions

Note that these self-energy expressions satisfy the e

tion S̃↑( inn)52S̃↓(2 inn). This is an exact identity for the
casen51, which follows from the particle-hole symmetry35

of the underlying Hamiltonian. We remark that the se
energies given by Eqs.~30! and~31! have branch cuts alon
a finite portion of the real line. For majority spins the bran
cut occurs along the intervalI ↑5(j↑

25j↑
HF ,j↑

15j↓
HF

2Dz). For the minority spin the branch cut interval isI ↓
5(j↓

25j↑
HF1Dz ,j↓

15j↓
HF). Outside of these intervals th

self-energy is real on the real line. Because of the bra
cuts, some care is required in the numerical evaluation of
self-energy expression.

In this paper we concentrate on physical properties wh
can be expressed in terms of the one-particle real-t
Green’s function. Analytically continuing the therm
Green’s function self-energy expressions@Eqs. ~30! and
~31!#, to the real frequency axis (i\nn→E1 ih) gives

Gs
ret(E)51/@E1 ih2js

HF2S̃s(E)#. The retarded Green’s
function is completely specified by its spectral function

As~E!522 ImGs
ret~E!. ~32!

It is As(E), which we evaluate numerically, and we start
mentioning some of its general properties. If we consider
system of equations defining the SHF GF equation~28! and
start the iteration from the bottom equation with a GF sa
fying G↑( inn)52G↓(2 inn), we end up with a GF satisfying
the same relation, i.e., the approximate system of equat
conserves this property. The SHF GF has this property s
j↓

HF52j↑
HF . Since G↑

ret(E)52G↓
av(2E), the spectral

functions for up- and down-spins satisfy the following re
tionship:

A↑~E!5A↓~2E!. ~33!

Therefore, the knowledge of the spectral function for on
one spin direction for the case ofn51 is sufficient to deter-
mine the result for the other spin directions.

When the self-energy is evaluated from the Hartree-F
GF the qualitative behavior ofA↑(E) can be understood
from the analytical structure of the denominator@E2j↑

HF

2S̃↑(E)# of the GF. The spectral function fors5↑ is non-
zero along the branch cut where the retarded self-energy
a nonzero imaginary part, i.e., forj↑

HF<E<j↓
HF2Dz . Since

the real part of the self-energy is monotonically decreas
outside of this interval, it vanishes forE→6`, and is di-
vergent forE→j↓

HF2Dz from above~see below!, it follows
that the Green’s function also has simple poles, and the s
tral function hasd-function contributions on both sides of th
II
t

of

a-

h
e

h
e

e

-

ns
ce

k

as

g

c-

branch cut. The positions of these quasiparticle poles in
Green’s function are determined by

E2js
HF5S̃s

ret~E!. ~34!

Figure 5 illustrates a graphical solution of this equation
T50.1l/kB . As we discuss below, the spectral weight
dominated by the twod-function contributions atEs

2 andEs
1

except at elevated temperatures.
To obtain a qualitative feel for the physics of the se

energy at low temperatures, it is useful to divide it into sep
rate contributions from interactions with collective lon
wavelength spin waves and from interactions with sh
wavelength spin-down electron, spin-up hole pairs. We a
trarily treat spin waves withklc,1 as collective, and those
with klc.1 as single particle. For collective spin waves w
can approximate the electron-spin-wave interaction by a c
stant lã(0), and thelow-energy spin-wave dispersion b
Dz14prsl c

2k2. Similarly, for particle-hole states we can
when screening is neglected, approximate the interaction
l/klc and the spin-wave energy by 2j↓

HF2l/klc . We first
concentrate on the region of energyE nearj↑

HF , where the
main spectral weight resides at low temperatures. The
lective spin-wave contribution to the self-energy near
low-energy quasiparticle is

S̃↑
C2~E!'2@lã~0!l c#

2E
0

l c
21

dkk
nB@eSW~k!#

lã~0!1j↑
HF2E

.

~35!

We have assumed here that the spin-wave Bose facto
larger than the spin-down electron Fermi factor. Note t
this requires, at a minimum, thatDz be less thanhalf the
single-particle energy gapj↓

HF2j↑
HF . The extra factor of 2

in this condition occurs because of the itinerant nature of

FIG. 5. The real part of the self-energyS̃↑
ret(E) and the lineE

2j↑
HF as functions of E at temperature T50.1l/kB(Dz

50.016l,ksc50.01l c
21 ,w50.0l c). The quasiparticle poles occur a

the two energy valuesE↑
2 and E↑

1 , at which the curves intersec
Because the self-energy diverges in opposite directions as the u
and lower boundaries of the central branch-cut interval, two po
exist at any temperature in this approximation.
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single-particle excitations. This self-energy contribution w
be negative and only weakly energy dependent forE
,j↑

HF . The particle-hole contribution to the self-energy
the same energy range is

S̃↑
PH2~E!'2l2E

l c
21

`

dkk21
nF~j↓

HF!

j↑
HF1l/klc2E

. ~36!

This contribution to the self-energy is sharply energy dep
dent, reaching a maximum forE5j↑

HF , and is formally di-
vergent for every energy. The divergence comes from
large-k contribution to the integral, i.e., from the interactio
of electrons with widely separated spin-flip electron-ho
pairs. It can be cured by introducing screening into o
theory as discussed earlier. Screening effectively cuts
the divergent integral atk;1/kscl c

2 . At low T, a Thomas-
Fermi approximation estimate would givekscl c

;l exp(2j↓
HF/kBT). The screening wave vector is expone

tially small because of the gap for charged excitations,
the ultraviolet cutoff is consequently exponentially larg
However, except atE5j↑

HF , the particle-hole self-energ
contribution depends only logarithmically on the screen
vector, and the declining Fermi factor will result in a sm
contribution at low temperatures. AtE5j↑

HF , the particle-
hole contribution depends linearly onksc

21 , leading to a very
narrow peak near this energy at low temperatures.

