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Statistical Ga clusters andA1„TO… gap mode in AlxGa1ÀxN alloys
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Results of a comprehensive study of the behavior of theA1(TO) phonon mode in hexagonal AlxGa12xN
alloys in the entire compositional range are described. It has been found that the Raman spectrum of
Al xGa12xN, with a Ga content (12x),0.3, exhibits a large broadening with a complex structure. We attribute
this structure to a manifestation of the phonon density of states in the region of vibrations of the optical
A1(TO) branch, and to the appearance of a gap mode in AlN. Both effects are due to the substitution of heavier
Ga atoms in the cation sublattice of AlN. A theoretical approach is suggested which describes changes in the
vibrational spectrum at a sufficiently strong perturbation resulting from isoelectron substitution. In the frame-
work of the developed model, the dependence of the intensity and band shape of the gap mode on Ga content
are calculated and compared with the experimental Raman data. The experimental and theoretical dependences
are shown to be in good agreement in the region (12x),0.12–0.15. The obtained results indicate that the
formation of anA1(TO) gap mode in the regions of low and intermediate Ga contents is caused by statistical
Ga clusters in the cation sublattice of the solid solution. In a limited range of Ga contents, the behavior of the
A1(TO) phonon mode in AlxGa12xN can be considered as a two-mode behavior.
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I. INTRODUCTION

Wide-gap semiconductors GaN and AlN, and their so
solutions (AlxGa12xN), are known to be promising materia
for optical applications, especially for light emission in th
blue and ultraviolet ranges.1,2 Progress in the growth of ni
trides has stimulated basic research into these mater
However, compared to the considerable amount of rese
done on GaN, the alloy system AlxGa12xN has received
much less attention. To obtain a deeper insight into the tra
port and thermal properties of this material, as well as
phonon-assisted optical transitions, its crystalline lattice
namics should be thoroughly studied.

Special attention was paid to the vibrational spectrum
disordered systems.3–11Among the methods used to descri
the lattice dynamics of alloys is the self-consistent coher
potential approach,9 the phenomenological random-elemen
isodisplacement~REI! method, and the modified random
element-isodisplacement~MREI!10,11 method. According to
the REI and MREI models, ternary alloys are divided in
two main classes~one- and two-mode models! depending on
the behavior of optical phonons at theG point. In Refs. 10
and 11, criteria for the behavior of optical phonons at theG
point, allowing a correct prediction of the type of the so
solution, were suggested. If the ratio of the difference
tween the optical band energies of two individual comp
nents to the width of the energy band is large, a ternary a
exhibits a two-mode behavior. Conversely, if the bands
pure components overlap in the energy space, the ter
alloy is a one-mode model. In the case of an ideal one-mo
type behavior, frequencies of different optical modes v
continuously and approximately linearly with varying allo
composition. On the other hand, in typical two-mode ty
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behavior two sets of optical modes are observed, each
corresponding to one of two components of the alloy.

The local and gap modes can be observed in the spect
two-mode-type crystals when the content of one of the co
ponents is much greater than that of the other. For the
mode to occur, there must be a frequency gap between
acoustic and optic bands. It was noted in Refs. 10 and 11
in some cases a local mode can rise out of the top, and a
mode can fall out of the bottom of the optical branch wh
the top or bottom of the band takes place at an arbitrary p
of the Brillouin zone.

Solid solutions of AlxGa12xN, as well as pure crystals o
GaN and AlN, crystallize in two polytypes: cubic and he
agonal. The behavior of phonons in cubic AlxGa12xN was
theoretically considered in Refs. 12 and 13. It was found t
LO phonon must exhibit a one-mode type behavior, wh
the behavior of the TO phonon must show two-mode beh
ior. These predictions were confirmed by Raman-scatte
data for cubic AlxGa12xN alloys.14 For hexagonal
Al xGa12xN, theoretical studies of the phonon mode behav
have been carried out only forA1 andE1 phonons, which are
polar phonons.13,15,16In these works, the one-mode behavi
of the A1(LO) and E1(LO) phonons was predicted. How
ever, there was a discrepancy in the results concerning
TO-phonon behavior. In Ref. 15 the one-mode behavior
the A1(TO) and E1(TO) phonons was derived from th
MREI model for hexagonal AlxGa12xN, while in Ref. 13 the
two-mode behavior of these phonons~similar to transverse
phonons in the cubic polytype! was predicted.

The experimental data on hexagonal AlxGa12xN are also
rather contradictory. In earlier works,17,18 a one-mode-type
behavior was found from Raman measurements for all o
cal phonons in the case of a small Al content (0,x,0.15).
2522 ©2000 The American Physical Society
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In more recent works,16,19 the phonon behavior was trace
for the whole compositional range (0,x,1). The Raman
data obtained in these works speak in favor of an appa
one-mode behavior of the longitudinal and transverse c
ponents ofA1 and E1 polar modes. They also suggest
two-mode behavior of theE2(high) nonpolar mode. Zone
center modes in hexagonal AlxGa12xN were also studied by
infrared spectroscopy. Recent IR reflectivity measureme
for Al xGa12xN in the whole compositional range (0,x
,1) indicated the one-mode behavior of theE1(LO)
phonons and the two-mode behavior of theE1(TO)
phonons.20 Neither Al local mode in GaN nor Ga gap mod
in AlN have been found by both techniques.

Thus the experimental data are consistent with the th
retical predictions of the one-mode behavior of the LO ph
non modes in hexagonal AlxGa12xN. However, as concern
the behavior of the transverse optical modes, there is a
nificant disagreement between the results of different wo
both in theory and experiment.

In this paper we describe the results of detailed exp
mental and theoretical studies of the behavior of the pho
mode of theA1(TO) symmetry in hexagonal AlxGa12xN. In
spite of an increasing number of investigations of the latt
dynamics of solid solutions based on the theories of Refs
and 11, the microscopical mechanism underlying the tw
mode behavior still remains rather puzzling. Here we pres
an attempt at a microscopical approach to the problem
two-mode behavior in the limit of low and intermediate G
contents in the hexagonal AlxGa12xN solid solution, assum-
ing ~i! a random distribution of substituting atoms,~ii ! an
arbitrary position of the top or bottom of an optical band
the Brillouin zone,~iii ! a strong enough perturbation to sp
off a local or a gap mode, and~iv! a relatively small concen
tration of the active component~Ga in our case!, which is
less than the percolation concentration over the pertur
sublattice sites. The last restriction means that only clus
of a finite size can exist in a perturbed sublattice.21–23

To simplify numerical calculations, we use two assum
tions: ~1! only changes in the mass of a substituting atom
taken into account, while the force constants remain
same; and~2! the number of clusters at a given concentrat
can be found for the AlxGa12xN alloy using the results avail
able for the fcc lattice and neglecting, therefore, a small
ference between the wurtzite and zinc-blende lattices.

We attribute the observed changes in the Raman spec
of the A1(TO) phonon mode of AlxGa12xN in the region
(12x),0.2 to the formation of statistical Ga clusters in t
case of a random distribution of these atoms over the ca
sublattice sites. The averaged number of clusters for the
sublattice for an arbitrary concentration obtained in Ref.
is used to estimate the density of gap states and its de
dence on concentration.

