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Multiple-spin exchange in a two-dimensional Wigner crystal
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Multiple-spin exchange constants in a two-dimensional Wigner crystal are calculated with a WKB approxi-
mation. Contributions of the Gaussian fluctuations around classical exchange paths are accurately calculated. In
the dilute limit, the three-spin exchange interaction is found to be dominant in agreement with the previous
study. Over a wide range of the electron density, howewspin exchange interactions witt=4 are found
to be of considerable magnitude, which makes the ground phase diagram nontrivial. Recent experimental
findings by Okamoto and KawdjPhys. Rev. B57, 9097(1998] are also discussed in the light of the present
results.

[. INTRODUCTION equilibrium positions. It appears that the number of particles
that can be displaced is not large enough to obtain an accu-
The importance of the multiple-spin exchange in arate estimate. Another problem is the areas enclosed by the
Wigner crystal was first pointed out by Herrintpng ago.  exchange paths. The areas estimated with the WKB calcula-
Later, Roget calculated the multiple-spin exchange con-tion are found to be smaller than those estimated with the
stants in a two-dimensional Wigner crystal using a WKBexperiment by Okamoto and Kawdjit is possible that, if
approximation, and found that the three-spin exchangethe exchanging particles rotate clockwise, the surrounding
which is ferromagnetic, was dominant in the dilute limit. particles are displaced from the equilibrium positions, rotate
Only recently, Okamoto and Kawajsucceeded in studying counterclockwise, and return to the equilibrium positidns.
magnetism of a two-dimension&D) Wigner crystal and Then, the effective areas, which will be experimentally ob-
found that the dominance of the three-spin exchange il"ltel'a%erved7 will be reduced from the areas enclosed by the ex-
tion COI’]SiStently eXpIained their flndlngS One of the mostchanging partic'eS, and the discrepancy between the experi_
interesting findings by Okamoto and Kawaji was that themental estimates and the theoretical ones may be resolved.
exchange c;onstants changed their signs, as the.strength of a\we resort to a WKB approximation as Roger ith a
magnetic field perpendicular to the two-dimensional plangean system, a two-dimensional electron system crystallizes

was changed, due to the Aharanov-BotiB) effect. From into a Wigner solid atr.~37/® wherer, is the reduced

this, they could estimate the multiple-spin exchange Conéverage interparticle distanaes# 2. In the WKB approxi-

stants and the area enclosed by the exchanging particles. . S 4 .
They found that the magnitude of the exchange constanl@at'on’ contributions of the order crlf/gz are ta_ken Into
and of higher or-

fairly agreed with those calculated using the expression&ccount, while those of the order of
given by Roget while the results for the areas enclosed byders are discarded. In a clean Wigner crystal, therefore, the
the exchanging particles did not. WKB approximation works quantitatively. In the experiment
The purpose of this paper is to calculate the multiple-spirPy Okamoto and Kawajit s~8;® electrons crystallize under
exchange constants in the 2D Wigner crystal with a WKBthe influence of impuritie$.In this case, the results of the
approximation by extending Roger's work. The extentionsWKB approximation may not be quantitatively reliable. Still,
by the present study ar@) accurate calculation of the con- an accurate WKB calculation is important in that it gives a
tribution from the Gaussian fluctuations around a classicafirm reference in discussing the effect of large quantum fluc-
exchange path by means of the instanton mettiodcalcu-  tuations and other possible effects that are not considered in
lation of the five- and six-spin exchange constafitis, study  the calculation.
of the size dependence of the exchange constants(iand In the next section, we give the formulation for the calcu-
study of the effective areas enclosed not only by the extation of the exchange constants, and in Sec. IIl, we present
changing particles but also by the surrounding particleshumerical results. Section IV is devoted to a summary and

Roger could estimate only an order of magnitude of the eXdiscussion. Numerical details are presented in the Appendix.
change constants, because he only crudely estimated the con-

tribution from the fluctuations around a classical exchange

path. Using the standard instanton methddt is rather .. EORMULATION

straightforward to calculate the contribution of the Gaussian '

fluctuations. Second, there is no reason why the five-&pin The concept and the method of calculation of the ex-
the six-spin exchange interaction is negligibly small com- change constants were discussed in the paper of Thddless.
pared with then-spin exchange interaction with<3, in As they have been frequently discussed in the
particular when the electron density is high. Third, becausditerature>**~*3we give a brief summary here.

