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We report on a study of the temperature and Zeeman-coupling-strength dependence of the one-particle
Green’s function of a two-dimension&2D) electron gas at a Landau-level filling factor=1, where the
ground state is a strong ferromagnet. Our work places emphasis on the role played by the itinerancy of the
electrons which carry the spin magnetization, and on analogies between this system and conventional itinerant
electron ferromagnets. We go beyond self-consistent-field theory by evaluating the one-particle Green’s func-
tion using a self-energy, which accounts for quasiparticle spin-wave interactions. Our calculations predict a
sharp peak at a large bias voltage in the 2D-2D tunneling current, with an integrated strength that increases
approximately linearly with temperature. We compare calculated properties with experiment, where available,
and with predictions based on numerical exact diagonalization and other theoretical approaches.

[. INTRODUCTION peratures of a large-bias peak in the tunneling conductance
between these 2D ferromagnets due to long-wavelength col-
The physics of a two-dimensional electron sys{@RES lective fluctuations in the spin-magnetization organization.
in a magnetic field is in many respects unique. Since the Our work is also motivated in part by recent experimental
degeneracy of the discrete Landau levels increases in propaprogress. Barrettt al* were able to measure the temperature
tion to the magnetic-field strength, all electrons can be acdependence of the spin-polarization and nuclear-spin-
commodated in the lowest Landau lewglLL) for suffi-  relaxation rates at fixed filling factors around=1 using
ciently strong fields. A Landau level then behaves, in manyuclear magnetic resonance techniques. Later, Maatfeh®
respects, like a band of zero width, and the system can bextracted the spin magnetization from magneto-optical-
regarded as the extreme limit of a strongly correlatedabsorption measurements. It is our hope that critical com-
narrow-band electronic system. In this paper we focus omparison between experiment and theory will yield insights
spin magnetism of the electron system at a Landau-level fillwith wider relevance to the finite temperature properties of
ing factorv=1 corresponding, when the spin degree of free-tinerant electron ferromagnets. It is, however, important to
dom is accounted for, to the case of a half-filled “Landaurecognize that the 2DES at=1 is different from conven-
band.” At this filling factor, it is knowr? that, when disor- tional itinerant electron ferromagnets in several important
der can be neglected, the ground state of the 2DES is ferravays. Most importantly, two dimensionality implies that its
magnetic. We are motivated to study this system because #pontaneous spin magnetic moment will not survive at finite
encompasses many of the difficulfeshich have con- temperaturesT.=0.) In addition, the strong magnetic field,
founded attempts to build a complete theory of metallic fer-which through its coupling to the electron’s orbital degrees
romagnetic systems, yet is free of the troubling but incidentabf freedom produces Landau levels, also produces a Zeeman
consequences of a complex band structure. The finitecoupling to electron’s spin degree of freedom. For the most
temperature properties of metallic ferromagnets are more instudied 2DES’s, those formed at GaAs/@k, _,As hetero-
volved than those of insulating ferromagnets, because of thginctions, the Zeeman coupling is quite small compared to
importance of both spin and charge degrees of freedom, dooth Landau-level separations and the characteristic interac-
much so that much early theory was based on misguidetion energy scale. As we discuss below, the main effect of
attempts to assign magnetic and conducting properties tdeeman coupling at low temperatures is to cut off the de-
separate classes of electrons. Despite an immense effort antkase of the magnetization due to the thermal excitation of
many advance$no completely satisfactory theory of metal- very long-wavelength spin waves, and to mitigate conse-
lic ferromagnets exists. Progress toward understanding mejuences of the system’s reduced dimensionality.
tallic ferromagnets has been hampered in part by the quanti- The recent experimental work stimulated two different
tative importance of details of the electronic band structuretheoretical approaches, which focus on different aspects of
which may not be accurately known or which may be diffi- the spin-magnetization physics. Read and Sachdew-
cult to render faithfully in going beyond mean-field theoriespared experimental data with largedimits of a quantum
of many-body effects. The present system has no such diffieontinuum field theory model, which provides an accurate
culties. We regard the quantum Hall ferromagnet as a labodescription of the long-wavelength collective behavior of the
ratory for testing theories of interplay between quasiparticleslectronic spins. In this theory, physical properties are de-
and collective magnetic degrees of freedom in metallic magpendent only on the two independent ratios between the ther-
nets. In this work we predict the appearance at finite temmal energykgT, the Zeeman coupling strength,, and the
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spin-stiffness energys. Recently this work was extended rate, and the temperature-dependent 2D-2D tunndlinvg

by Timm et al.” The field-theory description is expecfed  relation, all based on this self-energy approximation. In this

be accurate at low temperature when the Zeeman couplingection we also compare our results with available experi-
strength is weak. This approach achieves a reasonable ovénents, with other approximate theories, and with data from
all agreement between theory and experiment, at least at |of,'mite—size numerical calculations of the magnetization and

temperatures. Our work has a different motivation and fol-magnetic susceptibility. We conclude that it is necessary to
lows a different line. We are interested in addressing théccount for the finite thickness of the quantum well in com-

temperature dependence of the underlying electronic strud?@ring with experiment, and that the magnetization will be

ture, as it changes in concert with the change in the spifverestimated at high temperatures by models which do not
magnetization. Hence we focus on the one-particle Green&ccount for electror_uc itinerancy. We prgdlct the occurrence
function. A brief account of some parts of this work was ©f @ Sharp peak, with a strength approximately proportional

published previousl§. From the Green's function we can to the temperature, in the tunnelihgV relation wheneV is

calculate the electronic spectral function and hence the ma%—loSe to the zero-temperature spin-splitting. In Sec. VI we

netization, the tunneling density of states, 4ifidertex cor- iscuss some aspects of our calculation which point to diffi-

rections are neglectgthe nuclear-spin-relaxation time. The Culties in developing a completely satisfactory microscopic

approximation we use is one which accounts for the interactn€0ry- Finally, we conclude in Sec. VIl with a brief sum-

tion of quasiparticles with thermally excited spin waves. This™ar-
approximation has deficiencies. At low temperatures and at
low Zeeman energies the magnetizations we calculate do not [l. STRONG-FIELD LIMIT PRELIMINARIES

appear to be in quite as good agreement with experiment as In this paper we deal with a two-dimensional electron

magnetizations from IargN—_approxmaﬂons in the field- system where the electrons are subject to a constant perpen-
theory calculations. At medium and high temperatures, we

do not account systematically for temperature-dependerflicular magnetic field of strengtB=Be,. We are particu-
screening effects which are likely to be important. somdarly interested in the situation at filling facter=1, so that
progress in the latter direction was recently reported byih® number of electrons in the systéh equals the number
Haussmanf® whose bosonized self-consistent random-Of single-particle orbitals available in each Landau level:
phase approximation yields satisfying results at high temNg=AB/®o. Ais the area of the two-dimensional system,
peratures, but fails at low temperatures. Progress on theg#d ®o=h/e is the magnetic-flux quantum. One of the un-
fronts, which can be checked by comparison with experi-derlying assumptions in our model is that the Landau level-

ment, may suggest routes toward more generically satisfagéparation is large enough that we can ignore fluctuations in
tory theories of itinerant electron ferromagnets. which electrons occupy higher orbital Landau levels. This

Our paper is organized as follows. In Sec. Il we briefly reql_Jires that the Zeeman gap and the interaction strength be
review established results for the ground state and elemeg¥fficiently small in comparison th w; wherew.=eB/m*
tary excitations of the 2DES at=1, which will be impor- 1S the cyclotron freguency. The microscopic Hamiltonian in
tant for subsequent discussion. The ground state has all spitise Landau gaugeA=(0,Bx,0)] is thert?
aligned by an arbitrarily weak Zeeman coupling. If we ne- L

lect Landau-level mixing, and we do throughout this paper, A ~ ,
?his state has no pure cﬁarge excitations. I?s elemengrs ex- H=~ EAZ(NT_Ni)+ 2 E W(a,p=p")
citations all have a single reversed spin. It turns out that, in p(;")a'rq
the quantum Hall regime, the Hartree-Fock approximation . +
(HFA) is exact for the ground state, and the time-dependent X Cp+(a/2),0Cp’ — (q12),0' Cp’ +(a/2),0' Cp—(a/2),or 5 )
Hartree-Fock approximation is exact for its elementary exci- 5 . . . .
tations. The situation is therefore similar to that for manyv"herm‘_e /_(47'“5' ¢) Is the interaction coupling constant,
typical metallic ferromagnets, where there is substantial evi®z=|9#gB| is the Zeeman energy, amd=k,=2l/Ly, (I
dence that the ground state is well described by the Hartree= 0= 1, - - - ) are themomenta iny direction. The magnetic
Fock-like Kohn-Sham equatioHs of the spin-density- length lc= VhlleB| is used as the unit of length below.
functional formalism, and that its elementary excitations areVhen Landau-level mixing is neglected, the kinetic-energy
well described by a time-dependent generalization of€rm in the Hamiltonian is constanN¢ w./2), and is there-
density-functional theory. In Sec. Il we discuss the applicafore neglected. In Eq(1), N,=3.c} ,c; . is the number
tion of the self-consistent Hartree-Fock approximation at fi-operator for an electron with spm. We chooser=1 as the
nite temperature. The failure of this approximation at finitedirection parallel to the external magnetic field.
temperatures is analogous to the well-known failure of the In the Landau gauge the two-particle matrix element is
band theory of magnetism to provide even a rough accourliven b 2
of the ordering temperature. The approximation, on which
the present.work is based, is di;cussed in Sec. IV. We .ObtaiOV(q p—p')= if‘” d_k><\~/(k q)e‘ka*‘*z)’z]'ie‘kxw‘P')'g
an expression for the electronic self-energy by analytically ' Ly) w27 > ’
evaluating a particle-hole ladder summation involving 2)
Green'’s functions of opposite spin. We emphasize that in our o
microscopic theory, it is essential to account for screeningvhereV(k) is the Fourier transform of the effective 2D Cou-
even in the low-temperature limit. Section V discusses relomb interaction, which may include modifications to ac-
sults for the spin magnetization, the spin-lattice relaxatiorcount for the finite thickness of the quantum well containing
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the electrons or, as we discuss below, #ldehocincorpora-  erate ground-state wave function is given exactly by the only
tion of screening effects. The interaction vertex is a functionstate in thev=1 many-fermion Hilbert space, which has
only of g, the momentum transfer due to the interaction, andhese quantum numbers:

p—p’, the momentum difference of the interacting particles.