The structure of the paper is as follows. The samples
experimental procedure are described in Sec. II. In Sec.
Raman spectroscopic data on the behavior ofA1(TO) pho-
non mode in AlxGa12xN solid solutions in the entire compo
sitional range (0,x,1) are presented. Special attention
paid to experimental investigations of the behavior of t
phonon mode in Al-rich alloys. It is shown that for a G
content (12x),0.2 a gap mode splits off the bottom of th
A1(TO) branch, which probably occurs at theH point of the
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Brillouin zone. Section IV is devoted to the theoretical co
sideration of the disordered lattice vibration problem wh
the perturbation at substitution is strong enough to produc
local mode or a gap mode. This approach assumes tha
active component concentration is lower than the criti
concentration for percolation over the fcc sublattice sit
The model calculations of density of the gap states split
the bottom of theA1(TO) branch are performed and com
pared with experiment. Section V contains summary
marks.

II. EXPERIMENT AND SAMPLES

A large set of AlxGa12xN samples with a difference in th
Al content of not more than 3–5% in the entire compo
tional range (0,x,1), as well as AlN and GaN layers
were used for the study. 0.5-mm-thick AlxGa12xN layers in
the compositional range 0,x,0.5 were grown on thin GaN
buffer layers deposited on thec-plane sapphire in a Riber 3
molecular-beam epitaxy system. The 1–2-mm-thick layers
of Al xGa12xN alloys in the composition range 0.5,x,1
were grown by hydride vapor phase epitaxy on a~111! sili-
con substrate without a buffer layer. The details of t
growth can be found in Refs. 25 and 26. The structural qu
ity of the layers and the alloy composition were controll
by x-ray diffraction and electron probe microanalysis. R
man spectra of the samples were measured in a backsc
ing configuration at room temperature and at 100 K. An A1

laser (l5488 nm) was used as a source of excitation.

III. EXPERIMENTAL RESULTS

A. Phonons in perfect GaN and AlN

Hexagonal GaN, AlN, and AlxGa12xN alloys crystallize
in the wurtzite structure belonging to theC6v

4 (P63mc)
space group. According to the factor group analysis at thG
point, phonon modes in a hexagonal crystal belong to
irreducible representations.Gac1Gopt5(A11E1)1(A1
12B11E112E2). Among optical phonons, theA1 andE1
modes are both Raman and IR active, theE2 modes are only
Raman active, and theB1 modes are silent.27 There are six
optical modes@1A1(TO)11A1(LO)11E1(TO)11E1(LO)
12E2# active in the first-order Raman scattering. T
G-point phonon frequencies are well studied both for G
and AlN.28–31

Figures 1 and 2 show the behavior of phonon branc
throughout the Brillouin zone and the one-phonon density
states functions~DOS! for GaN and AlN crystals, which we
calculated earlier by using a phenomenological model ba
on short-range interatomic potentials and rigid-ion Coulo
interactions.31 The calculated DOS function is in a goo
agreement with recent results of neutron experiments
GaN and AlN, and the dispersion relations are consist
with ab initio lattice-dynamics calculations.32,33 It is evident
from Figs. 1 and 2 that GaN has a large phonon gap~be-
tween 330 and 530 cm21), whereas AlN has a rather narro
gap ~between 550 and 600 cm21). Note that the calculated
dispersion curves for optical phonons of AlN have minim
for some points in the Brillouin zone. Their energies a
lower than the energy of the optical phonon of theA1(TO)
symmetry at theG point.
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B. A1„TO… phonon mode behavior in AlxGa1ÀxN alloys

Earlier only AlxGa12xN layers grown on sapphire wer
studied. However, the Raman spectra of sapphire and s
compositions of AlxGa12xN alloys have lines at close fre
quencies, which creates difficulties in identifying the phon
positions in AlxGa12xN. In our study the AlxGa12xN alloys
were grown not only on sapphire, but also on Si substra
In contrast to sapphire, silicon does not exhibit any stro
Raman lines coinciding with the AlxGa12xN phonon modes.
This provides the basis for a more reliable identification
frequency positions of phonon modes in AlxGa12xN.

According to the x-ray data, all samples were sing
crystal layers of the hexagonal modification without a
polycrystalline inclusions or phase separation. Figure
shows x-ray diffractograms obtained for different alloy co
positions. The double-peak structure shown in the diffrac
grams for the~0004! reflex is due to theKa1 andKa2 lines
of Cu. The well-defined double-peak structure for
samples in the compositional range 0,x,1 points to a good
structural perfection. It should be emphasized that the
fraction curves are symmetrical for all samples, which
evidence of the absence of macrogradients~such as nonuni-
form distribution of defects and impurities in the samples!.

On the whole, the measured first-order polarized Ram
spectra were found to be consistent with selection rules

FIG. 1. Calculated phonon-dispersion curves and phonon D
for bulk GaN.

FIG. 2. Calculated phonon-dispersion curves and phonon D
for bulk AlN.
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the wurtzite structure in the entire compositional range
,x,1. At the same time, we found that the general patt
of the mode behavior for the Al-rich compositional range
much more complicated.

Here we consider in detail the behavior ofA1(TO) pho-
non mode in AlxGa12xN solid solutions. We have found tha
this mode manifests itself in the Ga-rich compositional ran
as a single line which experiences a high-frequency s
with increasing Al content, and whose width remains nea
the same in a wide compositional range 0<x,0.4, consis-
tent with other works.16,19 At high Al contents, this line ex-
hibits an asymmetric broadening toward higher frequenc
the low-frequency edge remaining as sharp as before. In
dition, at the high-frequency edge of this band two featu
appear. They change their positions and shapes as the
position of the solid solution is varied. Careful analysis h
shown that these features are inherent in the polarized s
trum corresponding to theA1(TO) phonon; they are not du
to the interference from other polarizations. To illustrate th
Fig. 4 shows polarized Raman spectra in a frequency ra
corresponding to phonons ofA1(TO), E1(TO), and
E2(high) symmetries for pure AlN, and two compositions
Al xGa12xN with x50.92 andx50.78.

Figure 5 depicts the transformation of the Raman sp
trum in the compositional range 0.6,x<1. It is clearly seen
that the intensity of the most high-frequency feature in
spectrum~circles! grows with increasing Al content, while
the low-frequency peak~triangles! becomes less intense. I
the limit of very high Al concentrations the low-frequenc
peak is a weak feature, with a maximum at 595 cm21. With
increasing Al content the high-frequency feature becom
narrower, shifts toward lower frequencies, and in the lim
tends toward the position typical of theA1(TO) phonon in
AlN. For pure AlN, only a single line corresponding to th
A1(TO) phonon at 611 cm21 is detected in the spectrum
Concerning the third feature~diamonds! occupying the posi-
tion between the features discussed above, it seems th

S

S

FIG. 3. High-resolution x-ray-diffraction spectra for AlxGa12xN
alloys with different Al contents@x50.08 ~1!, 0.14 ~2!, 0.28 ~3!,
0.40 ~4!, 0.54 ~5!, 0.65 ~6!, 0.74 ~7!, 0.87 ~8!, and 0.97~9!#.
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relative intensity has a weak dependence on Al con
within the compositional interval 0.87,x,1, where all
three lines are well resolved.

