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We present a detailed theoretical investigation of resonant states induced by shallow acceptors in uniaxially
strained semiconductors. By applying Dirac’'s approach and using the Coulomb potential of an acceptor im-
purity, we have obtained the amplitude of resonant scattering, the probability of coherent capture and emission
of holes by resonant state, and the characteristic features of the resonant state. The modified dispersion law and
density-of-states of valence band by the resonant states have also been derived. The energy dependence of
optical transition probability between resonant and localized impurity state have been calculated. The theoret-
ical investigation of a new mechanism for carrier population inversion in strained semiconductors under an
electric field has been presented. It has been shown that the mechanism is the result of a coherent capture-
emission type inelastic scattering of holes by resonant states. The calculation based on our theory for uniaxially
strainedp-Ge explains the recently observed lasing phenomena in THz frequency region.

[. INTRODUCTION the Coulomb potential of an acceptor impurity, and derive
the analytical expressions of the shift and the width of the
When a semiconductor is doped with one type of shallowesonant state. After calculating in Sec. IV the dispersion
impurities, normally the impurity level lies in the energy- relation and the density-of-states of the valence band modi-
band gap with a well-defined binding energy measured froniied by the resonant state, and in Sec. VI the relevant optical
one band edge. Then the impurity states are spatially locafransition probability, the mechanism of population inversion
ized. As an external pressure removes the degeneracy of t¥dll be studied in detail in Sec. VII.
valence bands, one finds an impurity level attached to each
shifted valenc_e band edgkdf the energy separation be- Il. VALENCE BANDS OF A STRAINED SEMICONDUCTOR
tween two splitted valence bands becomes larger than the
impurity binding energy, the impurity level attached to one  The fourfold degenerate valence-band top in germanium
valence band overlaps with another valence band. A hybridis at theI' point of the Brillouin zone. The corresponding
ization then occurs between the overlapping localized impuwave functions are transformed according to Thg repre-

rlty states and extended Bloch states, resulting in resona@bntation of the double point gro@_l and can be character-

states. Using a variational approach, the acceptor states jped by the total angular momentuiv 3/2. Due to the spin-

resonant state has been obtained with the variational methoflom the valence-band top by the spin-orbit splittig The
Far-infrared lasing was observed fropadoped germa- corresponding wave functions are transformed according to

nium Ge:Ga under a uniaxial stress and an electric field iq + ; =~ .
. heI'; representation of th®, group, and are characterized
the range from 10 V/em to 3 kv/cthBy analyzing the pho- by J=1/2. Since the spin-orbit splitting in germanium is

ton energy and the selection rule, it was concluded that th?nuch larger than the binding energy of an acceptor, in the

initial state of the optical transition is a resonant state. Two L ; ;
. . N resent paper, it is reasonable to ignore the split-off band.
questions of fundamental importance then arise: the charai—

i ) S e L
teristic features of the resonant state and the mechanism ]he effective-mass Luttinger Hamiltonian describing Fbe
its population inversion. In our recent letfawe have proved Vvalence band is aX4 matrix function of the operatdt=
without computational details that the inversion of carrier—1V. We choose the Bloch basis, with m=+3/2 and
population is due to the coherent capture-and-emission prot 1/2 for thel'y representation, whera is thez component
cess by resonant states. Such details will be provided in thef the total angular momenturd of the hole atl’ point.
present paper. These basis functions can be expressed explicitly as

To build up our theory unambiguously, the model Hamil-
tonian is introduced in Sec. Il for the valence bands of cubic 1
semiconductors under uniaxial stress. In Sec. lll we use Ugp= — — (X+iY)T,
Dirac’s approach to investigate the resonant state induced by V2
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1 ) light heawy
Uyp=—[— (X+iY)| +221], hole
1/2 \/g[ ] hele
- [(X=iY)T+2Z]]
U_1p=—= (XA~ ;
\/6 2p1 ] E(2p1)=|19 me'
L 2r, 7] o(2p,)=2 meV
U_gp=——=(X—1Y)], (1) 1s o 1sy=4.8 meV
3/2 \/E
whereT and| denote the 1/2 spinor up and down. The basis
statesX,Y, andZ are Bloch functions, which transform like
the corresponding coordinates under the symmetry opera- 20 2p )=0.8 mev
tions of O;,. We set the zero reference energy at the valence- 200 F 2 °)=1 3 eV
band edge, and adopt the convention that the valence-band ! Py~
energy is positive. In spherical approximation the Luttinger Ts 1~ H1s=3.8meV

