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Resonant states induced by shallow acceptors in uniaxially strained semiconductors
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We present a detailed theoretical investigation of resonant states induced by shallow acceptors in uniaxially
strained semiconductors. By applying Dirac’s approach and using the Coulomb potential of an acceptor im-
purity, we have obtained the amplitude of resonant scattering, the probability of coherent capture and emission
of holes by resonant state, and the characteristic features of the resonant state. The modified dispersion law and
density-of-states of valence band by the resonant states have also been derived. The energy dependence of
optical transition probability between resonant and localized impurity state have been calculated. The theoret-
ical investigation of a new mechanism for carrier population inversion in strained semiconductors under an
electric field has been presented. It has been shown that the mechanism is the result of a coherent capture-
emission type inelastic scattering of holes by resonant states. The calculation based on our theory for uniaxially
strainedp-Ge explains the recently observed lasing phenomena in THz frequency region.
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I. INTRODUCTION

When a semiconductor is doped with one type of shall
impurities, normally the impurity level lies in the energ
band gap with a well-defined binding energy measured fr
one band edge. Then the impurity states are spatially lo
ized. As an external pressure removes the degeneracy o
valence bands, one finds an impurity level attached to e
shifted valence band edges.1 If the energy separation be
tween two splitted valence bands becomes larger than
impurity binding energy, the impurity level attached to o
valence band overlaps with another valence band. A hyb
ization then occurs between the overlapping localized im
rity states and extended Bloch states, resulting in reso
states. Using a variational approach, the acceptor state
strained semiconductors has been calculated.2,3 However, no
resonant state has been obtained with the variational met

Far-infrared lasing was observed fromp-doped germa-
nium Ge:Ga under a uniaxial stress and an electric field
the range from 10 V/cm to 3 kV/cm.4 By analyzing the pho-
ton energy and the selection rule, it was concluded that
initial state of the optical transition is a resonant state. T
questions of fundamental importance then arise: the cha
teristic features of the resonant state and the mechanis
its population inversion. In our recent letter,5 we have proved
without computational details that the inversion of carr
population is due to the coherent capture-and-emission
cess by resonant states. Such details will be provided in
present paper.

To build up our theory unambiguously, the model Ham
tonian is introduced in Sec. II for the valence bands of cu
semiconductors under uniaxial stress. In Sec. III we
Dirac’s approach to investigate the resonant state induce
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the Coulomb potential of an acceptor impurity, and der
the analytical expressions of the shift and the width of
resonant state. After calculating in Sec. IV the dispers
relation and the density-of-states of the valence band m
fied by the resonant state, and in Sec. VI the relevant opt
transition probability, the mechanism of population inversi
will be studied in detail in Sec. VII.

II. VALENCE BANDS OF A STRAINED SEMICONDUCTOR

The fourfold degenerate valence-band top in german
is at theG point of the Brillouin zone. The correspondin
wave functions are transformed according to theG8

1 repre-

sentation of the double point groupŌh and can be character
ized by the total angular momentumJ53/2. Due to the spin-
orbit coupling, a twofold degenerate energy level is sp
from the valence-band top by the spin-orbit splittingD. The
corresponding wave functions are transformed according
theG7

1 representation of theŌh group, and are characterize
by J51/2. Since the spin-orbit splitting in germanium
much larger than the binding energy of an acceptor, in
present paper, it is reasonable to ignore the split-off ba
The effective-mass Luttinger Hamiltonian describing theG8

1

valence band is a 434 matrix function of the operatork̂5
2 i¹. We choose the Bloch basisum with m563/2 and
61/2 for theG8

1 representation, wherem is thez component
of the total angular momentumJ of the hole atG point.
These basis functions can be expressed explicitly as

u3/252
1

A2
~X1 iY!↑,
2486 ©2000 The American Physical Society
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u1/25
1

A6
@2~X1 iY!↓12Z↑#,

u21/25
1

A6
@~X2 iY!↑12Z↓#,

u23/25
1

A2
~X2 iY!↓, ~1!

where↑ and↓ denote the 1/2 spinor up and down. The ba
statesX,Y, andZ are Bloch functions, which transform lik
the corresponding coordinates under the symmetry op
tions ofOh . We set the zero reference energy at the valen
band edge, and adopt the convention that the valence-b
energy is positive. In spherical approximation the Lutting
Hamiltonian is given by6

