
PHYSICAL REVIEW B 15 JULY 2000-IIVOLUME 62, NUMBER 4
Multiple-spin exchange in a two-dimensional Wigner crystal

Masafumi Katano and D. S. Hirashima
Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan

~Received 22 February 2000!

Multiple-spin exchange constants in a two-dimensional Wigner crystal are calculated with a WKB approxi-
mation. Contributions of the Gaussian fluctuations around classical exchange paths are accurately calculated. In
the dilute limit, the three-spin exchange interaction is found to be dominant in agreement with the previous
study. Over a wide range of the electron density, however,n-spin exchange interactions withn>4 are found
to be of considerable magnitude, which makes the ground phase diagram nontrivial. Recent experimental
findings by Okamoto and Kawaji@Phys. Rev. B57, 9097~1998!# are also discussed in the light of the present
results.
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I. INTRODUCTION

The importance of the multiple-spin exchange in
Wigner crystal was first pointed out by Herring1 long ago.
Later, Roger2 calculated the multiple-spin exchange co
stants in a two-dimensional Wigner crystal using a WK
approximation, and found that the three-spin exchan
which is ferromagnetic, was dominant in the dilute lim
Only recently, Okamoto and Kawaji3 succeeded in studying
magnetism of a two-dimensional~2D! Wigner crystal and
found that the dominance of the three-spin exchange inte
tion consistently explained their findings. One of the m
interesting findings by Okamoto and Kawaji was that t
exchange constants changed their signs, as the strength
magnetic field perpendicular to the two-dimensional pla
was changed, due to the Aharanov-Bohm~AB! effect. From
this, they could estimate the multiple-spin exchange c
stants and the area enclosed by the exchanging parti
They found that the magnitude of the exchange const
fairly agreed with those calculated using the expressi
given by Roger2 while the results for the areas enclosed
the exchanging particles did not.

The purpose of this paper is to calculate the multiple-s
exchange constants in the 2D Wigner crystal with a WK
approximation by extending Roger’s work. The extentio
by the present study are~i! accurate calculation of the con
tribution from the Gaussian fluctuations around a class
exchange path by means of the instanton method,~ii ! calcu-
lation of the five- and six-spin exchange constants,~iii ! study
of the size dependence of the exchange constants, and~iv!
study of the effective areas enclosed not only by the
changing particles but also by the surrounding partic
Roger could estimate only an order of magnitude of the
change constants, because he only crudely estimated the
tribution from the fluctuations around a classical exchan
path. Using the standard instanton method,4,5 it is rather
straightforward to calculate the contribution of the Gauss
fluctuations. Second, there is no reason why the five-spin~or
the six-spin! exchange interaction is negligibly small com
pared with then-spin exchange interaction withn<3, in
particular when the electron density is high. Third, beca
the Coulomb interaction is long-ranged, the system size w
which one can accurately estimate the exchange cons
may be large compared with the case with solid3He. Roger
used at most 18 particles which can be displaced from
PRB 620163-1829/2000/62~4!/2573~8!/$15.00
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equilibrium positions. It appears that the number of partic
that can be displaced is not large enough to obtain an a
rate estimate. Another problem is the areas enclosed by
exchange paths. The areas estimated with the WKB calc
tion are found to be smaller than those estimated with
experiment by Okamoto and Kawaji.3 It is possible that, if
the exchanging particles rotate clockwise, the surround
particles are displaced from the equilibrium positions, rot
counterclockwise, and return to the equilibrium position6

Then, the effective areas, which will be experimentally o
served, will be reduced from the areas enclosed by the
changing particles, and the discrepancy between the exp
mental estimates and the theoretical ones may be resolv

We resort to a WKB approximation as Roger did.2 In a
clean system, a two-dimensional electron system crystall
into a Wigner solid atr s.37,7,8 where r s is the reduced
average interparticle distance,r s}\22. In the WKB approxi-
mation, contributions of the order ofr s

21/4 are taken into
account, while those of the order ofr s

21/2 and of higher or-
ders are discarded. In a clean Wigner crystal, therefore,
WKB approximation works quantitatively. In the experime
by Okamoto and Kawaji,r s.8;3 electrons crystallize unde
the influence of impurities.9 In this case, the results of th
WKB approximation may not be quantitatively reliable. Sti
an accurate WKB calculation is important in that it gives
firm reference in discussing the effect of large quantum fl
tuations and other possible effects that are not considere
the calculation.