Hamiltonian is given b
FIG. 1. Acceptor level§measured from respective band edge

é+ b c 0 and heavy-and light-hole bands of Ge:Ga under uniaxial stress.
A, (k)= — n? | b* a0 ¢ @ If the stress is along thgl11] direction, to derive the
- 2mg| o 0 a. -b|’ strain Hamiltonian in the form of Eq4), we should rotate
. . . the coordinate system to bring tlzeaxis into the[111] di-
0 ¢ —-b* a, rection. In the similar way, for any direction of applied

stress, we can always rotate thaxis into the uniaxial stress
direction to obtain a diagonal form of stress Hamiltonian.
A, =—(y1— 29K (y1+ ) (K2+ Rf,), Since we have used the spherical approximation for the Lut-
tinger Hamiltonian, in the new coordinate system, it will
have the same form as E). Consequently, for any stress
direction, our Hamiltonian for the hole states in a uniaxially
strained semiconductor can be written in the general form

with the matrix element

a_=—(y1+2y)k—(y1— N (K+KD),

BZZ@Y(&x_iRy)RZa
H(k)=H_(k)+Hg, (6)

" P
¢ \/57/( K ky)™ ® provided a correct value of the deformation potential is used.

In the above equations,y,, and yz are Luttinger param-  For example, for Ge with a stress alofigll], a=4 meV/

eters, andy=(2vy,+3v3)/5. In our notationk is a vector kbar. This Hamiltonian is easily diagonalized to yield the

andk is an operator. valence-band spectra. According to our convention that hole

A uniaxial stress lowers the symmetry of the crystél.  energies are positive, the hole bands are obtained as

stress parallel to thg)01] direction changes the point-group )

symmt_atry_from cubi_cOh tp tetrago_naD4h_. Thel'g repre- . E|,h(k)=ﬁ—[71k21 \/§2—2y§(3k§—k2)+4y2k4],

sentation is then splitted into two irreducible representations: 2mg

I'y for the Bloch wave functionsi.s,, andT'; for the (7)

Bloch wave functionsu..;,. Consequently, the top of the \yhere the minus sign is for the light-hole baBgk), and the

valence band separates into two bands with twofold degerb|us sign for the heavy-hole bari (k). These two bands
eracy each. The effect of this uniaxial stress along[@td] 5. schematically shown in Fig. 1 as solid curves.

axis is to add to Eq(2) a strain Hamiltoniah We will study the physical properties of a resonant state,
which is the hybridized product of extended states in a va-

¢ 0 00 lence band and a localized impurity orbital in the presence of
- 2|0 —-¢ 0 0 a charged acceptor. Hence, a Coulomb term should be added
Hstrzz_mo 0 0 -¢ ol @ 1o Eq. (6) to give the final form of the Hamiltonian

0 O 0 ¢ e?

. . (k) =HL(k) +Hgp——T, ®)
The parametet, the applied stres® and the deformation er

potential o are relaied to the split of the valence-band tOpwheree is the dielectric constant is the electron charge

Eger b N : . . .
ke and | is a 4X4 unit matrix. Since a shallow acceptor is
12 attached to the valence-band edge, in a uniaxially strained
Eger= aP:ZZ_mO' (5 semiconductor, both its fourfold degenerate ground state and

excited states are separated into two doubly degenerate lev-
For Ge with a stress alor[@01], a=6 meV/kbar. els. The symmetry properties of localized acceptor wave
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functions certainly depend on how the stress is applied to thﬁ/hereﬂo is the diagonal part of{, andU the off-diagonal
sample] and in an adopt approximation each of these funcpart. Since the off-diagonal terms of the Luttinger Hamil-
tions can be characterized by taecomponent of its total tonjan couples the heavy-hole band and the light-hole band
angular momentum, which is labeled by Splitted acceptor  states, and this coupling decreases with increasing stress, the
states originated from the ground level are classifiedvby perturbation results are more accurate for stronger applied
=*1/2 andM = £ 3/2. stress, which is the region of experimental interest.

Under a sufficiently strong stress that the valence-band \yq are interested in the eigenfunctionsFég in the en-
splitting Eqer is larger than the acceptor binding energy, tWOergy region around thesllevel attached to the heavy-hole

separated series of acceptor levels are formed as shown Nibband. Usina the basis aiven b thev can be ex-
Fig. 1. Each acceptor level attached to the heavy-hole bangressed as g g y Et), they

overlaps with the light-hole barig,(k), and forms a resonant

state via its hybridization with the extended Bloch states. ) 0

The resonant states can be classified by the same value of the 1s |

z component of the total angular momentum as the classifi- (+32)/ 1 _ 0 (+1/2), ()

cation of the original localized acceptor orbitals. @)= o | e A= o |
In the limit of high stress, we can expand the square root

in Eq. (7) in powers ofk?/{ and keep only the quadratic L 0 0

terms. This approximation is equivalent to the neglect of the _ -

off-diagonal elements in the Luttinger Hamiltonian matrix, 0

and hence the hybridization effect is ignored. These off- 0

diagonal terms represent the interaction between the heavy- t//ﬁfllz)(F): | . o= 0 ,

hole band and the light-hole band. In this situation the ac- Yilr)

ceptor levels near the light-hole band edge were studied | O @Ts(f)_

earlier®® and the acceptor levels near the heavy-hole band (10

edge were investigated recently by Odnoblyudov and . . .
Chgi]styakovl.0 In higr%J stress appro&im;tion, botr?/ series of where1(r) is the effective-mass envelope function of the

localized acceptor orbitals attached to the light-hole banéoca”fEd a}cceptoriorbital near the hgavy-hole band edge,
and the heavy-hole band are classifiechinparityi, and the ~ 2nd #i(r) is an extended state in the light-hole band.