ĤL~ k̂!52
\2

2m0F â1 b̂ ĉ 0

b̂* â2 0 ĉ

ĉ* 0 â2 2b̂

0 ĉ* 2b̂* â1

G , ~2!

with the matrix element

â152~g122g!k̂z
22~g11g!~ k̂x

21 k̂y
2!,

â252~g112g!k̂z
22~g12g!~ k̂x

21 k̂y
2!,

b̂52A3g~ k̂x2 i k̂y!k̂z ,

ĉ5A3g~ k̂x2 i k̂y!2. ~3!

In the above equations,g1 ,g2, andg3 are Luttinger param-
eters, andg5(2g213g3)/5. In our notationk is a vector
and k̂ is an operator.

A uniaxial stress lowers the symmetry of the crystal.1 A
stress parallel to the@001# direction changes the point-grou
symmetry from cubicOh to tetragonalD4h . The G8

1 repre-
sentation is then splitted into two irreducible representatio
G6

1 for the Bloch wave functionsu63/2, and G7
1 for the

Bloch wave functionsu61/2. Consequently, the top of th
valence band separates into two bands with twofold deg
eracy each. The effect of this uniaxial stress along the@001#
axis is to add to Eq.~2! a strain Hamiltonian1

Ĥstr5
\2

2m0F z 0 0 0

0 2z 0 0

0 0 2z 0

0 0 0 z

G . ~4!

The parameterz, the applied stressP and the deformation
potentiala are related to the split of the valence-band t
Edef by

Edef5aP52
\2z

2m0
. ~5!

For Ge with a stress along@001#, a56 meV/kbar.
s

a-
e-
nd
r

s:

n-

If the stress is along the@111# direction, to derive the
strain Hamiltonian in the form of Eq.~4!, we should rotate
the coordinate system to bring thez axis into the@111# di-
rection. In the similar way, for any direction of applie
stress, we can always rotate thez axis into the uniaxial stress
direction to obtain a diagonal form of stress Hamiltonia
Since we have used the spherical approximation for the L
tinger Hamiltonian, in the new coordinate system, it w
have the same form as Eq.~2!. Consequently, for any stres
direction, our Hamiltonian for the hole states in a uniaxia
strained semiconductor can be written in the general form

Ĥ~ k̂!5ĤL~ k̂!1Ĥstr, ~6!

provided a correct value of the deformation potential is us
For example, for Ge with a stress along@111#, a54 meV/
kbar. This Hamiltonian is easily diagonalized to yield th
valence-band spectra. According to our convention that h
energies are positive, the hole bands are obtained as

El,h~k!5
\2

2m0
@g1k27Az222gz~3kz

22k2!14g2k4#,

~7!

where the minus sign is for the light-hole bandEl(k), and the
plus sign for the heavy-hole bandEh(k). These two bands
are schematically shown in Fig. 1 as solid curves.

We will study the physical properties of a resonant sta
which is the hybridized product of extended states in a
lence band and a localized impurity orbital in the presence
a charged acceptor. Hence, a Coulomb term should be a
to Eq. ~6! to give the final form of the Hamiltonian

Ĥ~ k̂!5ĤL~ k̂!1Ĥstr2
e2

er
Î , ~8!

wheree is the dielectric constant,e is the electron charge
and Î is a 434 unit matrix. Since a shallow acceptor
attached to the valence-band edge, in a uniaxially strai
semiconductor, both its fourfold degenerate ground state
excited states are separated into two doubly degenerate
els. The symmetry properties of localized acceptor wa

FIG. 1. Acceptor levels~measured from respective band edg!
and heavy-and light-hole bands of Ge:Ga under uniaxial stress
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functions certainly depend on how the stress is applied to
sample,7 and in an adopt approximation each of these fu
tions can be characterized by thez component of its total
angular momentum, which is labeled byM. Splitted acceptor
states originated from the ground level are classified byM
561/2 andM563/2.

Under a sufficiently strong stress that the valence-b
splitting Edef is larger than the acceptor binding energy, tw
separated series of acceptor levels are formed as show
Fig. 1. Each acceptor level attached to the heavy-hole b
overlaps with the light-hole bandEl(k), and forms a resonan
state via its hybridization with the extended Bloch stat
The resonant states can be classified by the same value o
z component of the total angular momentum as the clas
cation of the original localized acceptor orbitals.