In the physically realistic case of long-range Coulomb inter- (W) =[TTTTTTTTT- - D). 3
actions between the electrons, it is necessary to incorporatemnite-size exact diagonalization calculatiéhs® can be
neutralizing positive background by settind/(k, Ky) used to establish that these conclusions remain valid for the

«3,W(q=0,p)=0. Note that the interaction term is similar realistic case of Coulomb interactions.

to that of a one-dimensional interacting fermion model with Th% simplest Eeutral_ ﬁxcit_ati(?ns of th(ej ferromagnetic
spin-split bands of zero width. However, in the present cas round state are those with a single reversed spin. [t turns out

~ that it is possible to analytically solve for the wave functions
W depends not only on the transferred momengiiut also 5 eigenenergies of these excited staté&The normalized
on the momentum difference of the incoming or outgoing

particles. This would be true even if we choose a hard-core"‘gensmes may be labeled by a wave vekiand in second

: - Z - ] %uantized notation are given by
interaction in real spac&/(r)=4mxV 6@ (r/l,). For this

model, the matrix elementW(q,p—p’) becomes . 1 gkt
Voﬂe—(qz/z—(p—p')z)@/z. |k>:\/_ﬁ % e 'quICCq,¢Cq+ky,¢|‘I’v:1>- (4)

Unlike most interacting electron systems, screening of . , )
mutual interactions does not play a major role in the corre-l € Operator relating this state to the ground state is propor-

lation physics of a quantum Hall ferromagnet, at least at lowfional to the Fourier transform of the projection of theaspin-
temperatures. In fact, static screening in this limit is weaklOwering operator onto the lowest Landau levek)
because of the gap for charged excitations of the grounde<'<¥S™(k)|W,_,)/N, where S (K) is S~ (K)=S*(K)
state. Nevertheless, below we obtain the somewhat surpri&isy(ﬁ) projected onto the LLL. These states appear to be
ing result that the electron self-energy has a weak divergenasimilar to the single-magnon states of a localized-spin ferro-
if screening is completely neglected. For this reason we almagnet, but there is an important distinction, which is most
low for the ad hocinclusion of screening effects in our cal- easily explained by considering a finite-size system. The di-
culations by substituting for the Fourier transform of the mension of the’=N/2— 1 subspace iBI§,=N2, since there

Coulomb interaction, V¢(k)=2l./k, the local static areN possible states for the minority-spin electron add
screening fOme(E)=27|c/(k+ksa. The constant value possible states for the majority-spin hole. It is possible to

assigned to the screening wave vedtgris discussed below show?® that for a finite-size quantum Hall system, the num-

. . . > . 2
The Green’s functions we calculate at a particular tem2€r Of inequivalent values of the wave vectors alsoN®.
perature depend, up to an overall energy scale, only on th%'nC‘T there is Ong Wavel vector for (_aﬁcg_f?tate and transla-
ratio A,/\. At typical field strengths this ratio is small, even tiona Invariance decoupies states with different wave vec-
though\ varies approximately aBY2 while A, is propor- tors, the eigenstates can be constructed by_symmetry argu-
tional to B. For examplé, at a magneticz field ofB ments alone. This should be contrasted with the case of

—7T, A,/\=2.2K/136K=0.016. Thus we will be inter- localized spin Heisenberg ferromagnets for which single-

ested primarily in the case where the interaction term domi—s'p'n'ﬂlp states can also be constructed by symmetry argu-
nates over the one-particle spin-dependent term. ments alone, but the number of such states is dhlyrhe

We now briefly recount some known results for the much larger number of states in the present problem occurs
ground state and low-lying excitations of the strong-fieldbeczm.se of the |_0055|b|l|ty_ in itinerant electron systems of
Hamiltonian. We start by considering the case of vanishin hanging the orbital occupied by an electron whose spin has

Zeeman coupling. If the interaction is of the hard-core type, een reversed,

the around state at filling factar=1 can be determindd The nature of the single-spin-flip excitations of quantum
g 9 Y Hall ferromagnets gradually changes from having collective

identifying zero-energy eigenstates of the positive definite pin-wave character at long wavelengths to having single-

Hamiltonian. It turns out that these must be the product ofP!l H2OThi .
the the Slater determinant¥s)) constructed from aN,, particle character at larger wave vectors: This property is

. ; 1718 . -
one-particle orbitals in the lowest Landau level and a many-ggfecsted by the dispersion relatidri” for single-spin-flip
particle spinor. The antisymmetry property of the many- '
fermion wave function then requires that the spinor be com- - ~ ~ =
pletely symmetric. From this it follows that it has total spin eswk)=4,+x[a(0)~a(k)], ©)
guantum numbeB=N/2. By this argument we are able to where the quantiﬁ}

establish with some rigor that the ground stateratl is a

strong ferromagnet, in agreem&hwith the Hartree-Fock o d2q
approximation discussed in Sec. lll, and if we regard the a(k)=f >
degenerate Landau level as analogous to an open atomic (2m)
She“, with Hund'’s rule arguments. An infinitesimal Zeeman Equation(G) is easy to understaﬂa'n represents the attrac-
coupling selects from this spin multiplet a ground state, intve interaction between a minority-spin electron and a
which all spins are aligned; for a Zeeman field in theli- majority-spin hole, quantum mechanically smeared over
rection the ground state h&=S=N/2, and the nondegen- their respective cyclotron orbits, and separated in real space

~

V(q)e—(q2|§/2)ei[c}(2x|2)]|§. 6)
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FIG. 2. Proper self-energy diagram in the self-consistent HF
approximation. The propagator line in this diagram must be deter-
mined self-consistently. This approximation leads to a frequency-
independent self-energy, and hence to a Green’s function whose
spectral weight consists of a singfefunction. The first-order tad-
pole diagram is absent because of the introduction of a neutralizing
background charge.

g [M

lll. HARTREE-FOCK APPROXIMATION AND
SHORTCOMINGS OF THE BAND THEORY
OF ITINERANT ELECTRON FERROMAGNETISM

0.0 5.0 10.0 15.0
Kl, In anticipation of subsequent sections we discuss the
Hartree-Fock approximation using the lexicon of the
imaginary-time thermodynamic Green’s-function
techniqué®*=2® When only the one-particle Zeeman term is
retained in Eq.(1), the thermal Green’s functiog(® is

given by

FIG. 1. Spin-wave dispersiogxy/(K) at zero temperature, with a
Zeeman gapA,=0.016\ and a static screening wave vectay,
=0.01_". Note the small value of, compared with the spin-

wave bandwidtmﬁ(O). Thedashed line showa ,+4mpgk?l2.

by 12zx k. The attractive interaction contributes negatively 1
to the excitation energy. This magnetoexcitonic picture of Qf,o)(ivn)=ﬁ, C)
spin-flip excitations is especially appropriate when the hva =&y

electron-hole separation exceeds the cyclotron orbit size, i.eyhere va=(2n+1)7/(AB) is a fermion Matsubara fre-
whenl |k|>1 We use this picture in Sec. IV to interpret our quency, B=1/kgT, and g(o)—_gA [2—u (o=+1 for
result for the interaction between electrons and spin waves. = —1 for |) is the single-particle energy measured from
The gap for creating infinitely separated electron-hole pairsghe chemical potential. In the strong-magnetic-field limit,
A,+\a(0), isassociated with the incompressifiproperty  translational invariance impliésnot only that the Green’s

of guantum Hall states. The proper&gv\mz_)O):Az is re- function is diagonal in the momentum labels of the Landau
quired by spin-rotation invariance of the interaction Hamil- gauge states, but also that the diagonal elements are indepen-
tonian. For smalk the excitations are collective in character, dent of momentum. This general property leads to thermo-
and dynamic Green'’s functions, which depend only on Matsub-
ara frequency and spin.

In the diagram sum we use to approximate the electronic
self-energy in Sec. IV. The propagators which appear are
L ~ ~ - 2o i self-consistent Hartree-FodiSHF) propagators rather than
where ps=lim,_o\[a(0)—a(k)]/(4mIck?) is the spin- (e pare propagators of E€). The Hartree-Fock propaga-
stiffness parameter, which appears in field theory phenompys are obtained by self-consistently solving the Dyson
enologies. In Fig. 1 we plotsy(K) and the above long- equation with the lowest-order self-energy diagram illus-
wavelength approximation for the case of a weakly screenettated in Fig. 2. This leads to an algebraic equation for the

esw(K)=A,+4mpd 22, (7)

Coulomb interaction. self-energy:
The elementary charged excitations of thk,_,) are
also known exactly: SHF= P dO= _\a(0)ng(£7F). (10)
1K) o= Cl 1,0 The SHF Green'’s function is
(8) 1
HF
[K)h=Cy 1|V, —1). Gy (ivp)=- (11)

ihv,— §;’F .
%ince the chemical potential at=1 is determined by the
equatlon Ne(€)+ne(€)=1, it follows that g F(T)

=E,_1+u+ & andE=E,_,—u—¢", respectively. Ex-  _ "'F(T)<0, and that the chemical potential is fixed at

plicit expressions for the Hartree- Fock energies are given in

Sec. lll. Recently it has become clear that for systems with* = )\a(O)/2 independenbf temperature and Zeeman en-

weak Zeeman energies, charged Skyrr?ﬁmrxcnanons can ergy. ForkgT< )\a(O)/4 andweak Zeeman coupling it can

have lower energies than these states. However, as we disappen that Eq.10) has three solutions. In this case

cuss below, Skymion states will have little spectral weight inwe choose the lowest value ojTHF, since this is the
the one-particle Green’s function. solution which minimizes the grand potentia(Q)