Because of the collective contribution to the self-ener
the low-energy quasiparticle pole will be shifted to energ
below j↑

HF and away from this peak. In the end the partic
hole contribution to the self-energy is much larger than
would be for a system with short-range interactions. Nev
theless, provided that the collective gapDz is much less than
half the particle-hole gap, there will be a region at lo
temperatures where its contribution becomes unimport
Neglecting this contribution we find the low-energy pole h
a residue

z5F11 l c
2E

0

l c
21

dkknB@eSW~k!#G21

, ~37!

and occurs at energy

E↑
25j↑

HF2lã~0!@12z#. ~38!

The electron-spin-wave interaction strength drops out of
expression forz because of its relationship to the spin-fl
excitation energies. As we discuss below, the loss of spe
weight due to occupied spin waves gives a magnetiza
suppression identical to that which would be obtained from
noninteracting spin-wave model with appropriate ultravio
cutoffs.

A similar calculation can be carried out for the hig
energy pole in the Green’s function. ForE5j↓

HF2Dz1d
and d small, we can again identify approximate collecti
and particle-hole contributions to the self-energy:

S̃↑
C1~E!'@lã~0!l c#

2E
0

l c
21

dkk
nB@eSW~k!#

d14prsk
2l c

2
~39!

and
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-
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S̃↑
PH1~E!'lE

l c
21

`

dkk21
nF~j↓

HF!

ã~0!
. ~40!

In this case, screening is not necessary to make the part
hole contribution small at low temperatures. The second te
in the denominator of Eq.~39! is negligible if d>kBT be-
cause of the exponential cutoff in the spin-wave Bose oc
pation factors; we see below that the condition is satisfied
the upper pole in the Green’s function. Keeping only t
collective contribution gives a high-energy pole with resid
z15z2121 and energy

E↑
15j↓

HF2Dz1lã~0!@z2121#. ~41!

For 4prs@kBT@Dz , it follows from Eq. ~37! that

z21215
kBT

8prs
ln~kBT/Dz!. ~42!

which, since 16prs5lã(0), guarantees thatd is in the as-
sumed energy range. The approximations made above
whenz2121 is large, in which case the sums of the appro
mate residues exceeds 1. When 12z is small, it follows from
these calculations that the spectral weight of the Gree
function is exhausted by the two poles in the Green’s fu
tion. As spin waves are excited, weight is shifted from t
low-energy pole, which is below the chemical potential,
the high-energy pole, which is above the chemical poten
In the limit of zero temperature, the spectral weight lies e
tirely in the low-energy pole, and Hartree-Fock theory resu
are recovered.

As we see from Fig. 5 and from the above discussion,
real part of the self-energy diverges to2` at the lower limit
of the branch cut when screening is neglected, and to1` at
its upper limit even if screening is included. The divergen
at E5j↑

HF in Fig. 5 produces only a small feature in ou
numerical calculations because these results were obta
with kscÞ0. However, the divergence at the upper bound
of the branch cut is clearly visible. The imaginary part of t
GF is nonzero throughout the interval fromj↑

HF to j↓
HF

2Dz , because spin-flip excitations exist at all energies
tweenDz andDz1lã(0). Theimaginary part of the retarded
Green’s function is negative definite, as illustrated in Fig.

The explicit expression for the spectral density is

As~E!5
2pd~E2Es

2!

U12
]S̃s

ret~E!

]E uE5E
s
2U 1

2pd~E2Es
1!

U12
]S̃s

ret~E!

]E uE5E
s
1U

1u~E2js
2!u~js

12E!

3
@22 Im S̃s

ret~E!#

@E2js
HF2ReS̃s

ret~E!#21@ Im S̃s
ret~E!#2

.

~43!

The condition that the integral of the spectral function ov
frequencies equal to one can be used to check the accu
of our calculations.

We have previously9 published figures illustrating the
spectral densities obtained from numerical evaluations of
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self-energy expression at several temperatures. In agree
with the preceding analysis, the spectrum consists of lo
and high-energyd functions separated by a band associa
with the branch cut of the self-energy. The incoherent ba
contribution to the spectral weight tends to be peaked tow
its high-energy extremum where the imaginary part of
self-energy has contributions from long-wavelength s
waves. The spectral weight shifts with increasing tempe
ture from the low-energy Hartree-Fock pole to the hig
energy pole and partially to the intermediate-energy ba
The spectral weight shift can be understood in terms o
reduction in the probability that majority spins will be line
up with the exchange field from the ordered moment, wh
fluctuates when spin waves are excited at finite temperatu
In Fig. 7 we plot the fraction of the spectral weight comin

FIG. 6. The imaginary part of the spin-up self-energyS̃↑
ret(E) at

T50.1l/kB . This quantity is nonzero only within the central inte
val I ↑ defined in the text. Note that the imaginary part tends t
finite value on the right boundary of this interval. The paramet
are the same as in Fig. 5.