Figure 6 shows positions of the maxima detected in
scattering configuration corresponding to the phonon m
of the A1(TO) symmetry as a function of Al content. Th
spectrum transformation described above can be unders
if we assume that the two lines with the opposite dep
dences of intensities on the Al content are GaN-like a
AlN-like phonon modes ofA1(TO) symmetry. This conclu-
sion is consistent with the theoretical predictions of the tw
mode behavior of theA1(TO) phonon given in Ref. 13.

As evidenced by our polarization measurements, the b
observed between the GaN- and AlN-like phonon mo
cannot be interpreted as resulting from modes belongin
other symmetries. The phase-separation tendency shou
ruled out as well, according to the x-ray data. In our opinio
this band can be attributed to the manifestation of the pho
DOS associated with an extrema whose energy is lower
that of theG-point A1(TO) phonon.

Phonons with arbitrary wave vectors can be active in fi
order Raman scattering if electron states are affected
composition fluctuations in the solid solution or by impu
ties introduced into the crystal.34–36In this case an additiona
mechanism of the first-order Raman process appears.
characterized by a violation of wave vector conservation
due to scattering or localization of intermediate excit

FIG. 4. Room-temperature-polarized Raman spectra for
compositions of AlxGa12xN: x50.78 ~a!, x50.92 ~b!, and pure
AlN ~c! in the frequency range corresponding to phonons
A1(TO), E1(TO), andE2(high) symmetry. In Porto’s notation th
z direction is along thec axis of the wurtzite structure, andx andy
are mutually orthogonal and lie in the plane normal to thez direc-
tion.
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states by fluctuation potential. As a result, the Raman sp
trum reproduces the density of states of a phonon bra
rather than its spectral DOS~i.e., phonons from theG point!.

The calculated spectrum of phonon branches through
the Brillouin zone for AlN~Fig. 2! shows that an appropriat
minimum of the dispersion curve is situated at theH point.
In this case the spectral peak observed between two mod
theA1(TO) symmetry can be regarded as a manifestation
the DOS in the region of the lower edge of this branch due
the influence of heavy Ga atoms. This effect is bound to t
place if the perturbation of the vibrational spectrum due
substitution is strong enough, and can be accompanied
splitting off of the gap mode.37

It is interesting to note that the Raman spectrum in
region of theA1(TO) phonon in AlxGa12xN is much more
composition sensitive for low and intermediate Ga conc
trations than for low and intermediate Al concentration
This fact shows that the perturbation of phonon states n
the lower border of theA1(TO) branch, produced by subst
tution of a heavier Ga atom, is stronger than the perturba
by the lighter Al atom near the same border at low Al co
centrations. There are two general factors which regulate
scale of perturbation at substitution. These are the magni
and sign of the perturbation amplitude. The sign of the p
turbation amplitude below the bottom of the optical bran
due to the substitution of a heavier atom can be character
as ‘‘attractive.’’ It always leads to an enhancement of t
DOS near the border, and can cause a splitting off of the
phonon state from the band bottom if the perturbation

o

f

FIG. 5. Raman spectra at 100 K in the scattering configura
corresponding to theA1(TO) phonon for AlxGa12xN with different
Al contents 0.6<x<1. The spectra are normalized in such a ma
ner ~except the spectrum for pure AlN! that their integral intensities
are equal.
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stronger than the critical value, i.e., the value of the sin
site perturbation which leads to the splitting off of the gap
localized state with the zeroth localization energy.

At a large Ga concentration the Al atoms play the ma
role in the scattering of phonons. The lighter atom near
same band border produces a perturbation which has a
pulsive’’ character, and gives rise only to a scattering
phonons and to a decrease in the DOS in this region. A
rule, the perturbation of the phonon motion by a given s
stitution has opposite signs at opposite borders of a gi
optical branch.

Single-site fluctuations in solid solutions produce
phonon-scattering cross section which is proportional to
productx(12x). However, this cross section is symmetric
in x and (12x) only in the first Born approximation, which
is not appropriate for a large attractive perturbation. Even
coherent potential approximation shows a detectable as
metry of the composition dependence of the phon
scattering characteristics.37 This becomes even more pro
nounced if there is a scattering of phonons on clusters
substituted atoms with an attractive sign of interaction. T
number and the spatial size of fluctuations have the opti
magnitudes in the region of ‘‘percolation concentration’’
the atoms with the attractive sign of the scattering amplitu

In case of theA1(TO) branch in AlxGa12xN solid solu-
tions, the maximal effects of both the phonon scattering
localization occur in the region of (12x)'0.15–0.25. This
range corresponds well to the value of percolation conc
tration for the fcc lattice, (12x)50.2, which has the sam
coordination number as the real cation sublattice of the s
solution.

Estimates of the intensity of the low-frequency GaN-li
peak ~Fig. 5! have shown that it increases approximate
proportionally to the Ga content below (12x)50.2. This

FIG. 6. Frequencies of phonon modes in the scattering confi
ration corresponding to theA1(TO) phonon for AlxGa12xN as a
function of Al content. Triangles show the positions of the Ga
like A1(TO) mode, circles indicate the positions of the AlN-lik
A1(TO) mode, and diamonds show the positions of the enhan
phonon DOS. The solid line corresponds to a fitting with equat
vA1(TO)5532.5158x155x2.
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fact suggests that this feature of the spectrum can be
garded as the DOS of the gap mode split off from the bott
of the A1(TO) phonon branch due to the substitution of G
for Al. In the next sections the gap mode problem is cons
ered theoretically, and results of numerical calculations
described.

IV. THEORETICAL CONSIDERATION

For convenience, in this section we introduce a notat
for the variable concentration of the solid solution comp
nents, namely, we denote the concentration of Ga—an ac
component of the disordered system—byc instead of (1
2x), and that of Al by (12c) instead ofx. We restrict our
consideration toc<0.2, supposing that the disorder of th
perturbed sublattice can be described in terms of the fcc s
lattice. The valuec50.2 coincides with high accuracy with
the critical concentration over the fcc sublattice sites, a
below this value the substitution atoms can form only clu
ters of finite size. We also admit that the distribution of t
substitution atoms over sublattice sites is close to the rand
one.

Below we consider the general aspects of a calculation
a disordered system spectrum in the region of localized
gap states within the framework of the simple lattice Ham
tonian. The numerical calculations of the band shape of
gap states and a composition dependence of their inte
density will be performed using a continuum Hamiltonia
based on the Taylor series expansion of the phonon
quency in the wave-vector space near the Van Hove sin
larity. The obtained results will be used to illustrate expe
mental data.

A. Model Hamiltonian and the density of states of a
disordered crystal

Let us consider a crystal consisting ofN elementary cells
with r atoms in each of them. We assume thatcN lattice sites
of one of sublattices are randomly filled with two sorts
atomsA and B. The average number of atomsA and B is
NA5cN and NB5(12c)N, respectively. Following Refs
4–6, the Hamiltonian that describes the vibration motion
the system in the harmonic approximation can be given

H5(
lka

pa
2~ l ,k!