These single Slater determinant states are the maximall
spin- polarlzed states WithNl=N,*+ 1, and have energids
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0.0 1.0 with mean field exponenf=3. The SHF spontaneous mag-
netization is plotted in Fig. 3.
09} {oo9 The finite T ferromagnetic instability of the SHF Green’s
0.8 0.8 function also appears in the rand_om-phase-a_pp_roximation
. (RPA) expression for the spin susceptibility per
o7 7% area y (Giiwn) =1 Edre eyt (d,7), where o,
§ 08T 106 g =2nm/(#B) are bosonic Matsubara frequencies and
0.5 0.5 Lr
= & — . (me)?, — .
£ 04 04 & x (@n=——T5(q,nS"(-q,0). (19
0.3 03~
0.2 0.2 The overbar is intended to emphasize that the susceptibility
is to be evaluated in the strong-field limit, where the Hamil-
01 r 101 tonian can be projected onto the LLL. The RPA expression
0.0 0.0 can be obtained from a ladder diagram sum with SHF
0.0 02 °'4T [Mkﬂ)]OIB 0.8 Green’s functions, similar to the sum for the self-energy de-

tailed in Sec. IV. The result 18

FIG. 3. Hartree-Fock eigenenerg/" (solid line) as a function -
of temperature at=1; ¢'"= — £'7, because of particle-hole sym- — iRPAZ X HP)(q,iwp)
metry atv=1. The magnetizatioM = My(v,— v) within the SHF X (Q.fwn)= 1+1 (d’);*Jr(HF)(a iwp)
is depicted forA,=0.016n (dashed curyeand A,=0.0n (long e
dashed curve respectively. Note the finite magnetization at 3w (gMB)Ze—qzlﬁlz (VTHF_ VTF)
in the latter case, incorrectly indicating the existence of an ordered = 5 . — —
phase forT below T.=a(0)\/(4kg). The uniform static inverse 2mlg [ihwntesw(a)]
susceptibility is plotted as a dotted line in units of (16)
(16m12\)/(gug)? for T=T,, as well forT<T,.

where the single-bubble HF spin susceptibility

= —2NkgT In[2 cosh3¢,/2]). In Fig. 3 we plot the Hartree- ST HE HE
Fock eigenvalug!'™ and the spin magnetization as a func- _(gup)'e T i =v)

tion of temperature. The diffe_rencg%'F—gTHFzzngF is the 2712 (ihwn— &1+ £1F)
exchange enhanced spin splittfg® of the lowest Landau (17)
level. Its maximum value occurs &=0 and isa(0)x
+A,, dominated by the interaction term fdr,<\. In the
high-temperature limit T— ) this gap reduces to the bare

x HP(q,iw,)

is the bubble with HF lines. The effective interaction
appearing in Eq. (16) is defined by 1(q)

2021 - o~
Zeeman splitting), . =—2712/(gug)?e?'cZa(q)\. The quantityesy(q),

The sharp inflection point in the spin magnetization curve - HE R~ .
for A,=0.016\ in Fig. 3 is a remnant of the spontaneous esw@)=A+N(vi —v)[a(0)—a(q)], (18

magnetization that occurcorrectly in the SHF Green’s ) . ]
function at low temperatures. For=1 andA,=0 it follows ~ reduces to the spin-wave spectrugu(q) of Eqg. (5) in the
from Eq. (10) thatxz,BgTHF satisfies T—0 limit. In this approximation, the spin-wave bandwidth
is reduced in proportion to the spin polarization as the tem-
perature increases. Note that this approximation does not
. (12) capture the finite lifetime of spin-wave—states, which will
result from spin-wave spin-wave interactions at higher tem-
. . . .. peratures. This will be one of the important limitations of the
At high temperatures the only solution to this equation is theory we present in Sec. IV
HF HF : : - V.
=0 so thatng(&7) =ng(£)7)=1/2 and there is no spin 4, A —0 the static limit of the RPA susceptibility, plot-
polarization. Expanding the right-hand side of E&2), we o4 in Fig. 3, diverges at the same temperature at which the
see thatx# 0 solutions are possible when the coefficient Ofspontaneous magnetization determined by the SHF equations

- 1
x=,8a(0))\(§— o

the linear term exceeds 1, i.e., fo< T =a(0)M/(4kg).  (10) vanishes. These results are in disagreement with the
Expanding Eq(12) up to third order, we find the expected Mermin-Wagner theorem, which forbids continuous broken
mean-field behavior fol nearT?F: symmetries at finite temperatures in two dimensions. The
disagreement is expected for mean-field theory. It clear that

M(T) T T 12 the SHF magnetizations calculated at relatively small but

M(T=0) :\ETHF 1- THF (13)  finite values ofA,, appropriate for experimental systems,

¢ ¢ will be too large. In essence, the SHF calculations of this

section are equivalent to the Stoner band th&drgf metal-
lic ferromagnetism. In both cases the ground state is well
)1/3 described(In the present situation the SHF ground state and

Similarly, atTZ'" we obtain

(14)  the exact ground state are identi¢ah both cases the mag-

M(T=TIF,A,) | 34,
netization is overestimated at finite temperatures primarily

M(T=0)  |Z0)
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479, Ag, i(@+v) 479 Agi2, i(@+V’)

Py =5 —y " =) FIG. 4. The self-consistent integral equation
= = G dEarM2- g, ¥ E’ for the scattering vertek ) in the particle-hole

S g e - ladder approximation.

49, v 479+ Agl2,iv’

because of the failure to account for magnetization suppres- ' (q+Ag/i2—q4,AG;i o)

sion due to thermally excited collective spin-wave excita- 77

tions. The approximation discussed in Sec. IV remedies this =\W(q+Aq/2— q4,Aq)+)\;(m,(i )l

gross deficiency. The situation in the present two-

dimensional systems with a small Zeeman coupling is not % fw dg'W(q—q’,Aq)

unlike the situation in most three-dimensional metallic ferro- —o

magnets with no external field. For example it is generally @ .
acceptetf that most but not all of the magnetization suppres- XDy (A" +A02= 04, AG; 1 wp). (20)

sion up to the criticgl tempere}ture in the glemental m(?:‘tallicHere we have introduced the pair propagaor,(iw,),
ferromagnetqFe, Ni, and Cois due to spin-wave excita- defining '

tions. Of course, the separation of magnetization suppression

into collective spin-wave effects and the particle-hole effects - . 1 : :

cannot, in general, be made precise. In metallic ferromag- ~ Xewo'(i@n) =~ % % Golivn)Goli(vntwn)].  (2D)

nets, and in the present two-dimensional systems, a complete

theory valid at moderately high temperatures requires the It is important to note that thg independence of the GF
interplay between collective spin fluctuations and the underin the case of quantum Hall ferromagnets immensely simpli-
lying fermionic degrees of freedom to be accurately dedfies the solution of the Bethe—SaIpetgr equation. In fact, Eq.
scribed. Section IV reports on an adaptation of microscopi¢20) can be reduced to an algebraic equation because the

theories of metallic ferromagnets to the present case. second term on the right-hand side is a convolution integral
in the center of mass coordindfeWe define a partial Fou-

rier transformation of the scattering function:

IV. ELECTRON SPIN-WAVE SCATTERING

o,0 0,0

'F(“),(p,Aq;iwn)=lcf daePer® (q,Aq5iw,)
Our theory is based on an expansion in terms of SHF -
Green'’s functions. The self-energy correction to these propa-

gators can in principle be expressed in terms of the exact =e‘p(Aq’2‘q4)'§Icf dqePalc
scattering vertexX'(¥)(1,2,3,4) and the exact GRHere 1 is o

short for @;,iv1,).] We use an approximation, which, as <T@ (q+AQ/2—qs,AQi ;).
we shall demonstrate, captures much of the essential physics. i

It is the analog for quantum Hall ferromagnets of the ap- (22

proximation discussed by Hertz and Edwardsr the case  The corresponding transformation of the Landau-gauge ver-

of single-band Hubbard models with ground states, WhiCQexW(q,Aq) is the particle-hole interaction, which appeared

are strong ferromagnets. The self-energy is approximated by...i5uslv in Eq.(18
a particle-hole ladder summation, which gives an exact de%frewousy in Eq.18),

scription of interactions between a single hole in the majority E(IZZ(Aq,p))

band and a single electron in the minority band. However, as

the density of spin-flip excitations increases at higher tem- e inal3c
peratures, the approximation becomes less accurate. =l _mdqe' “W(q.A0)