the Coulomb interaction is long-ranged, the system size with We calculate the density-matrix eleme(tXpm), X, ; 8),
which one can accurately estimate the exchange constants

may be large compared with the case with sdlide. Roger

used at most 18 particles which can be displaced from the p(Xpm, X, B)=(Xpm|e #7|X)), (1)
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where g is the inverse of temperature afttlis the Hamil-  where

tonian describing the two-dimensiongielectron system. In

the absence of the kinetic energy term, i.e., in the classical SX(U)]=VrSX(u)]
limit, a two-dimensional electron system forms a triangular

Wigner crystaft*® In this limit, the N-electron system has s [1/dxw|? 1 1
N!-fold degenerate ground states, and one of them is denoted = \/FSJ du _( ) + = 2 -
by |X,).X® We can assume that thith electron, whose coor- o [2\ du 2 {7 Tij
dinate is denoted by, is localized at théth lattice siteR, in
the statg X, ),

)

wherer ¢ is the averaged interparticle distangenormalized
by the effective Bohr radiuaj ;

ri:Ri (|:1,,N) (2)
_Io 10)
We collectively denote the coordinates Nfelectrons by a fs= ay ' (
2N-dimensional vectoK; X=(rq, ... \). We then rewrite
Eq. (2) by 1
ro= , (13)
X=X, . 3) o Jmn,
The state|Xpm) is obtained from|X;) by permutatingn ~ and
particles with the remaining\ —n particles fixed. Electron
coordinates are given by h?
ag=——, (12
m* e* 2

ri:Rp(i), (i:].,...,n),
with n, being the electron densityp* the electron effective

=Ry, (j=n+1,...N), (4  massge* the effective electron charge* 2=e?/ k, andk the
dielectric constant. Here and in the following, imaginary
times are in units ofe* ?/(\rsry)]~*, Coulomb energies are
in units of e*?/r,, and lengths are in units af,, unless

X=Xp(m), (5)  otherwise stated. We assume a uniform and static positive
_ _ ) background to neutralize the system. We neglect it in(2y.
in [Xpm). If the exchange rate is small compared with theyocase it makes no contribution to the exchange constants.
Debye frequency, the density-matrix elemeitXp, X, ; 5) In the WKB approximation, we estimate E@) by con-
normalized by a d|ag<l)3[1?7l one is given in terms of the eXjgering only the contributions from classical paths and from
change constanl, by*** the Gaussian fluctuations around them. A classical path is a

in |Xpm), where P is an n-particle permutation operator.
Alternatively, we write

(Xow, X, : B) path which gives a minimum of the action E§),'° and is
F(Xpm, X, 8)= %ztanﬂﬁ—ﬁp)unL determined by the “equation of motion,”
PR AL,
® d2X(u) 1
Quantity Bp is a measure of the extent to which the localized =v> —, (13

state constructed from the true ground state in the presence du® =i
of the tunneling between the two cavities deviates from thqpgether with the boundary conditiob(0)=X, and X(3)
state|X),”"* and corresponds to the width of the instanton —x ., The summation on the right-hand sittas) is taken
(see below: If we can choosg so thatBp<B<1/3,|,"* Eq.  over the infinite range by means of the Ewald metftd.
(6) reduces to Because the contribution from the classical soluticfY(u)
i to the action integral Eq9) is localized in imaginary time,
F(Xp0, X, 8)=B|3nl- @ as we see later, tﬁe SO|lj('[ign is called an instar?ton. ¥Ne denote
On the other hand, the density-matrix elementthe value of the action corresponding to the classical ex-

p(Xpm, X, ; B) is expressed with the path integral as change pattk{"(u) by S{", and the one corresponding to
X(B)=Xp(n) the equilibrium pathX(u)=X, , by . Expanding the ac-

p(Xpm, X ;lg):f F DX(u)exp{— X(u)]}, (8) tion integrals, Eq(9), around the classical path and the equi-
X(0)=X, librium path, we have

B 1d® 1
ij(u)ex —fo dux(u) —5”5@4—5%] (u) | x;(u)

F(Xpm, X, ; B) =€~ VS
(Xpm, X, ;8) ﬁd 1@ 1
fDx(u)ex —fo ux(u) —6H§E+§W” Xj(u)