FIG. 7. Temperature dependence of the partitioning of
majority-spin Green’s-function spectral weight between low- a
high-energy poles, and the intermediate-energy continuum.
ent
-
d
d
rd
e
n
-

-
d.
a

h
s.

from these three contributions as a function of temperatu
Note that the incoherent band contribution grows rat
slowly with temperature. In Fig. 8 we also plot the positio
of the two-pole band as a function of temperature. Initial
the two poles are separated by the zero-temperature
change splitting gap. In the approximation we employ,
splitting increases at finite temperatures because of leve
pulsion with the continuum states. The results shown in F
8 are for screened interactions between the electrons;
counting for the finite width of the quantum well or heter
junction reduces the splittings to approximately two-thirds
these values for typical systems, and screening assoc
with Landau level mixing will cause a further reduction.

In Sec. V we discuss several experiments which can
the predictions which result from this spin-wave exchan
approximation for the self-energy. Potentially the most te
ing of these will be 2D-2D tunneling experiments whic
measure the spectral functions fairly directly. We do not e
pect perfect agreement between the present theory and
periment, although a qualitative agreement seems cer
We expect that a comparison with tunneling experime
will assist in future theoretical progress. Tunneling spectr
measurements in typical band ferromagnets are much
informative because the bandwidth~which is zero in the
present problem! is comparable to the quasiparticle ban
spin splitting.36

V. OBSERVABLES

A. Spin magnetization

The spin magnetization is proportional to the difference
the occupation probabilities for spin-up and -down electro
M (T)5M0(n↑2n↓), whereM05NugmBu/2 is the ground-
state spin magnetization. Expressing the occupation p
ability ns in terms of the spectral functions gives

M ~T!

M0
5E

2`

` dE

2p
nF~E!@A↑~E!2A↓~E!#

52E
2`

` dE

2p
tanh~bE/2!A↑~E!. ~44!

a
s

e
d

FIG. 8. Positions of the low- and high-energy polesE↑
2 andE↑

1

in the majority-spin Green’s functionG↑
ret(E) as a function of tem-

perature (Dz50.016l,ksc50.01l c
21 , andw50.0l c).
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For noninteracting electronsA↑(E)52pd(E1Dz/2) and
M /M05tanh(bDz/4). Since interactions tend to favor para
lel spin alignment, we expect this result to be a lower bou
for M /M0. As discussed in more detail below, it should b
come accurate at both high- and low-temperature lim
Note that it reflects the itinerant nature of the electrons wh
carry the spin magnetization. For localized spin-1

2 particles
M /M05tanh(bDz/2); the magnetization is smaller at hig
temperatures in the itinerant case because of the numb
many-particle states increases more rapidly with the num
of reversed spins. In Hartree-Fock theory,A↑(E)52pd(E
2j↑

HF) and M /M05tanh@bj↓
HF(b)/2#. This prediction for

the spin magnetization is illustrated in Fig. 9. Because of
exchange-enhanced spin splitting, the magnetization is m
larger at fixed temperature than in the noninteracting ca
This result grossly overestimates the magnetization beca
as in the band theory of metallic magnetism,32 magnetization
suppression due to thermally excited spin waves is not
counted for. These two simple results forM /M0 should
therefore bound the exact result.

Now let us turn to the results obtained using our se
energy approximation, which accounts for electron-sp
wave scattering; numerical results obtained using two dif
ent values ofksc are shown in Fig. 9. As explained in Se
IV, even though the screening wave vector must be finite
ensure convergence of the wave-vector integrals in our s
energy expressions, we do not expect great sensitivity to

FIG. 9. Results forM (T) at Dz50.016l for various values of
the screening vectorksc and the widthsw anda, respectively. The
quantity a used in finite-size numerical calculations describes
width of a Gaussian charge distribution in thez direction instead of
the widthw of a hard-wall quantum well used elsewhere.~1! Free
electrons:w50 ~dotted curve!. ~2! SHF:ksc50.01l c

21 ,w50 ~long-
dashed line!. ~3! Our theory:ksc50.01l c

21 ,w53.11l c ~solid line!.
~4! Our theory:ksc50.1l c

21 ,w53.11l c ~solid line with dots!. ~5!
Exact diagonalization on the sphere:N59,ksc50,a50 ~solid line
with crosses!. ~6! Exact diagonalization on the sphere:N59,ksc

50,a52l c ~solid line with circles!. ~7! Sean Barret’s experimenta
data~Ref. 4!: w53.11l c ~filled points!. ~8! O(N)-field theory with
1/N-corrections~Ref. 7!: w53.11l c ~long dashed line with circles!.
~9! SU(N)-field theory with 1/N corrections~Ref. 7!: w53.11l c

~long dashed line with crosses!. ~10! Monte Carlo results for the
Heisenberg model~Ref. 7!: w53.11l c ~dot-dashed line with stars!.
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value until it becomes comparable tol c
21 . We have esti-

mated the appropriate value forksc at two different tempera-
tures, as described below. ForT;0.09l/kB and T
;0.18l/kB , we find thatksc50.01l c

21 andksc50.1l c
21 , re-

spectively. The screening becomes weaker at low temp
tures as the system approaches incompressibility. The m
netization curves of Fig. 9 were calculated with these t
fixed screening wave vectors; if the screening wave vec
were allowed to be temperature dependent, the magne
tion value should be above the solid curve in Fig. 9 f
temperatures below 0.09l/kB , should interpolate betwee
the solid curve and the solid curve with dots for temperatu
between 0.09l/kB and 0.18l/kB , and should be below the
solid curve with dots for temperatures beyond 0.18l/kB .
The comparably weak dependence of the magnetization
the screening wave vector is expected, limiting this source
uncertainty in our predictions. Figure 9 shows that, forDz

50.016l the magnetization decreases almost linearly withT
over a wide range of temperatures between;0.01l/kB and
;0.2l/kB . Over this temperature range, the portion of t
spectral weight atE,0 is dominated by the low-energ
pole, and the Fermi factor evaluated at this pole is still clo
to 1. Under these conditions the temperature depende
comes nearly entirely from that of the renormalization fac
at the low-energy pole, so thatM /M0;(2z21);1
2(kBT)ln(kBT/Dz)/4prs . This temperature dependence
identical to what would be obtained from a noninteracti
spin-wave model in an external magnetic fieldB
5Dz /ugmBu. Ignoring the logarithmic factor, this effect i
sufficient to reduceM to small values forkBT;4prs
;0.3l, and that is roughly what we observe in Fig. 9.