In the next section, we give the formulation for the calc
lation of the exchange constants, and in Sec. III, we pres
numerical results. Section IV is devoted to a summary a
discussion. Numerical details are presented in the Appen

II. FORMULATION

The concept and the method of calculation of the e
change constants were discussed in the paper of Thoule10

As they have been frequently discussed in t
literature,2,11–13we give a brief summary here.

We calculate the density-matrix elementr(XP(n),XI ;b),

r~XP(n),XI ;b!5^XP(n)ue2bHuXI&, ~1!
2573 ©2000 The American Physical Society
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whereb is the inverse of temperature andH is the Hamil-
tonian describing the two-dimensionalN-electron system. In
the absence of the kinetic energy term, i.e., in the class
limit, a two-dimensional electron system forms a triangu
Wigner crystal.14,15 In this limit, the N-electron system ha
N!-fold degenerate ground states, and one of them is den
by uXI&.

16 We can assume that thei th electron, whose coor
dinate is denoted byr i , is localized at thei th lattice siteRi in
the stateuXI&,

r i5Ri ~ i 51, . . . ,N!. ~2!

We collectively denote the coordinates ofN electrons by a
2N-dimensional vectorX; X5(r1 , . . . ,rN). We then rewrite
Eq. ~2! by

X5XI . ~3!

The stateuXP(n)& is obtained fromuXI& by permutatingn
particles with the remainingN2n particles fixed. Electron
coordinates are given by

r i5RP( i ) , ~ i 51, . . . ,n!,

r j5Rj , ~ j 5n11, . . . ,N!, ~4!

in uXP(n)&, where P is an n-particle permutation operator
Alternatively, we write

X5XP(n), ~5!

in uXP(n)&. If the exchange rate is small compared with t
Debye frequency, the density-matrix elementF(XP(n),XI ;b)
normalized by a diagonal one is given in terms of the
change constantJn by2,13,17

F~XP(n),XI ;b!5
r~XP(n),XI ;b!

r~XI ,XI ;b!
5tanh~b2bP!uJnu.

~6!

QuantitybP is a measure of the extent to which the localiz
state constructed from the true ground state in the pres
of the tunneling between the two cavities deviates from
stateuX&,2,13 and corresponds to the width of the instant
~see below!. If we can chooseb so thatbP!b!1/uJnu,18 Eq.
~6! reduces to

F~XP(n),XI ;b!.buJnu. ~7!

On the other hand, the density-matrix eleme
r(XP(n),XI ;b) is expressed with the path integral as

r~XP(n),XI ;b!5E
X(0)5XI

X(b)5XP(n)

DX~u!exp$2S@X~u!#%, ~8!
al
r

ed

-
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e

t

where

S@X~u!#5Ar sS̃@X~u!#

5Ar sE
0

b

duF1

2 S dX~u!

du D 2

1
1

2 (
iÞ j

1

r i j
G , ~9!

wherer s is the averaged interparticle distancer 0 normalized
by the effective Bohr radiusaB* ;

r s5
r 0

aB*
, ~10!

r 05
1

Apne

, ~11!

and

aB* 5
\2

m* e* 2
, ~12!

with ne being the electron density,m* the electron effective
mass,e* the effective electron charge,e* 25e2/k, andk the
dielectric constant. Here and in the following, imagina
times are in units of@e* 2/(Ar sr 0)#21, Coulomb energies are
in units of e* 2/r 0, and lengths are in units ofr 0, unless
otherwise stated. We assume a uniform and static pos
background to neutralize the system. We neglect it in Eq.~9!,
because it makes no contribution to the exchange consta

In the WKB approximation, we estimate Eq.~8! by con-
sidering only the contributions from classical paths and fr
the Gaussian fluctuations around them. A classical path
path which gives a minimum of the action Eq.~9!,19 and is
determined by the ‘‘equation of motion,’’

d2X~u!

du2
5“(

i , j

1

r i j
, ~13!

together with the boundary condition,X(0)5XI and X(b)
5XP(n). The summation on the right-hand side~rhs! is taken
over the infinite range by means of the Ewald method.20,2

Because the contribution from the classical solutionX0
(n)(u)

to the action integral Eq.~9! is localized in imaginary time,
as we see later, the solution is called an instanton. We de
the value of the action corresponding to the classical
change pathX0

(n)(u) by S̃0
(n) , and the one corresponding t

the equilibrium path,X(u)5XI , by S̃0
(0) . Expanding the ac-

tion integrals, Eq.~9!, around the classical path and the eq
librium path, we have
F~XP(n),XI ;b!.e2Ar sDS̃0
(n)
E Dx~u!expH 2E

0

b

duxi~u!S 2d i j

1

2

d2

du2
1

1

2
Wi j

(n)~u!D xj~u!J
E Dx~u!expH 2E

0

b

duxi~u!S 2d i j

1

2

d2

du2
1

1

2
Wi j

(0)D xj~u!J , ~14!
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where

DS̃0
(n)5S̃0

(n)2S̃0
(0) , ~15!