The Bethe-Salpeter integral equation for the scattering

i ) i in Ei ici - 257
vertex is expressed diagrammatically in Fig. 4. Explicit cal f d=q 2?/(&')e-q'2'5’2e‘<qiﬁq+f4§r’>'5, 23
(27)

culation of low-order ladder-diagram particle-hole vertex =
parts using Feynman rules shows that, in this approximation,
where we have defined the two-dimensional wave vektor
=(Aq,p). With these definitions we find that

r®(1,2,34=r"(q+Aaql2—qs,Aqiw,) (19 -
a(k)\

T [k=(p,AQ)iwgl= ——=—me—.
depends only on two momenta and one frequency. tdere [1— X0, (Twp)a(k)N] o
=(g;+0q3)/2 and Ag=q,—q3 are the center-of-mass and (24)
the relative momenta, respectively, aneh=i(vs,— v1p) IS Our self-energy approximation consists of combining this
the bosonic Matsubara frequency of the relative motion okcattering vertex with the propagators. In order to avoid
the ingoing and outgoing particles. double counting the first-order terms already present in the
The Bethe-Salpeter integral equation for the scatteringdartree-Fock propagators, we must subtract the first order
vertex is term from the right-hand side of ER4). Inverting the trans-
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form of Eq.(22) then gives the sum of second- and higher-As we discuss below, we have found that these self-
order terms in the Bethe-Salpeter equation. The approximateonsistent equations tend not to have stable solutions at low
self-energy for spinr is obtained by contracting the incom- temperature.
ing and outgoing lines of the opposite spin into a Hartree- Our work is based mainly on the approximation in which
Fock propagator. The result is that the pair propagator and the self-energy are evaluated with
SHF Green'’s functions. The pair-propagator frequency sum
ig(ivn)= i E ggr[i(vn+wn)]fg4l,(iwn), (25) may then be evaluated analytically,

iwp

[Ne(£55) —ne(£,0)]
where Y (iwy)=— T 29
Xow (om0 — 1) 29
o
T (i wn)527T|§f d k2 @ ars, leading to the following explicit expressions for the correc-
’ (2 tions ¥ (iw,) of the majority- spin and minority-spin SHF
, lzJ, a2k self-energies:
=£Tl 2 - » k2|2
(277) ET(iVn):}\Z(VTHF_VLHF)J d( 20 a2(k)
X a(kx a(k)\ O
— pom— —a . ~
[1—Xo.o(i@n)A(K)N] X{nB[ESMk)]+nF(§TF)} 30
(26) [ifivg+ esw(k) = €]
The Dyson equation relating the SHF and full Green'sand
function is . (K22
_ i i = )\2(HF_ HF f d( €122k
[Goiv) ] =[G ()] 2= =S vy (27) O P N
Below we address the question of whether the SHF Green’s {nglesw(k) 1+ 1—ng(£F)}
function or the corrected Green’s function should be used in X : — F (31
the expression for the pair propagator. If we use SHF [iivy—eswk) =& ]

Grleen S fuTtlonlsé theHEirtlﬁlpe_g?IS IaAdtdIer dltagram Otf Ordeli—|ere nglesw(k)] is the Bose-Einstein distribution function
n is proportional to ¢, —v,, )" 7. At low temperature ¢, o 'sih \waves whose dispersion is specified in (E8).

this factor is close to 1 and larger than the combinations ofq, 1= 0 the occupation factors in the numerators of both

filling factors, which result from other diagrams of the sameggt energy expressions vanish, and the SHF result, which is
order. For instance, the corresponding particle-particle ladd€t, ;¢ in this limit. is recovered.

is proportional to (+ 5" —»7)("" Y, which is zero for These electronic self-energy expressions resemble those
any T when o+ o'. This observation may be used at low due to virtual phonon exchange in an electron-phonon
temperatures to systematically justify the class of diagramgysten?® The majority-spin self-energy includes contribu-
we have included. At higher temperatures we expect that thgons from processes where a majority-spin electron scatters
sums of ring diagrams, which describe screening phyics out to a minority-spin state upon absorption of a spin wave,
will be among the important omissions. and processes where a minority-spin electron scatters into a
It is possible to require that the Green’s functions used inmajority-spin state upon emission of a spin wave. Because
the pair-propagator and self-energy expressions be obtaingHe spin wave carries spi,= — 1, there are no processes
from the Dyson equation. This leads to a set of coupledvhere a majority-spin electron scatters to a minority-spin
equations, which can be solved numerically. For this purposetate and emits a spin wave or a minority-spin electron scat-
it is convenient’ to express the equations in the following ters to a majority-spin state and absorbs a spin wave. This
mixed imaginary-time imaginary-frequency representation: distinction explains both the difference between the
majority-spin self-energy in Eq30) and the minority-spin

G ive)—[GHF (v t==3 (ivp), self-energy in Eq(31) and the difference between these self-
energies and the phonon exchange self-energy where both
S,(n=T% (=1G,.(), classes of contribution appear at oRéélhe electron self-
' 29) energy expressions are identical to those which would be
obtained for a model where the electrons and spin waves
5 d2k were regarded as independent fermion and boson particles
Fff“ff,(i wn)=2wlﬁf - with an interaction in which fermions are scattered by emit-
’ (2m) ting or absorbing spin waves. The effective electron spin-
SN wave interaction, which can be read off from the self-energy
x[ — a ———a(k\ ¢, expressions, is proportional voE(IZ). Note that, unlike the
(1= Xg,o(fop)a(k)N) case of deformation potential electron-phonon coupling, the

. matrix element approaches a constankas0. If the long-
Xo.o(T)=—Go(—7)Gy(T) range Coulomb interaction is not screened, the electron spin-
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wave interaction falls off only alk| ! for largek. [For ideal

2D Coulomb interactionsa(K) = Ja/2e K& o(k?12/4).]
The electron spin-wave interaction at largean be under-
stood in terms of the excitonic picture discussed in Sec. Il
and is proportional to the electron-electron interaction at
real—spaceseparationklﬁ. If the Coulomb interaction is

screeneda(K) will begin to fall off more quickly oncekl? =
exceeds~ k.. The slow falloff of these large momentum- %
transfer scattering events requires us to take account o™
screening when we evaluate the self-energy expressions.
Note that these self-energy expressions satisfy the eque

tion =, (iv,)=—2 (—iv,). This is an exact identity for the
casev=1, which follows from the particle-hole symmetry I
of the underlying Hamiltonian. We remark that the self- 4, . : : : .
energies given by Eq$30) and(31) have branch cuts along -5 10 -05 0.0 0.5 1.0 15
a finite portion of the real line. For majority spins the branch ED

; g~ _ gHF g+ _ gHF 5

cut oceurs alon_g t_he IrjtervaIIT—(gT &1 61 =€) FIG. 5. The real part of the self-energ)°'(E) and the lineE

—A,). For the minority spin the branch cut interval lis ~ _ .F as functions of E at temperature T=0.1\/kg(A
. z

=(§ = §'{'F-|_-AZ,§Ir = fTF)' OUIS_'de of these intervals the =0.016\,ksc=0.01_*,w=0.0,). The quasiparticle poles occur at

self-energy is real on the real line. Because of the branckye two energy valueE; andE; , at which the curves intersect.

cuts, some care Is r?qwred in the numerical evaluation of thgecause the self-energy diverges in opposite directions as the upper

self-energy expression. and lower boundaries of the central branch-cut interval, two poles
In this paper we concentrate on physical properties whickexist at any temperature in this approximation.

can be expressed in terms of the one-particle real-time

Green’s function. Analytically continuing the thermal pranch cut. The positions of these quasiparticle poles in the

Green’s function self-energy expressiofisgs. (300 and  Green'’s function are determined by

(31D], to the real frequency axisiffv,—E+i7) gives

G'®(E)=1[E+in—&IF~3 (E)]. The retarded Green’s E—&F=Sre(E). (34)
function is completely specified by its spectral function

Figure 5 illustrates a graphical solution of this equation for
A (E)=—2 |mG:ret(E)' (32) T=O_.1)\/kB. As we discus'_s below,_the_ spectr:all Weig+ht is
dominated by the twd-function contributions aE ; andE
Itis A,(E), which we evaluate numerically, and we start by except at elevated temperatures. _
mentioning some of its general properties. If we consider the To obtain a qualitative feel for the physics of the self-
system of equations defining the SHF GF equat@® and  energy at low temperatures, it is useful to divide it into sepa-
start the iteration from the bottom equation with a GF satisfate contributions from interactions with collective long-
fying G, (iv,)=—G,(—iv,), we end up with a GF satisfying wavelength spin waves and from interactions with short
the same relation, i.e., the approximate system of equationgavelength spin-down electron, spin-up hole pairs. We arbi-
conserves this property. The SHF GF has this property sincéarily treat spin waves witll <1 as collective, and those
gTF: - g?F_ Since Gget(E): —-G™(—E), the spectral with kl.>1 as single particle. For collective spin waves we
functions for up- and down-spins satisfy the following rela- €an approximate the electron-spin-wave interaction by a con-
tionship: stantAa(0), and thelow-energy spin-wave dispersion by
A,+4mpg2k?. Similarly, for particle-hole states we can,
A(BE)=A|(—E). (33 when screening is neglected, approximate the interaction by
_ Mkl and the spin-wave energy by?™ —N/kl;. We first
Therefgre,'the.knowledge of the spgctral 'fu'nctlon for only.oncentrate on the region of enerﬁyneargTHF, where the
one spin direction for the case of=1 is sufficient to deter- 5y spectral weight resides at low temperatures. The col-

mine the result for the other spin directions. lective spin-wave contribution to the self-energy near the
When the self-energy is evaluated from the Hartree—FocIfOW_energy quasiparticle is

GF the qualitative behavior oA,(E) can be understood
from the analytical structure of the denominafd— &}'" . K
~ . . Jc— " ~ 2 |C nB[ESV\( )]
—2,(E)] of the GF. The spectral function fer=1 is non- 27 (E)~—[Aa(0)!l] dkk—=—""——"r—.
0 Na(0)+ &7 —E
zero along the branch cut where the retarded self-energy has T (35)
a nonzero imaginary part, i.e., fgf'"<E<¢&['F - A,. Since
the real part of the self-energy is monotonically decreasingVe have assumed here that the spin-wave Bose factor is
outside of this interval, it vanishes f&&— *, and is di- larger than the spin-down electron Fermi factor. Note that
vergent forE—>§TF—AZ from above(see below, it follows  this requires, at a minimum, that, be less tharhalf the
that the Green’s function also has simple poles, and the spesingle-particle energy gaa'fF— gTHF. The extra factor of 2
tral function hass-function contributions on both sides of the in this condition occurs because of the itinerant nature of the
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single-particle excitations. This self-energy contribution will

HF
~ ° n

be negative and only weakly energy dependent Eor E?M(E)%)‘Jldkkl&' (40)

