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Results of a comprehensive study of the behavior ofAh€rO) phonon mode in hexagonal &a, _,N
alloys in the entire compositional range are described. It has been found that the Raman spectrum of
AlL,Ga N, with a Ga content (% x) <0.3, exhibits a large broadening with a complex structure. We attribute
this structure to a manifestation of the phonon density of states in the region of vibrations of the optical
A1(TO) branch, and to the appearance of a gap mode in AIN. Both effects are due to the substitution of heavier
Ga atoms in the cation sublattice of AIN. A theoretical approach is suggested which describes changes in the
vibrational spectrum at a sufficiently strong perturbation resulting from isoelectron substitution. In the frame-
work of the developed model, the dependence of the intensity and band shape of the gap mode on Ga content
are calculated and compared with the experimental Raman data. The experimental and theoretical dependences
are shown to be in good agreement in the regior %1<0.12—-0.15. The obtained results indicate that the
formation of anA;(TO) gap mode in the regions of low and intermediate Ga contents is caused by statistical
Ga clusters in the cation sublattice of the solid solution. In a limited range of Ga contents, the behavior of the
A1(TO) phonon mode in AGa_,N can be considered as a two-mode behavior.

I. INTRODUCTION behavior two sets of optical modes are observed, each set
corresponding to one of two components of the alloy.

Wide-gap semiconductors GaN and AIN, and their solid The local and gap modes can be observed in the spectra of
solutions (ALGa; _,N), are known to be promising materials two-mode-type crystals when the content of one of the com-
for optical applications, especially for light emission in the ponents is much greater than that of the other. For the gap
blue and ultraviolet rangés’ Progress in the growth of ni- mode to occur, there must be a frequency gap between the
trides has stimulated basic research into these materialgcoustic and optic bands. It was noted in Refs. 10 and 11 that
However, compared to the considerable amount of researdh some cases a local mode can rise out of the top, and a gap
done on GaN, the alloy system /&a _,N has received mode can fall out of the bottom of the optical branch when
much less attention. To obtain a deeper insight into the tranghe top or bottom of the band takes place at an arbitrary point
port and thermal properties of this material, as well as itgf the Brillouin zone.
phonon-assisted optical transitions, its crystalline lattice dy- Solid solutions of AlGa, _,N, as well as pure crystals of
namics should be thoroughly studied. GaN and AIN, crystallize in two polytypes: cubic and hex-

Special attention was paid to the vibrational spectrum ofagonal. The behavior of phonons in cubic &bk N was
disordered systenis1* Among the methods used to describe theoretically considered in Refs. 12 and 13. It was found that
the lattice dynamics of alloys is the self-consistent coherentO phonon must exhibit a one-mode type behavior, while
potential approachthe phenomenological random-element- the behavior of the TO phonon must show two-mode behav-
isodisplacement{REI) method, and the modified random- ior. These predictions were confirmed by Raman-scattering
element-isodisplacemetMREI) %! method. According to data for cubic AlGa,_,N alloys!* For hexagonal
the REI and MREI models, ternary alloys are divided intoAl,Ga 4N, theoretical studies of the phonon mode behavior
two main classefone- and two-mode modeldepending on  have been carried out only féy; andE; phonons, which are
the behavior of optical phonons at thiepoint. In Refs. 10  polar phonong*>€|n these works, the one-mode behavior
and 11, criteria for the behavior of optical phonons atlhe of the A;(LO) and E;(LO) phonons was predicted. How-
point, allowing a correct prediction of the type of the solid ever, there was a discrepancy in the results concerning the
solution, were suggested. If the ratio of the difference be-TO-phonon behavior. In Ref. 15 the one-mode behavior of
tween the optical band energies of two individual compo-the A;(TO) and E;(TO) phonons was derived from the
nents to the width of the energy band is large, a ternary allofMREI model for hexagonal AGa, _,N, while in Ref. 13 the
exhibits a two-mode behavior. Conversely, if the bands oftwo-mode behavior of these phonofsmilar to transverse
pure components overlap in the energy space, the ternaphonons in the cubic polytypevas predicted.
alloy is a one-mode model. In the case of an ideal one-mode- The experimental data on hexagonal®@# ,N are also
type behavior, frequencies of different optical modes varyrather contradictory. In earlier worké;® a one-mode-type
continuously and approximately linearly with varying alloy behavior was found from Raman measurements for all opti-
composition. On the other hand, in typical two-mode typecal phonons in the case of a small Al conten&(¥0<<0.15).
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In more recent work$®!® the phonon behavior was traced Brillouin zone. Section IV is devoted to the theoretical con-
for the whole compositional range €{x<1). The Raman sideration of the disordered lattice vibration problem when
data obtained in these works speak in favor of an appareribe perturbation at substitution is strong enough to produce a
one-mode behavior of the longitudinal and transverse comlocal mode or a gap mode. This approach assumes that the
ponents ofA; and E; polar modes. They also suggest a active component concentration is lower than the critical
two-mode behavior of th&,(high) nonpolar mode. Zone- concentration for percolation over the fcc sublattice sites.
center modes in hexagonal &a _,N were also studied by The model calculations of density of the gap states split off
infrared spectroscopy. Recent IR reflectivity measurementdie bottom of theA,(TO) branch are performed and com-
for Al,Ga,_,N in the whole compositional range {0 pared with experiment. Section V contains summary re-
<1) indicated the one-mode behavior of thg (LO)  Marks.

phonons and the two-mode behavior of the (TO)

phonons® Neither Al local mode in GaN nor Ga gap mode Il. EXPERIMENT AND SAMPLES

in AIN have been found by both techniques. . . .
Thus the experimental data are consistent with the theo- A large set of A\Ga;_xN samples with a difference in the

retical predictions of the one-mode behavior of the LO pho—AI content of not more than 3-5% in the entire composi-

; tional range (B6<x<1), as well as AIN and GaN layers,
non modes in hexagonal &ba, ,N. However, as concerns . )
the behavior of the transverse optical modes, there is a si%i/ere used for the study. 0/sm-thick Al,Ga,_,N layers in

nificant disagreement between the results of different work he compositional rgnge<0x<0.5 Were grown on ”“F‘ GaN
uffer layers deposited on tleeplane sapphire in a Riber 32

both in theory and experiment. ; ]
In this paper we describe the results of detailed experimelecular-beam epitaxy system. The 1uBrthick layers

mental and theoretical studies of the behavior of the phonofif AlxGa—xN alloys in the composition range 8:5<1
mode of theA,(TO) symmetry in hexagonal ABa, ,N.In  Were grown by hydrlde vapor phase epitaxy ofila]_) sili-
spite of an increasing number of investigations of the lattice’®" Substrate without a buffer layer. The details of the

dynamics of solid solutions based on the theories of Refs. 1grovvth can be found in Refs. 25 and 26. The structural qual-

and 11, the microscopical mechanism underlying the twollY of the layers and the alloy composition were controlled

mode behavior still remains rather puzzling. Here we preser®y XTay diffraction and electron probe microanalysis. Ra-

an attempt at a microscopical approach to the problem ofan spectra of the samples were measured in a backscatter-

two-mode behavior in the limit of low and intermediate Ga g configuration at room temperature and at 100 K. Afi Ar

contents in the hexagonal @a, N solid solution, assum- |25€r & =488 nm) was used as a source of excitation.