: (14)
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where
ASV =5 -5, (15)
W (u)=V,V, E : (16)
21 - xi
=V,V. 2 17
2 Nl X,

andx(0)=x(B)=0. Diagonalizing the Gaussian fluctuations
and denoting the eigenvalues K’ (and\(?), we have

(0)

e \rSAS( )

F(Xpm, X, ; B)= H (18)

At low temperatures, the lowest eigenval)u@') is expo-
nentially small\ (Vo e~# with ¢ being a constarftand van-

ishes atB=o; the lowest eigenmode is thus called a zero
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FIG. 1. Multiparticle exchange processes studied in the paper.
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B
and our task is to calculatdS{" andF,
The sign of the exchange constam;, is uniquely

A, (22

mode. As the Gaussian integral becomes ill-defined, we haveetermined? In this study, we defind,, so thatJ,<O0.
to treat the zero mode separately. The zero mode originates

from the time translational invariance, and the contribution

of the zero mode turns out to be proportional@d>18 we
thus finally havé!

CONC A0

) o T A [YTASIAE A
F(Xpm, X ;8)=pe" Vs> 2 nl_:ll ()’
A

(19
Comparing Eqgs(7) and (19), we obtain the expression for
the magnitudeJ,,| of the n-spin exchange constant as

ICONG RO
AN T o = (20
T m=1 )\m

Returning to ordinary energy units, we have

|‘Jn|2

g*2 \/T—A~ n))\(O) )\(0 .
ol =—"\/ AT I1 SE

\/r—sro 27 m=1 )\Err:)

* 2 &)y (0) (0)

e 1 ASO Ao N o AT

s i, n Vg

*2

1 F, n
= Lo VA%, 21)

aB rsé{/_

whereF, and AS{" are dimensionless quantities 6f1).
Furthermore, we have to consider a symmetry facqr

which takes care of the distinct paths contributing to Eq.

(8);'" A,=2 andA,=1 (n=3,4,5,6).(The exchange path

for the two-particle exchange is symmeteric with respect to

particle exchange of high density hard core partiéjeshe
final expression fotJ,| is thus

Ill. RESULTS

In this study, we calculate the-spin exchange constants
J, (n=2,...,6).Exchange processes considered in the pa-
per are depicted in Fig. 1. In considering aiparticle ex-
change process, we allol,,,—n particles to be displaced
from the equilibrium positions in addition to exchanging
particles; the total number of moving electronNg;. The
remaining electrons are fixed at the equilibrium positions.
First we allow only the nearest-neighbor electrons of ithe
exchanging electrons to be displacég,,= 10 forn=2, for
example. We then increase the number of the moving elec-
trons by allowing the fixed electrons that are at the nearest-
neighbor sites of the moving electrons to be displaced, too.

We then discretize the imaginary time intervak0< g,
into L segments. The number of variables to be determined is
thus 2N (L—1). We search for a solution, i.e., a classical
exchange path, satisfying the equation of motion, @),
under the given boundary condition in the
2No(L —1)-dimensional space. Once the equation is solved,
the remaining task is a simple diagonalization ofNrx M
matrix (M=2N,,L) representing fluctuations around the
classical path.

(Y Jo2
= a
=Y G
e Jo1
g

0.5
u/f3
u= B2, as we see later, and consequently the symmetry fac- FIG. 2. Solution to the three-particle exchange problengat
tor is 2. Otherwise, it would be 4 as in the case of the two-=30 for N,,=48. Ls(u) is the tunneling path length in the

2N-dimensional configuration space. Kinetic enekgfu) is also
shown.
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TABLE I. Parameterég") and F,, characterizing the exchange
constants),, . Values ofS{" are those extrapolated t,— > and
values ofF, are those for the largedt,,;, whose values are shown
in parentheses, for each

EQ F (N

. 001 n=2 1.63 0.61(70)

1/ Noot n=3 1.52 0.54(75)

FIG. 3. ValuesS{" of the action corresponding to the classical nig 12(5) ggégg
n-particle exchange path @&=30 forn=2, ..., 6 asfunctions of "~ ) '

n==6 1.78 0.69(61)

1/N2,. Open symbols stand for the results by Rog@eef. 2. Dotted
curves are the results of the extrapolation.