Wi j
(n)~u!5¹ i¹ j(

k, l

1

r kl
U

X(u)5X
0
(n)(u)

, ~16!

Wi j
(0)5¹ i¹ j(

k, l

1

r kl
U

X(u)5XI

, ~17!

andx(0)5x(b)50. Diagonalizing the Gaussian fluctuation
and denoting the eigenvalues bylm

(n) ~andlm
(0)), we have

F~XP(n),XI ;b!.e2Ar sDS̃0
(n)

)
m50

Alm
(0)

lm
(n)

. ~18!

At low temperatures, the lowest eigenvaluel0
(n) is expo-

nentially small,l0
(n)}e2cb with c being a constant,4 and van-

ishes atb5`; the lowest eigenmode is thus called a ze
mode. As the Gaussian integral becomes ill-defined, we h
to treat the zero mode separately. The zero mode origin
from the time translational invariance, and the contribut
of the zero mode turns out to be proportional tob.4,5,18 We
thus finally have21

F~XP(n),XI ;b!.be2Ar sDS̃0
(n)AAr sDS̃0

(n)l0
(0)

2p )
m51

Alm
(0)

lm
(n)

.

~19!

Comparing Eqs.~7! and ~19!, we obtain the expression fo
the magnitudeuJnu of the n-spin exchange constant as

uJnu.AAr sDS̃0
(n)l0

(0)

2p )
m51

Alm
(0)

lm
(n)

e2Ar sDS̃0
(n)

. ~20!

Returning to ordinary energy units, we have

uJnu.
e* 2

Ar sr 0

AAr sDS̃0
(n)l0

(0)

2p
)
m51
Alm

(0)

lm
(n)

e2Ar sDS̃0
(n)

5
e* 2

r saB*

1

A4 r s

ADS̃0
(n)l0

(0)

2p
)
m51
Alm

(0)

lm
(n)

e2Ar sDS̃0
(n)

[
e* 2

aB*

1

r s

Fn

A4 r s

e2Ar sDS̃0
(n)

, ~21!

whereFn and DS̃0
(n) are dimensionless quantities ofO(1).

Furthermore, we have to consider a symmetry factorAn
which takes care of the distinct paths contributing to E
~8!;17 A252 and An51 (n53,4,5,6). ~The exchange path
for the two-particle exchange is symmeteric with respec
u5b/2, as we see later, and consequently the symmetry
tor is 2. Otherwise, it would be 4 as in the case of the tw
particle exchange of high density hard core particles.2! The
final expression foruJnu is thus
ve
es
n

.

o
c-
-

uJnu.
e* 2

aB*

1

r s

AnFn

A4 r s

e2Ar sDS̃0
(n)

, ~22!

and our task is to calculateDS̃0
(n) andFn .

The sign of the exchange constantJn is uniquely
determined.10 In this study, we defineJn so thatJn,0.

III. RESULTS

In this study, we calculate then-spin exchange constant
Jn (n52, . . . ,6).Exchange processes considered in the
per are depicted in Fig. 1. In considering ann-particle ex-
change process, we allowNtot2n particles to be displaced
from the equilibrium positions in addition ton exchanging
particles; the total number of moving electrons isNtot . The
remaining electrons are fixed at the equilibrium positio
First we allow only the nearest-neighbor electrons of then
exchanging electrons to be displaced;Ntot510 for n52, for
example. We then increase the number of the moving e
trons by allowing the fixed electrons that are at the near
neighbor sites of the moving electrons to be displaced, t

We then discretize the imaginary time interval, 0<u<b,
into L segments. The number of variables to be determine
thus 2Ntot(L21). We search for a solution, i.e., a classic
exchange path, satisfying the equation of motion, Eq.~13!,
under the given boundary condition in th
2Ntot(L21)-dimensional space. Once the equation is solv
the remaining task is a simple diagonalization of anM3M
matrix (M.2NtotL) representing fluctuations around th
classical path.