ing (i) a random distribution of substituting atomd, an

arbitrary position of the top or bottom of an optical band in lIl. EXPERIMENTAL RESULTS

the Brillouin zone(iii) a strong enough_ perturbation to split A. Phonons in perfect GaN and AIN

off a local or a gap mode, ar(@/) a relatively small concen-

tration of the active componeriGa in our case which is Hexagonal GaN, AN, and AGa, _,N alloys crystallize

less than the percolation concentration over the perturbeift the wurtzite structure belonging to theg, (P63mc)

sublattice sites. The last restriction means that only clusterspace group. According to the factor group analysis afthe

of a finite size can exist in a perturbed sublatfite? point, phonon modes in a hexagonal crystal belong to the
To simplify numerical calculations, we use two assump-irreducible  representations. I ;o +I'gp= (A1 +E1) +(Aq

tions: (1) only changes in the mass of a substituting atom aret 2B, + E; + 2E,). Among optical phonons, tha; andE;

taken into account, while the force constants remain thanodes are both Raman and IR active, Byemodes are only

same; and2) the number of clusters at a given concentrationRaman active, and thB; modes are silerft. There are six

can be found for the AlGa;, 4N alloy using the results avail- optical modeqd 1A;(TO)+ 1A;(LO) +1E,(TO)+ 1E,(LO)

able for the fcc lattice and neglecting, therefore, a small dif-+2E,] active in the first-order Raman scattering. The

ference between the wurtzite and zinc-blende lattices. I'-point phonon frequencies are well studied both for GaN
We attribute the observed changes in the Raman spectruand AIN28-3!
of the A;(TO) phonon mode of AGa 4N in the region Figures 1 and 2 show the behavior of phonon branches

(1—x)<0.2 to the formation of statistical Ga clusters in the throughout the Brillouin zone and the one-phonon density of
case of a random distribution of these atoms over the catiostates function$DOS) for GaN and AIN crystals, which we
sublattice sites. The averaged number of clusters for the fccalculated earlier by using a phenomenological model based
sublattice for an arbitrary concentration obtained in Ref. 24on short-range interatomic potentials and rigid-ion Coulomb
is used to estimate the density of gap states and its depeimteractions’: The calculated DOS function is in a good
dence on concentration. agreement with recent results of neutron experiments for
The structure of the paper is as follows. The samples anGaN and AIN, and the dispersion relations are consistent
experimental procedure are described in Sec. II. In Sec. Iliwith ab initio lattice-dynamics calculatior$:23 It is evident
Raman spectroscopic data on the behavioAgfTO) pho-  from Figs. 1 and 2 that GaN has a large phonon gz
non mode in AlGa, _ N solid solutions in the entire compo- tween 330 and 530 cnt), whereas AIN has a rather narrow
sitional range (8<x<1) are presented. Special attention isgap (between 550 and 600 cm). Note that the calculated
paid to experimental investigations of the behavior of thisdispersion curves for optical phonons of AIN have minima
phonon mode in Al-rich alloys. It is shown that for a Ga for some points in the Brillouin zone. Their energies are
content (1-x)<0.2 a gap mode splits off the bottom of the lower than the energy of the optical phonon of thgTO)
A;(TO) branch, which probably occurs at tHepoint of the ~ symmetry at thd” point.
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Earlier only ALGa,_,N layers grown on sapphire were FIG. 3. High-resolution x-ray-diffraction spectra for&a _,N
studied. However, the Raman spectra of sapphire and son@éoys with different Al contentgx=0.08 (1), 0.14 (2), 0.28(3),
compositions of AlGa _,N alloys have lines at close fre- 0.40(4), 0.54(5), 0.65(6), 0.74(7), 0.87(8), and 0.97(9)].
guencies, which creates difficulties in identifying the phonon
positions in AlGa _4N. In our study the AlGa,_«N alloys  the wurtzite structure in the entire compositional range 0
were grown not only on sapphire, but also on Si substrates<x< 1. At the same time, we found that the general pattern
In contrast to sapphire, silicon does not exhibit any strongf the mode behavior for the Al-rich compositional range is
Raman lines coinciding with the ABa _,N phonon modes. much more complicated.
This provides 'the basis for a more reliable identification of Here we consider in detail the behavior &f(TO) pho-
frequency positions of phonon modes in &8, ,N. _ non mode in AlGa, _,N solid solutions. We have found that
According to the x-ray data, all samples were single-yis mode manifests itself in the Ga-rich compositional range
crystal layers of the hexagonal modification without any.s a single line which experiences a high-frequency shift

polycrystalllne. inclusions or phase separation. Figure Q{NIth increasing Al content, and whose width remains nearly
shows x-ray diffractograms obtained for different alloy com- . . " .

o . ) the same in a wide compositional range©<0.4, consis-
positions. The double-peak structure shown in the diffracto-

; 6,19 ; e i _
grams for thg(0004) reflex is due to th&K @; andK a, lines L‘?Q.ttw'th other wotrké.b A;h|gh Atl contder;]t's,htms% line ex .
of Cu. The well-defined double-peak structure for all IIS an asymmetric broadening toward higher Irequencies,

samples in the compositional range.@<<1 points to a good the_ Iow-frequer_wy edge remaining as sharp as before. In ad-

structural perfection. It should be emphasized that the difdition, at the high-frequency edge of this band two features

fraction curves are symmetrical for all samples, which is@PPear. They change their positions and shapes as the com-

evidence of the absence of macrogradidsteh as nonuni- position of the solid solution is varied. Careful analysis has

form distribution of defects and impurities in the samples Shown that these features are inherent in the polarized spec-
On the whole, the measured first-order polarized Rama#fum corresponding to tha;(TO) phonon; they are not due

spectra were found to be consistent with selection rules foto the interference from other polarizations. To illustrate this,
Fig. 4 shows polarized Raman spectra in a frequency range

corresponding to phonons ofA;(TO), E.(TO), and
EI(LO)Al(LO) DOS E,(high) symmetries for pure AIN, and two compositions of
AIN AlL,Ga N with x=0.92 andx=0.78.

Figure 5 depicts the transformation of the Raman spec-
trum in the compositional range G&=<1. It is clearly seen
that the intensity of the most high-frequency feature in the
spectrum(circles grows with increasing Al content, while
the low-frequency pealtriangles becomes less intense. In
the limit of very high Al concentrations the low-frequency
peak is a weak feature, with a maximum at 595 ~¢mWith
increasing Al content the high-frequency feature becomes
narrower, shifts toward lower frequencies, and in the limit
100 tends toward the position typical of the (TO) phonon in
0 AIN. For pure AIN, only a single line corresponding to the

r KM T A HL A A,(TO) phonon at 611 cm' is detected in the spectrum.