Other interesting quantities are the total path leng{t3)
and the maximum valu¥'® of the potential along the tra-
jectory; in the present cas&/™=V,(8/2)=K.(B/2).2* If
the exchange trajectory were a straight line in the
2N,,-dimensional configuration spack,(8)=na, where

A typical solution is shown in Fig. 2. The path length g is the lattice constant. The quantfyh defined by
L,(u) is defined by

The following results are those gt=30 andL =64~ 90.
Further details are given in the Appendix.

A. Classical exchange paths

— LB

u o [dXO(u) Lo= . 2
Ln(u):fodu%. (23) Jna @7

- stands for the extent to which the system has to go around
The action integralhS” corresponding to a classical ex- the potential barrier to exchange the particles. In Table Il are
change patiX{(u) is represented by tabulatedL,, and V™ for n=2, . .. ,6.Obviously, bothL,
8 5 and VJ'® are large compared with those for the more-than-
A”s(()”):f dU[Kn(U)ﬂLVn(U)]:ZJ duK,(u), (24 two-particle exchange processes, which is whyannot be
0 0 dominantly large. Using the approximation adopted by
where Roger? a sinusoidal approximation, the action vaB{ can

be estimated by
1 ( dxg‘)(u)>2

Kn(u):_ du

5 (29

~ ~ 42

SV=5) = TQVL“”Ln : (28

and V,(u) is the potential energy of the configuration _

X{(u) (measured from the value of the equilibrium con- The approximated action valu&)'s are also tabulated in
figuration. The last equality in Eq(24) is owing to the Table Il. Except for the two-particle exchange, the sinusoidal

energy conservatiof, approximation works well.
Lastly, we show the exchange paths in Figg)44(e). In
Kn(u)=Vy(u). (26) each of the figures, the symmetry of the displacement of the

h particles is obvious. The surrounding particles are found to
- ; offset the area enclosed by the exchanging particles. The
respect tou= /2 for anyn. Ky(u) is found to be well lo- reduction is, however, found to be less than 5%. The total

calized aroundu= /2, and the particle exchange in the : :
Wigner crystal thus makes a textbook example of a multidi-alreasn enclosed by the exchange paths is also tabulated in

mensional instanton. The widtB,, of the instanton is esti-

As was found by Rogéet the trajectory is symmetric wit

; TABLE Il. Parameters characterizing the exchange processes:
mated from the slope df,(u) atu=g/2. B,~5 forn=2, it fn is the exchange path length divided by the straight path length,
increases ag, and By=9 for n=6. VMjs the maximum of the potential energp units ofe* 2/r ) on

The action values{” of the n-particle exchange path for e exchange patf& is an approximate value of the action of the
n=2,...,6 areshown as functions of &, in Fig. 3. As  classical path, ang, is the total area enclosed by the displaced
was found by Rogef,the actionS§ of the three-particle particles.
exchange is the smallest, which means that the three-spif

exchangel; is dominant(at least in a dilute Wigner crystal. L, Vo™ SOFD si/(V3a%4)
Roger, however, overestimat&d” by 10-15%. Thisisnot ,_o_-70) 144 030  1.16 0.91
large as it is, but can result in an underestimate of the ex;_3(N, =75) 124 019 1.05 1.93
change constants by a much larger factor for a lageFor n=4(Ny,=80) 1.18 0.18 1.04 294
Not= 50, the results are well converged. In Table I, we tabu-n:5(Ntm: 56) 1.15 0.20 1.04 395

late the values oB'

e ) extrapolated tdN,— as shown in - p=g(N,,=61) 1.10 0.15 1.01 6.92
Fig. 3:
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(8) n=2(N,o=70) (6) n=4{Ny;,=80) 1 ———————
c L,_c F n=2 °
. . . " ‘. Y ’ . 3 A
¢, X 08 2 =
. 9 r . o © . L 5 *
> g 06} 6
. E} . L
A T e ° - 0.4f
1 1 ! 1 1 1 ! N 1 1
. » . . [ 4 A . 0 005 01
1/ Ny
$,=0.97 5,=2.99
$:=9.9x107; 8,=2.0x10™ ,—2.9x10° 5:=2.3x10°7; 8,=2.3410°7 5=4.4x107 FIG. 5. Contributiong=,, from the Gaussian fluctuations around
X: {0.50,0.30) X: (0.40,-0.48)

a: (-0.10,0.00); b: (—0.02,-0.05); c: (0.00,0.19)

a: (~0.03,0.00); b: (0.10,0.06); ¢: (~0.04,-0.08))

(d) n=5(N,=56)

(0) n=3(N;;=75)

-0

-

the classical exchange paths for various exchange procesges at
=30.

the lower bounds of,’s. The finite-size corrections are at
most 10% fom=2, 3, and 4, but those far=5 and 6 may
be larger.