z component of the acceptor orbital angular momentym Consider a carrier in the light-hole band Bloch state with
We label the localized acceptor orbitals with the conven-Wave vectork. The carrier will be scattered by the impurity
tional notations: % for 1,=0 andi=+1, 2p., for I, and therefore its wave function will be modified. We are

=+1 andi=—1, and 2, for |,=0 andi=—1. All accep- interested in the case when the energy of the incident wave is

tor levels attached to the heavy-hole subband have close to the energy of the acceptc;rgrbi}al near the heavy-
= +3/2 and all acceptor levels attached to the light-hole subl©!€ band edge. Due to the hybridization the resultant reso-

band haven=+ 1/2. These acceptor levels are schematicallf'am state will consist of the incident wave, the scattered
shown in Fig _1 THez component of total angular momen- waves, and the localized orbital, which can be written in the

tum M for each level is simplyM =1,+m. Hence, the & general form
orbital near the light-hole band edge Hds= +1/2, and the
1s orbital near the heavy-hole band edge Mas + 3/2. \pEk(r): 23/2 a(km)w(m)(r)jL 2 b(m)w(krp)(r)_

Kk’
m==x k' \m==1/2

Ill. DIRAC’'S APPROACH FOR RESONANT STATES (1)

By proper choice of the coefficients of linear combination,

In our earlier work! exact solution of resonant state was the resonant state wave function satisfies the ‘Gthoar
obtained if the impurity potential is zerorange. However, forequation oe

a realistic Coulomb impurity potential, the problem becomes
complicated. In this section we consider, in detail, the hy-
bridization process that leads to the formation of resonant
states induced by a Coulomb potential of an acceptor impu-
rity. During the hybridization process between the localized We Wwill use the Dirac’s approach to determine the
acceptor orbital and ||ght-h0|e band states, zhﬂ)mponent COEfﬁCientSl.z'l3 SUbStltUtlng this wave function into Eq
of the total angular momentum is conserved, and therefor&l2), we obtain the coupled linear equations for the coeffi-
M=1,+m serves as the quantum number to label the resosientsa{™ and b(kr,?)

nant state. This process is described by the off-diagonal ele-
ments of the Luttinger Hamiltonian given by E@®). Based

on the full Hamiltonian in Eq. (8), which includes the
Coulomb potential, we will analyze the effect of these off-
diagonal terms with the Dirac’s approathwhich is one
version of the perturbation theory for continuum states. We a§ *2(E,—Egert 815 = 2 [bl Wi, — b\, M2VE, T,
will separate the Hamiltonian as k'

W (1) =Ec¥e,(r). (12)

1/2 -1/2
a(k3/2)(Ek_Edef+815):E [b(kk’ )Vk’+b(kk’ )Wkr]
k/

H=Ho+0, 9) bl P Ec—e1(k)]1=[a2V}, +al 32w, ],
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by E—ei(k)]=[a Wy, —al*PVy.]. (19 20
. . . 151 Ge _
In the above equationg, is the energy of the state with
wave function ¢(**2(r) measured from the heavy-hole Lo

band edgeg (k) is the light-hole band energy fagi(r),
measured from the light-hole band edge, &nds the reso-
nant state energy measured also from the edge of the light-
hole band. The matrix element4 and W, are calculated
from the off-diagonal operators of the Luttinger Hamiltonian

Energy (meV)

<sols<r>| b<k>|¢k<r>> o1 2 3 4 5 6 7 s
compressive stress P || [111] (kbar)

<<Pls r)| C(k)|‘//k(r (14 FIG. 2. Stress dependences of the resonant energy Eyel
(solid curve, the impurity levele;.=4.78 meV(dot ling), the en-
ergy shiftAE, and the valence-band splitsin p-Ge. The edges of

Equation(13) can be solved in the same way as for Scat'heavy- and light- hole bands are indicated by thick solid lines.