<& The particle-hole contribution to the self-energy in Ie )

the same energy range is In this case, screening is not necessary to make the particle-

hole contribution small at low temperatures. The second term
~pH_ Y ne(€7'F) in the denominator of Eq39) is negligible if 5=kgT be-
277 (B)~—A f—ldkk HF - (38 cause of the exponential cutoff in the spin-wave B -
[ & +NKI.—E ! p pin-wave Bose occu
¢ f ¢ pation factors; we see below that the condition is satisfied at
This contribution to the self-energy is sharply energy depenthe upper pole in the Green’s function. Keeping only the
dent, reaching a maximum fﬁ:g'{”:, and is formally di-  collective contribution gives a high-energy pole with residue
vergent for every energy. The divergence comes from th@" =z '~1 and energy
largek contribution to the integral, i.e., from the interaction -
of electrons with widely separated spin-flip electron-hole Ef=¢&"—A,+ a(0)[z '-1]. (41)
airs. It can be cured by introducing screening into our -
Fheory as discussed earli)(/er. Screenir?g effectivgly cuts O#or 4mps>KeT> 4., it follows from Eq. (37) that
the divergent integral at~ 1/kSCI§. At low T, a Thomas- kgT
Fermi approximation estimate would givekgd. z71-1=
~\ exp(—ngF/kBT). The screening wave vector is exponen- B
tially small because of the gap for charged excitations, anavhich, since 16p,=\a(0), guarantees thaf is in the as-
the ultraviolet cutoff is consequently exponentially large.sumed energy range. The approximations made above fail
However, except aE=§THF, the particle-hole self-energy whenz 1—1 is large, in which case the sums of the approxi-
contribution depends only logarithmically on the screeningmate residues exceeds 1. WhenZis small, it follows from
vector, and the declining Fermi factor will result in a small these calculations that the spectral weight of the Green’s
contribution at low temperatures. A= §THF, the particle- function is exhausted by the two poles in the Green’s func-
hole contribution depends linearly (kgcl! leading to a very tion. As spin waves are excited, weight is shifted from the
narrow peak near this energy at low temperatures. low-energy pole, which is below the chemical potential, to
Because of the collective contribution to the self-energythe high-energy pole, which is above the chemical potential.
the low-energy quasiparticle pole will be shifted to energiedn the limit of zero temperature, the spectral weight lies en-
be'ow STHF and away from th|S peak_ In the end the partic'e_t|re|y n the |OW-energy pOle, and Hal’tl‘ee-FOCk theOI’y reSU|tS
hole contribution to the self-energy is much larger than itare recovered. ) ) )
would be for a system with short-range interactions. Never- AS we see from Fig. 5 and from the above discussion, the
theless, provided that the collective gapis much less than real part of the self-energy diverges-to- at the lower limit
half the particle-hole gap, there will be a region at low- Of the branch cut when screening is neglected, anélfoat
temperatures where its contribution becomes unimportanttS Upper limit even if screening is included. The divergence
Neglecting this contribution we find the low-energy pole hasat E=&'" in Fig. 5 produces only a small feature in our
a residue numerical calculations because these results were obtained
with ks.# 0. However, the divergence at the upper boundary
1t -1 of the branch cut is clearly visible. The imaginary part of the
1+1g o dkkrg[esw(K)]| (37 GF is nonzero throughout the interval frogf" to £'F
—A,, because spin-flip excitations exist at all energies be-

and occurs at energy tweenA, andA,+\a(0). Theimaginary part of the retarded
_ Green’s function is negative definite, as illustrated in Fig. 6.
E; =&"—\a(0)[1-2]. (38 The explicit expression for the spectral density is

gy N(keT/A). (42)

Z:

The electron-spin-wave interaction strength drops out of the 27 8(E—E.) 278(E—E)
expression forz because of its relationship to the spin-flip A _(E)= ’ z +‘ 7

_AFE)

excitation energies. As we discuss below, the loss of spectral I3 (E)
TTE —E =

weight due to occupied spin waves gives a magnetization JE |E=E,
suppression identical to that which would be obtained from a

noninteracting spin-wave model with appropriate ultraviolet +O(E—&,)0(&,—E)

cutoffs. _

A similar calculation can be carried out Jgr the high- y [—2Im3FY(E)]

energy pole in the Green’s function. F&=¢" —A,+6 _ pHF_ paSret 2 Sret 2’
and § small, we can again identify approximlate collective [E= & —ReX B+ IME,(E)]
and particle-hole contributions to the self-energy: (43

Ceau(0)] The condition that the integral of the spectral function over

~ ~ -1 Ngl| € i

EC+(E)~[)\a(O)IC]2f|° dkkeLes (39) frequencies equal to one can be used to check the accuracy
1 0 S+4mpk?l? of our calculations.

We have previousfy published figures illustrating the

and spectral densities obtained from numerical evaluations of this
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FIG. 6. The imaginary part of the spin-up self-enebj§j'(E) at FIG. 8. Positions of the low- and high-energy poles andE;

T=0.1\/kg . This quantity is nonzero only within the central inter- in the majority-spin Green’s furlcltio@?et(E) as a function of tem-
val |, defined in the text. Note that the imaginary part tends to aperature §,=0.016\,ks=0.01; ", andw=0.0).
finite value on the right boundary of this interval. The parameter

are the same as in Fig. 5. Srom these three contributions as a function of temperature.

Note that the incoherent band contribution grows rather
slowly with temperature. In Fig. 8 we also plot the positions
self-energy expression at several temperatures. In agreemesftthe two-pole band as a function of temperature. Initially,
with the preceding analysis, the spectrum consists of lowthe two poles are separated by the zero-temperature ex-
and high-energy functions separated by a band associatedhange splitting gap. In the approximation we employ, the
with the branch cut of the self-energy. The incoherent bangplitting increases at finite temperatures because of level re-
contribution to the spectral weight tends to be peaked towargulsion with the continuum states. The results shown in Fig.
its high-energy extremum where the imaginary part of the8 are for screened interactions between the electrons; ac-
self-energy has contributions from long-wavelength spincounting for the finite width of the quantum well or hetero-
waves. The spectral weight shifts with increasing temperaltnction reduces the splittings to approximately two-thirds of
ture from the low-energy Hartree-Fock pole to the high-these values for typical systems, and screening associated
energy pole and partially to the intermediate-energy band/ith Landau level mixing will cause a further reduction.

The spectral weight shift can be understood in terms of a_ !N Se€c. V we discuss several experiments which can test
reduction in the probability that majority spins will be lined '€ Predictions which resuit from this spin-wave exchange
up with the exchange field from the ordered moment, Whichapproxmatlon for the self-energy. Potentially the most tell-

fluctuates when spin waves are excited at finite temperatureﬁgazz::ﬁg sWIgc'Rgl leﬁ';%nt:?giﬁlmgir:::(ﬁe”vn\}gnéz rvl\g,]['(;?(_
In Fig. 7 we plot the fraction of the spectral weight coming P y y-

pect perfect agreement between the present theory and ex-
periment, although a qualitative agreement seems certain.

1.0 < ' ™ I T We expect that a comparison with tunneling experiments
09 [ low energy pole ] will assist in future theoretical progress. Tunneling spectrum
- :fnhﬁﬁﬂﬁ;ﬁy pole measurements in typical band ferromagnets are much less
08 ¢ ] informative because the bandwidtiwhich is zero in the
207 ] present problemis comparable to the quasiparticle band
£ spin splitting®®
& 06 F .
S V. OBSERVABLES
g 05 /’______—
T o4 b //// ] A. Spin magnetization
g 03 b ///’/ 1 The spin magnetization is proportional to the difference of
@ - the occupation probabilities for spin-up and -down electrons,
02 F /,/’ ] M(T)=Moq(v; =), WhereMO=N|g,uB|/2 is the ground-
od b el ] state spin magnetization. Expressing the occupation prob-
// __________ ability v, in terms of the spectral functions gives
0.0 ez I ! T | _
0.00 005 040 015 020 025 030 035 040 M(T) » dE
T [Wkg] Mg :f_xEnF(E)[AT(E)_Ai(E)]

FIG. 7. Temperature dependence of the partitioning of the « dE
majority-spin Green’s-function spectral weight between low- and — _J — tani BE/2)A(E). (44)
high-energy poles, and the intermediate-energy continuum. —w2T J
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10 RgF=—====== b value until it becomes comparable tp*. We have esti-
\ mated the appropriate value fig. at two different tempera-
" tures, as described below. Fof~0.090\/kg and T
N ~0.18\/kg, we find thatks;=0.01 ;' andke=0.1_", re-
\ spectively. The screening becomes weaker at low tempera-
\ tures as the system approaches incompressibility. The mag-
\ netization curves of Fig. 9 were calculated with these two
\ fixed screening wave vectors; if the screening wave vector
\ were allowed to be temperature dependent, the magnetiza-
tion value should be above the solid curve in Fig. 9 for
temperatures below 0.09/kg, should interpolate between
the solid curve and the solid curve with dots for temperatures
between 0.09/kg and 0.18/kg, and should be below the
solid curve with dots for temperatures beyond Q./1&.
The comparably weak dependence of the magnetization on
the screening wave vector is expected, limiting this source of
uncertainty in our predictions. Figure 9 shows that, Agr

FIG. 9. Results foM(T) at A,=0.016\ for various values of = 0.016\ the magnetization decreases almost linearly With
the screening vectde,. and the widthsv and a, respectively. The over a wide range of temperatures betwee®.0I\/kg and
quantity & used in finite-size numerical calculations describes the~0.2\/kg. Over this temperature range, the portion of the
width of a Gaussian charge distribution in theirection instead of  spectral weight alE<0 is dominated by the low-energy
the widthw of a hard-wall quantum well used elsewhe{®. Free  pole, and the Fermi factor evaluated at this pole is still close
electronsw=0 (dotted curve (2) SHF:k,=0.01;.*,w=0 (long- o 1. Under these conditions the temperature dependence
dashed ling (3) Our theory:ks=0.01l; " ,w=3.11 (solid line.  comes nearly entirely from that of the renormalization factor
(4) Our theory:ke=0.1 " ,w=3.11, (solid line with dot3. (5) at the low-energy pole, so thaM/Mg~(2z—1)~1
Exact diagonalization on the spheié=9k,.=0,a=0 (solid line — (KsT)IN(ksT/A,) 41 Th' ;

B [ is temperature dependence is

v_vigh c_rozslse}s EZ) l_Exact_tI?ia_golnaliz?tign onBthe f’phem;_g,ksct | identical to what would be obtained from a noninteracting
=0,a=2l; (solid line with circles. (7) Sean Barret's experimental ¢, \\ave model in an external magnetic field

data(Ref. 49: w=23.11 (filled points. (8) O(N)-field theory with " . . . . .
1/N-corrections(Ref. 7): w=3.11 (long dashed line with circles S_u$flzc/||(§rﬁ Blt(') I?Qgggthhteo l%ﬁ;ﬁhr\?;?ufeim%}l:h_ll_s~e4ﬁec;t IS
(9) SU(N)-field theory with 1N corrections(Ref. 7): w=3.11 B TPs

(long dashed line with crosseg10) Monte Carlo results for the ~ 0-3\, and that is roughly what we observe in Fig. 9.