C. Multiple-spin exchange constants

Using the values o8’ andF, tabulated in Table | and

fooe o Eq. (21), we calculate the magnitude of the exchange con-
e 0 e e stants|J,|. The results are shown in Fig. 6. Clearly, the
5,=1.98 524,01 three-spin exchangé; is decreasing the most slowly ag
Sa=2.00107%; 8=-2.8x107 8=—1.2x107  5,22.6107% 5,=3.8¢10°% 5,=2.1x10™ —, For rg=60, howeverJ; is not necessarily dominant.
x: {0.50,-0.20) x: {-0.49,0.14}

Thus, in a 2D Wigner crystal, one can expect ferromag-
netism owing to the three-spin exchange only in a rather
dilute region. We discuss the stability of ferromagnetism in
Sec. llID.

Using the values of the effective mass* and of the
dielectric constank appropriate for a Si MOSFET{metal-
oxide-semiconductor field-effect transistam* =0.19m and
k=7.7, the exchange constants in the Wigner crystal in a Si
MOSFET are calculated as a function of the electron density;
see Fig. 7. The result is to be compared with Fig. 11 of Ref.
3; note thatl,, in Ref. 3 corresponds tid,|/A, in this paper.

The present results and those of Ref. 3 agree qualitatively
with each other. The present calculation gives larger ex-
change constants than Roger’s, as is expected from Fig. 3. In
this rather dense region, five-particle exchange processes as
well as six-particle exchange processes make considerable
contributions.

a: (=0.07,0.00); b: (0.12,0.07); c: (0.01,0.05)  a: (0.10,0.06); b: (~0.04,-0.08); c: (0.01,0.11)

(e) n=6(N,=61)

5,=6.96
$,=7.6x107%; 5,=—2.0x107%; s =—1.4x10™

x: (-0.50,0.10)
a: (-0.08,0.00); b: (0.07,0.04); ¢: (0.00,0.02)

FIG. 4. Classical exchange paths for theparticle exchange
processes g8=30:(a) n=2, (b) n=3, (c) n=4, (d) n=5, and(e)
n=6. s, is the area enclosed by the exchanging partidgss the
area enclosed by the particle denoted wiftand they are measured
in units of 3¥%a%/4, which is the area of the equilateral triangle
formed by the nearest three lattice points. The displacement vecto
of particles atu= 3/2 are also given.

D. Stability of the ferromagnetic state

Now we discuss the possible magnetic states of the 2D
Wigner crystal. In the absence & andJ, the ground-state
phase diagram was studied by Kubo and Momoi with a
mean-field approximatioff Using their results, we find that

Table II; note that the direction of the motion of each particle
is considered in calculating, .

B. Gaussian fluctuations

The contributiond=,, of the Gaussian fluctuations around
the classical exchange paths are plotted as functiond\gf; 1/
in Fig. 5. It can be seen thd, gets large withn. F s,
especially those fon=5 and 6, do not appear to converge
even forN,,=50, and it is difficult to extrapolate t®l
— o0, In Table | are thus tabulated the valued=gfcalculated FIG. 6. Dependence of the multiple-spin exchange consthnts
with the largesiN,y; for eachn. Obviously, those values are in the 2D Wigner crystal on the average interparticle distance

Mo /(e %/ag)
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FIG. 8. J, , one-third of the Curie constant, adg,, coefficient

1 1.2 5 s 1.4 of the spin-wave spectrum in a perfectly ferromagnetic state, in the
Ne (107 m") 2D Wigner crystal. Thin curves stand for the results in the absence
of J5 and Jg.