The accuracy of our calculation of spin-magnetizati
values is most reliably judged by comparing with resu
obtained by exact diagonalization of the many-parti
Hamiltonian for a small number of electrons on a sphere37

In Fig. 9 we present results for the ideal Coulomb interact
obtained forN59 electrons on a sphere, and compare th
with the results obtained from our self-energy approxim
tion. We can conclude from this comparison that our se
energy approximation overestimates the magnetization
approximately a factor of 2 at intermediate temperatures.
discuss the physics behind this behavior at greater len
below. The magnetization values are least accurate at t
peratures between;Dz and;0.1l where finite-size effects
discussed below, have some importance and cause the
netization per particle to be underestimated by finite-size
culations. Nevertheless, it seems clear that our simple s
energy expression results is an overestimate of
magnetization for 0.1l,kBT,0.3l. It is interesting to com-
pare these results with essentially exact results for aS51/2
Heisenberg model on a square lattice7 with a nearest-
neighbor exchange interactions whose strength has been
justed to reproduce the spin stiffness of the quantum H
ferromagnet.~For the Coulomb model the spin stiffness
known exactly and has the valuers5lAp/2/16p, but is
diminished by a factor of 2 due to the finite thickness; see
discussion below.! For the magnetization, this model is a
curate when long-length-scale collective magnetization
grees of freedom have dominant importance. The fig
shows the results obtained7 by Timm et al. by evaluating

e
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leading 1/N corrections to the magnetizations of continuu
SU(N) and O(N) models, extending earlier work by Rea
and Sachdev.6 At moderate temperatures, the results obtain
using these approximation schemes are numerically be
than those obtained with our self-energy approximation; t
are also somewhat unsatisfactory, however, since the SUN)
scheme leads to negative magnetizations at moderate
peratures and theO(N) scheme fails to capture the low
temperature noninteracting spin-wave limit not shown in
figure. For the temperatures shown the finite width Heis
berg model magnetizations are larger than those of thN
59 exact diagonalization calculations, presumably beca
they have smaller finite-size corrections and are there
more accurate; see Fig. 9. However, the Heisenberg m
M (T) curves for finite width interpolate between the ze
width and finite width exact diagonalization data for tem
peratures between 0.05l,kBT,0.2l. The localized spin
modelM (T) must be above the exact diagonalization resu
for the electron model at sufficiently high temperatur
where the Heisenberg model magnetization is twice as la
as the magnetization of the itinerant-electron system. Th
already the case atkBT;0.2l for finite width data. How-
ever, the continuum field theory approach cannot add
important microscopic electronic properties like the tunn
ing density of states. We discuss the experimental value
M (T), also shown in this figure, at greater length below.

Our exact diagonalization results for the magnetizat
have the largest finite-size errors whenDz is small. In order
to examine the limit of smallDz we have calculated the
finite-size spin magnetic susceptibility,x, which is plotted
for N53, 5, 7, and 9 in Fig. 10. The noninteracting resu
which in the thermodynamic limit approachesx0
5N(gmB)2/(8kBT), is plotted for comparison. For ver
high T the Hartree-Fock theory resultx2158@kBT

2lã(0)/4#/N(gmB)2 is approached. However, we see fro
Fig. 10 that forT5Tc

HF , wherex diverges in Hartree-Fock
theory, it is in fact enhanced by a factor of only;2.5 com-
pared to the noninteracting electron result. The inset in
figure expands the low-T behavior by plotting ln(x) vs

FIG. 10. Numerical finite-size results for the inverse magne
susceptibility in units of 4l/(gmB)2N. In these units the free
electron result isx0

2152(kBT/l), and the Hartree-Fock result i
x2152(kBT/l20.3133).
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ln(kBT). In the thermodynamic limit this quantity shoul
approach6 4prs /kBT as T→0. For a finite-size system th
low-T limit of x is the Curie susceptibility associated wi
the spin-quantum number of the finite-system ground st
x→(gmB)2S0(S011)/3kBT, so that ln(x) is a linear func-
tion of ln(T) with an offset which increases with system siz
The low-T breaks in the susceptibility plots indicate th
finite-size effects become important for temperatures sma
than;0.1l/kB , roughly consistent with the temperature b
low which the microscopic exact diagonalization a
Heisenberg model Monte Carlo calculations for zero wid
differ.