FIG. 1. Multiparticle exchange processes studied in the pap

FIG. 2. Solution to the three-particle exchange problem ab
530 for Ntot548. L3(u) is the tunneling path length in the
2Ntot-dimensional configuration space. Kinetic energyK3(u) is also
shown.
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The following results are those atb530 andL564;90.
Further details are given in the Appendix.

A. Classical exchange paths

A typical solution is shown in Fig. 2. The path leng
Ln(u) is defined by

Ln~u!5E
0

u

du
udX0

(n)~u!u
du

. ~23!

The action integralDS̃0
(n) corresponding to a classical ex

change pathX0
(n)(u) is represented by

DS̃0
(n)5E

0

b

du@Kn~u!1Vn~u!#52E
0

b

duKn~u!, ~24!

where

Kn~u!5
1

2 S dX0
(n)~u!

du D 2

, ~25!

and Vn(u) is the potential energy of the configuratio
X0

(n)(u) ~measured from the value of the equilibrium co
figuration!. The last equality in Eq.~24! is owing to the
energy conservation,21

Kn~u!5Vn~u!. ~26!

As was found by Roger,2 the trajectory is symmetric with
respect tou5b/2 for any n. Kn(u) is found to be well lo-
calized aroundu5b/2, and the particle exchange in th
Wigner crystal thus makes a textbook example of a mult
mensional instanton. The widthbw of the instanton is esti-
mated from the slope ofLn(u) at u5b/2. bw.5 for n52, it
increases asn, andbw.9 for n56.

The action valuesS̃0
(n) of then-particle exchange path fo

n52, . . . ,6 areshown as functions of 1/Ntot
2 in Fig. 3. As

was found by Roger,2 the actionS̃0
(3) of the three-particle

exchange is the smallest, which means that the three-
exchangeJ3 is dominant~at least! in a dilute Wigner crystal.
Roger, however, overestimatedS̃0

(n) by 10–15 %. This is not
large as it is, but can result in an underestimate of the
change constants by a much larger factor for a larger s . For
Ntot*50, the results are well converged. In Table I, we tab
late the values ofS̃0

(n) extrapolated toNtot→` as shown in
Fig. 3.22

FIG. 3. ValuesS̃0
(n) of the action corresponding to the classic

n-particle exchange path atb530 for n52, . . . ,6 asfunctions of
1/Ntot

2 . Open symbols stand for the results by Roger~Ref. 2!. Dotted
curves are the results of the extrapolation.
i-

in

x-

-

Other interesting quantities are the total path lengthLn(b)
and the maximum valueVn

max of the potential along the tra
jectory; in the present case,Vn

max5Vn(b/2)5Kn(b/2).21 If
the exchange trajectory were a straight line in t
2Ntot-dimensional configuration space,Ln(b)5Ana, where
a is the lattice constant. The quantityL̄n , defined by

L̄n5
Ln~b!

Ana
, ~27!

stands for the extent to which the system has to go aro
the potential barrier to exchange the particles. In Table II
tabulatedL̄n and Vn

max for n52, . . . ,6.Obviously, bothL̄2

and V2
max are large compared with those for the more-tha

two-particle exchange processes, which is whyJ2 cannot be
dominantly large. Using the approximation adopted
Roger,2 a sinusoidal approximation, the action valueS̃0

(n) can
be estimated by

S̃0
(n).S̃sin

(n)5
4A2

p
AVn

maxLn . ~28!

The approximated action valuesS̃sin
(n)’s are also tabulated in

Table II. Except for the two-particle exchange, the sinusoi
approximation works well.

Lastly, we show the exchange paths in Figs. 4~a!–4~e!. In
each of the figures, the symmetry of the displacement of
particles is obvious. The surrounding particles are found
offset the area enclosed by the exchanging particles.
reduction is, however, found to be less than 5%. The to
areasn enclosed by the exchange paths is also tabulate

TABLE I. ParametersS̃0
(n) andFn characterizing the exchang

constantsJn . Values ofS̃0
(n) are those extrapolated toNtot→` and

values ofFn are those for the largestNtot , whose values are show
in parentheses, for eachn.

S̃0
(n) Fn(Ntot)

n52 1.63 0.61~70!

n53 1.52 0.54~75!

n54 1.65 0.62~80!

n55 1.90 0.78~56!

n56 1.78 0.69~61!