tering problems?* For an incident wave witlz component

i m’) . . .
of angula/r momenturm, the solutions are labeled ag™" level with an widthT",. We notice from Eq(18) that the
and b(krlf;m ) If m=1/2, we have shift depends oIk, ., namely,AE,(Ey). Measured from the
132 light-hole band edge, the resonant lefzglis determined by
al’?¥2=v,\R,, the equation
afP A=W R, , Eo=Eqger—e1s T AE(Eo). (20
bH21_ 5+ R Ry (Vi VE, + Wi W) Using the so obtained value d&,, the widthI", is then
Kk K ' calculated from Eq(19).
(12-1/2)_ _ For the case of the Coulomb potential of an acceptor im-
Py RiRo(ViWie, = Wi Vie ), (19 purity, we will adopt the most commonly used variational
and if m=—1/2, the solutions are function
—1/2,3/2)_
a(k )_Wle, " ()= o (p.2) 1 ;{ /pz N 2 (21
Q1N =@1(p,Z)=—F—=€eXp —\/ 2t i3|-
a(k— 1/2,-3/2) _ ~VIRy, Jma?b ac b
bf(k,llz 102)_ RyRo(Wi V2, — VE W), For the extended Bloch states in light-hole band, we use

normalized plane waves,(r)=e'*"/ V. Substituting these

f i into Eq(14 il i
b(kk’l/z 112)_ 5kk'+R1R1(WkV\f§,+V§Vkr)- (16) unctions into Eq.(14), we readily obtain

In the above equation®; andR, are defined as \/§ﬁ27’ :
Vi =— (kx—iky)k, 1 (k),
1 Mo
Rl:Ek_Edef+ 813_AEk+irk/2' (17) \/§ﬁ2‘y
W= — (kx—iky)?1(k), (22
1 2mg
=—Ek_8|(k,)+i 7]; 70, where 1(k)=8yma’b/V[1+kZa?+(ki+k;)b?] "2 is the

overlap integral between the envelope functlons of the local-

with ized acceptor orbital and the Bloch states. Using these ex-
2 5 plicit expressions to calculate all relevant quantities in Eq.
_ v 3 ,|Wk’| +[Vie (20), it reduces to the final form for numerical solution
AE =P 5| d3k (18)
(2 ) _8|(k,)
E,=E i 20 1 (Eop) (23
Iy V 0= Eder— €15t am 27a E Fr(Eo).
S | K (WP Vi) ST ey (k1))

(19 The dimensionless functioRg(E,) depends weakly on the
energyE,, and can be well approximated as a constagat
From the expressiora,” =3 in Egs.(15) and(16), as = —41.76 in the limit of high stress. Fqr-Ge doped with
well as the expression @R, in Eq. (17), we see that the Ga, the parameter values ae 114 A andb=51 A the
coupling between the heavy-hole band and the light-hole@wumerical solution of the resonant level enekyyas a func-
band shifts the energy,s of the localized orbital to the tion of compressive stress along fHel 1] direction is shown
resonance level by an amounte, <0, and broadens the in Fig. 2 by the solid curve. The edges of the heavy- and the
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<20 hole band has a finite probability to be captured in the local-
g ized acceptor orbitap=%2)(r) if the energy of the hole lies
& ogsl in the regionEy,—I'/2<E, <E+1'/2. As derived rigorously
= in Appendix A, the total probability of transition from the
=] statezp'k(r) in the light-hole band to the localized acceptor
S Loy ol (£302)py i

g orbital ¢ (r) is

g 0.5

g 2 rre2

=4

& wWm=_(Iv, ]2+ W |?) —M 2
2 | k=7 (IVid*+ Wil )(Ek—Eo)2+1"2/4 (27)

0 lI0 ZIO 3I0 4I0 50
resonant position E, (meV) The same expression takes place for the probability of the

. ] reverse process. Therefore, the captured hole will stay in
FIG. 3. Resonant level width as a function of resonant enerquo(ﬂ/z)(r) for a time interval about

level in p-Ge.
light-hole bands(thick solid lines, as well as the energy > W(E):E_ (29)
level .5 (dotted ling are also plotted, together with the oot

valence-band spliE 4 and the energy shifAE.

The width of the resonant stal&?2 is then readily derived
from Eq.(19) as
r 52052 Since the light-hole band statﬁq((m)(r) is modified into
—=48( _) Vo B (Ey) (24  the resonant stat¥ {™(r) as shown by Eq(25), the disper-
2 2mg 60 ’ sion relationg (k) and the corresponding density-of-states
p,(&)) will also change accordingly. Using the wave function
given by Eq.(25), from Eq.(12) we can easily derive the
self-consistent equation fdg, at the presence of a single
acceptor, which includes the modification of energy spec-
trum g,(k) of light-hole subband by the resonant state. How-
ever, there are many acceptors in a sample. We are interested
in samples with low-acceptor concentratidip /V such that
each acceptor can be treated as isolated from the others.
Hence, the effects dfl, acceptors are additive, and the self-
consistent equation becomes

IV. DISPERSION LAW AND DENSITY-OF-STATES

where the functiori, (Ey) depends also weakly dg, in the
regionEqy>¢q5. At the other limitEq—O,F,(Eg) is propor-
tional to Eg. In Fig. 3 we plotl'/2 as a function oE,. T is
found to be proportional t&g? in the regionEy<Eges, but
proportional toE, ¥? in the regionEy=E g 1.