In the limit of high stress, we can expand the square r
in Eq. ~7! in powers ofk2/z and keep only the quadrati
terms. This approximation is equivalent to the neglect of
off-diagonal elements in the Luttinger Hamiltonian matr
and hence the hybridization effect is ignored. These o
diagonal terms represent the interaction between the he
hole band and the light-hole band. In this situation the
ceptor levels near the light-hole band edge were stud
earlier,8,9 and the acceptor levels near the heavy-hole b
edge were investigated recently by Odnoblyudov a
Chistyakov.10 In high stress approximation, both series
localized acceptor orbitals attached to the light-hole ba
and the heavy-hole band are classified bym, parity i, and the
z component of the acceptor orbital angular momentuml z .
We label the localized acceptor orbitals with the conve
tional notations: 1s for l z50 and i 511, 2p61 for l z
561 andi 521, and 2p0 for l z50 andi 521. All accep-
tor levels attached to the heavy-hole subband havem
563/2 and all acceptor levels attached to the light-hole s
band havem561/2. These acceptor levels are schematica
shown in Fig. 1. Thez component of total angular momen
tum M for each level is simplyM5 l z1m. Hence, the 1s
orbital near the light-hole band edge hasM561/2, and the
1s orbital near the heavy-hole band edge hasM563/2.

III. DIRAC’S APPROACH FOR RESONANT STATES

In our earlier work11 exact solution of resonant state w
obtained if the impurity potential is zerorange. However,
a realistic Coulomb impurity potential, the problem becom
complicated. In this section we consider, in detail, the h
bridization process that leads to the formation of reson
states induced by a Coulomb potential of an acceptor im
rity. During the hybridization process between the localiz
acceptor orbital and light-hole band states, thez component
of the total angular momentum is conserved, and there
M5 l z1m serves as the quantum number to label the re
nant state. This process is described by the off-diagonal
ments of the Luttinger Hamiltonian given by Eq.~2!. Based
on the full HamiltonianĤ in Eq. ~8!, which includes the
Coulomb potential, we will analyze the effect of these o
diagonal terms with the Dirac’s approach,12 which is one
version of the perturbation theory for continuum states.
will separate the Hamiltonian as

Ĥ5Ĥ01Û, ~9!
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whereĤ0 is the diagonal part ofĤ, andÛ the off-diagonal
part. Since the off-diagonal terms of the Luttinger Ham
tonian couples the heavy-hole band and the light-hole b
states, and this coupling decreases with increasing stress
perturbation results are more accurate for stronger app
stress, which is the region of experimental interest.

We are interested in the eigenfunctions ofĤ0 in the en-
ergy region around the 1s level attached to the heavy-hol
subband. Using the basis given by Eq.~1!, they can be ex-
pressed as

w (13/2)~r !5F w1s
h ~r !

0

0

0

G , ck
(11/2)~r !5F 0

ck
l ~r !

0

0

G ,

ck
(21/2)~r !5F 0

0

ck
l ~r !

0

G , w (23/2)~r !5F 0

0

0

w1s
h ~r !

G ,

~10!

wherew1s
h (r ) is the effective-mass envelope function of th

localized acceptor 1s orbital near the heavy-hole band edg
andck

l (r ) is an extended state in the light-hole band.
Consider a carrier in the light-hole band Bloch state w

wave vectork. The carrier will be scattered by the impurit
and therefore its wave function will be modified. We a
interested in the case when the energy of the incident wav
close to the energy of the acceptor 1s orbital near the heavy-
hole band edge. Due to the hybridization the resultant re
nant state will consist of the incident wave, the scatte
waves, and the localized orbital, which can be written in
general form

CEk
~r !5 (

m563/2
ak

(m)w (m)~r !1 (
k8,m561/2

bkk8
(m)ck8

(m)
~r !.

~11!

By proper choice of the coefficients of linear combinatio
the resonant state wave function satisfies the Schro¨dinger
equation

ĤCEk
~r !5EkCEk

~r !. ~12!