Comparing all these results we can conclude that wh
our self-energy approximation removes the gross failures
the Hartree-Fock approximation, it still overestimates t
spin magnetization at intermediate temperatures. Eviden
interactions between spin waves accelerate the decreas
the magnetization with temperature. We can obtain so
corroboration of this interpretation by examining the low
energy portion of the spectrum of the electronic Hamilton
for N513 shown in Fig. 11. These results are for electro
on the surface of a sphere. All excited states with posit
total Lz are shown. The largest value ofLz for which a state
occurs specifies its total angular momentum. The vari
eigenenergies are labeled by the occupation numbers o
corresponding noninteracting spin-wave states. Where
occupation number exceeds 1, the label of the spin-w
state is repeated so that the number of labels is equal to
total spin-wave occupation number of the state. Single-sp
wave states occur in theS5N/221 portion of the spectrum
The lowest-energy multiple spin-wave state is the (1,1) st
where theL51 spin wave is doubly occupied. Since the
are three degenerate spin waves withL51, if there were no
spin-wave interactions, the six (1,1) two bosons states wo
be degenerate and would have an energy equal to twice
energy of theL51 single-spin-wave state. The open ho
zontal bars in Fig. 11 indicate the noninteracting spin-wa
energies. We see there that spin-wave interactions split
six (1,1) states into a fivefold-degenerateL52 level and a

c

FIG. 11. Low-energy positiveLz excitations for 13 electrons on
the surface of a sphere atn51. The labels are assignments of line
spin-wave occupations corresponding to the exact eigenstates.
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single L50 level. Generally, multiple-spin-wave states a
reduced in energy by interactions, and this effect leads
magnetization which decreases more rapidly with increas
temperature than would be expected if spin-wave inter
tions were neglected. This is most apparent in Fig. 11 in
effect of interactions on the energies of the 15 expected (
two-boson states. When interactions are included these s
are split intoL54, 2, and 0 levels. We see in Fig. 11 that t
L54 level, which has the largest degeneracy, is lowered
energy by spin-wave interactions.

We now turn to a comparison between theory a
experiment.4,5 An important source of uncertainty is intro
duced by the dependence of the effective interaction betw
2D electrons39 on the width, as already mentioned, and, to
lesser degree, the height of the quantum well containing
electrons. For a quantum well of widthw and infinite barrier
heights, the effective interaction28 is Ṽe f f(kW )5F(kW )Ṽ(kW ),
where38

F~k,w!5
32p4~e2kw21!

@kw~4p21k2w2!#2
1

8p2

@kw~4p21k2w2!#

1
3kw

~4p21k2w2!
. ~45!

When the system is described by phenomenological fi
theory or Heisenberg models, the microscopic physics en
only through the spin stiffness. The analytic expression
lating spin stiffnessrs and quantum-well widthw for the
case of a quantum well with infinite barrier heights via t
effective interactionṼe f f(kW ) ~Ref. 15! at n51 is

rs5
l l c

2

32p2E0

`

dkk3Ṽe f f~k!exp~2k2l c
2/2!. ~46!

Thek3 factor in this integrand is responsible for considera
sensitivity ofrs to Ṽe f f(k) at largek, where the finite thick-
ness corrections appear. For comparison the spin-split
gap ã(0) has a considerably weaker relative dependence
the well width. The spin stiffness is reduced by appro
mately a factor of 2 compared to the zero-width 2D lay
case for quantum wells with a widthw53l c . This is actually
close to the typical experimental situation where the qu
tum well widths are;30 nm and the fields are;10 T. We
remark that this reduction ofrs reduces the temperature in
terval over which collective excitations are dominant and
field-theory and Heisenberg phenomenological models
appropriate. In Fig. 9 we compare experimental data w
exact diagonalization calculations of the spin magnetiza
which account for finite-well thickness. For the purpose
this comparison, we consider the exact diagonalization
sults to be essentially exact for a model which neglects
order and Landau-level mixing. Compared to the best
the experimental magnetization decreases too slowly at
temperatures, and too quickly at high temperatures. It se
clear that the experimental values are too low at the high
temperatures, where they fall below even the noninterac
system magnetizations~this happens forkBT;0.09 in Bar-
rett’s experiment!. The weakerT dependence at lowT in the
experimental data could be due to disorder, and in partic
a
g
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to weak large length-scale inhomogenity, which is neglec
in all theoretical models discussed here.

Finally, we comment on the role of skyrmions. One of t
interesting results of the NMR experiments was the exp
mental evidence for skyrmions at filling factors near 1.4 Our
diagrammatic theory is not able to account for skyrmio
although we know that neutral Skyrmion–anti-Skyrmion p
excitations exist atn51. Their total energy forDz50 is
only half of that of the quasielectron-quasihole pair, althou
the energetic advantage drops quickly with increasing Z
man gap~see Fig. 1 in Ref. 40!. Thus the existence of suc
excitations at the upper end of the excitation spectrum sho
not dramatically alter the thermodynamics.

B. Nuclear-spin-relaxation rate

The optically pumped NMR experiments of Barrettet al.
can also be used to measure the rate of nuclear-s
relaxation due to coupling to the electronic spins. At prese
measurements of the temperature dependence of the r
ation time over a broad range of temperatures atn51 are
unavailable. The Korringa theory of nuclear-spin relaxati
in a metal41 can be generalized to electrons in a quant
well with the result42

T1
215

kBTA2V2uf~z!u4

~gmB!2\
lim
v→0

Im x12~rW,rW;v!

\v
. ~47!

In this equationA is the hyperfine coupling constant,V is the
unit-cell volume, andf(z) is the envelope function of the
electronic quantum-well state. The influence of interactio
on the relaxation rate was studied in the limit where disor
is relatively strong and interactions can be trea
perturbatively.43,30 If we neglect vertex corrections, the loca
response functionx12 in Eq. ~47! can be expressed in term
of the spectral function for the one-particle Green’s functio
The result for the relaxation rate of nuclei at the center of
quantum well is

T1
215C~B,w!

kBT

l E
2`

` dE

~2p!2

2]nF~E!

]E
l2A↑~E!A↓~E!.