FIG. 2. Calculated phonon-dispersion curves and phonon DOSoncerning the third featur@liamond$ occupying the posi-

for bulk AIN. tion between the features discussed above, it seems that its

1000
900
800

~
(=]
()

E,
A(TO)

/|
N éEI(TO
A
/\/B‘l

OC N

(5]
(=4
(=]

Ea

P\ VA
N

Frequency (cm™1)
g 3

200




PRB 62 STATISTICAL Ga CLUSTERS ANDA,(TO) GAP MODE . .. 2525

i E, (high) @ |
2(xy)z

E\(TO)
- x(zy)xX 1
x(zZ)x MO)

4 $ + + b
- By (highy ® ]
2(xy)z
E,(TO)
 x(zy)% :
. / V\ A,(TO)

- B, (high) ©
z2(zy)z

E(TO)
[ x(zy)x ]
Hz)E ’ \ A(TO)

500 550 600 650 700 750 | nearemsrenewer i NN e S
Raman shift (cm™1) 550 590 630 670
Raman shift (cm~!)

Intensity (arb. units)
Intensity (arb. units)

FIG. 4. Room-temperature-polarized Raman spectra for two ) ) ] ]
compositions of AlGa_,N: x=0.78 (a), x=0.92 (b), and pure FIG. 5. Raman spectra at 100 K in the scattering configuration

AIN (c) in the frequency range corresponding to phonons ofcorresponding to thé,(TO) phonon for AlGa, N with different
A1(TO), E{(TO), andE,(high) symmetry. In Porto’s notation the Al contents 0.6sx<1. The spectra are normalized in ;uch a man-
z direction is along the axis of the wurtzite structure, andandy ner (except the spectrum for pure AlRhat their integral intensities
are mutually orthogonal and lie in the plane normal to #fwirec-  @re equal.

tion. states by fluctuation potential. As a result, the Raman spec-
trum reproduces the density of states of a phonon branch
relative intensity has a weak dependence on Al contentather than its spectral DOGe., phonons from th& point).
within the compositional interval 0.87x<<1, where all The calculated spectrum of phonon branches throughout
three lines are well resolved. the Brillouin zone for AIN(Fig. 2 shows that an appropriate
Figure 6 shows positions of the maxima detected in thenminimum of the dispersion curve is situated at tigooint.
scattering configuration corresponding to the phonon modn this case the spectral peak observed between two modes of
of the A;(TO) symmetry as a function of Al content. The the A;(TO) symmetry can be regarded as a manifestation of
spectrum transformation described above can be understoaide DOS in the region of the lower edge of this branch due to
if we assume that the two lines with the opposite depenihe influence of heavy Ga atoms. This effect is bound to take
dences of intensities on the Al content are GaN-like andplace if the perturbation of the vibrational spectrum due to
AIN-like phonon modes of\;(TO) symmetry. This conclu- substitution is strong enough, and can be accompanied by a
sion is consistent with the theoretical predictions of the two-splitting off of the gap modé’
mode behavior of thé;(TO) phonon given in Ref. 13. It is interesting to note that the Raman spectrum in the
As evidenced by our polarization measurements, the bandkgion of theA,(TO) phonon in AlGa,_,N is much more
observed between the GaN- and AIN-like phonon modegomposition sensitive for low and intermediate Ga concen-
cannot be interpreted as resulting from modes belonging terations than for low and intermediate Al concentrations.
other symmetries. The phase-separation tendency should B#is fact shows that the perturbation of phonon states near
ruled out as well, according to the x-ray data. In our opinion,the lower border of thé,(TO) branch, produced by substi-
this band can be attributed to the manifestation of the phonotution of a heavier Ga atom, is stronger than the perturbation
DOS associated with an extrema whose energy is lower thapy the lighter Al atom near the same border at low Al con-
that of thel’-point A;(TO) phonon. centrations. There are two general factors which regulate the
Phonons with arbitrary wave vectors can be active in firstscale of perturbation at substitution. These are the magnitude
order Raman scattering if electron states are affected bsnd sign of the perturbation amplitude. The sign of the per-
composition fluctuations in the solid solution or by impuri- turbation amplitude below the bottom of the optical branch
ties introduced into the crystdt>®In this case an additional due to the substitution of a heavier atom can be characterized
mechanism of the first-order Raman process appears. It & “attractive.” It always leads to an enhancement of the
characterized by a violation of wave vector conservation lanDOS near the border, and can cause a splitting off of the gap
due to scattering or localization of intermediate excitonphonon state from the band bottom if the perturbation is
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ALGa N - fact suggests that this feature of the spectrum can be re-

- lex A(TO) garded as the DOS of the gap mode split off from the bottom
of the A;(TO) phonon branch due to the substitution of Ga
for Al. In the next sections the gap mode problem is consid-
ered theoretically, and results of numerical calculations are
described.

620

IV. THEORETICAL CONSIDERATION

For convenience, in this section we introduce a notation
for the variable concentration of the solid solution compo-
nents, namely, we denote the concentration of Ga—an active
component of the disordered system—byinstead of (1
—X), and that of Al by (%-c) instead ofx. We restrict our
consideration tac<0.2, supposing that the disorder of the
perturbed sublattice can be described in terms of the fcc sub-
lattice. The valuec=0.2 coincides with high accuracy with
52% o 0-2 02 o5 v 10 the critical concentration over the fcc sublattice sites, and

) ) Composition, x ) ) below this value the substitution atoms can form only clus-
ters of finite size. We also admit that the distribution of the

FIG. 6. Frequencies of phonon modes in the scattering configusubstitution atoms over sublattice sites is close to the random
ration corresponding to th&,(TO) phonon for AlGa_,N as a one.
function of Al content. Triangles show the positions of the GaN-  Below we consider the general aspects of a calculation of
like Al(TO) mode, circles indicate the pOSitionS of the AIN-like a disordered System Spectrum in the region of localized or
A1(TO) mode, and diamonds show the positions of the enhancegap states within the framework of the simple lattice Hamil-
phonon DOS. The solid Iine corresponds to a fitting with equationyynian. The numerical calculations of the band shape of the
@a,(10) = 532.5+ 58+ 55¢". gap states and a composition dependence of their integral

density will be performed using a continuum Hamiltonian

stronger than the critical value, i.e., the value of the sing| : )
; . . e ased on the Taylor series expansion of the phonon fre-
site perturbation which leads to the splitting off of the gap or . .
guency in the wave-vector space near the Van Hove singu-

localized state with the zeroth localization energy. . . . . 4
. ._larity. The obtained results will be used to illustrate experi-
At a large Ga concentration the Al atoms play the major - “tal data

role in the scattering of phonons. The lighter atom near the

same band border produces a perturbation which has a “re- o )

pulsive” character, and gives rise only to a scattering of  A- Model Hamiltonian and the density of states of a

phonons and to a decrease in the DOS in this region. As a disordered crystal

rule, the perturbation of the phonon motion by a given sub- Let us consider a crystal consisting Nfelementary cells

stitution has opposite signs at opposite borders of a givewith r atoms in each of them. We assume thistlattice sites

optical branch. of one of sublattices are randomly filled with two sorts of
Single-site fluctuations in solid solutions produce aatomsA andB. The average number of atosand B is

phonon-scattering cross section which is proportional to they,=cN and Ng=(1—c)N, respectively. Following Refs.