To clarify the role of scattering in the formation of reso-
nant state, we will substitute the solutions EG%) and(16)
into Eq. (11) to obtain the proper forms of the two specific
wave functions form=1/2 andm= —1/2. By introducing

two scattering amplitudetir;™ and t{""™", we arrive at
the explicit expressions N, E.—E, , ,
Ex=e/(K)— — — 5 (|Vi["+ |W|9).
A AT 7R R
PO =0+ Y eyl (1) (29
“ “ K'.m'==1/2 Ex—e|(K')tin K
From Eqs.(3) and(14), it is obvious that bott/, andW,
> I (m") o5 vanish ifk is along the stress directianaxis. In this situa-
e Ek—E0+iI‘/2(P (r). (25 tion, there is no mixing between the light-hole subband and
- _ ) _ ‘the heavy-hole subband.
In the above equation, at the right-hand side, the first term is  ysing the material parameterspfGe, the calculated nor-
the mmdent wave ofahqle in Fhe I|ght—h0|<=T band. When thismalized E./E, as a function of normalized(k)/E, is
hole is scattered by the impurity potential into the light-holeshown in Fig. 4, fok perpendicular ta axis and for various

band again, such elastic resonant process is represented Syceptor impurity concentrations. As the concentration in-
the second term. The corresponding scattering probabilityreases from 10 cm™3 (curve 3 to 1x107cm3

t(m,m')

per unit time is® (curve 2 and to 2x107cm 2 (curve 1), the “effective
mass” of a lighthole is dramatically enhanced. The physical
W(m),=E|t(m),|2Iim 7 origin of this enhancement is that a hole is captured in the
KR (B~ Exr) 2+ 72 acceptor state!; >?(r) for a finite amount of time'/#.

Knowing the functional dependence Bf, on ¢,(k), we
27 ) 12 can calculate the partial density-of-stap€&, ) which corre-
:7|tk,k'| O(Ex—Ew), (26) sponds to the spectrut, along any direction irk space.

The result is shown in Fig. 5 fde perpendicular to the stress

where [t{)]2=[t("Y2) 24 {712 The last term at the direction z axis, with various values of acceptor impurity
right-hand side of Eq(25) represents the capture of a hole, concentration: curve 1 for 2107cm 3, curve 2 for 1
initially in the light-hole band, by the localized acceptor or- X 10t’cm™3, curve 3 for 5<10*°cm™3, and curve 4 for 1
bital ¢(*3?(r), and the subsequent coherent re-emission of< 10'°cm™3. The density-of-states dfi, noninteracting ac-

the hole back into the light-hole band. A carrier in the light- ceptors is & function. The hybridization between the local-
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1.2 '-,":; 2.0x106
B 6
11} 2 1.5x106
=
) E k
~u1.0} S 1.0x106|
5] =3 2p
g 1
= s |
__.-"l 0.0 L 1 1
0.% 17.5 20.0 22.5 25.0 27.5

Transition energy 70 (mev)

FIG. 4. Normalized resonant state energy as a function of nor- FIG. 6. Energy dependence of opgcal tr_ansmon probability from
. . . o .. around the lowest resonant state to impurity.2 states. The tran-
malized light-hole band energy inmGe under uniaxial stress with _. T .
. R sition process is illustrated by the inset.
k perpendicular to the stress directinaxis. The value of acceptor
concentration is zerddotted ling, 2x107”cm 2 (curve 3, 1 .
X 10 cm™2 (curve 2, and 5x 10%cm™2 (curve 3. whereT is the operator of optical transition. For the transi-

tion in the valence band; has the form
ized orbitals of N, acceptors and the Bloch states in the
light-hole subband broadens thdunction into an asymmet- e R
ric peak in the resulting density-of-stateéE,). T= E(A~VpH), (31