~48!

Inserting GaAs parameters42 for the prefactor in Eq.~48!
gives C(B,w)50.47(B@T#)3/2/(w@nm#)2 Hz. For typical
fields and quantum-well widths the prefactor corresponds
a relaxation time;100 s. The dimensionless integral in E
~48!, which gives the relaxation rate in this unit, is plotted
a function of temperature in Fig. 12. Existing experimen
data cover only the low-temperature limit, and are consist
with the very long relaxation times indicated here. Contrib
tions to the relaxation rate come dominantly from the co
tinuum portion of the spectral weight near zero energy.
our theory this is small at both low and high temperatur
SinceT1

21 measures the low-energy spin-flip excitations
the system, it is amenable to an analysis based on the
tinuum field theory model, which has also been used to
tain theoretical estimates of its temperature dependence6 It
should, in principle, be possible to extract more informati
about the spectral functions, including information on its b
havior far from the Fermi energy where a microscopic the
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is necessary, from the 2D-2D tunneling studies of quant
Hall ferromagnets, which we propose below.

C. Tunneling current

Electronic spectral functions are traditionally measured
tunneling experiments. The measurement44 of spectral func-
tions for 2D electron systems is enabled by techniques45 for
making separate contact between nearby quantum wells
the absence of a magnetic field, this technique has mad
possible to measure the quasiparticle lifetime including
dependence on temperature due to carrier-carrier scatte
For strong magnetic fields46,47the tunneling current is relate
to the bias voltage by

I ~V!5
et2A

hl l c
2E

2`

` dE

2p
@nF~E2eV!2nF~E!#l

3(
s

As~E!As~E2eV!. ~49!

Here t is the tunneling amplitude andA the area of the 2D
system. We caution that the above formula applies w
both 2D layers are kept at filling factorn51 in the presence
of a bias voltage. In 2D-2D tunneling, layer densities chan
with bias potential because of the finite capacitance of
double-layer system, unless a compensating gate voltag
applied. This issue is especially important atn51 because of
the sensitivity of the electron system to density near t
filling factor. Provided that there is no density change
either layer, each spin direction contributes equally to
current. Measurements at fractional filling factors have de
onstrated a deep, wide, and only partially understood min
in the spectral function near zero energy. Our calculati
suggest the possibility of further interesting findings wh
experiments are performed atn51. In Fig. 13 we plot the
dependence of the tunneling current on bias voltage for th

FIG. 12. Nuclear-spin-relaxation rate as a function of tempe
ture in units of the field- and quantum-well-width-dependent pr
actor C(B,w) discussed in the text. The prefactor becomes
31023 Hz for a magnetic fieldB57.05T and w53.11l c(ksc

50.01l c
21).
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temperatures. Within our theory ad peak with a substantia
weight proportional tozz1;@12(M /M0)2#/4 appears. This
peak arises from the product of the two poles in the spec
function, and it will occur at a temperature dependent va
of eV equal, for the idealized case of a zero-width quant
well, at the energy difference between the upper and lo
pole positions plotted in Fig. 8. Broader and much wea
features result from the convolution of ad-function peak
with the continuum contribution, and still broader an
weaker features from the self-convolution of the continuu
contributions to the spectral functions. Only this last con
bution contributes to the linear tunneling conductance.
Fig. 13 we have for visualization purposes arbitrarily r
placed thed-function contribution by a Lorentzian of width
0.01l.

We expect that sharp peaks do occur at voltages nea
exchange splitting, despite the quantitative limitations of o
theory discussed above. In Fig. 14 we plot the tunnel
conductance

G5 lim
V→0

I

V
5

e2

h

t2A

l2l c
2E

2`

` dE

2p

2]nF~E!

]E
l2(

s
As~E!2

~50!

as a function of temperature. The tunneling conductanc
proportional to the square of the spectral function avera
over energy arguments less than;kBT. It therefore has a
temperature dependence similar to that of the nuclear-
relaxation rate. It vanishes at zero temperature and rem
small even forkBT substantially in excess ofDz since the
bulk of the spectral weight is shared between the high-
low-energy poles and exchange-enhanced spin split
causes these to be well away from the chemical potentia

-
-
8

FIG. 13. Tunneling current-voltage relation as a function of b
voltage atn51 for three temperaturesT50.03, 0.05, and 0.1l/kB ,
where thed peaks of the spectral functions are replaced by Lore
zians with widthe50.01l. The parameters used for this calculatio
are:Dz50.016l, w53.11l c , andksc50.01l c

21 .
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VI. ODDS AND ENDS

A. Consistency

A second formally exact expression can be derived wh
relates the electronic spectral function to the magnetizat
In the strong-field limit,K5H2mN5K↑1K↓ can24 be writ-
ten as

Ks~T,V,m!5
NF

2b (
inn

einnh@ i\nn1js
(0)#Gs~ inn!, ~51!

whereh is a positive infinitesimal and the sum is over Ma
subara frequencies. Using the spectral representation o
Matsubara Green’s function and performing a contour in
gral then yields

Ks~T,V,m!5
NF

2 E
2`

` dE

2p
nF~E!~E1js

(0)!As~E!. ~52!

Using thermodynamic identities, the magnetization can
turn be expressed in terms ofK:

M ~T,V,m!52
1

bE0

b

db8S ]K

]BD
b8,V,m

. ~53!