2Mlk
1

1

2 (
lka

(
l 8k8b

fab~ lk; l 8k8!ua~ lk !ub~ l 8k8!.

~1!

Here ua( lk)5ua( lk,t) is the projection of the time-
dependent displacement of atomk in the elementary celll on
thea axis;pa( l ,k)5Mlku̇a( lk) is the corresponding projec
tion of the momentum of the atom;Mlk is its mass; and
fab( lk; l 8k8) is the matrix of atomic force constants. Th
equation of motion which defines the spectrum of the vib
tional modes is

(
l 8k8b

@Mlkv2d l l 8dkk8dab2fab~ lk; l 8k8!#ub~ l 8k8!50 .

~2!

In the limiting cases atc50 or c51, Eq.~1! presents the
Hamiltonian of the regular crystal with atomsB or A in the

u-

-

d
n
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corresponding sublattice. In this case allMlk’s arel indepen-
dent and equal to eitherMB or MA , and fab( lk; l 8k8)
5fab

0 ( lk; l 8k8) are the force constants for one of the pu
crystals. Using the plane-wave representation for the ato
displacements,

ua~ lk,t !5
1

N1/2 (
q, j

S \

2Mkv j~q! D
1/2

wa~kuqj !

3exp@ i tv j~q!1 iqx~ lk !#, ~3!

where summing is performed over the values of the w
vectorq within the first Brillouin zone, andj is running over
all modes of the vibrational spectrum of the lattice, we obt
the eigenfunctionswa(k,q, j ) of the equation of motion

(
k8b

Dab~kk8;q!wb~k8uqj !5v j~q!2wa~k,q, j !, ~4!

where the matrixDab(kk8;q) has rank 3r and is the Fourier
transform of the dynamical matrixDab( lk; l 8k8) of the crys-
tal

Dab~kk8;q!5(
l ,l 8

Dab~ lk; l 8k8!exp$ iq@x~ lk !Àx~ l 8k8!#%

5
1

~MkMk8!
1/2 (

l ,l 8
fab

0 ~ lk; l 8k8!

3exp$ iq@x~ lk !Àx~ l 8k8!#%. ~5!

Using the matrix notation, the equation of motion~2! for a
pure crystal can be written as

Lu50, ~6!

where the matrixL is defined by

Lab~ lk,l 8k8!5Mkv
2d l l 8dkk8dab2fab

0 ~ lk; l 8k8!. ~7!

We express the Green’s functionG ab
0 ( lk,l 8k8;v) of the

pure crystalA or B which is a reciprocal matrix ofL with the
help of eigenfunctionswa(k,q, j ),

G ab
0 ~ lk,l 8k8;v!5

1

~MkMk8!
1/2

Gab
0 ~ lk,l 8k8;v!, ~8!

where

Gab
0 ~ lk,l 8k8;v!5

1

N (
qj

wa~kuq, j !wb* ~k8uq, j !

v22v j
2~q!2 i0

3eiq[x( lk)Àx( l 8k8)] . ~9!

According to Ref. 4, the imaginary part of the diagonal m
trix element ofGab

0 ( lk,l 8k8;v) is related to the vibrationa
spectrum density of the crystal by
ic

e

n

-

r0~v!5
2v

p (
ak

Im Gaa
0 ~ lk,lk;v!5

2v

N (
q, j

d@v22v j
2~q!#

5
v

pN (
q, j

E
2`

`

e$2 iy [v22v j
2(q)] %dy, ~10!

where the normalization ofwa(kuq, j ) is taken into account.
The last expression can be rewritten as

r0~v!5
v

pN (
q, j

E
2`

`

e$2 iy [v2I2D] qj ;qj %dy, ~11!

where

@v2I2D#qj ;qj5 (
ak,bk8

wa~kuq, j !@v2dkk8dab

2Dab~kk8;q!#wb* ~k8uq, j !. ~12!

For a crystal with substitution defects the equation
motion3–8 can be written as

@L2dL #u50, ~13!

where matrixdL is

dLab~ lk; l 8k8!5~Mk2Mlk!v2d l l 8dkk8dab

2@fab
0 ~ lk; l 8k8!2fab~ lk; l 8k8!#.

~14!

The first term of the right-hand side of Eq.~14! presents
perturbation by ‘‘the mass defect,’’ while the second te
describes perturbation due to the difference in the force c
stants. Equation~13! can be transformed into

@v2I2D2dV#v50, ~15!

where

dVab~ lk; l 8k8!5Mk
21/2dLab~ lk; l 8k8!Mk8

21/2. ~16!

The DOS of a disordered crystal can be given by

r~v!5
v

pN (
L

E
2`

`

e$2 iy [v2I2D2dV] L;L%dy. ~17!

Here quantum numbersL enumerate the vibrational mode
of the disordered crystal, and the matrix element

@v2I2D2dV#L;L5 (
a lk,b l 8k8

va~ lkuL!@v2d l l 8dkk8dab

2Dab~ lk; l 8k8!2dVab~ lk; l 8k8!#

3vb* ~ l 8k8uL! ~18!

is an analog of the corresponding matrix element in Eq.~12!.
In this case it is defined with the help of eigenvectors o
defect crystalva( lkuL).

The equation

@ I2G0dV#v50 ~19!



th

ba
c

ra
rs
an

tti

ge

br
at
e
s
th

rt
th

li
he
th

o
t
a
ca
is
th

o-
ite
oy

a

in
ng

i
i

ut

d
,
vi-
ied
e,

ry.
lue

the
of

ger
ap-
be
im-
kes

ter,
ite
the
ses

us-
for
lat-

ra-

und
the
or-

n
m-

rder

at
er-
ur-

2528 PRB 62A. A. KLOCHIKHIN et al.
gives the frequencies and eigenvectors of the vibrations
are disturbed by the substitution. HereG0 is a reciprocal
matrix of @v2I2D#, and is defined by Eq.~9!.

B. Localized states of disordered crystals

In considering the disorder effect due to mass pertur
tion, we can simplify our calculations of the vibrational spe
trum by separating the perturbationdL into two parts

dL5^dL &1@dL2^dL &#5^dL &1dLFL. ~20!

Here ^•••& denotes averaging over all possible configu
tions of the substitution atoms in their sublattice. The fi
term of Eq.~20! has the symmetry of an ideal lattice, and c
be included into the matrixL of Eq. ~7!. This leads to the
replacement of the atomic mass of the perturbed subla
by its averagedl-independent value

Mk̄5cMA1~12c!MB . ~21!

As a result, we obtain the equation of motion in the avera
crystal approximation:

@v2I2D̄#e50. ~22!

The averaging procedure restores the lattice symmetry
ken by the substitution and, as a consequence, the equ
of motion can be solved by the methods used for an id
crystal. This equation leads to the spectrum of the solid
lution which is an interpolation between the spectra of
pure crystals containing atomsA andB.

The second term of Eq.~20! describes the fluctuation pa
of the perturbation. It is responsible for the scattering of
phonons obtained as a solution of Eq.~22! and, if the
fluctuation-induced perturbation is strong enough, for a sp
ting off of the localized modes from the boundaries of t
phonon bands. This aspect of the fluctuation effect is
subject of our consideration.