V. OPTICAL TRANSITIONS wherec is the speed of light and is the vector potential of
the electromagnetic field. With increasing value gpfthe
The resonant stat("™(r) given by Eq.(25) consists of  Juminescence line approaches the Lorence shape.
two parts: an incident plane waws{™(r) and a scattered The selection rules in a uniaxially strained Ge, as deter-
part, which we label a@(km)(r). When a carrier in the reso- mined by the cylindrical symmetry, afé) AM=0,=1, and
nant state makes the optical transition to a localized impurity2) the initial and final states should have opposite parities
orbital ¢(r), the interference of optical matrix elements with respect to the reflection— —z. In the resonant state
originated fromy{™(r) and®{™(r) produces an asymmet- given by Eq.(25), the transitions from the nonplane wave
ric energy dependence of the optical transition probabilitypart to impurity 2 states are allowed, but to the impuritg 1
This is so-called Fano resonariéeThe asymmetry of the state is forbidden. However, the transition from the plane
line shape is measured by the shape parameter or the Fan@ve to both » and Is states are allowed. This is the reason
parameteq; why the 1s-to-1s transition may appear in the optical spec-
trum, but its intensity will be weaker than the intensity of
R 1s-to-2p., transition.
1, (D™ T|$)|? We have mentioned earlier that the main peak in the ob-
> :W' (30 served far-infrared lasing spectrum of strained Ge:Ga corre-
K sponds to the 4-to-2p..; transition, which is illustrated by
the inset in Fig. 62 Now we will calculate the optical tran-

9 sition probabilities between these degenerate localized impu-
8 1 rity orbitals and the resonant states with energies cloggto
. Leteyy, | be the energy level of impurity [ states. For the
e impurity orbitals we will use the variational functith
[=4]
s
~ 1 , T
&4 | — *ipa— Vplco+2z4/d
i ®2p,,(1) pe ‘e : (32
E 3 2= Jarctd
2 wherer=(p,z,¢). For an acceptor in Ge&=157 A andd
1 =230 A.
0 . The energy dependence of optical transition probability
04 0.6 08 Lo 12 W, can be expressed as
s1(k)/E, K
FIG. 5. The partial density-of-states for the resonant I&gin We =Rg /n;, (33
k k !

a p-Ge under a uniaxially stress, withperpendicular to the stress
direction. The values of acceptor concentration are1p’cm 3 ] ) ] o
(curve 3, 1x 10" cm™3 (curve 2, 5x10%cm 2 (curve 3, and 1 Whereny is the free-hole concentratioRg, is the radiative

X 10 cm™2 (curve 4. recombination rate of holé$
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4rre D can be well approximated by =0 for E,.=% w,, and the
Re.= 7oV > 2 Eg—ey, thcQle) source intensitys was derived® as

k', Q,R,a m=+1/2
A S=S5,(1)0(e;—E 3
< (TDIA Vo ehy (-RDZ (34 So(1)0(&~E 37

HereR is the impurity position, and\, is the vector poten-

tial of photon with polarizatior and wave vectoQ. The 2\ B wo\ 2R (ech)?R
normalized carrier distribution function € (5) (-) 73 (38)
a m;
fkr:nhV5(Ek/_Ek)/2 5(Ek'_Ek) (35) and
k
represents a uniform occupation of states with ené&gy f (£-dS)f (1)
The shape parameter for the impuritp.2, states in a Sy(t)= e (39)
uniaxially stressed Ge doped with Ga can now be readily 3 '
calculated from Eq(30) as d°k®(eo—Ey)
1, ¥ cBE, where m, is the effective mass along tteaxis, and the
qu 236( y1+27)2 a8 ?C’ (36) characteristic frequency, is related to the optical phonon

) ) _emission ratevaV(E/fiwg)—1 for the carriers withE,
whereC is the angular average of the matrix element part iN>% wo. In Eq. (39) the integration is performed over the
Eqg. (34). C has a weak energy dependence and its value ig face defined by the equati@ =7 w,.
approximately 0.1. The spectrum of stimulated emission was | the absence of resonant impurity scattering, for carrier

measured aEq=27.4 meV, corresponding to a resonant kinetic energyE, <fiwy, f, can be obtained from the kinetic
energyEy=22.4 meV and’=3 meV. Hence, the Fano pa- gquatiod®?

rameter isg=45. Under this situation, the effect of interfer-
ence is negligible and the broadening of the luminescence af,  e€ af,
line should be Lorence type without detectable asymmetry. St kS D. (40)
Our calculated transition probability is shown in Fig. 6. z
The stationary solution of Eq40) is an almost constarif, if
VI. KINETICS OF RESONANT STATES k=(k,,k,) lies in a cylinder ink space, and, =0 other-

) ] ] wise. This cylinder is confined by
The formation of resonant states is accompanied by the

coherent capture and emission of carriers by localized impu- 0<k,<\2m,wo /%2, K, <\2m, /%2,

rity orbitals. Since a carrier can be trapped in a localized

impurity orbital for a time intervali/I", such process has wherem, is the transverse component of the effective-mass
profound influence on the non-equilibrium distribution func- tensor.

tion in a relatively pure semiconductor at low temperatures. In the presence dfl, localized impurity orbitals attached