We will use the Dirac’s approach to determine t
coefficients.12,13 Substituting this wave function into Eq
~12!, we obtain the coupled linear equations for the coe
cientsak

(m) andbkk8
(m):

ak
(3/2)~Ek2Edef1«1s!5(

k8
@bkk8

(1/2)Vk81bkk8
(21/2)Wk8#

ak
(23/2)~Ek2Edef1«1s!5(

k8
@bkk8

(1/2)Wk8
* 2bkk8

(21/2)Vk8
* #,

bkk8
(1/2)

@Ek2« l~k8!#5@ak
(3/2)Vk8

* 1ak
(23/2)Wk8#,



h
le

igh

an

at

o

im-
al

use

al-
ex-
q.

the

l

PRB 62 2489RESONANT STATES INDUCED BY SHALLOW . . .
bkk8
(21/2)

@Ek2« l~k8!#5@ak
(3/2)Wk8

* 2ak
(23/2)Vk8#. ~13!

In the above equations,«1s is the energy of the state wit
wave function w (63/2)(r ) measured from the heavy-ho
band edge,« l(k) is the light-hole band energy forck

l (r ),
measured from the light-hole band edge, andEk is the reso-
nant state energy measured also from the edge of the l
hole band. The matrix elementsVk and Wk are calculated
from the off-diagonal operators of the Luttinger Hamiltoni

Vk52^w1s
h ~r !u

\2

2m0
b̂~k!uck

l ~r !&,

Wk52^w1s
h ~r !u

\2

2m0
ĉ~k!uck

l ~r !&. ~14!

Equation~13! can be solved in the same way as for sc
tering problems.12,13 For an incident wave withz component

of angular momentumm, the solutions are labeled asak
(m,m8)

andbkk8
(m,m8) . If m51/2, we have

ak
(1/2,3/2)5VkR1 ,

ak
(1/2,23/2)5Wk* R1 ,

bkk8
(1/2,1/2)

5dkk81R1R2~VkVk8
* 1Wk* Wk8!,

bkk8
(1/2,21/2)

5R1R2~VkWk8
* 2Wk* Vk8!, ~15!

and if m521/2, the solutions are

ak
(21/2,3/2)5WkR1 ,

ak
(21/2,23/2)52Vk* R1 ,

bkk8
(21/2,1/2)

5R1R2~WkVk8
* 2Vk* Wk8!,

bkk8
(21/2,21/2)

5dkk81R1R1~WkWk8
* 1Vk* Vk8!. ~16!

In the above equations,R1 andR2 are defined as

R15
1

Ek2Edef1«1s2DEk1 iGk/2
, ~17!

R25
1

Ek2« l~k8!1 ih
; h→0,

with

DEk5P
V

~2p!3E d3k8
uWk8u

21uVk8u
2

Ek2« l~k8!
, ~18!

Gk

2
5p

V

~2p!3E d3k8~ uWk8u
21uVk8u

2!d@Ek2« l~k8!#.

~19!

From the expressionsak
(61/2,63/2) in Eqs.~15! and~16!, as

well as the expression ofR1 in Eq. ~17!, we see that the
coupling between the heavy-hole band and the light-h
band shifts the energy«1s of the localized orbital to the
resonance level by an amountDEk,0, and broadens the
t-

-

le

level with an widthGk . We notice from Eq.~18! that the
shift depends onEk , namely,DEk(Ek). Measured from the
light-hole band edge, the resonant levelE0 is determined by
the equation

E05Edef2«1s1DEk~E0!. ~20!

Using the so obtained value ofE0, the width Gk is then
calculated from Eq.~19!.

For the case of the Coulomb potential of an acceptor
purity, we will adopt the most commonly used variation
function

w1s
h ~r ![w1s

h ~r,z!5
1

Apa2b
expF2Ar2

a2 1
z2

b2G . ~21!

For the extended Bloch states in light-hole band, we
normalized plane wavesck

l (r )5eik•r/AV. Substituting these
functions into Eq.~14!, we readily obtain

Vk52
A3\2g

m0
~kx2 iky!kz I ~k!,

Wk52
A3\2g

2m0
~kx2 iky!2I ~k!, ~22!

where I (k)58Apa2b/V@11kz
2a21(kx

21ky
2)b2#22 is the

overlap integral between the envelope functions of the loc
ized acceptor orbital and the Bloch states. Using these
plicit expressions to calculate all relevant quantities in E
~20!, it reduces to the final form for numerical solution

E05Edef2«1s1
\4

4m0
2 g2

b

a5

1

E0
FR~E0!. ~23!