FIG. 7. Dependence of the multiple-spin exchange constints

(divided by the symmetry factok,) in the 2D Wigner crystal in a ) ) . )
Si MOSFET on the electron density, . gion, as expected, due to the three-spin exchange interaction,

and it can be also dominant in the dense region due to the
the ferromagnetic state is realized only fQi= 100; the four- ~ five-spin exchange interaction. In the intermediate region,
spin exchange interaction destabilizes the ferromagnetié0=<rs=85, the perfectly ferromagnetic state cannot be the
state, and the ground state can have a four-sublattice struground state.
ture for a smaller¢.2* For 30sr <100, one of the ground  The present results agree qualitatively with those of
states is aiuud staté>?® where three of the four-sublattice Rogef as far as the two-, three-, and four-spin exchange
magnetizations point to the same direction and the remainingonstants are concerned. Roger overestimated the action
one to the opposite direction. Fog=30, the ground state is value ~Sg”) corresponding to a classical path by 10-15 %.
a tetrahedral staté,where the angle formed by any two of This does not make a large difference Jp as far asrg
the four-sublattice magnetizations g with cosg,=—3. =10. Values ofF,, estimated by Okamoto and Kawaji using
The phase diagram can be considerably affected by thRoger's expression are also found to be in fair agreement
five-spin exchange and the six-spin exchange. It is quite @ith the present result&onsidering the crudeness of Rog-
complicated problem, however, to determine the phase diser's estimation
gram in the presence afs and Jg even in a mean-field Now we discuss the experimental findings by Okamoto
theory?® Here we focus on the ferromagnetic state and studyand Kawajf in the light of the present results. Their results
its stability. The Weiss temperatu® is given by’ are consistenly explained by assuming the ground state to be
a ferromagnetic state. Okamoto and Kawaji estimated the
0©=33,=3(J,—2J3+3J,—5J5+ §Jg). (29 magnitude of the exchange constants from the AB oscillation
of the activation energy, and found,|:|Js|:|J,/=1:1:0.1 at
r<=7.8. These parameters are indeed consistent with a fer-
romagnetic ground state. The present result also shows that
the ground state can be a ferromagnetic state o8, but it

Figure 8 shows] as a function ofrs. Forrs=55, J,>0,
implying the dominance of the ferromagnetic interaction.
What is remarkable is the upturn af for r =20 due to the

five-spin exchange interactial. ForJs=Js=0, J, remains can be so only when the five-spin exchange constant is con-
negative for allr ;<=75. To study the stability of the perfectly sidered; the relative magnitude df is found to be rather

fg&oﬁzgggﬁtsitsat%V\gtgﬁ;ﬂgte tzr;ewizlrrgwave d|sperS|0r|13rge, [J5]:]335]:134|=1.7:1.0:0.8 atr=7.8, in this study,
prop swr and the ferromagnetic state is realized only with the help of

(30) Js. In the experiment, however, the amplitude of rapid AB
oscillations which must correspond to many-spir=4) ex-
A negative Jg,, implies an instability of the ferromagnetic change processes was found to be small, indicating these
state. From Fig. 8, it is found that the ferromagnetic state igrocesses did not work.
unstable for 2&r <85. Forr ;< 20, the ferromagnetic state  Another discrepancy between the present results and the
is stable due tds, while it is stable due td; for r =85. experiment is the area enclosed by the diplaced particles.
Certainly, some of the surrounding particles rotate in the
opposite direction to that of the exchanging particles, but the
offset due to them is found to be too small to account for the
We have calculated multiple-spin exchange constants in amall values of the area observed in the experiment.
2D Wigner crystal using a WKB approximation. Taking  The present theory can be improved or modified in sev-
proper account of the Gaussian fluctuations around a classéral ways. One obvious way is to treat the quantum fluctua-
cal exchange pattan instanton solutiopwe accurately cal- tions more seriously, e.g., by a Monte Carlo metfibbh the
culate the magnitude of the exchange constants within thdense region where the experiment was done, the quantum
WKB approximation. The results are summarized in Tables Fuctuations may be too large to be properly treated by the
and Il. There are still some finite-size errors, because th®VKB approximation. Although this is definitely a worthy
contributionsF,, of the Gaussian fluctuations could not be improvement of the theory, it may be difficult to resolve the
extrapolated toN;,=0o0. Tabulated values ofF, are lower discrepancies only by considering the fluctuations more seri-
bounds; the errors are at most less than 10%feR, 3, and ously. In particular, it is unlikely that the quantum fluctua-
4, but may be larger fon=5 and 6. The results show that tions suppress only the many-spin exchange processes se-
the ferromagnetic interaction is dominant in the dilute re-verely.

‘]SW: 2(J2_ 2\]3+4\]4_ 10J5+ 2‘]6)

IV. SUMMARY AND DISCUSSION
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20 30 B 40 exchange processes, aiid) a realistic treatment of the elec-
F o 1 ' i trons in a Si MOSFET — certainly deserve further studies.
1847F o 3
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FIG. 9. S{®) as a function ofL (open squargsand of 3 (open
circles at Ny=27.