We consider the problem of a calculation of the density
localized states induced by fluctuations for the case when
number of fluctuations which are able to split off from
localized state remains small enough, and the resulting lo
ized states can be treated in the zero approximation as
lated from each other. This situation can be reached in
limit of relatively low concentrations of the active comp
nent of a solid solution. The mathematically accurate cr
rion for this condition can be formulated for a random all
by using the lattice percolation theory. Let us consider, as
example, a single-site perturbation. In the limitc→0 the
alloy will mainly contain single defect atoms. Therefore,
this limit the problem is whether the perturbation is stro
enough to split off the localized or gap state. This problem
closely related to the local perturbation problem solved
Ref. 38 for electrons, and in Refs. 3–6 for phonons~also see
Refs. 7 and 8, and references therein!.

If the averaged interatomic distances between substit
atomsA exceed the radius of the bound state appearing
each of the lattice sites occupied by atomsA, Eq. ~19! re-
duces, with the accuracy up to the terms of the order ofc2, to
the Koster-Slater-Lifshitz equation~see Refs. 3,5–8 and 38!,
which in our notation takes the form
at
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@ I2Gav~v!dVFL#v50, ~23!

where

Gav~v!5@v2I2D̄#21, ~24!

The perturbationdVFL is now embedded in the average
crystal described by Eq.~22!. For a single-site perturbation
the localized or gap state splits off the boundary of the
bration band if the perturbation in the lattice sites occup
by atomsA is large as compared with its critical magnitud
i.e.,

dVFL.@Gav~vB!#21, ~25!

wherevB is the frequency of the vibrational band bounda
The critical value is defined here through the reciprocal va
of the single site Green’s functionG[aa l lkk]

av (vB). Below we
will find the critical condition for an arbitrary defect. If a
localized state arises, the density of states is defined by
number of impurity atoms with an accuracy of the order
c2. As c increases, clusters consisting of two and a lar
number of atoms of the solid solution active component
pear in the corresponding sublattice. The fluctuations will
represented by clusters consisting of a finite number of
purity atoms in the sublattice where the substitution ta
place, until the critical concentrationpc is reached. Above
the critical concentration, the so-called percolation clus
which is extended over the whole crystal, evolves. The fin
clusters above the critical concentration are placed within
holes of the percolation cluster, and their number decrea
rapidly with a further increase in the concentration. The cl
ters of the site percolation problem are most important
the mass defect. The critical concentration for the fcc sub
tice is about 20% and, therefore, atc,0.2 only clusters of
finite size are responsible for the transformation of the vib
tional spectrum of the solid solution.

The density of states of disordered systems can be fo
through the averaging procedure, i.e., by summing over
DOS corresponding to all possible realizations of the dis
der with the weight multipliersPD which are equal to the
probability that a given variant of the random distributio
occurs. Taking into account all of the possible quantum nu
bersL, we obtain

r~v!5
v

pN (
L

E
2`

`

(
D

PD(
L

dyL

3exp$2 iyL@v2I2D̄2dVFL#LL%. ~26!

Performing the integration overyL , we transformr(v) into

r~v!52v(
D

PD(
L

d~v22vDL
2 !. ~27!

Here we denote eigenvalues at a given realization of diso
by vDL

2 .

C. Isolated cluster approximation at cËpc , sum rule

Here we consider the problem in the limitc,pc when
atomsA form only clusters of finite size. Let us assume th
the cluster wave functions of the localized states do not ov
lap in the zero approximation, and treat the medium s
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rounding the cluster in the averaged crystal approximat
The composition fluctuations outside the cluster will be co
sidered later.

The equation of motion for a cluster can be presented
this approximation as

$I1gav~v!dVFL%v50, ~28!

wheregav(v) is the fragment of the Green’s-function matr
restricted by the region of the clusterCst,k consisting ofs
atomsA and t perimeter atomsB. Here indexk enumerates
different spatial configurations of the cluster.

Using the approach developed in the theory of latt
dynamics,5,6 we find the eigenfunctions and eigenvalues
the matrix

@gav~v!dVFL#, ~29!

the rank of which is equal to the size of the cluster cons
ered,

(
b l 8k8PCst,k

@gav~v!dV#ab lkl 8k8Fb l 8k8
s

~v!5ls~v!Fa lk
s ~v!,

~30!

where summing is performed over the region occupied
the cluster. The eigenfunctions form the complete orthon
mal set of vectors obeying5,6,39

(
s

Fb l 8k8
s Fa lk

s ~v!5d l l 8dkk8dab . ~31!

With the help of these eigenfunction and eigenvalues,
matrix $I1gav(v)dV%21 can be presented as

$I1gav~v!D%ab lkl 8k8
21

5(
s

Fa lk
s ~v!Fb l 8k8

s
~v!

12ls~v!
. ~32!

The localized state will split off if at least for one of th
s ’s there exists a valuev5v loc.0 for which the equality

ls~v loc!51 ~33!

is fulfilled. As a rule, the nodeless state splits off first, a
this state has the largest localization energy and is most
portant for the optical properties of a system. The eigenv
tors of the localized states can be given by

vs5Gav~v!Fs~v!uFsG8av~v!Fsu21/2, ~34!

where

G8av~v!5
]

]v Gav~v!.

The probability of realization of a cluster containings
atomsA and having a perimeter composed oft atomsB is

gstc
s~12c! t, ~35!

wheregst is the number of different space configurations
the clusters with equal numbers of atomsA and B. Taking
into account the nodeless bound states only, for the den
of states we can write
n.
-

in

e
f

-

y
r-

e

-
c-

f

ity

r~v!5
v

pN (
s

(
k51

gst

cs~12c! td@v22~v loc
st,k!2#. ~36!

The integrated DOS per elementary cell can be written a

N~0!5E
0

VL
r~v!dv5(

st,k
gstc

s~12c! t5(
s

ns~c!;

~37!

hereVL is the Lifshitz border for the given vibrational ban
which coincides with the band boundary of the pure crys
containing atomsA in the corresponding sublattice. Th
right-hand side of Eq.~37! coincides with the total number o
clusters per sublattice site.

Sums similar to Eq.~37! are determined with sufficien
accuracy by their lower limit, i.e., by their first few terms
any concentration. If a few first values ofns(c) are known
for different lattices, Eq.~37! can be used to estimate th
number of states split off from the band edge. The calcula
nine ns(c)’s for the fcc lattice are given in Ref. 24; the firs
four numbers are

n1~c!5c~12c!12,

n2~c!56c2~12c!18,

n3~c!5c3@8~12c!22112~12c!23130~12c!24#,

n4~c!5c4@2~12c!24127~12c!26148~12c!27

196~12c!281144~12c!291158~12c!30#.

Further useful information can be obtained if the depe
dence of the localization energy on the number of atomsA in
a cluster is known, at least approximately. This allows us
estimate the energy dependence of the integrated DO
well as of the DOS itself.

The maximum number of the localized states which c
split off the cluster containings attractive centers is equal t
s. The mean numbers of clustersns(c) of sizes are normal-
ized according to

NA5N(
s51

`

ns~c!s, ~38!

whereN is the number of sublattice sites, andNA is the mean
number of atoms A per unit volume. This equation defin
the upper limit of the number of localized states. This situ
tion can be described as a case of separated bands at all
concentrations of atomsA.