TABLE II. Parameters characterizing the exchange proces

L̄n is the exchange path length divided by the straight path len
Vn

max is the maximum of the potential energy~in units ofe* 2/r 0) on

the exchange path,S̃sin
(n) is an approximate value of the action of th

classical path, andsn is the total area enclosed by the displac
particles.

L̄n
Vn

max
S̃sin

(n)/S̃0
(n) sn /(A3a2/4)

n52(Ntot570) 1.44 0.30 1.16 0.91
n53(Ntot575) 1.24 0.19 1.05 1.93
n54(Ntot580) 1.18 0.18 1.04 2.94
n55(Ntot556) 1.15 0.20 1.04 3.95
n56(Ntot561) 1.10 0.15 1.01 6.92
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Table II; note that the direction of the motion of each parti
is considered in calculatingsn .

B. Gaussian fluctuations

The contributionsFn of the Gaussian fluctuations aroun
the classical exchange paths are plotted as functions of 1Ntot
in Fig. 5. It can be seen thatFn gets large withn. Fn’s,
especially those forn55 and 6, do not appear to converg
even for Ntot*50, and it is difficult to extrapolate toNtot
→`. In Table I are thus tabulated the values ofFn calculated
with the largestNtot for eachn. Obviously, those values ar

FIG. 4. Classical exchange paths for then-particle exchange
processes atb530: ~a! n52, ~b! n53, ~c! n54, ~d! n55, and~e!
n56. sx is the area enclosed by the exchanging particles,sn is the
area enclosed by the particle denoted withn, and they are measure
in units of 31/2a2/4, which is the area of the equilateral triang
formed by the nearest three lattice points. The displacement ve
of particles atu5b/2 are also given.
the lower bounds ofFn’s. The finite-size corrections are a
most 10% forn52, 3, and 4, but those forn55 and 6 may
be larger.

C. Multiple-spin exchange constants

Using the values ofS̃0
(n) andFn tabulated in Table I and

Eq. ~21!, we calculate the magnitude of the exchange c
stants uJnu. The results are shown in Fig. 6. Clearly, th
three-spin exchangeJ3 is decreasing the most slowly asr s
→`. For r s&60, however,J3 is not necessarily dominant
Thus, in a 2D Wigner crystal, one can expect ferroma
netism owing to the three-spin exchange only in a rat
dilute region. We discuss the stability of ferromagnetism
Sec. III D.

Using the values of the effective massm* and of the
dielectric constantk appropriate for a Si MOSFET~metal-
oxide-semiconductor field-effect transistor!, m* 50.19m and
k57.7, the exchange constants in the Wigner crystal in a
MOSFET are calculated as a function of the electron dens
see Fig. 7. The result is to be compared with Fig. 11 of R
3; note thatJn in Ref. 3 corresponds touJnu/An in this paper.
The present results and those of Ref. 3 agree qualitativ
with each other. The present calculation gives larger
change constants than Roger’s, as is expected from Fig.
this rather dense region, five-particle exchange processe
well as six-particle exchange processes make consider
contributions.

D. Stability of the ferromagnetic state

Now we discuss the possible magnetic states of the
Wigner crystal. In the absence ofJ5 andJ6, the ground-state
phase diagram was studied by Kubo and Momoi with
mean-field approximation.23 Using their results, we find tha

rs

FIG. 5. ContributionsFn from the Gaussian fluctuations aroun
the classical exchange paths for various exchange processesb
530.

FIG. 6. Dependence of the multiple-spin exchange constantJn

in the 2D Wigner crystal on the average interparticle distancer s .
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the ferromagnetic state is realized only forr s*100; the four-
spin exchange interaction destabilizes the ferromagn
state, and the ground state can have a four-sublattice s
ture for a smallerr s .24 For 30&r s&100, one of the ground
states is auuud state23,25 where three of the four-sublattic
magnetizations point to the same direction and the remain
one to the opposite direction. Forr s&30, the ground state is
a tetrahedral state,23 where the angle formed by any two o
the four-sublattice magnetizations isu0 with cosu0521

3.
The phase diagram can be considerably affected by

five-spin exchange and the six-spin exchange. It is quit
complicated problem, however, to determine the phase
gram in the presence ofJ5 and J6 even in a mean-field
theory.26 Here we focus on the ferromagnetic state and st
its stability. The Weiss temperatureQ is given by27

Q53Jx53~J222J313J425J51 5
8 J6!. ~29!