In this situation the only significant scattering is due to op-to the heavy-hole subband, free carriers in the light-hole
tical phonons with energyiw,. Under an applied electric band can be trapped into these orbitals, and such trapped
field £ (assuming along axis), a carrier drifts in the momen- carriers can either escape back to the light-hole subband, or
tum space almost scatter free, and its energy can excegd Mmake radiative transitions into the impurity orbitals attached
if £hwglel, wheree is the carrier charge anidits mean  to the light-hole subband. These processes drive the system
free path. The carrier thus has a finite probability to return tdo a steady state within a time intervgl. As will be shown

the low-energy region by emitting an optical phonon. Suchater by our calculation, fop-Ge this transient time is
phenomenon, the so-calletreaming motionhas been ex- =5x10"'?s. The typical value ofi/T calculated from Eq.
tensively studied/ '8 (24) is #IT=2x10"13s. We see that both; and#/T" are

However, if a resonant state exists with energy less thatess than W, whereW is the optical transition probability
fwg, then under an applied electric field a carrier will chargecalculated in Sec. V. Consequently, in the kinetic equations
the resonant state before its energy read¢hes. In our ear- for f, and for the occupation probability, of impurity
lier letteP we have proved that such process provides a newtates, the unimportant radiation transition process will be
mechanism of carrier population inversion, which explainsignored.
the origin of far-infrared lasing from straingo-Ge? The Then, f, satisfies the kinetic equation
detailed analysis, which was not given in Ref. 5, will be
presented in this section.

We will first outline briefly the model studied in Ref. 5. It
includes adrain D at E,=% wq, which describes the process
of removal of holes in the energy regidf =% w, due to and the impurity collision integral
emission of optical phonons, andaurce Sat smallk within
the energy interval between zero aggi<# wg, which pre- _ _ _
sents the generation of holes removeddbgin. Let f, be the I NA% [P Whoor = Wil NalWofr = Wie o)
carrier distribution function. As justified in Ref. 5, the drain (42

of
(9_;:2 [Wk’rfk’_wrk’fr]! (41)
kl
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should be added to the right hand side of E40). The e [hZ  sing
probabilitiesW,, andW,,, are defined by Eq$26) and(27). b(Ey,9)=— 7 Vome KE o)

Since the localized orbitals and the extended Bloch states are 0 ko

doubly degenerate, we have 3?=f 3’=f and f/Y?  The explicit expressions df{ E, ,9) andSy(E,9,t) can be
:flzl/?Efk_ The conservation of carriers imposes the nor-easily obtained by straightforward substitutions.

malization condition The differential parts at the left-hand side of the above
equation can be further simplified by introducing the variable
2 f+Naf, =N, (43) E, through the following relation using the functional depen-

dence ofk on E, and 9,

whereN,, is the total number of holes. All above equations KE., 9=m/2)=k(E. . 9)sind 4

will be solved self-consistently. (Bi, 9=ml2)=k(E, ) ' @7
Since inp-Ge the transient time, is much larger than the In terms of the pair of independent energy variableg énd

lifetime of the resonant state/I", we can set the left-hand E,), Eq. (45) becomes

side of Eq.(41) to zero. Hence, the occupation probability ‘\ .

f, of the quasilocal states follows adiabatically the distribu- d Iy _ ~ ~

tion function f, of the Bloch states. We then obtain from at 5t (e, k)aEk_I(Ek’Ek)+S(Ek’E"'t)' (48)

Eq. (41), ' . o L
a- (41) With only one coordinate derivative operator, this time-

dependent integral differential equation can be solved with
f()=2 fi(t)(|ay>*2+|a392). (44) roti)tine numeric%l procedure. |
“ For p-Ge, the optical phonon energy #swy=36 meV,
This relation implies the following physical picturg, is the — and the characteristic frequency #g=5x10"%s"1. In our
probability to find a hole in a plane-wave state with momen-calculation we have adopted the approximation of a single
tum k when the hole is far away from any impurity. As the hole band, which is not unreasonable under experimental
hole approaches an impurity, it induces the probabilityconditions. One can show that under such conditions, includ-
|af?%32+|al’>73/92 to find the hole in a resonant state. ing the second band will only change the tail of the distribu-
Then the total probabilit§, to find a hole in a resonant state tion, which is not important for the problem under consider-
is given by Eq.(44). Substituting Eq(44) into Egs.(40) and  ation.
(42), we obtain the kinetic equation fd, : For given values of uniaxial pressure and electric-field
strength, the distribution functiofy is calculated from Eq.

afk e dfy 27-rNAV (48). The so-derived results have been thoroughly analyzed

h ak Tr 2 [t |20 Ee— B ) (Fior = i) in Ref. 5. Our theory gives the origin of population inversion
that is required to explain the detected lasing from strained
NAV|ty, | 2T p-Ge? To close this section, we will demonstrate the self-
> 2 consistency of our calculation. If we set the pressure at 5
Al (Ex—Eo)*+1'7/4] kbar and the electric field at=300 V/cm along thg111]