Heisenberg modeRef. 7): w=3.11 (dot-dashed line with stars The accuracy of our calculation of spin-magnetization
values is most reliably judged by comparing with results

For noninteracting electron#\;(E)=276(E+A,/2) and obtained by exact diagonalization of the many-particle
M/M,=tanh(BA,/4). Since interactions tend to favor paral- Hamiltonian for a small number of electrons on a spére.
lel spin alignment, we expect this result to be a lower boundn Fig. 9 we present results for the ideal Coulomb interaction
for M/My. As discussed in more detail below, it should be-obtained forN=9 electrons on a sphere, and compare them
come accurate at both high- and low-temperature limitswith the results obtained from our self-energy approxima-
Note that it reflects the itinerant nature of the electrons whichion. We can conclude from this comparison that our self-
carry the spin magnetization. For localized spifparticles  energy approximation overestimates the magnetization by
M/My=tanh(8A,/2); the magnetization is smaller at high approximately a factor of 2 at intermediate temperatures. We
temperatures in the itinerant case because of the number discuss the physics behind this behavior at greater length
many-particle states increases more rapidly with the numbdselow. The magnetization values are least accurate at tem-
of reversed spins. In Hartree-Fock theofy,(E)=2n76(E ~ peratures betweer A, and~0.I\ where finite-size effects,
—&'F) and M/My=tantig¢"(8)/2]. This prediction for discussed below, have some importance and cause the mag-
the spin magnetization is illustrated in Fig. 9. Because of théetization per particle to be underestimated by finite-size cal-
exchange-enhanced spin splitting, the magnetization is mucttlations. Nevertheless, it seems clear that our simple self-
larger at fixed temperature than in the noninteracting caseénergy expression results is an overestimate of the
This result grossly overestimates the magnetization becausgagnetization for 0X<kgT<0.3\. It is interesting to com-
as in the band theory of metallic magnetiShmagnetization ~pare these results with essentially exact results f8rd/2
suppression due to thermally excited spin waves is not ad-leisenberg model on a square latficeith a nearest-
counted for. These two simple results f/M, should neighbor exchange interactions whose strength has been ad-
therefore bound the exact result. justed to reproduce the spin stiffness of the quantum Hall
Now let us turn to the results obtained using our self-ferromagnet.(For the Coulomb model the spin stiffness is
energy approximation, which accounts for electron-spinknown exactly and has the valye,=\+/7/2/16m, but is
wave scattering; numerical results obtained using two differdiminished by a factor of 2 due to the finite thickness; see the
ent values ok, are shown in Fig. 9. As explained in Sec. discussion below.For the magnetization, this model is ac-
IV, even though the screening wave vector must be finite te¢urate when long-length-scale collective magnetization de-
ensure convergence of the wave-vector integrals in our selfgrees of freedom have dominant importance. The figure
energy expressions, we do not expect great sensitivity to itshows the results obtainedhy Timm et al. by evaluating

M/M,

0.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
T [Akg]
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FIG. 10. Numerical finite-size results for the inverse magnetic L.

susceptibility in ugilts of &/(gug)®N. In these units the free- FIG. 11. Low-energy positive, excitations for 13 electrons on
el€ftron result isyo =2 (kgT/A), and the Hartree-Fock result is yhe gyrface of a sphere at=1. The labels are assignments of linear
x ~=2(kgT/\—0.3133). spin-wave occupations corresponding to the exact eigenstates.

leading 1N corrections to the magnetizations of continuumm(kBT)' In the thermodynamic limit this quantity should
SU(N) and O(N) models, extending earlier work by Read apnr0ach 47mp,/ks T as T—0. For a finite-size system the
and Sachde At moderate temperatures, the results obtaineqy,_T Jimit of y is the Curie susceptibility associated with
using these approximation schemes are numerically bettgf, spin-quantum number of the finite-system ground state,
than those obtained with our self-energy approximation; the}f(ﬁ(g,us)zso(sﬁ 1)/3kgT, so that Ing) is a linear func-

are also somewhat unsatisfactory, however, since th&\BU( jon of In(T) with an offset which increases with system size.

scheme leads to negative magnetizations at moderate t€Rpe |owT breaks in the susceptibility plots indicate that
peratures and th©(N) scheme fails to capture the 10W- finite sjze effects become important for temperatures smaller
temperature noninteracting spin-wave limit not shown in thepan g 1) 7k, roughly consistent with the temperature be-
figure. For the temperatures shown the finite width Heisenj,., \which the microscopic exact diagonalization and

berg model magnetizations are larger than those ofNhe gisenperg model Monte Carlo calculations for zero width
=9 exact diagonalization calculations, presumably becaus&iffer'

they have smaller finite-size corrections and are therefore Comparing all these results we can conclude that while

more accurate; see Fig. 9. However, the Heisenberg modg|,; self-energy approximation removes the gross failures of
M(T) curves for finite width interpolate between the zeroihe Hartree-Fock approximation, it still overestimates the
width and finite width exact diagonalization data for tem-gpin magnetization at intermediate temperatures. Evidently,

peratures between 0RSkgT<0.2\. The localized spin jnteractions between spin waves accelerate the decrease of
modelM (T) must be above the exact diagonalization resultspe magnetization with temperature. We can obtain some

for the electron model at sufficiently high temperatures,cqorroporation of this interpretation by examining the low-
where the Heisenberg model magnetization is twice as larggnergy portion of the spectrum of the electronic Hamiltonian
as the magnetization of the itinerant-electron system. This ig, N=13 shown in Fig. 11. These results are for electrons
already the case dtgT~0.2\ for finite width data. How- o the surface of a sphere. All excited states with positive
ever, the continuum field theory approach cannot addresg;ig) L, are shown. The largest value bof for which a state
important microscopic electronic properties like the tunnel-4ccyrs specifies its total angular momentum. The various
ing density of states. We discuss the experimental values Qfigenenergies are labeled by the occupation numbers of the
M(T), also shown in this figure, at greater length below.  qrresponding noninteracting spin-wave states. Where the
Our exact dlago_nallz_atlon results fo_r the magnetizationyccypation number exceeds 1, the label of the spin-wave
have the largest finite-size errors whanis small. In order  gtate is repeated so that the number of labels is equal to the
to examine the limit of smallA, we have calculated the {gta) spin-wave occupation number of the state. Single-spin-
finite-size spin magne'tic ;usceptibility,, w'hich is .plotted wave states occur in tHe=N/2— 1 portion of the spectrum.
for N=3, 5, 7, and 9 in Fig. 10. The noninteracting result, The |owest-energy multiple spin-wave state is the (1,1) state,
which in the thermodynamic limit approacheso, where theL=1 spin wave is doubly occupied. Since there
=N(gue)®/(8kgT), is plotted for comparison. For very are three degenerate spin waves viita 1, if there were no
high T the Hartree-Fock theory resulty” *=8[ksT  spin-wave interactions, the six (1,1) two bosons states would
—\a(0)/4]/N(gug)? is approached. However, we see from be degenerate and would have an energy equal to twice the
Fig. 10 that forT=TCHF, wherey diverges in Hartree-Fock energy of theL=1 single-spin-wave state. The open hori-
theory, it is in fact enhanced by a factor of only2.5 com-  zontal bars in Fig. 11 indicate the noninteracting spin-wave
pared to the noninteracting electron result. The inset in thignergies. We see there that spin-wave interactions split the
figure expands the low- behavior by plotting Inf) vs  six (1,1) states into a fivefold-degenerate-2 level and a
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singleL=0 level. Generally, multiple-spin-wave states areto weak large length-scale inhomogenity, which is neglected

reduced in energy by interactions, and this effect leads to @ all theoretical models discussed here.

magnetization which decreases more rapidly with increasing Finally, we comment on the role of skyrmions. One of the

temperature than would be expected if spin-wave interacinteresting results of the NMR experiments was the experi-

tions were neglected. This is most apparent in Fig. 11 in thenental evidence for skyrmions at filling factors nedrQur

effect of interactions on the energies of the 15 expected (2,2liagrammatic theory is not able to account for skyrmions,

two-boson states. When interactions are included these statakhough we know that neutral Skyrmion—anti-Skyrmion pair

are splitintoL =4, 2, and 0 levels. We see in Fig. 11 that the excitations exist atv=1. Their total energy forA,=0 is

L=4 level, which has the largest degeneracy, is lowered inly half of that of the quasielectron-quasihole pair, although

energy by spin-wave interactions. the energetic advantage drops quickly with increasing Zee-
We now turn to a comparison between theory andman gap(see Fig. 1 in Ref. 40 Thus the existence of such

experiment:® An important source of uncertainty is intro- excitations at the upper end of the excitation spectrum should

duced by the dependence of the effective interaction betweemot dramatically alter the thermodynamics.