productx(1—x). However, this cross section is symmetrical 4—6, the Hamiltonian that describes the vibration motion of

in x and (1-x) only in the first Born approximation, which the system in the harmonic approximation can be given by

is not appropriate for a large attractive perturbation. Even the

coherent potential approximation shows a detectable asym- pi(l,k) 1 . L

metry of the composition dependence of the phonon-H:; oM. T3 ; 2 baplk; 1K ua(IK)ug(1k").

scattering characteristi¢5. This becomes even more pro- ‘ : RS 1)

nounced if there is a scattering of phonons on clusters of

substituted atoms with an attractive sign of interaction. Theiere u,(lk)=u,(lk,t) is the projection of the time-

number and the spatial size of fluctuations have the optimalependent displacement of atdrin the elementary cellon

magnitudes in the region of “percolation concentration” of the « axis;p,(I,k) =M .u,(Ik) is the corresponding projec-

the atoms with the attractive sign of the scattering amplitudetion of the momentum of the atonM, is its mass; and
In case of theA,(TO) branch in AlGa _,N solid solu-  ¢,,4(lk;l'k") is the matrix of atomic force constants. The

tions, the maximal effects of both the phonon scattering an@quation of motion which defines the spectrum of the vibra-

localization occur in the region of (1x)~0.15-0.25. This tional modes is

range corresponds well to the value of percolation concen-

tration for the fcc lattice, (+x)=0.2, which has the same 2 i Y

coordination number as the real cation sublattice of the solid I%ﬁ [Mik@? i1+ G Sap= dap(Ikil k) Jug(1'k) =0.

solution. 2)
Estimates of the intensity of the low-frequency GaN-like

peak (Fig. 5 have shown that it increases approximately In the limiting cases at=0 orc=1, Eq.(1) presents the

proportionally to the Ga content below {Ix)=0.2. This  Hamiltonian of the regular crystal with atonBsor A in the
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corresponding sublattice. In this caseMl|,'s arel indepen-
dent and equal to eitheMg or M, and ¢,4(Ik;1'k")

= ¢> s(Ik;1'k") are the force constants for one of the pure

crystals Using the plane-wave representation for the atomic _ @ E
displacements, N
1 A 1/2 -
Ua(lk,t)= INIT E, (m) w,(Kk[aj)
xexditwj(q)+igx(1k)], 3
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po(w)zz—wZ Im Gga(|k,|k;w)=2—w2 - 0?(q)]
i N o .

fw el -V~ oF(@ligy, (10

7N G

where the normalization of/,(k|q,j) is taken into account.
The last expression can be rewritten as

where summing is performed over the values of the wave Lore

vectorg within the first Brillouin zone, anglis running over

all modes of the vibrational spectrum of the lattice, we obtain

the eigenfunctionsv,(k,q,j) of the equation of motion

> Dos(kk ;q)wi(k'[a)) = w;(@)Wa(k,q,)),  (4)
k'B

where the matriD ,z(kk’;q) has rank 8 and is the Fourier
transform of the dynamical matri@ ,5(Ik;1'k") of the crys-
tal

D (kK ;q)= 2 D,a(lk;1"k"yexpliqlx(1k)—x(I'k) 1}
1,17

(Ik; 1"k’
wmmm§¢ﬁ )
x expli gl x(1k)=x(1"k")]}. (5)

Using the matrix notation, the equation of moti@®) for a
pure crystal can be written as

Lu=0, (6)

where the matrix is defined by
Lag(IK 1K) =My@28) S 35— d25(1K; 1K), (7)

We express the Green’s functi@ﬁﬁ(lk,l’k’;w) of the
pure crystalA or B which is a reciprocal matrix df with the
help of eigenfunctionsv,,(k,q,j),

1
Gop(k 'K 0) = ———— G (k.1 'K";0),  (8)
B (MkM k,)1/2 B
where

1 <« Wo(klg,p)wi(k'[a,j)
G2 (k1K ;)= —
o4 R % w?— w¥(q)—i0

@l alx(k)=x(1"k")] 9)

According to Ref. 4, the imaginary part of the diagonal ma-
trix element ongﬁ(Ik,I 'k’"; w) is related to the vibrational

spectrum density of the crystal by

O(w 2 e{ iy[w?l— Dly;; QJ}dy (11)
[0 —Dlggi= > WalKl0)[ 028k Sap
ak, Bk’
D, (kK@) Iwh(K'|q,j). (12

For a crystal with substitution defects the equation of
motior’® can be written as

[L—48L]u=0, (13
where matrixsL is
SL 51K 1K) = (My— M) 025y Sk S
[ B2k 1K) = dp(lk;1 K],
(14)

The first term of the right-hand side of E¢l4) presents
perturbation by “the mass defect,” while the second term
describes perturbation due to the difference in the force con-
stants. Equatiolf13) can be transformed into
[w?l—D—68V]v=0, (15)

where
8V o5 (1K; 1K) =M Y25L 51K 1 'KDM Y2 (1)

The DOS of a disordered crystal can be given by

w * .
plo)=—3 ; f, el -D=VIxalqy.  (17)

Here quantum number& enumerate the vibrational modes
of the disordered crystal, and the matrix element

[01=D=6V]xa= 2 0a(Ik|[A)[ 028 S Sap

alk,Bl’k’
=D 5(IK;1'K") = 8V g1k 1K) ]
Xvg(I'k'|A) (18

is an analog of the corresponding matrix element in(&8g).
In this case it is defined with the help of eigenvectors of a
defect crystab ,(Ik|A).

The equation

[1-G%V]Iv=0 (19)
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gives the frequencies and eigenvectors of the vibrations that [1-G¥®(w)sVT]v=0, (23
are disturbed by the substitution. He@® is a reciprocal
matrix of [ w?l — D], and is defined by E(9). where

G*(w)=[w’ ~D] %, (24)

B. Localized states of disordered crystals

| ideri he disord ffect d b The perturbationsVF! is now embedded in the averaged
_Inconsidering the disorder efiect due to mass pertur a(':rystal described by Eq22). For a single-site perturbation,
tion, we can simplify our calculations of the vibrational spec-

b ; h batiglh i the localized or gap state splits off the boundary of the vi-
trum by separating the perturbatiah. into two parts bration band if the perturbation in the lattice sites occupied

by atomsA is large as compared with its critical magnitude,

SL=(6L)+[L—(SL)]=(sL)+ L. 20 a

Here (---) denotes averaging over all possible configura- FL av 1

tions of the substitution atoms in their sublattice. The first V=[G wg)] (25
term of Eq.(20) has the symmetry of an ideal lattice, and canwherewg is the frequency of the vibrational band boundary.
be included into the matrix of Eq. (7). This leads to the The critical value is defined here through the reciprocal value
replacement of the atomic mass of the perturbed sublatticef the single site Green’s functioB, ik (@s). Below we

by its averaged-independent value will find the critical condition for an arbitrary defect. If a
localized state arises, the density of states is defined by the
M =cM+(1—c)Mg. (21 number of impurity atoms with an accuracy of the order of