It |2 fio direction, the calculated resonant level is at the endtgy
kil K —f, =10 meV and has a widtli'=2 meV. From Eq.38) we
k (Ex—Eg)?+T%/4 obtain the source widtle,=4.25 meV, which is much less
than the optical phonon energy 35 meV. Furthermore, from
+S(1)O (0~ Ey), (45 the numerical solution of the distribution function, we obtain
with the boundary conditiofi,=0 at E,= 7 w,. the transient time aboutz~=5X 10*12 s, which is much
Equation(45) will be solved numerically. We start with a longer than the lifetimé/I'=2x 10" **s. Consequently, our
guessed initial distribution and follow the evolution of the calculation based on the condition thhtrs>7 is self-
distribution function until it reaches a stationary solution. consistent.
The collision integral can be conveniently calculated in
terms of the two independent variableg and ¥ instead of VIl. CONCLUSION
k, where is the angle betweek and thez axis. Accord-
ingly, we transform Eq(45) to

We have shown that acceptor impurities in uniaxially
strained semiconductors can produce resonant states. There
exists a threshold stress for the appearance of the lowest
+a(Ey ,19) + b(E,, 15‘) =1(Ey,) +So(Ey, 1), resonant state, and the threshold value can be calculated with

07 (46) high precision within the zero range potential model. In the
high-stress region, via Dirac’s approach and using the Cou-
where lomb potential for an acceptor impurity, we have obtained
5 . the energy and the width of a resonant state, the amplitude of
a(E ,,9):35 [ h 1 <0k(Ek,f’)) resonant scattering, and the probability of coherent capture
ke h Mo K(Ey, ) JE and emission of holes by resonant state.

The dispersion law and the density-of-states of the va-
K(E ﬁ)cosﬁ+ak(Ek'ﬁ) : lence band are modified by the presence of resonant states.
k a ' We have calculated the energy-dependent optical transition
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probability between resonant states and localized impurity. V|2

We have also presented the detailed theoretical analysis of|a{/2%2(t)|2= [1+e“’7”—2e“’2ﬁ
mechanism for carrier population inversion induced by reso- [&/(k)—Eq]*+T?/4

nant states in strained semiconductors under an external elec- t

tric field. This mechanism is the result of a coherent capture- X C05< [e(K)— Eo]_) }

emission type inelastic scattering of holes by resonant states. h

As a result of this population inversion, the recently ob-

served lasing in THz frequency region from uniaxially W, |2
strainedp-Ge is finally understood. la232(t)|2= +e Uh_pg-TU2h
(g/(k)—Eg)%+T2/4
APPENDIX A: DERIVATION OF TRANSITION t
PROBABILITY W, Xcos([s|(k)—Eo]%) ) (B4)

We consider the total Hamiltoniafit=H,+U at the
high-stress limit. Initially the eigenstatg{’?(r) of the un-  In the limitt— these coefficients approach their stationary

N ; (12m)| i
perturbed Hamiltoniarii, is occupied by a hole. At time  Solutions|ai™“™| given by Eq.(15). o .
. . oA . The total transition probability per unit time from the ini-
=0 the mtera_ctlorU is SWItChed on.. _ tial liaht-hole statet’ (1) to the d te localized im-
The evolution of system is described by the time depen—'a _lght-noie sta e (r) 0 the degenerate localized im
dent Schidinger equation purity orbitals (Is,m= *+3/2) is simply

SRy i —(N,k(r’t) 0 (12,302 4112 1 [ a(L2312) 41 |2
[Ho+ U ]Wi(r,) =it ——. (B1) Wkr:EHak SR 12+ [alt? 32 (1) 2. (B5)
The time-dependent solution of this equation ) )

To study the long time*$ r=#/I") behavior of the system,

we can average the transition probability over the time inter-

T(r)= X al®™(t)eM(r) val 7
m'==3/2 '
+ > Py B2 1(> @
k'm'=+1/2 Wkrz;Jo dt E[|a(kl/2’3/2)(t)|2+ |a(kl/2’7 3/2)(t)|2]
is similar to Eq.(11), but with time-dependent coefficients
1/2m’ 1/2m’ L .. 1—~
a t) andb;,>" (t). The initial conditions are _ 12,3/ 12,-312 12,31
(0 andby (0 = sL1af9% ) |2 [l 92 o) 2~ a3 0) 2

a(kllzvi 32)_ b(l/2,m’) _ 51/2m' 5k’k/ (B3) + |a(kl/2,— 3/2)(0) | 2]. (B6)

for t<0.

The probability to find a hole in the localized impurity
orbital {7 )(r) at timet is given by|a{*>™")(t)|2. Substi- .
tuting Eq. (B1) into Eq. (B2) and following the standard W = —T | a(1/2.3/2) 2 |(12-312) 2 B7
algebraic procedure, we obtain kr ﬁ[lak (o) |+ |k (). (B7)

Using the initial conditiongEq. (B3)], we obtain Eq(27),
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