Okamoto and Kawaji estimated the exchange constants
from the activation energy under a magnetic field perpen- APPENDIX: NUMERICAL DETAILS
dicular to the 2D plane. The field, in addition to giving rise L =
to the AB oscillation, can reduce the magnitude of the ex- We minimize the reduced actidg X(u)],
change constants, because a magnetic field in general helps
electrons to be localized. Moreover, the area enclosed by the é[X(u)]= fﬁdu
exchanging particles will also be changed by the field. This
may partly account for the small observed values of the ar-
eas. under a boundary conditioK(0)= X, and X(8)=Xpm by

In the experiment, electrons crystallize with the help ofsolving the equation of motion Eq413). The time interval,
impurity potentials. Impurity potentials must also affect theO=u<= g, is discretized intd_ pieces. A rapid convergence
particle exchange processes. It is clear that the more thean be obtained when we change the variables frdoy by
number of exchanging particles is, the more seriously the
process is affected by impurity potentials. It is desirable to tanh((u—B/2)/By)
study the effect of impurities on multiple-spin exchanges. y= —1sys<1) (A2)

: : tanh(B/(2y))
Finally, the present calculation has assumed that electrons

are strictly confined in a 2D plane. Typical Coulomb energyand then discretize the integral region intpieces, because
in the Wigner crystal in a Si MOSFET & %/ry=150 Kfor  the integrand in Eq(A1) turns out to be localized around
r<=8. The excitation energy of the first excited state in they~ g/2 as shown in Fig. 2. Obviously, we should take
inversion layer is around 200 ¥ and is similar in magni- =g, . If the temperature is not low enough, excited states
tude to the typical Coulomb energy. This means the assumRgith high energy(Debye frequencycontribute to the action

t!on .Of strict two-d|r.nen5|on.al|ty' IS not so sound. If the mo- and causég”) to be temperature dependent. We can see that
tion in the perpendicular direction is allowed, electrons can

also avoid each other in this direction, and the area enclosed as to be much larger than the instanton widghfor Sgn)
by the exchange paths projected onto the plane will be rel© become independent @. From this we see thag, is
duced. This can also account for the small area enclosed Hglated to the Debye frequency. It is, however, dependent on
the exchanging particles observed in the experiment. the ch0|c¢ of the |n_|t|al wave functidix, ), too. If it were the
The points discussed above ) a fully quantum- true Iocallzgq stat@in the presence of the tunneling between
mechanical calculation of the exchange constants in a 2ihe two cavities, then,,=0 and we would not have to go
Wigner crystal(ii) a calculation of the exchange constants indown to low temperatures. In Fig. 9, we show the depen-
a magnetic field(ii) study of the effect of impurities on the dence ofSy) on 8 andL for Ny,=27 andgy=4; when 3
dependence is studied, we ¢et343, andL dependence is

studied atB=30. It can be seen th&® rapidly converges

as B—oo. It is not difficult to obtain values o8{" accurate
to four significant figures by calculating g8=30 andL
=60.

Although the change of a variable, E#\2), is useful in
searching for the minimum of the action, it is not necessarily
so for the diagonalization of the Gaussian fluctuations, be-
cause the matrix representing the fluctuations becomes asym-

P S S metric. (Numerical diagonalization of an asymmetric matrix
0 05, 1 is slightly more complicated than that of a symmetric pne.
(4w In diagonalizing the fluctuations, therefore, we return to the

FIG. 10. F5 for different values oNy;. Solid circles are results  VaTiableu, interpolating the classical trajeptobsé”)(u), and
at =30 andL =90, open circles aB=40 andL=90, and solid  divide the time interval, &u=<p, into L’ pieces. We show
squares aB=30 andL=64. Solid curves represent the extrapola- the dependence df; on Au=g/L" for different values of
tion of the results denoted by solid symbols, and dotted curves thBlior IN Fig. 10. The results are well fitted by quadratic
results denoted by open symbols. The used formula of the extrapd-+cubic) polynomials. In Fig. 5 are plotted the values ex-
lation is F3(Au)=F3(0)+f,(Au)?+f5(Au)s. trapolated toAu—0.

1/dX(u)\? 1 1
(du) 2—}, (A1)
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