D. Effect of fluctuations on localized states of clusters

1. Fluctuations of the surrounding medium

In the previous consideration we supposed that the
dium surrounding the clusters can be approximated by a
tual crystal. In order to estimate the role of the composit
fluctuations outside the cluster we will substitute the o
tained solution into Eq.~26!, and find the first correction to
the DOS due to fluctuations. As a result, we have



a
he
he

tic

ex

ice
e

we

ver
the

an

ge
thout

or

.

ers
tion

he

ap-
not
um
nt
e

ed
en

om-
to

ter
al to
ent

2530 PRB 62A. A. KLOCHIKHIN et al.
r~v!5
v

pNE2`

`

dy(
s

(
k51

gst

cs~12c! texp$2 iy@v2

2~v loc
st,k!2#%^exp$2 iy~vst,kdVFLvst,k!%&, ~39!

where^•••& represents the averaging over all possible re
izations of the lattice site filling except a given cluster. T
matrix dVFL for the mass defect for the lattice sites of t
perturbed sublattice occupied by atomsA and B can be ex-
pressed as

dVab l l 8kk8
FL

5H Fv2
~12c!«

~11c«!Gdabd l l 8dkk8

2Fv2
c«

~11c«!Gdabd l l 8dkk8 ,

~40!

where

«5
MA2MB

MB
.

For a random distribution, each of the perturbed sublat
sites is occupied by atomA or B with probability c or (1
2c), respectively. Taking into account that the averaged
ponent is split into a product of exponents, and that each
the multipliers can be averaged independently, we obtain

^exp$2 iy~vst,kdVFLvst,k!%&

5 )
lk{Cst,k

N H c expS 2 iv2
~12c!«

~11c«!
uvlk

st,ku2yD
1~12c!expS iv2

c«

~11c«!
uvlk

st,ku2yD J . ~41!

Here l and k take their values on the perturbed sublatt
outside the clusterCst,k . The averaged expression for th
DOS can then be written as

r~v!5
v

pNE2`

`

dy(
s

(
k51

gst

cs~12c! t

3expH 2 iy@v22~v loc
st,k!2#1 (

lk{Cst,k

ln@Rlk~y!#J ,

~42!

where

Rlk~y!5H c expS 2 iv2
~12c!«

~11c«!
uvlk

st,ku2yD
1~12c!expS iv2

c«

~11c«!
uvlk

st,ku2yD J .

~43!

Restricting to the first nonzero cumulant, for the DOS
have
l-

e

-
of

r~v!5
v

pNE2`

`

dy(
s

(
k51

gst

cs~12c! t

3exp$2 iy@v22~v loc
st,k!2#2gst,k

2 y2/2%, ~44!

where

gst,k
2 5 (

lk{Cst,k

v4
c~12c!«2

~11c«!2
@ uvlk

st,ku2#2, ~45!

The summing in the last expression has to be performed o
sublattice sites outside a given cluster. After calculating
integral overy, we have

r~v!5(
s

(
k51

gst

cs~12c! t
1

A2pgst,k
2

3exp$2@v22~v loc
st,k!2#2/~2gst,k

2 !%. ~46!

The obtained expression differs from Eq.~36! because the
localization energy in the last equation is defined with
accuracygst,k . If the localization energy andgst,k are com-
parable, the number of states split off from the band ed
decreases due to fluctuations as compared to the case wi
fluctuations, and now

N~0!5E
0

VL
r~v!dv<(

s
ns~c!. ~47!

This means that fluctuations partially destroy the localized
gap states.

2. Fluctuations of the cluster’s shape

Clusters of a large sizes have a number of
configurations40 which increases exponentially with size
The variation of cluster shapes for a givens is accompanied
by a change in their perimetert. For equals, the compact
clusters have a minimal perimeter, while quasilinear clust
are characterized by the largest perimeters. The distribu
of clusters over their perimeters for a givens have, with a
high accuracy, a Gaussian form,40 and can be given by

gst;expF2
~ t2tmax

s !2

2~dt !2 G . ~48!

Here tmax
s is the value of the perimeter corresponding to t

distribution maximum for a givens, and (dt) is the distribu-
tion dispersion.

The complicated shapes of large clusters lead to the
pearance of localized state whose wave functions do
spread over the whole cluster due to the quant
interference.41 The localization energy is strongly depende
on the size of the cluster or its part if only a part of th
cluster plays an active role in formation of the localiz
state. Therefore, the deepest localization energy for a givs
must correspond to the compact clusters\vcomp

s where no
interference effects are possible, while the clusters of a c
plicated shape will have a set of localization energies due
the quantum interference. The minimal size of the clus
fragment that can be separated by the interference is equ
a single atom, and the localization energy of such a fragm
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in this conditions corresponds approximately to the locali
tion energy of the cluster withs51.41 As a result, the cluste
shape fluctuations should lead to a considerable dispersio
the localization energies at a fixeds:

\v loc
s51<\v loc

s <\vcomp
s . ~49!

The consequence that follows from Eqs.~48! and~49! is that
the density of localized statesrs(v loc

s ) of the cluster with a
given s can be presented in a Gaussian form with a ma
mum near the localization energy\v loc

s (tmax
s ) corresponding

to the most frequently occurring clusters,

rs~v loc
s !;expF2

@v loc
s 2v loc

s ~ tmax
s !#2

2~dv loc
s !2 G , ~50!

which is broadened by a dispersion of the localization ene
dv loc

s . Both the position of the maximum and the dispersi
are restricted from above by the value ofvcomp

s

v loc
s51,v loc

s ~ tmax
s !,vcomp

s , dv loc
s ,vcomp

s . ~51!

Our estimation of fluctuations of the cluster shapes and t
effect on the density of localized or gap states for the la
size clusters shows that localized states of large clusters
form a rather structureless background, while the band sh
of the DOS is formed mainly by states of clusters of sm
and intermediate sizes.

For the clusters of small and intermediate size the role
fluctuations can be approximately estimated by extending
summing region in Eq.~45! over the region of the cluste
itself,

gst,k
2 5(

lk
v4

c~12c!«2

~11c«!2
@ uvlk

st,ku2#2, ~52!

where composition fluctuations within the cluster are us
instead of fluctuations of the cluster shape, because
kinds of fluctuations are characterized by the same varia
in the perturbation energy. The obtained results provide
possibility to simulate the DOS of localized or gap states
a wide range of perturbation energies.