2D electron?’ on the width, as already mentioned, and, to a

lesser degree, the height of the quantum well containing the B. Nuclear-spin-relaxation rate

electrons. For a quantum well of widtlnand infinite barrier

. o oa .~ V. Th tical i .
heights, the effective interacti®his Vei(k)=F(k)V(k), e optically pumped NMR experiments of Barrettal

can also be used to measure the rate of nuclear-spin-

8
wheré relaxation due to coupling to the electronic spins. At present,
3omh(ekW_1 872 measurements of the temperature dependence of the relax-
F(k,w)= m (e ) + 7 ation time over a broad range of temperatures atl are
[kw(4m?+K>w?) ]2 [kw(4m2+k>w?)] unavailable. The Korringa theory of nuclear-spin relaxation
in a metaf' can be generalized to electrons in a quantum
3kw well with the result?
+ . (45
(4% + K>w?) ..
. . o L, keTAPQ¢p(2)|* Imx™(r,r;m)
When the system is described by phenomenological field T, = > lim o . (47
theory or Heisenberg models, the microscopic physics enters (Que)h w0

only through the spin stiffness. The analytic expression re; . . o , . .
lating spin stiffnessp, and quantum-well widthw for the In this equatiorA is the hyperfine coupling consta#l, is the

AN . . . unit-cell volume, and#(z) is the envelope function of the
case of a quantum well with infinite barrier heights via theelectronic quantum-well state. The influence of interactions

effective interactionV (k) (Ref. 19 atv=1is on the relaxation rate was studied in the limit where disorder
is relatively strong and interactions can be treated

_ N2 * 4K () exp(— K212/2) 46) perturbatively*>*°If we neglect vertex corrections, the local

Ps 3220 eff ¢ response functioy* ~ in Eq. (47) can be expressed in terms

of the spectral function for the one-particle Green’s function.
Thek? factor in this integrand is responsible for considerableThe result for the relaxation rate of nuclei at the center of the
sensitivity of ps to Ver(k) at largek, where the finite thick- quantum well is
ness corrections appear. For comparison the spin-splitting

gapa(0) has a considerably weaker relative dependence on__ kgT (= dE —dng(E)
the well width. The spin stiffness is reduced by approxi- Ty l:C(B’W)T (272 (9—EA2AT(E)AL(E)-
mately a factor of 2 compared to the zero-width 2D layer (48)
case for quantum wells with a width= 3l ;. This is actually

close to the typical experimental situation where the quaninserting GaAs parametéfsfor the prefactor in Eq(48)

tum well widths are~30 nm and the fields are 10 T. We  gives C(B,w)=0.47@[T])¥%(w[nm])? Hz. For typical
remark that this reduction qf reduces the temperature in- fields and quantum-well widths the prefactor corresponds to
terval over which collective excitations are dominant and thea relaxation time~100 s. The dimensionless integral in Eq.
field-theory and Heisenberg phenomenological models aré8), which gives the relaxation rate in this unit, is plotted as
appropriate. In Fig. 9 we compare experimental data witra function of temperature in Fig. 12. Existing experimental
exact diagonalization calculations of the spin magnetizatiorglata cover only the low-temperature limit, and are consistent
which account for finite-well thickness. For the purpose ofwith the very long relaxation times indicated here. Contribu-
this comparison, we consider the exact diagonalization retions to the relaxation rate come dominantly from the con-
sults to be essentially exact for a model which neglects distinuum portion of the spectral weight near zero energy. In
order and Landau-level mixing. Compared to the best fitspur theory this is small at both low and high temperatures.
the experimental magnetization decreases too slowly at loince T, ! measures the low-energy spin-flip excitations of
temperatures, and too quickly at high temperatures. It seenthe system, it is amenable to an analysis based on the con-
clear that the experimental values are too low at the higheginuum field theory model, which has also been used to ob-
temperatures, where they fall below even the noninteractingain theoretical estimates of its temperature depend@tice.
system magnetizationshis happens fokgT~0.09 in Bar-  should, in principle, be possible to extract more information
rett’'s experiment The weakefT dependence at low in the  about the spectral functions, including information on its be-
experimental data could be due to disorder, and in particulanavior far from the Fermi energy where a microscopic theory
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FI_G' 12' Nuclear_-spin—relaxation rate as a_function of tempera- FIG. 13. Tunneling current-voltage relation as a function of bias
ture in units of the field- and quantum-well-width-dependent pref‘voltage atr=1 for three temperaturés=0.03, 0.05, and 0N/kg,

aCtO[g:(B'W) discussed in the text. The prefacto_r becomes 9.8, here thes peaks of the spectral functions are replaced by Lorent-
<10~ Hz for a magnetic fieldB=7.05T and w=3.11c(ksc  jans with widthe=0.01. The parameters used for this calculation
=0.01:7). are:A,=0.016,, w=3.11, andke=0.01_".

is necessary, from the 2D-2D tunneling studies of quantum

Hall ferromagnets, which we propose below. temperatures. Within our theory & peak with a substantial
weight proportional t@z"~[1—(M/M,)?]/4 appears. This
C. Tunneling current peak arises from the product of the two poles in the spectral

) . . function, and it will occur at a temperature dependent value
Electronic spectral functions are traditionally measured byy¢ o\, equal, for the idealized case of a zero-width quantum

':_unne]lmgzerp(IenTents. Tthe mgasurebr}%dnf)sr:ec:]rql func- el at the energy difference between the upper and lower
lons for electron systems is enabled by technitjutes pole positions plotted in Fig. 8. Broader and much weaker
making separate contact between nearby quantum wells. |

the absence of a magnetic field, this technique has made f%atures result from the convolution of &function peak

possible to measure the quasiparticle lifetime including itsW'th the continuum contribution, and still broader and

dependence on temperature due to carrier-carrier scattering.eaker features from the self-convolution of the continuum

For strong magnetic field&*’the tunneling current is related ontributions to the spectral functions. Only this last contri-
to the bias voltage by bution contributes to the linear tunneling conductance. In

Fig. 13 we have for visualization purposes arbitrarily re-
placed thes-function contribution by a Lorentzian of width
et?A (= dE 0.01\.
B h)\lgfxz[np(E—eV)—np(E)])\ We expect that sharp peaks do occur at voltages near the
exchange splitting, despite the quantitative limitations of our

theory discussed above. In Fig. 14 we plot the tunneling
XE Arr(E)Arr(E_e\/)- (49) conductance

(V)

Heret is the tunneling amplitude andl the area of the 2D

system. We caution that the above formula applies when | e t2A (= dE —dng(E)

both 2D layers are kept at filling facter=1 in the presence G=lim G=1—5| TAZE A, (E)?

of a bias voltage. In 2D-2D tunneling, layer densities change V-0 NG e 7

with bias potential because of the finite capacitance of the (50

double-layer system, unless a compensating gate voltage is

applied. This issue is especially importanvat 1 because of

the sensitivity of the electron system to density near thisas a function of temperature. The tunneling conductance is
filling factor. Provided that there is no density change inproportional to the square of the spectral function averaged
either layer, each spin direction contributes equally to theover energy arguments less tharkgT. It therefore has a
current. Measurements at fractional filling factors have demtemperature dependence similar to that of the nuclear-spin
onstrated a deep, wide, and only partially understood minimaelaxation rate. It vanishes at zero temperature and remains
in the spectral function near zero energy. Our calculationsmall even forkgT substantially in excess ok, since the
suggest the possibility of further interesting findings whenbulk of the spectral weight is shared between the high- and
experiments are performed at=1. In Fig. 13 we plot the low-energy poles and exchange-enhanced spin splitting
dependence of the tunneling current on bias voltage for threeauses these to be well away from the chemical potential.
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0.08 . . . tional dependence on the right-hand side of &¢). At the
same time, we modify the HF quasiparticle energy accord-
ingly:

0.06 | i L

§T=—§[AZ+)\a(O)Av]. (54

0.04 + . Together with Eq.(44) this procedure defines an implicit

equation for the differencav, i.e., for the magnetization. In
general this equation has at least one solution withAQ/
<Av"F. We have determined this solution as a function of
0.02 r ] temperatures and have found that the solution is unique. The
I result was shown in Fig. 3 in Ref. 9. The smaller magneti-
zation values are in better accord with experiment. The im-
‘ . . . provement probably does reflect a partial accounting of
000 00 0.05 0.10 0.15 0.20 0.25 omissions of the elementary electron spin-wave scattering
T [Mkg)] theory. However, the abrupt decrease of the magnetization
toward noninteracting electron values at temperature values
T~0.06\/kg is certainly unphysical. Not surprisingly, this
ad hocprocedure does not provide satisfying results. A more
elaborate attempt at a self-consistent scheme, in which the
full set of equationg28) was solved self-consistently, has
been explored by Haussmatthand proved to be equally
A. Consistency unsatisfying.
Some hints at possible routes toward a more accurate
heory can be found in examinations of the transverse sus-
nceptibility of a quantum Hall ferromagnet. It is remarkable
that in the LLL, this quantity can be expressed exactly as a

G [(e”h) (A (A1,))]

FIG. 14. Tunneling conductance in the limit of vanishing volt-
age as a function of temperature a1 for the quantum-well
width w=3.11; andA,=0.016\ (ks=0.01_1).