_ _ o c?. As c increases, clusters consisting of two and a larger
As a result, we obtain the equation of motion in the averagesumber of atoms of the solid solution active component ap-

crystal approximation: pear in the corresponding sublattice. The fluctuations will be
o represented by clusters consisting of a finite number of im-
[w?l—D]e=0. (22)  purity atoms in the sublattice where the substitution takes

place, until the critical concentratiop, is reached. Above

The averaging procedure restores the lattice symmetry brahe critical concentration, the so-called percolation cluster,
ken by the substitution and, as a consequence, the equatigéhich is extended over the whole crystal, evolves. The finite
of motion can be solved by the methods used for an ideatlusters above the critical concentration are placed within the
crystal. This equation leads to the spectrum of the solid soholes of the percolation cluster, and their number decreases
lution which is an interpolation between the spectra of therapidly with a further increase in the concentration. The clus-
pure crystals containing atordsand B. ters of the site percolation problem are most important for

The second term of E¢20) describes the fluctuation part the mass defect. The critical concentration for the fcc sublat-
of the perturbation. It is responsible for the scattering of theice is about 20% and, therefore, @t 0.2 only clusters of
phonons obtained as a solution of EQ2) and, if the finite size are responsible for the transformation of the vibra-
fluctuation-induced perturbation is strong enough, for a splittional spectrum of the solid solution.
ting off of the localized modes from the boundaries of the  The density of states of disordered systems can be found
phonon bands. This aspect of the fluctuation effect is thehrough the averaging procedure, i.e., by summing over the
subject of our consideration. DOS corresponding to all possible realizations of the disor-

We consider the problem of a calculation of the density ofder with the weight multipliers®, which are equal to the
localized states induced by fluctuations for the case when thgrobability that a given variant of the random distribution

number of fluctuations which are able to split off from a occurs. Taking into account all of the possible quantum num-
localized state remains small enough, and the resulting locakers A, we obtain

ized states can be treated in the zero approximation as iso-

lated from each other. This situation can be reached in the ) o

limit of relatively low concentrations of the active compo- p(w)= N EA: fﬁwgf PAEA: dyx

nent of a solid solution. The mathematically accurate crite-

rion for this condition can be formulated for a random alloy X exp{—iy \[ w?l —D-— SVFH AL (26)

by using the lattice percolation theory. Let us consider, as an ) . . )

example, a single-site perturbation. In the limit-0 the  Performing the integration over, , we transformp(w) into

alloy will mainly contain single defect atoms. Therefore, in

this limit the problem is Whether the perturbatlpn is stron_g p(w)zsz pAE 5(w2—wiA), (27

enough to split off the localized or gap state. This problem is A A

closely related to the local perturbation problem solved inyere we denote eigenvalues at a given realization of disorder

Ref. 38 for electrons, and in Refs. 3—6 for phon@also see by w2

Refs. 7 and 8, and references theyein Ad-
If the averaged interatomic distances between substituted

atomsA exceed the radius of the bound state appearing at

each of the lattice sites occupied by atomsEg. (19) re- Here we consider the problem in the limip. when

duces, with the accuracy up to the terms of the orde’pfo  atomsA form only clusters of finite size. Let us assume that

the Koster-Slater-Lifshitz equatiqisee Refs. 3,5—-8 and B8 the cluster wave functions of the localized states do not over-

which in our notation takes the form lap in the zero approximation, and treat the medium sur-

C. Isolated cluster approximation atc<p., sum rule
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rounding the cluster in the averaged crystal approximation. o st

T_he composition fluctuations outside the cluster will be con- plw)= N Z 2 cS(1—c)'ol w?— (0ik9)?]. (36)

sidered later. s =1
The equation of motion for a cluster can be presented i

this approximation as

{I+g"(w)aV Hv=0, (28) NO0)= f “Lp<w>dw=2 gs€(1—c)'=2>, ny(c);
0 Stk S

whereg® (w) is the fragment of the Green’s-function matrix (37)

restricted by the region of the clustég, , consisting ofs

atomsA andt perimeter atom®. Here indexx enumerates here(}, is the Lifshitz border for the given vibrational band

different spatial configurations of the cluster. which coincides with the band boundary of the pure crystal
Using the approach developed in the theory of latticecontaining atomsA in the corresponding sublattice. The

dynamics;® we find the eigenfunctions and eigenvalues ofright-hand side of E¢(37) coincides with the total number of

Yhe integrated DOS per elementary cell can be written as

the matrix clusters per sublattice site.
Sums similar to Eq(37) are determined with sufficient
[0 (w)SVF], (290 accuracy by their lower limit, i.e., by their first few terms at

any concentration. If a few first values nf(c) are known

Tor different lattices, Eq(37) can be used to estimate the
number of states split off from the band edge. The calculated
nine ng(c)’s for the fcc lattice are given in Ref. 24; the first

z [gav(a))(SV]aﬂH,erI)gl,k,(w)I)\o(w)q)gn((w), four numberS are

the rank of which is equal to the size of the cluster consid
ered,

Bk eCsy
(30) ni(c)=c(1—c)?
where summing is performed over the region occupied by
: : n,(c)=6c%(1—c)*®
the cluster. The eigenfunctions form the complete orthonor- 2 '

mal set of vectors obeyiRg§>°
na(c)=c3[8(1—c)?>+12(1—¢c)*+30(1—c)?4,

2 P (@)= 81 e S (3D Na(C)=CY[2(1— C) 2+ 27(1— ¢) B+ 48(1—¢)

With the help of these eigenfunction and eigenvalues, the +96(1-c)*+ 144 1-c)*+1581-¢)%*.

matrix {I + g®(w) 8V} ! can be presented as
Further useful information can be obtained if the depen-

. q)glk(w)cpgl,k,(w) dence of the localization energy on the number of atérs
{l +ga”(w)A}a/3|k|'k':Z 1N (o) . (320 acluster is known, at least approximately. This allows us to
7 o @ estimate the energy dependence of the integrated DOS as
well as of the DOS itself.
The maximum number of the localized states which can
split off the cluster containing attractive centers is equal to
N o(@1g0)=1 (33) S. The mean numbers of clustang(c) of sizes are normal-
ized according to
is fulfilled. As a rule, the nodeless state splits off first, and
this state has the largest localization energy and is most im- ”
portant for the optical properties of a system. The eigenvec- NA:NZ ns(c)s, (38)
tors of the localized states can be given by st

The localized state will split off if at least for one of the
o’s there exists a value = w,,.>0 for which the equality

whereN is the number of sublattice sites, aNgd is the mean
number of atoms A per unit volume. This equation defines
the upper limit of the number of localized states. This situa-
tion can be described as a case of separated bands at all finite
concentrations of atomA.