We do not obtain the same result forM from this expression
as from the more direct expression discussed above if we
beyond the SHF approximation. This ambiguity is one
several consequences of the fact that our self-energy app
mation is defined in terms of Hartree-Fock propagators,
is not conserving.48

Some partial self-consistency can be achieved by sim
replacing the SHF occupation factorsjs

HF , wherever they
appear, by occupation factors calculated from the final sp
tral functions. Atn51, it is sufficient to specify the differ-
ence of majority- and minority-spin filling factorsDn. Fol-
lowing this procedure requires that we solve an equation
the form Dn5 f (Dn), wheref incorporates the entire func

FIG. 14. Tunneling conductance in the limit of vanishing vo
age as a function of temperature atn51 for the quantum-well
width w53.11l c andDz50.016l (ksc50.01l c

21).
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tional dependence on the right-hand side of Eq.~44!. At the
same time, we modify the HF quasiparticle energy acco
ingly:

j↑52
1

2
@Dz1lã~0!Dn#. ~54!

Together with Eq.~44! this procedure defines an implic
equation for the differenceDn, i.e., for the magnetization. In
general this equation has at least one solution with 0,Dn
,DnHF. We have determined this solution as a function
temperatures and have found that the solution is unique.
result was shown in Fig. 3 in Ref. 9. The smaller magne
zation values are in better accord with experiment. The
provement probably does reflect a partial accounting
omissions of the elementary electron spin-wave scatte
theory. However, the abrupt decrease of the magnetiza
toward noninteracting electron values at temperature va
T;0.06l/kB is certainly unphysical. Not surprisingly, thi
ad hocprocedure does not provide satisfying results. A mo
elaborate attempt at a self-consistent scheme, in which
full set of equations~28! was solved self-consistently, ha
been explored by Haussmann,10 and proved to be equally
unsatisfying.

Some hints at possible routes toward a more accu
theory can be found in examinations of the transverse s
ceptibility of a quantum Hall ferromagnet. It is remarkable16

that in the LLL, this quantity can be expressed exactly a
geometric series of of irreducible particle-hole bubb

@F̄(qW ,ivn)#,

x̄12~qW ,ivn!5
F̄~qW ,ivn!

11I ~qW !F̄~qW ,ivn!
, ~55!

where I (qW ) is independent of frequency. In the generaliz

random-phase approximation,F̄(qW ,ivn) is approximated by
a bubble with Hartree-Fock propagators. Generally, the i
ducible particle-hole bubble can be expressed in terms o
irreducible vertex functionḡ@qW ; inn↑; i (nn1vn),↓#:

F̄~qW ,ivn!52~gmB!2
e2q2l c

2/2

2p l c
2

3
1

b (
inn

ḡ@qW ; inn↑; i ~nn1vn!↓#

3G↑~ inn!G↓@ i ~nn1vn!#. ~56!

In the RPA expression forF̄ we have setḡ51, and the GF’s
are approximated by the SHF GF’s. Therefore it is not s
prising that any improvement ofG beyond the SHF GF
makes a change ofḡ necessary in order to satisfy the Gol

stone theorem condition 152I (0W )F̄(0,0).

B. Screening

In any electronic system, screening of electron-elect
interactions plays an important role in many-particle physi
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The simplest approximation for the dynamically screened
teraction is the RPA, which, for the present problem, ta
the form

Ṽ~kW ,ivn!5
Ṽc~kW !

e~kW ,ivn!

5
Ṽc~kW !

11Ṽc~kW !P0~kW ,ivn!

5
2p l c

k12p l cP
0~kW ,ivn!

, ~57!

with the polarization function approximated by

P0~kW ,ivn!52
e2k2l c

2/2

2p l c
2

l

b (
inn ,s

G s
HF~ inn!G s

HF@ i ~nn2vn!#.

~58!

In this approximation, Landau-level degeneracy is resp
sible for polarization functions, which vanish at nonze
Matsubara frequencies. Ativn50, we find that

Ṽ~kW ,ivn50!

5
Ṽc~kW !

11Ṽc~kW !bl
e2k2l c

2/2

2p l c
2 (

s
nF~js

HF!@12nF~js
HF!#

.

~59!

In the long-wavelength limit this leads to the following e
pression for the temperature-dependent screening wave
tor at n51:

ksc~T!5
2bl

l c
nF~j↑

HF!@12nF~j↑
HF!#

5
bl

2l c cosh2@bj↑
HF~ksc ,b!/2#

. ~60!

The inclusion of interaction effects in the HF energies pla
an important role in the temperature dependence ofksc im-
plied by this equation. At low temperatures the screen
wave vector ksc;exp(2j↓

HF/kBT)/kBT is extremely small.
The limited utility of this screening approximation is ev
denced by the discontinuous dependence ofksc on tempera-
ture found when Eq.~60! is solved numerically.

Additional insight into screening in the static long
wavelength limit can be obtained by using Thomas-Fe
theory, in which

ksc~T!52p l cln2k52p l clS ]n

]m D
T,V,N

5
l

l c
S dn

dm D
T,V,N

,

~61!

wherek is the compressibility,n is the particle density, and
n52p l c

2n. If we neglect the dependence of the spect
function on the chemical potentialm and exploit particle-
hole symmetry atn51, we obtain
-
s

-

ec-

s

g

i

l

ksc5
2bl

l c
E

2`

` dE

~2p!
A↑~E!nF~E!@12nF~E!#. ~62!