E. Continuum approach to the problem near the Van Hove
critical points

This part of the paper is based on the results obtained
the electron spectrum of disordered systems in the regio
localized states with the help of the so-called ‘‘effectiv
mass’’ approximation,42–44which can be introduced near th
Van Hove critical points, first of all, above the maximum
below the minimum of the band in the band gap. There is
analogy in the behavior of electron and phonon band dis
sions for ideal crystals, and the Taylor series expansion
the phonon branch curve has the same features inq space as
the electron one~see Ref. 4, and references therein!. The
other characteristic of the approach is the use of the ana
between Mott’s model45 for a potential well or a barrier a
the isoelectron substitution, and the perturbation of the vib
tional motion by the mass defect.
-
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1. Fourier representation of the equation of motion

We denote the eigenvalues of Eq.~22! asv j (c,q), where
the dependence on the composition of the solid solutionc is
due to the averaged part of the perturbation^dL &. Using the
eigenvectors of Eq.~22!, ea(kuqj ), as a basis for the repre
sentation of the wave function of the localized or gap st
we take the solution of the equation in the for
( jea(kuqj )fL( l j ), and obtain

@v2I2D̄2dVFL#efL~ l j !50, ~53!

wherefL( l j ) is the enveloping wave function, andl runs
over the perturbed sublattice sites. By multiplying the le
hand side of Eq.~53! by e, we obtain

{ v22v j
2(c,q)%fL~qj !2(

q8j 8
~edVFLe!qq8 j j 8fL~q8 j 8!50.

~54!

Here fL(qj ) is the Fourier transform of the wave func
tion, and

~edVFLe!qq8 j j 85 (
ab l l 8kk8

ea~kuqj !dVab
FL

3~ lk; l 8k8!eb* ~k8uq8 j 8!ei [qx( lk)2q8x( l 8k8)] .

~55!

For a single-site mass defect,

~edVFLe!qq8 j j 85(
a

ea~kuqj !

3Fv2«
~12c!

~11c«!Gea* ~kuq8 j 8!ei [q2q8‡ x( lk).

~56!

The perturbation matrix contains both diagonal and o
diagonal elements with respect to indicesj and j 8 even for a
mass defect and, as a result, in the general case leads t
system of 3r equations of the type of Eq.~54!.

2. Taylor series expansion near the Van Hove critical point

We consider Eq.~54! in the energy region just below th
lowest Van Hove critical point of thej optical bands
v j (c,qcr) assuming that the localization energy is consid
ably lower thanv j (c,qcr). By performing the Taylor series
expansion ofv j

2(c,qcr) up to the first nonzero term and pre
serving only the diagonal matrix element of the perturbati
we obtain the simplified expression

Fv22v j
2~c,qcr!2

1

2
@¹q

2v j
2~c,qcr!#~q2qcr!

2GfL~qj !

2(
q8

~edVFLe!qq8 j j fL~q8 j !50. ~57!

Here
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~edVFLe!qq8 j j 5 (
ab l l 8kk8

ea~kuqcr j !dVab
FL

3~ lk; l 8k8!eb* ~k8uqcr j !e
i [qx( lk)2q8x( l 8k8)] .

~58!

we used only the diagonal matrix element of the perturba
(edVFLe)qq8 j j , and the solution of Eq.~22!, ea(kuqcr j ), at
the critical pointqcr . The amplitude of the perturbation fo
the cluster sites occupied by atomsA andB is defined now as

dVqq8 j j
FL

5H Fv j
2(c,qcr)

(12c)«

(11c«)G ue(kuqcr j u2

2Fv j
2(c,qcr)

c«

(11c«)G ue(kuqcr j u2
~59!

Taking into account the normalization of eigenvectors

(
k

ue~kuqj u251, ~60!

we see that the corresponding multiplier in Eq.~59!
ue(kuqcr j u2, is less than unity, and for the wurtzite lattic
with four atoms in the elementary cell it can be estimated
'1/4. Therefore, this estimation, together with Eq.~59!,
gives the order of magnitude of the perturbation due to s
stitution.

The other estimation of the value of the perturbation
the mass defect near the critical point considered can be
formed by using Eq.~22!, which gives forq5qcr at c50
andc51 the values ofv j (B,qcr) andv j (A,qcr) for the pure
crystalsBC andAC, respectively. Then, taking into accou
Eq. ~21!, for the composition shift of the critical point in th
linear approximation we have

Dv j
2~cqcr!5@v j

2~A,qcr!2v j
2~B,qcr!#c, ~61!

while for the fluctuation part of perturbation we obtain, i
stead of Eq.~55!, the following fluctuation ‘‘potential’’ am-
plitude

^dVFL&kku j , j5H ~12c!@v j
2~A,qcr!2v j

2~B,qcr!#

2c@v j
2~A,qcr!2v j

2~B,qcr!#.
~62!

This estimation gives for the perturbation approximately
same value as the previous one.

We definev05V/N as the volume of a crystal per atom
a perturbed sublattice, assuming that there is a single ato
a given kind in the elementary cell. Then the first line of E
~62! gives the attractive part of the amplitude within th
volumesv0 for a given cluster, and the second line gives t
repulsive amplitude of the barrier of volume,tv0.

After the Fourier transformation of Eq.~57! into the con-
tinuum r space, we have

Fv22v j
2~c,qcr!2

1

2
@¹q

2v j
2~c,qcr!#¹ r

2GfL~r j !

2~edVFLe!kku j , j~r !fL~r j !50. ~63!

Here the last term of the equation is defined within the reg
occupied by a given cluster. Using the notation
n

s

-

r
er-

e

of
.

e

n

2v21v j
2~c,qcr!52v j~c,qcr!vL , Me f f

j 5
2\v j~c,qcr!

¹q
2v j

2~c,qcr!

~64!

and

Ue f f
j ~r !5

\

2v j~c,qcr!
~edVFLe! j j ~r !, ~65!

which for a mass defect has the form

Ue f f
j (r )5H \v j (c,qcr)(12c)«

2(11c«)
ue(kuqcr j )u2

2
\v j~c,qcr)c«

2(11c«)
ue(kuqcr j )u2,

~66!

where the first line corresponds to the region occupied by
attractive atoms and the second line describes the repu
barrier. We can write the equation of motion in the form o
Schrödinger equation:

H 2
\2

2Me f f
j

¹ r
21vL2Ue f f

j ~r !J wL~r j !50. ~67!

The cluster is described now by the potential well of volum
sv0 surrounded by the repulsive barrier having the volu
tv0. This fluctuation is embedded into the averaged mediu

In order to reconcile the lattice and continuum models,
define the critical value of the single site perturbation for t
mass defect as

Ecr5
p2

4

2\v j~c,qcr!

¹q
2v j

2~c,qcr!S 3

4p
v0D 2/3. ~68!

This is the critical value of the potential well depth for th
well of volumev0 in the averaged crystal, with a concentr
tion c of atomsA. The lattice and continuum versions of th
model will give approximately the same results if the re
tions between the perturbation amplitude and the criti
value of the perturbation have the same order of magnitu
Note that both Eqs.~25! and~64! define the critical values o
the perturbation without taking into account the repuls
barriers surrounding the clusters. The latter circumsta
leads to an increase in the critical value of the perturbati

The proposed model is, in its essence, the well-kno
Mott’s model for an isoelectron substitution. Our conside
ation allows us to use it for the mass defect near the V
Hove singularity.