VU:Gav(w)q)a(w)|(l)o'Glav(w)(DU|71/2, (34)

where

Grav(w)=%Gav((u).
The probability of realization of a cluster containirsg D. Effect of fluctuations on localized states of clusters
atomsA and having a perimeter composedtaftomsB is 1. Fluctuations of the surrounding medium

gecS(1—0), (35) _ In the previ_ous consideration we suppos_ed that the me-
dium surrounding the clusters can be approximated by a vir-
wheregg; is the number of different space configurations oftual crystal. In order to estimate the role of the composition
the clusters with equal numbers of atomsand B. Taking  fluctuations outside the cluster we will substitute the ob-
into account the nodeless bound states only, for the densitygined solution into Eq(26), and find the first correction to
of states we can write the DOS due to fluctuations. As a result, we have
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Ost Ost
w * w 0
plw)= —f dyS 3 ci(1-c)lexp—iy[w? p == dyS 3 oy
aNJ)_» "5 &1 mNJ_» 75 &1
Wioe) 2 TH{exp{—iy (vOH sVFtvet L), (39) xexp{—iy[w?— (0je) ] = 5, Y212, (44)
where(- - -) represents the averaging over all possible real-Where
izations of the lattice site filling except a given cluster. The 1—c
matrix SV for the mass defect for the lattice sites of the V2 = > w4c( [| vbe|2]2, (45)
perturbed sublattice occupied by atodsand B can be ex- S ST, (1+ce
pressed as L .
The summing in the last expression has to be performed over
1— sublattice sites outside a given cluster. After calculating the
( C)e S S S integral overy, we have
. (1+C ) aBCll’ Okk
NV gt ki = ce (40) s 925‘ o1
P S p(w)= c(1-0)'——=
[“’ (1+ce) Sapil’ O S K= V27 Y51
where xexp{—[0® = (0js)?1P (2740}, (46)
The obtained expression differs from E@®6) because the
~ Ma—Mg localization energy in the last equation is defined with an
&= Mg accuracyysg, .. If the localization energy angl,, , are com-

parable, the number of states split off from the band edge

For a random distribution, each of the perturbed sublatticélcreases due to fluctuations as compared to the case without
sites is occupied by atorA or B with probability c or (1 fluctuations, and now
—c), respectively. Taking into account that the averaged ex- 0
L
N(O)=f p(w)dw=, nyc
0 5

ponent is split into a product of exponents, and that each of
the multipliers can be averaged independently, we obtain

etk cUFL st This means that fluctuations partially destroy the localized or
(exp{—iy (V" VTV L) gap states.

N
=11 :cex%—iw |St"2)
ce
+(1—c)ex;{ m|vs“‘| y)] (41)

Ik Cst «
Here | and k take their values on the perturbed sublattice
outside the clusteCs; . The averaged expression for the
DOS can then be written as

p(w)=w—a;\|f:

x expl' iyl = (i) ]+

(47)

,(1-
(1+ce )

2. Fluctuations of the cluster’'s shape

Clusters of a large sizes have a number of
configuration® which increases exponentially with size.
The variation of cluster shapes for a givers accompanied
by a change in their perimeter For equals, the compact
clusters have a minimal perimeter, while quasilinear clusters
are characterized by the largest perimeters. The distribution
of clusters over their perimeters for a giverhave, with a
high accuracy, a Gaussian fofhand can be given by

(t_tiwax)z
Ost~&XQ — —(——,

2(6t)?
Heret® ., is the value of the perimeter corresponding to the
distribution maximum for a gives, and (6t) is the distribu-
tion dispersion.

The complicated shapes of large clusters lead to the ap-
pearance of localized state whose wave functions do not
spread over the whole cluster due to the quantum
interferencé'! The localization energy is strongly dependent
on the size of the cluster or its part if only a part of the
cluster plays an active role in formation of the localized
state. Therefore, the deepest localization energy for a gven
must correspond to the compact clustéss,,, where no
interference effects are possible, while the clusters of a com-
plicated shape will have a set of localization energies due to
the quantum interference. The minimal size of the cluster
Restricting to the first nonzero cumulant, for the DOS wefragment that can be separated by the interference is equal to
have a single atom, and the localization energy of such a fragment

Ist

dyg Zl cS(1—c)"

(48)

>

e stk

In[R”((y)]] ,
(42)

where

(1—-
(1+c )

| I’[/<|2 )

+(1—c)exp<i m| StK| y)]

R,k(y)=[cexr< —iw?

(43
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in this conditions corresponds approximately to the localiza- 1. Fourier representation of the equation of motion

tion energy of the cluster wite=1 ! As a result, the cluster ; _
shape fluctuations should lead to a considerable dispersion Mevﬁissggéiégeoﬁl?r?g\g(i)lrl:miso(s)iftiggzczfﬁ:Js(gliig),s;\ll&eii;ew
the localization energies at a fixad due to the averaged part of the perturbatjéh ). Using the
1 s s eigenvectors of Eq(22), e,(k|gj), as a basis for the repre-
hwjge St oo Stwcomp. (49 sentation of the wave function of the localized or gap state
we take the solution of the equation in the form

Th hat foll f E 49) is that : : .
e consequence that follows from E¢8) and(49) is tha Ejea(k|q1)¢A(|J), and obtain

the density of localized statgs(wyj,.) of the cluster with a
given s can be presented in a Gaussian form with a maxi-
mum near the localization enerdyo;, .(t7,,,) corresponding
to the most frequently occurring clusters,

[w?l—D—8VFllep,(1j)=0, (53)

where ¢, (1j) is the enveloping wave function, arduns
over the perturbed sublattice sites. By multiplying the left-

[©hoe— Oloc(tman 1 (50 hand side of Eq(53) by e, we obtain

2 2 R FL iy —
which is broadened by a dispersion of the localization energyl ®~ @] (C*q)}d’/\(ql)_%, (85V""€)qqrjjr ¢a(Q"]") =0.
Swiy.. Both the position of the maximum and the dispersion (54)
are restricted from above by the value®},,,

Here ¢,(qj) is the Fourier transform of the wave func-
wlso:c1<wlsoc(tfnax)<w§omp' 5wlsoc<w§omp' (51) tion, and
Our estimation of fluctuations of the cluster shapes and their L R
effect on the density of localized or gap states for the large(€5V" € qqrjj' = E , e,(klaj) 6V, z
size clusters shows that localized states of large clusters must apllTkk
form a rather_ structureless_ background, while the band shape X (Ik:| ’k’)e}}(k'|q'j ) ellak) —a'x(1K )]
of the DOS is formed mainly by states of clusters of small
and intermediate sizes. (55)
For the clusters of small and intermediate size the role of ) _
fluctuations can be approximately estimated by extending thEC" @ Single-site mass defect,
summing region in Eq(45) over the region of the cluster

itself, .
(edVFLe)gqrij =2 eq(Klaj)
c(l—c)e?
2 _ 4 st,x| 212 1-c¢) .
Vs« > > [lvie 1?12, (52 , * 1 aild—q'Tx(k)
1k (1+C8) Xl w 8(1+CS) ea(k|q J )e .
where composition fluctuations within the cluster are used (56)

instead of fluctuations of the cluster shape, because both

kinds of fluctuations are characterized by the same variatiofhe perturbation matrix contains both diagonal and off-

in the perturbation energy. The obtained results provide théiagonal elements with respect to indigeandj’ even for a
possibility to simulate the DOS of localized or gap states inmass defect and, as a result, in the general case leads to the
a wide range of perturbation energies. system of 3 equations of the type of E¢54).