Figure 8 showsJx as a function ofr s . For r s*55, Jx.0,
implying the dominance of the ferromagnetic interactio
What is remarkable is the upturn ofJx for r s&20 due to the
five-spin exchange interactionJ5. ForJ55J650, Jx remains
negative for allr s&75. To study the stability of the perfectl
ferromagnetic state, we calculate the spin-wave dispers
and find that it is proportional toJsw,28 where

Jsw52~J222J314J4210J512J6!. ~30!

A negativeJsw implies an instability of the ferromagneti
state. From Fig. 8, it is found that the ferromagnetic state
unstable for 20&r s&85. Forr s&20, the ferromagnetic stat
is stable due toJ5, while it is stable due toJ3 for r s*85.

IV. SUMMARY AND DISCUSSION

We have calculated multiple-spin exchange constants
2D Wigner crystal using a WKB approximation. Takin
proper account of the Gaussian fluctuations around a cla
cal exchange path~an instanton solution!, we accurately cal-
culate the magnitude of the exchange constants within
WKB approximation. The results are summarized in Table
and II. There are still some finite-size errors, because
contributionsFn of the Gaussian fluctuations could not b
extrapolated toNtot5`. Tabulated values ofFn are lower
bounds; the errors are at most less than 10% forn52, 3, and
4, but may be larger forn55 and 6. The results show tha
the ferromagnetic interaction is dominant in the dilute

FIG. 7. Dependence of the multiple-spin exchange constantJn

~divided by the symmetry factorAn) in the 2D Wigner crystal in a
Si MOSFET on the electron densityne .
ic
c-

g

e
a
a-

y

.

n,

is

a

si-

e
I
e

-

gion, as expected, due to the three-spin exchange interac
and it can be also dominant in the dense region due to
five-spin exchange interaction. In the intermediate regi
20&r s&85, the perfectly ferromagnetic state cannot be
ground state.

The present results agree qualitatively with those
Roger2 as far as the two-, three-, and four-spin exchan
constants are concerned. Roger overestimated the a
value S̃0

(n) corresponding to a classical path by 10–15
This does not make a large difference inJn as far asr s
&10. Values ofFn estimated by Okamoto and Kawaji usin
Roger’s expression are also found to be in fair agreem
with the present results~considering the crudeness of Ro
er’s estimation!.

Now we discuss the experimental findings by Okamo
and Kawaji3 in the light of the present results. Their resu
are consistenly explained by assuming the ground state t
a ferromagnetic state. Okamoto and Kawaji estimated
magnitude of the exchange constants from the AB oscillat
of the activation energy, and founduJ2u:uJ3u:uJ4u51:1:0.1 at
r s.7.8. These parameters are indeed consistent with a
romagnetic ground state. The present result also shows
the ground state can be a ferromagnetic state forr s.8, but it
can be so only when the five-spin exchange constant is c
sidered; the relative magnitude ofJ4 is found to be rather
large, uJ2u:uJ3u:uJ4u51.7:1.0:0.8 atr s.7.8, in this study,
and the ferromagnetic state is realized only with the help
J5. In the experiment, however, the amplitude of rapid A
oscillations which must correspond to many-spin (n>4) ex-
change processes was found to be small, indicating th
processes did not work.29

Another discrepancy between the present results and
experiment is the area enclosed by the diplaced partic
Certainly, some of the surrounding particles rotate in
opposite direction to that of the exchanging particles, but
offset due to them is found to be too small to account for
small values of the area observed in the experiment.

The present theory can be improved or modified in s
eral ways. One obvious way is to treat the quantum fluct
tions more seriously, e.g., by a Monte Carlo method.13 In the
dense region where the experiment was done, the quan
fluctuations may be too large to be properly treated by
WKB approximation. Although this is definitely a worth
improvement of the theory, it may be difficult to resolve th
discrepancies only by considering the fluctuations more s
ously. In particular, it is unlikely that the quantum fluctu
tions suppress only the many-spin exchange processe
verely.