This is an implicit equation forksc , sinceA↑(E) itself de-

pends onj↑
HF , which again depends onã(0) and thus onksc

@see Eq.~6!#. With this equation we can use the improve
spectral density of the spin-wave theory to estimate the
proximate magnitude of wave vectorksc at a given tempera-
ture. Rather than solving self-consistently forksc at each
temperature, we have fixedksc at two values, and used Eq
~62! to find those temperatures at which these values
self-consistent. As discussed in Sec. V, this procedure is
equate given the relatively weak sensitivity of our results
low and moderate temperatures to the value used forksc . At
higher temperatures, screening is likely to be important si
stronger screening causes a flattening of the spin-wave
persion, which leads in turn to more magnetization suppr
sion, smaller exchange splittings, more mobile charges,
hence still stronger screening.

C. High-temperature behavior

The high-temperature expansion of the magnetizat
gives us some insight into the validity of our approximatio
and stresses the importance of screening at higher temp
tures. However, these results are of rather theoretical inte
because at large temperatures excitations to higher or
Landau levels become more and more probable and ou
striction to the LLL becomes questionable.

In principle, the many-body perturbation theory expa
sion for the thermodynamic potential provides a system
order by order expansion in powers of the interacti
strength over the bare Zeeman gap, or the temperatur
combinations thereof. However, the long range of the C
lomb interaction gives rise to divergent diagrams and co
plicates issues again; for example, a logarithmically div
gent contribution to the magnetization appears at third or
in interaction strength, which can be traced back to the
vergent second-order bubble diagram for the self-energy
systematic way to circumvent this problem is to expand
terms of interactions, which are screened by infinite-or
bubble diagram partial summations. Rather than pursu
this line, we have attempted to gain some insight from p
turbative expansions by performing the expansion up to th
order in b for the case of hard-core interaction model wi
Ṽ(q)54pV0l c

2 .49

The leading term of the high-temperature expansion
the spin magnetization is identical to the same term for f
particles, i.e., the lowest order term in the expansion
M (T)/M05tanh(bDz/4)5bDz/41O(b2). As mentioned
previously, this limit shows that the Heisenberg mod
which yields a magnetization that is twice of this value, fa
once itinerancy becomes important. Our calculations
based on the linked-cluster coupling-constant-integration
pansion of the thermodynamic potential.50 The leading cor-
rection, which is quadratic inb, is determined solely by the
exchange integral 2V0 and leads to an increase of the sp
magnetization. We have carried this expansion out to th
order, and find that
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M5M0

bDz

4 H 11
bV0l

2
1

b2

8 S V0
2l22

Dz
2

6 D J 1O~b4!.

~63!

Note that theV0
2 term also contributes positively to the ma

netization. Figure 15 showsMT/M0 vs 1/T at high tempera-
tures. We can see from this figure that beyond leading-o
interaction contributions become important forkBT smaller
than '2.5l. For comparison the results from exact diag
nalizations for fixed particle numbers are given, which sh
the right slope but exhibit finite-size corrections of the e
pected order of magnitude.51 Obviously the importance o
correlations in this system persists to high temperatures.
property is a key in validating the use of models, whi
correctly describe only collective fluctuations in magnetiz
tion, even whenkBT is not small compared to underlyin
interaction energy scales.

VII. SUMMARY AND CONCLUSIONS

In this paper we report on a study of the one-parti
Green’s function of a quantum Hall system at filling fact
n51. The ground state of the two-dimensional electron s
tem in this case is a strong ferromagnet. Many analog
exist between the properties and the theoretical descrip
of this system and conventional metallic ferromagnets.
n51 the ground state and the elementary excitations

FIG. 15. Spin magnetization to third order in 1/T normalized by
the high-temperature free-particle magnetization@Dz /(4kBT)# for
the hard-core model (V05Ap/2, Dz50.016l, and w50.0). The
resulting deviation of the nine-particle exact diagonalization is d
to finite-size effects whose diminishing influence with increas
particle number is shown in the inset.
n
-
a

er

-

-

is

-

-
s
n
t
f

quantum Hall ferromagnets are given exactly by tim
dependent Hartree-Fock theory. This success is analogo
the success of band theory in describing the ground state
both collective and particle-hole elementary excitations
band ferromagnets. At finite temperatures, however,
show that Hartree-Fock theory fails qualitatively for qua
tum Hall ferromagnets, just as band theory fails for meta
ferromagnets. Our work is based on an improved approxim
tion for the electron self-energy, which describes the scat
ing of fermionic quasiparticles off the spin-wave collectiv
excitations composed of coherent combinations of spin-
particle-hole excitations. This perturbative approximation
equivalent to ones which have been used33 for models of
itinerant-electron ferromagnets at finite temperatures. H
we have the advantage that complicated band structure
not confuse a comparison of theory and experiment. We
that, at intermediate temperatures where the density of s
wave excitations is high, although our approximation give
huge improvement over Hartree-Fock theory, it still overe
timates the magnetization by nearly a factor of 2. We
tribute this failure to the neglect of interactions between s
waves in our approximation. Nevertheless, we expect
the qualitative physics predicted by our approximation
correct. On the basis of our calculations we predict tha
sharp peak will occur in 2D-2D tunneling current when t
bias energyeV is approximately equal to the spin splitting
and that the strength of this peak will be approximately p
portional to temperature at lowT. This peak is due to fluc-
tuations in the direction of the exchange field, which se
rates the energy of majority- and minority-sp
quasiparticles. We have recently argued36 that in metallic
ferromagnets, this mechanism is responsible for the temp
ture dependence of magnetoresistance in ferromagnetic
nel junctions. In that case, however, the mechanism can
be directly verified by tunneling experiments because
width of the quasiparticle bands is comparable to their
change spin splitting. Verification of the predicted effect
quantum Hall ferromagnets, therefore, has important im
cations for metallic magnetic tunnel junctions.
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