. 2. Taylor series expansion near the Van Hove critical point
E. Continuum approach to the problem near the Van Hove Y P P

critical points We consider Eq(54) in the energy region just below the

This part of the paper is based on the results obtained foll(’)WESt Van Hove critical point of thg optical bands

the electron spectrum of disordered systems in the region ogéfc'lgwe?fﬁ;?'h(gc tha’; ”I]Be log?]!'ozr?rtl'i?]n i?gr_?g Efggﬁfser_
localized states with the help of the so-called “effective- y @j{C.Ger). BY P 9 y

mass” approximatiofi2-*which can be introduced near the €XPansion Oi"iz(c’.q”) up to the first nonzero term and pre-
Van Hove critical points, first of all, above the maximum or serving only the diagonal matrix element of the perturbation,

below the minimum of the band in the band gap. There is af'e Obtain the simplified expression
analogy in the behavior of electron and phonon band disper-
sions for ideal crystals, and the Taylor series expansion of
the phonon branch curve has the same featurgssipace as
the electron ondsee Ref. 4, and references thejeilhe
other characteristic of the approach is the use of the analogy _ FL . 1y —

between Mott's modé? for a potential well or a barrier at E (€V ™€) g jj pa(A']) =0. 7
the isoelectron substitution, and the perturbation of the vibra-

tional motion by the mass defect. Here

1
W= 0F(C,Ger) — 5[ V202(C,der) (A= Aer)? | b (1)

q
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FL _ S FL . 2hoi(c,qc)
(8V""€)qq ;= “Zkk, q(K[Gcrj) 6V — 02+ 0¥(C,0e) =20j(C,0e) @y, ML=——0———
ap quj (C-qcr)
X(lk;|,k,)ez(kflqcrj)ei[qxuk)—q'x(l'k')]. (64)
(58) and
we used only the diagonal matrix element of the perturbation A
(€3V ™ €)qq1j; , and the solution of Eq2d), €,(K|qerj), at Uen(D) =50 o €V @i, (65)
the critical pointg.,. The amplitude of the perturbation for jA i Her
the cluster sites occupied by atom&ndB is defined now as which for a mass defect has the form
’ (1—-c)e -
] (ercr)m le(k|derj | fiwj(c,qc)(1—C)e a2
SVEL, = (59 2(1rcey KT
_ (66)

. Ul(r)=
(K| Geri |2 eri(") o, (C.Qer)Ce |
- — = e(k[Ger) |2
2(1+ce) e

2 ce
wj (Clqcr)(1+C8)

Taking into account the normalization of eigenvectors

where the first line corresponds to the region occupied by the
2 le(k|qj|2=1 (60) attractive atoms and the second line describes the repulsive
e(k|qj , : . . >
K barrier. We can write the equation of motion in the form of a

we see that the corresponding multiplier in E9) Schralinger equation:

le(k|aerj|?, is less than unity, and for the wurtzite lattice

. . . . 2
with four atoms in the elementary cell it can be estimated as

~1/4. Therefore, this estimation, together with E§9), 2M£ffvf+wA Uerdr) [ ea(r))=0. (67
gives the order of magnitude of the perturbation due to sub-
stitution. The cluster is described now by the potential well of volume

The other estimation of the value of the perturbation fors, ; surrounded by the repulsive barrier having the volume
the mass defect near the critical point considered can be pefp ;. This fluctuation is embedded into the averaged medium.
formed by using Eq(22), which gives forg=gq,, atc=0 In order to reconcile the lattice and continuum models, we

andc=1 the values ot»;(B,q,) andw;(A,q,) for the pure  define the critical value of the single site perturbation for the
crystalsBC andAC, respectively. Then, taking into account mass defect as

Eq. (21, for the composition shift of the critical point in the

linear approximation we have 2 2k wi(C,0er)
j\sYer

ar
EchT 273+ (68)

ijz(cqcr):[wjz(A!qcr)_wjz(qucr)]Cy (61)

while for the fluctuation part of perturbation we obtain, in-
stead of Eq(55), the following fluctuation “potential” am-

3
Vauf(e.au| evo

This is the critical value of the potential well depth for the

plitude well of volumew, in the averaged crystal, with a concentra-
tion ¢ of atomsA. The lattice and continuum versions of the

(1= 0)[w(A,Ger) — 07 (B,Gcr)] o : - _

<5VFL>kk‘_ _ 2) model will give approximately the same results if the rela
Il —c[wjz(A,qcr)—wjz(B,qcr)]. tions between the perturbation amplitude and the critical

value of the perturbation have the same order of magnitude.
®Note that both Eq4925) and(64) define the critical values of
the perturbation without taking into account the repulsive
barriers surrounding the clusters. The latter circumstance
ads to an increase in the critical value of the perturbation.

This estimation gives for the perturbation approximately th
same value as the previous one.

We definevy=V/N as the volume of a crystal per atom of
a perturbed sublattice, assuming that there is a single atom
a given kind in the elementary cell. Then the first line of Eq. The proposed model is, in its essence, the well-known
(62 gives the att'ractive part of the amplitudg within the Mott’'s model for an isoele(':tron substitutioﬁ. Our consider-
volumesu, for a given cluster, and the second line gives theaiion aliows us to use it for the mass defect near the Van
repulsive amplltqde of the barrl_er of volum,o. Hove singularity.
_ After the Fourier transformation of E€57) into the con- The value of the effective potential energy for a cluster
tinuumr space, we have within the potential attractive well formed b& atoms and
within the repulsive barrier formed by atonBscan be de-

1 _ . ; .
wz—w,-z(c,qcr)— E[ngjz(cchr)]vf dA(rj) fmgd with the he_Ip of Eq(40) fqr a cluster of' any size. A
difficult problem is a great variety of cluster’s spatial con-
—(EWFLe)kk\j,j(r)d)A(fj)=0- (63) figurations. We simplify our calculations by using spherical

potential wells whose volumes are equal to the volumes of
Here the last term of the equation is defined within the regiorcorresponding clusters; to estimate barriers, we use the val-
occupied by a given cluster. Using the notation ues of the parametdraveraged over cluster configurations.
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FIG. 9. The number of clusters per atom of cation sublattice for
s=1-3(dashed ling s=1-5(dotted ling, ands=1-9(solid line)
3 as a function of the composition of the solid solution, and the mea-
L L L ] sured relative integral intensity of thie, (TO) gap mode for differ-

B0 . 15. 103 o 5 ent Ga concentrationdull circles).
Localization energy (cm™!)