FIG. 8. Jx , one-third of the Curie constant, andJsw, coefficient
of the spin-wave spectrum in a perfectly ferromagnetic state, in
2D Wigner crystal. Thin curves stand for the results in the abse
of J5 andJ6.
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Okamoto and Kawaji estimated the exchange const
from the activation energy under a magnetic field perp
dicular to the 2D plane. The field, in addition to giving ris
to the AB oscillation, can reduce the magnitude of the
change constants, because a magnetic field in general h
electrons to be localized. Moreover, the area enclosed by
exchanging particles will also be changed by the field. T
may partly account for the small observed values of the
eas.

In the experiment, electrons crystallize with the help
impurity potentials. Impurity potentials must also affect t
particle exchange processes. It is clear that the more
number of exchanging particles is, the more seriously
process is affected by impurity potentials. It is desirable
study the effect of impurities on multiple-spin exchanges

Finally, the present calculation has assumed that elect
are strictly confined in a 2D plane. Typical Coulomb ener
in the Wigner crystal in a Si MOSFET ise* 2/r 0.150 K for
r s.8. The excitation energy of the first excited state in t
inversion layer is around 200 K,30 and is similar in magni-
tude to the typical Coulomb energy. This means the assu
tion of strict two-dimensionality is not so sound. If the m
tion in the perpendicular direction is allowed, electrons c
also avoid each other in this direction, and the area enclo
by the exchange paths projected onto the plane will be
duced. This can also account for the small area enclose
the exchanging particles observed in the experiment.

The points discussed above —~i! a fully quantum-
mechanical calculation of the exchange constants in a
Wigner crystal,~ii ! a calculation of the exchange constants
a magnetic field,~iii ! study of the effect of impurities on th

FIG. 9. S̃0
(3) as a function ofL ~open squares! and of b ~open

circles! at Ntot527.

FIG. 10. F3 for different values ofNtot . Solid circles are results
at b530 andL590, open circles atb540 andL590, and solid
squares atb530 andL564. Solid curves represent the extrapo
tion of the results denoted by solid symbols, and dotted curves
results denoted by open symbols. The used formula of the extr
lation is F3(Du)5F3(0)1 f 2(Du)21 f 3(Du)3.
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exchange processes, and~iv! a realistic treatment of the elec
trons in a Si MOSFET — certainly deserve further studie
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APPENDIX: NUMERICAL DETAILS

We minimize the reduced actionS̃@X(u)#,

S̃@X~u!#5E
0

b

duF1

2 S dX~u!

du D 2

1
1

2 (
kÞ l

1

r kl
G , ~A1!

under a boundary conditionX(0)5XI and X(b)5XP(n) by
solving the equation of motion Eq.~13!. The time interval,
0<u<b, is discretized intoL pieces. A rapid convergenc
can be obtained when we change the variables fromu to y by

y5
tanh„~u2b/2!/by…

tanh„b/~2by!…
~21<y<1! ~A2!

and then discretize the integral region intoL pieces, because
the integrand in Eq.~A1! turns out to be localized aroun
u.b/2 as shown in Fig. 2. Obviously, we should takeby
.bw . If the temperature is not low enough, excited sta
with high energy~Debye frequency! contribute to the action
and causeS̃0

(n) to be temperature dependent. We can see

b has to be much larger than the instanton widthbw for S̃0
(n)

to become independent ofb. From this we see thatbw is
related to the Debye frequency. It is, however, dependen
the choice of the initial wave functionuXI&, too. If it were the
true localized state~in the presence of the tunneling betwe
the two cavities!, thenbw50 and we would not have to go
down to low temperatures. In Fig. 9, we show the dep
dence ofS̃0

(3) on b and L for Ntot527 andby54; whenb
dependence is studied, we setL.3b, andL dependence is
studied atb530. It can be seen thatS̃0

(3) rapidly converges

asb→`. It is not difficult to obtain values ofS̃0
(n) accurate

to four significant figures by calculating atb*30 and L
*60.

Although the change of a variable, Eq.~A2!, is useful in
searching for the minimum of the action, it is not necessa
so for the diagonalization of the Gaussian fluctuations,
cause the matrix representing the fluctuations becomes a
metric. ~Numerical diagonalization of an asymmetric matr
is slightly more complicated than that of a symmetric on!
In diagonalizing the fluctuations, therefore, we return to
variableu, interpolating the classical trajectoryX0

(n)(u), and
divide the time interval, 0<u<b, into L8 pieces. We show
the dependence ofF3 on Du5b/L8 for different values of
Ntot in Fig. 10. The results are well fitted by quadratic
(1cubic) polynomials. In Fig. 5 are plotted the values e
trapolated toDu→0.
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