VI. ODDS AND ENDS
A second formally exact expression can be derived whic

relates the electronic spectral function to the magnetizatio
In the strong-field limitkK = H — uN=K, + K carf* be writ-

ten as ggometric series of of irreducible particle-hole bubbles
No <« . _ [®(qiwn)],
Ko(TVm)=55 2 e ifivy+ERNG,(ivy), (51) o
. o . T (Gie) =l en) 55)
where 7 is a positive infinitesimal and the sum is over Mat- X (Gien) 1+|(a)‘b(d,iwn) ' (

subara frequencies. Using the spectral representation of the
Matsubara Green’s function and performing a contour inte

gral then yields i/vherel((i) is independent of_frequency. In the generalized

random-phase approximatio®(q,iw,,) is approximated by
No (= dE a bubble with Hartree-Fock propagators. Generally, the irre-
KT,V 1) = T(I)f Z_nF(E)(E+ ggo))Ag(E), (52) ducible particle-hole bubb_le can be expressed in terms of an
—eem irreducible vertex functiom[ﬁ;ivnT;i(anr op), ]

Using thermodynamic identities, the magnetization can in

2,2
turn be expressed in terms Kf — s e a2
P (G wn) =~ (Gua)—
alg
M(T,V,u) L(e ’(aK (53
’ ,,LL =5 o 1 — -, .
Blo = 1Bl 4y, x5 2 G i+ on) L]
We do not obtain the same result fdrfrom this expression . .
P XG(ivp) G [1(vp+ wp)]. (56)

as from the more direct expression discussed above if we go
beyond the SHF approximation. This ambiguity is one of ) — _
several consequences of the fact that our self-energy approx the RPA expression fob we have sey=1, and the GF's
mation is defined in terms of Hartree-Fock propagators, an@fe approximated by the SHF GF's. Therefore it is not sur-
is not conserving® prising that any ir_nprovement off beyond the SHF GF
Some partial self-consistency can be achieved by simplynakes a change of necessary in order to satisfy the Gold-
replacing the SHF occupation factog§", wherever they stone theorem conditiond—l(d)q_)(0,0).
appear, by occupation factors calculated from the final spec-
tral functions. Aty=1, it is sufficient to specify the differ-
ence of majority- and minority-spin filling factoisv. Fol-
lowing this procedure requires that we solve an equation of In any electronic system, screening of electron-electron
the formAv=1f(Av), wheref incorporates the entire func- interactions plays an important role in many-particle physics.

B. Screening
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The simplest approximation for the dynamically screened in- 2B\ (> dE
teraction is the RPA, which, for the present problem, takes ksc__f %AT(E)nF(E)[l_nF(E)]- (62
the form o
V(K,iw,) = \{C(k) This is an implicit equation foks., sinceA (E) itself de-
e(k,iwy) pends or¢!'", which again depends @(0) and thus orks
~ - [see Eq.(6)]. With this equation we can use the improved
_ Ve(k) spectral density of the spin-wave theory to estimate the ap-
1+VC(IZ)H°(IZ,i wy) proximate magnitude of wave vecthy, at a given tempera-
ture. Rather than solving self-consistently fy, at each
2l temperature, we have fixdd,. at two values, and used Eq.
- K+ 27l 1K, i o) (57) (62 to find those temperatures at which these values are
¢ n self-consistent. As discussed in Sec. V, this procedure is ad-
with the polarization function approximated by equate given the relatively weak sensitivity of our results at
low and moderate temperatures to the value use#farAt
. e‘ k2|2/2 higher temperatures, screening is likely to be important since
(K, i wp) = — ,3 IZ G (ivy) G li(va—wn)].  stronger screening causes a flattening of the spin-wave dis-
Vn (o8

persion, which leads in turn to more magnetization suppres-
(58) sion, smaller exchange splittings, more mobile charges, and

In this approximation, Landau-level degeneracy is responbence still stronger screening.
sible for polarization functions, which vanish at nonzero

Matsubara frequencies. At,=0, we find that
C. High-temperature behavior

V(K,iw,=0) The high-temperature expansion of the magnetization
- . gives us some insight into the validity of our approximations
_ Ve(k) and stresses the importance of screening at higher tempera-
B ) -K422 ' tures. However, these results are of rather theoretical interest
1+V(K) B\ 5 > ne(EH[1—ng(£77)] because at large temperatures excitations to higher orbital
27l o Landau levels become more and more probable and our re-

(59 striction to the LLL becomes questionable.
In principle, the many-body perturbation theory expan-
In the long-wavelength limit this leads to the following ex- sion for the thermodynamic potential provides a systematic
pression for the temperature-dependent screening wave vegrder by order expansion in powers of the interaction
tor atv=1: strength over the bare Zeeman gap, or the temperature or
combinations thereof. However, the long range of the Cou-
(T)= Zin (g F)[1=ne(£7F)] lomb interaction gives rise to divergent diagrams and com-
Ksd F FA&T plicates issues again; for example, a logarithmically diver-
gent contribution to the magnetization appears at third order
B\ in interaction strength, which can be traced back to the di-
- 21, cosR[ BEMF (kee, B)12] (60) vergent second-order bubble diagram for the self-energy. A
¢ L systematic way to circumvent this problem is to expand in
The inclusion of interaction effects in the HF energies playserms of interactions, which are screened by infinite-order
an important role in the temperature dependenck,pfm- bubble diagram partial summations. Rather than pursuing
plied by this equation. At low temperatures the screeninghis line, we have attempted to gain some insight from per-
wave vector ks~ exp(— §HF/kBT)/kBT is extremely small. turbative expansions by performing the expansion up to third
The limited utility of this screening approximation is evi- order in B for the case of hard-core interaction model with
denced by the discontinuous dependenck&gpfon tempera- V(q)= 47-rVoI2 49
ture found when Eq(60) is solved numerically. The leading term of the high-temperature expansion for
Additional insight into screening in the static long- the spin magnetization is identical to the same term for free
wavelength limit can be obtained by using Thomas-Fermpatrticles, i.e., the lowest order term in the expansion of
theory, in which M(T)/My=tanh(BA,/4)= BA,/4+O(B?). As mentioned
previously, this limit shows that the Heisenberg model,
B s n A [dy which yields a magnetization that is twice of this value, fails
Ksd(T) =27l ANk =27l A Em I\ de ' once itinerancy becomes important. Our calculations are
VN T V’N(Gl) based on the linked-cluster coupling-constant-integration ex-
pansion of the thermodynamic potenfidlThe leading cor-
wherek is the compressibilityn is the particle density, and rection, which is quadratic i, is determined solely by the
v=27l2n. If we neglect the dependence of the spectralexchange integral\2, and leads to an increase of the spin
function on the chemical potentiagl and exploit particle- magnetization. We have carried this expansion out to third
hole symmetry a=1, we obtain order, and find that
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20 . . . ' quantum Hall ferromagnets are given exactly by time-
19l i ] dependent Hartree-Fock theory. This success is analogous to
' 1.20 ¢ i f 1 the success of band theory in describing the ground state and
18 | 115 ¢ ,;’/" N5 1 ] both collective and particle-hole elementary excitations of
110 £47° oo N=7 ] band ferromagnets. At finite temperatures, however, we
17 ¢ 105 [ ——-N=9 ] 7 show that Hartree-Fock theory fails qualitatively for quan-
Fi16 [ 1.00 . 7] tum Hall ferromagnets, just as band theory fails for metallic
F, 0.00 0.25 080 .~ ] ferromagnets. Our work is based on an improved approxima-
$ 15} rad ] tion for the electron self-energy, which describes the scatter-
g’ 14 [ === 2ndorder e e ing of fermionic quasiparticles off the spin-wave collective
s 3rd order g JPtias ] excitations composed of coherent combinations of spin-flip
13 T NS -7 _,,—"’ 1 particle-hole excitations. This perturbative approximation is
///’ gtton ] equivalent to ones which have been uSefdr models of
12 ¢ o7 e i 1 itinerant-electron ferromagnets at finite temperatures. Here
11 L /// == ] we have the advantage that complicated band structures do
g not confuse a comparison of theory and experiment. We find

105 01 02 03 o4 05 06 07 o8 o5 10 that atintermediate temperatures where the density of spin-
/T [ke/A] wave excitations is high, although our approximation gives a
huge improvement over Hartree-Fock theory, it still overes-
FIG. 15. Spin magnetization to third order iriTltormalized by  timates the magnetization by nearly a factor of 2. We at-
the high-temperature free-particle magnetizafidn/(4ksT)] for  tribute this failure to the neglect of interactions between spin
the hard-core model\o=\/m/2, A,=0.016, andw=0.0). The  \vaves in our approximation. Nevertheless, we expect that
resulting deviation of the nine-particle exact diagonalization is dugpe qualitative physics predicted by our approximation is
to fi_nite-size effgcts whos_e dimi_nishing influence with increasingcorrect_ On the basis of our calculations we predict that a
particle number is shown in the inset. sharp peak will occur in 2D-2D tunneling current when the
bias energyeV is approximately equal to the spin splitting,
+o(B% and.that the strength of this peak will be ap.proximately pro-
' portional to temperature at low. This peak is due to fluc-
(63)  tuations in the direction of the exchange field, which sepa-
rates the energy of majority- and minority-spin
quasiparticles. We have recently argtfethat in metallic
ferromagnets, this mechanism is responsible for the tempera-
Sre dependence of magnetoresistance in ferromagnetic tun-
. ; nel junctions. In that case, however, the mechanism cannot
tha_n ~.2'5}" Fo_r comparison the results fr_om exact Ollago'be directly verified by tunneling experiments because the
nalizations for fixed particle numbers are given, which ShOV\«Nidth of the quasiparticle bands is comparable to their ex-

the ri%ht s(,::ope bet exhibic;é‘inoitt)e—§izel coLrec_tions of the efx'change spin splitting. Verification of the predicted effect in
pectel oraer oh.magnltu ’ .V|ous¥].the Importance OTh' uantum Hall ferromagnets, therefore, has important impli-
corre atlops In this S.ySte”F p¢r5|sts to hig temperatures.. Gations for metallic magnetic tunnel junctions.

property is a key in validating the use of models, which

M:MO

BA, [ BVoN B2, , Al
7 R - N

Note that the\/é term also contributes positively to the mag-
netization. Figure 15 showd T/Mg vs 1/T at high tempera-
tures. We can see from this figure that beyond leading-ord
interaction contributions become important f4T smaller
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