The value of the effective potential energy for a clus
within the potential attractive well formed byA atoms and
within the repulsive barrier formed by atomsB can be de-
fined with the help of Eq.~40! for a cluster of any size. A
difficult problem is a great variety of cluster’s spatial co
figurations. We simplify our calculations by using spheric
potential wells whose volumes are equal to the volumes
corresponding clusters; to estimate barriers, we use the
ues of the parametert averaged over cluster configurations
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3. Results of calculations

The results of calculations which take into account cl
ters withs51, . . . ,9 arepresented in Figs. 7, 8, and 9. Fig
ures 7 and 8 show the densities of states for the gap s
calculated through Eq.~46!. It is seen that the experimenta
shape of the optical band coincides well with the calcula
DOS. The effective potential amplitude used in calculation

FIG. 7. The experimental Raman spectrum in the region of
gap mode forc50.08 ~squares!, calculated DOS of the split-off
states~solid line!, and number of clusters per atom of cation su
lattice for s51 –9 vs the localization energy of compact cluste
~full circles!.

FIG. 8. The experimental Raman spectrum in the region of
gap mode forc50.13~squares!, the calculated DOS of the split-of
states~solid line!, the DOS for broadenings equal to half of th
best-fit values~dashed curve!, and the number of clusters per ato
of cation sublattice fors51 –9 vs the localization energy of com
pact clusters~full circles!.
-

tes

d
n

both cases is equal to 32.5 cm21. This value is only about
half the estimated magnitude in Eqs.~59! and~62!. The ratio
of the effective potential amplitude to the critical value of t
potential was taken to be 1.55. The positions of the D
maxima vs(tmax̄) for clusters withs.3 were taken to be
vcomp

s /2. The most difficult problem is to find the acceptab
estimates for broadening of the cluster bands. There are
additional reasons for the broadening not mentioned ear
The first of these is that a real crystal has a lower symme
and, therefore, the clusters regarded as identical in the c
lattice become nonidentical in the wurtzite lattice with a co
responding change in the localization energy. This facto
of great importance for clusters with larges. The second
reason is equally important for all of the clusters, and it
due to the anharmonic interaction of the lattice vibratio
which leads to a homogeneous broadening of the locali
states. The large anharmonic broadening can completel
partially hide the inhomogeneous part of the band. The l
of reliable data on any structure of the gap bands make
impossible to establish unambiguously all of the parame
of the problem. We have used these values to fit the b
shape. To make the best-fit procedure more transparen
Fig. 7 we give the spectrum of the gap states for broaden
equal to the half of the broadenings in the final curve of t
figure. Under this condition the broadening of the first ma
mum, which is due to clusters withs51, coincides well with
the estimate from Eq.~52!, and we see the structure due
clusterss51 –3.

Figure 9 gives the composition dependence of the inte
intensity corresponding to the split-off states. We see that
satisfactory coincidence takes place in the region of conc
trations belowc<0.12–0.15. A deviation of the experimen
tal data from the calculated curves in the region 0.12–0
<c,0.2 can be partially due to a restriction on the size
clusters involved into calculations or due to the fact th
‘‘percolation’’ over the split-off cluster states can appear
the system. Under this condition the wave vector of the sta
above the percolation threshold, can be introduced, at l
approximately. In this case the Raman intensity due to
states formed by clusters will be proportional to the spec
DOS with nearly zero wave vector. The behavior of the

e

-

e

FIG. 9. The number of clusters per atom of cation sublattice
s51 –3~dashed line!, s51 –5~dotted line!, ands51 –9~solid line!
as a function of the composition of the solid solution, and the m
sured relative integral intensity of theA1(TO) gap mode for differ-
ent Ga concentrations~full circles!.
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tensity at c.0.2 demonstrates a relatively weak variati
with composition which is consistent with the behavior
the spectral DOS.

A comparison of the composition dependence of D
obtained for different numbers of clusters involved in calc
lations shows that the change in the curve is not consider
when the sum from Eq.~46! includes clusters withs.5.
This result is a consequence of a rapid convergence of
sum in Eq.~37! known in the percolation theory. It is pos
sible that inclusion of higher terms into calculations wou
lead to the occurrence of an almost horizontal region in
theoretical curve, which would improve the coincidence w
experimental data, at least in the narrow interval just be
the lattice percolation concentration.

V. SUMMARY REMARKS

Spectroscopic study of hexagonal AlxGa12xN alloys with
a Ga content (12x),0.3 has revealed a large broadening
Raman spectrum in the region of anA1(TO) optical branch
accompanied by the appearance of a complex structure o
spectrum. The broadening of phonon bands of a disorde
system occurs due to the violation of the wave-vector c
servation law for both electronic and phonon systems. T
manifestation of a phonon DOS in the region of the m
low-frequency vibrations of theA1(TO) optical branch can
be regarded as a result of the considerable difference
masses of heavier Ga atoms substituting for Al. The deta
analysis performed in this paper has revealed that, simu
neously with the enhancement of this spectral region, the
mode splits off at the band edge. This mode manifests it
as a relatively narrow peak at the low-energy edge of
A1(TO) band. The relative intensity of the gap mode
creases with increasing gallium content, and at Ga conc
trations above (12x)50.3–0.4 it transforms into the
A1(TO) mode of the GaN crystal. Thus, in a limited range
Ga content, the behavior of theA1(TO) phonon mode in
Al xGa12xN can be considered a two-mode behavior.

The composition interval where the largest inhomog
neous broadening is observed, (12x)'0.1–0.25, includes
the critical concentrations for the fcc sublattice both for p
colation over sublattice sites@(12x)'0.2# and percolation
over bonds@(12x)'0.12#.

Changes in the vibration spectrum have been descr
using a theoretical model based on the microscopical
proach. The experimental and theoretical dependences a
good agreement for the region (12x)<0.12–0.15. The ob-
a,
-
le

he

e

w

f
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d
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-
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tained results indicate that the formation of the gap ba
A1(TO) in the regions of low and intermediate concent
tions can be explained by statistical clusters of Ga for the
percolation problem in the cation sublattice of the solid s
lution.

The suggested approach allows one to subdivide the e
compositional range of the solid solution into two parts. T
first part is the region of very low Ga concentrations wh
only the isolated clusters of substituting atoms can exist. T
wave functions of clusters in this region do not overlap,
can form only small complexes of clusters. The second
gion can be characterized by a sufficiently high concen
tion of clusters with overlapping wave functions, which lea
to the formation of a ‘‘percolation’’ cluster extended over th
whole crystal. Percolation over the split-off cluster states c
arise in the system first in the region of the maximum dens
of these states. The critical concentration for the percola
can be considerably lower than the lattice critical concen
tion because of the large spatial extent of the cluster w
functions.

The obtained data seem to be insufficient to determ
unambiguously the value of this percolation concentrat
and the position of the percolation threshold on the ene
scale. The phonon states above the percolation threshold
move throughout the whole crystal, and can be characteri
at least approximately, by the wave vector. On the ot
hand, this means that the second mode in the vibratio
spectrum of the solid solution occurs. To study this probl
more thoroughly, experiments at He temperatures are nee
to decrease the anharmonic broadening of the spectral pe
Additional information can be obtained from luminescen
spectra of deep centers.

The suggested approach can be useful for a more accu
description of the two-mode crystals and can serve as a b
ground for using phenomenological methods in calculat
vibrational spectra of disordered solid solutions. Note a
that the two-mode-type behavior of theE1(TO) andE2(low)
phonons have been revealed in this study as well. The
havior of these phonon modes and also of other mode
Al-rich hexagonal AlxGa12xN will be described in detail in a
separate paper.
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