FIG. 7. The experimental Raman spectrum in the region of thd?0th cases is equal to 32.5 (__:']n This value is only about
gap mode forc=0.08 (square calculated DOS of the split-off Nalf the estimated magnitude in E¢S9) and(62). The ratio
states(so”d |ine)' and number of clusters per atom of cation sub- of the effective pOtential amplitude to the critical value of the
lattice for s=1-9 vs the localization energy of compact clusters potential was taken to be 1.55. The positions of the DOS
(full circles). maxima w%(t,,,) for clusters withs>3 were taken to be

wgomgd2. The most difficult problem is to find the acceptable
3. Results of calculations estimates for broadening of the cluster bands. There are two
_additional reasons for the broadening not mentioned earlier.
The first of these is that a real crystal has a lower symmetry

d, therefore, the clusters regarded as identical in the cubic
attice become nonidentical in the wurtzite lattice with a cor-
dresponding change in the localization energy. This factor is
of great importance for clusters with large The second
reason is equally important for all of the clusters, and it is
due to the anharmonic interaction of the lattice vibrations,

Raman shift (cm™1) which leads to a homogeneous broadening of the localized
575 580 585 520 3 states. The large anharmonic broadening can completely or
partially hide the inhomogeneous part of the band. The lack
of reliable data on any structure of the gap bands makes it
impossible to establish unambiguously all of the parameters
1072¢ . E of the problem. We have used these values to fit the band

- shape. To make the best-fit procedure more transparent, in

Fig. 7 we give the spectrum of the gap states for broadening
equal to the half of the broadenings in the final curve of this
figure. Under this condition the broadening of the first maxi-
mum, which is due to clusters wig¥ 1, coincides well with
the estimate from Eq52), and we see the structure due to
clusterss=1-3.

Figure 9 gives the composition dependence of the integral
intensity corresponding to the split-off states. We see that the
satisfactory coincidence takes place in the region of concen-
trations belowc=0.12-0.15. A deviation of the experimen-

i L L tal data from the calculated curves in the region 0.12-0.15
20 L 151. 10 5 ] 0 =<¢<0.2 can be partially due to a restriction on the size of
ocalization energy (™) clusters involved into calculations or due to the fact that

FIG. 8. The experimental Raman spectrum in the region of the Percolation” over the split-off cluster states can appear in
gap mode foc=0.13(square} the calculated DOS of the split-off the system. Under this condition the wave vector of the states
states(solid line), the DOS for broadenings equal to half of the above the percolation threshold, can be introduced, at least
best-fit valuegdashed curvye and the number of clusters per atom approximately. In this case the Raman intensity due to the
of cation sublattice fos=1-9 vs the localization energy of com- states formed by clusters will be proportional to the spectral
pact clustergfull circles). DOS with nearly zero wave vector. The behavior of the in-

10~

The results of calculations which take into account clus
ters withs=1, ... ,9 arepresented in Figs. 7, 8, and 9. Fig-
ures 7 and 8 show the densities of states for the gap stat
calculated through Eq46). It is seen that the experimental
shape of the optical band coincides well with the calculate
DOS. The effective potential amplitude used in calculation in

103

DOS and intensity of RS (arb. units)

104
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tensity atc>0.2 demonstrates a relatively weak variationtained results indicate that the formation of the gap band
with composition which is consistent with the behavior of A;(TO) in the regions of low and intermediate concentra-
the spectral DOS. tions can be explained by statistical clusters of Ga for the site
A comparison of the composition dependence of DOSpercolation problem in the cation sublattice of the solid so-
obtained for different numbers of clusters involved in calcu-lution.
lations shows that the change in the curve is not considerable The suggested approach allows one to subdivide the entire
when the sum from Eq(46) includes clusters witts>5.  compositional range of the solid solution into two parts. The
This result is a consequence of a rapid convergence of thiérst part is the region of very low Ga concentrations when
sum in Eq.(37) known in the percolation theory. It is pos- only the isolated clusters of substituting atoms can exist. The
sible that inclusion of higher terms into calculations wouldwave functions of clusters in this region do not overlap, or
lead to the occurrence of an almost horizontal region in theean form only small complexes of clusters. The second re-
theoretical curve, which would improve the coincidence withgion can be characterized by a sufficiently high concentra-
experimental data, at least in the narrow interval just belowtion of clusters with overlapping wave functions, which leads
the lattice percolation concentration. to the formation of a “percolation” cluster extended over the
whole crystal. Percolation over the split-off cluster states can
arise in the system first in the region of the maximum density
V. SUMMARY REMARKS of these states. The critical concentration for the percolation
Spectroscopic study of hexagonal @i, (N alloys with ~ ¢@n be considerably lower than the lattice critical concentra-
a Ga content (* x)<0.3 has revealed a large broadening oftion k_)ecause of the large spatial extent of the cluster wave
Raman spectrum in the region of #3(TO) optical branch ~ functions. _ N _
accompanied by the appearance of a complex structure of the 1h€ obtained data seem to be insufficient to determine

spectrum. The broadening of phonon bands of a disordered@mbiguously the value of this percolation concentration
system occurs due to the violation of the wave-vector con@nd the position of the percolation threshold on the energy

servation law for both electronic and phonon systems. Th&cale. The phonon states above the percolation threshol_d can
manifestation of a phonon DOS in the region of the mostMOve throughou_t the whole crystal, and can be characterized,
low-frequency vibrations of thé\,(TO) optical branch can 2t least approximately, by the wave vector. On the other
be regarded as a result of the considerable difference if@nd, this means that the second mode in the vibrational
masses of heavier Ga atoms substituting for Al. The detaile§Pectrum of the solid solution occurs. To study this problem
analysis performed in this paper has revealed that, simultg1'0'€ thoroughly, experiments at He temperatures are needed
neously with the enhancement of this spectral region, the gaf? decrease the anharmonic broadening of the spectral peaks.
mode splits off at the band edge. This mode manifests itse dditional information can be obtained from luminescence

as a relatively narrow peak at the low-energy edge of th&Pectra of deep centers.
A,(TO) band. The relative intensity of the gap mode in- The suggested approach can be useful for a more accurate

creases with increasing gallium content, and at Ga concerfleScription of the two-mode crystals and can serve as a back-

trations above (+x)=0.3-0.4 it transforms into the ground for using phenomenological methods in calculating

A,(TO) mode of the GaN crystal. Thus, in a limited range of Vibrational spectra of disordered solid solutions. Note also

Ga content, the behavior of th&,(TO) phonon mode in that the two-mode-type behavior of thg(TO) andE,(low)

Al Ga,_ N can be considered a two-mode behavior phonons have been revealed in this study as well. The be-
XThe_éomposition interval where the largest inh'omoge-hav.ior of these phonon mode_s and alsp of pther m(.)des in

neous broadening is observed,<(%)~0.1-0.25, includes Al-rich hexagonal AlGa, _,N will be described in detail in a

the critical concentrations for the fcc sublattice both for per_separate paper.
colation over sublattice sitd§1—x)~0.2] and percolation
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