The dimensionless functionFR(Ek) depends weakly on the
energyEk , and can be well approximated as a constantFR
5241.76 in the limit of high stress. Forp-Ge doped with
Ga, the parameter values area5114 Å andb551 Å,10 the
numerical solution of the resonant level energyE0 as a func-
tion of compressive stress along the@111# direction is shown
in Fig. 2 by the solid curve. The edges of the heavy- and

FIG. 2. Stress dependences of the resonant energy leveE0

~solid curve!, the impurity level«1s54.78 meV~dot line!, the en-
ergy shiftDE, and the valence-band splitEdef in p-Ge. The edges of
heavy- and light- hole bands are indicated by thick solid lines.
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light-hole bands~thick solid lines!, as well as the energy
level «1s ~dotted line! are also plotted, together with th
valence-band splitEdef and the energy shiftDE.

The width of the resonant stateG/2 is then readily derived
from Eq. ~19! as

G

2
548S \2

2m0
D 5/2

g2
b

a6 E0
23/2FI~E0!, ~24!

where the functionFI(E0) depends also weakly onE0 in the
regionE0@«1s . At the other limitE0→0,FI(E0) is propor-
tional to E0

4. In Fig. 3 we plotG/2 as a function ofE0 . G is
found to be proportional toE0

5/2 in the regionE0!Edef, but
proportional toE0

23/2 in the regionE0.Edef@«1s .
To clarify the role of scattering in the formation of res

nant state, we will substitute the solutions Eqs.~15! and~16!
into Eq. ~11! to obtain the proper forms of the two specifi
wave functions form51/2 andm521/2. By introducing

two scattering amplitudestkk8
(m,m8) and tkl

(m,m8) , we arrive at
the explicit expressions

Ck
(m)~r !5ck

(m)~r !1 (
k8,m8561/2

tkk8
(m,m8)

Ek2« l~k8!1 ih
ck8

m8~r !

1 (
m8563/2

tkl
(m,m8)

Ek2E01 iG/2
w (m8)~r !. ~25!

In the above equation, at the right-hand side, the first term
the incident wave of a hole in the light-hole band. When t
hole is scattered by the impurity potential into the light-ho
band again, such elastic resonant process is represente
the second term. The corresponding scattering probab
per unit time is13

Wk,k8
(m)

5
2

\
utk,k8

(m) u2 lim
h→0

h

~Ek2Ek8!
21h2

5
2p

\
utk,k8

(m) u2d~Ek2Ek8!, ~26!

where utkk8
(m)u25utkk8

(m,1/2)u21utkk8
(m,21/2)u2. The last term at the

right-hand side of Eq.~25! represents the capture of a hol
initially in the light-hole band, by the localized acceptor o
bital w (63/2)(r ), and the subsequent coherent re-emission
the hole back into the light-hole band. A carrier in the ligh

FIG. 3. Resonant level width as a function of resonant ene
level in p-Ge.
is
s

by
ty

f

hole band has a finite probability to be captured in the loc
ized acceptor orbitalw (63/2)(r ) if the energy of the hole lies
in the regionE02G/2,Ek,E01G/2. As derived rigorously
in Appendix A, the total probability of transition from th
stateck

l (r ) in the light-hole band to the localized accept
orbital w (63/2)(r ) is

Wkr
(m)5

2

\
~ uVku21uWku2!

G/2

~Ek2E0!21G2/4
. ~27!

The same expression takes place for the probability of
reverse process. Therefore, the captured hole will stay
w (63/2)(r ) for a time interval about

(
k8

Wrk8
(m)

5
G

\
. ~28!

IV. DISPERSION LAW AND DENSITY-OF-STATES

Since the light-hole band stateck
(m)(r ) is modified into

the resonant stateCk
(m)(r ) as shown by Eq.~25!, the disper-

sion relation« l(k) and the corresponding density-of-stat
r l(« l) will also change accordingly. Using the wave functio
given by Eq.~25!, from Eq. ~12! we can easily derive the
self-consistent equation forEk at the presence of a singl
acceptor, which includes the modification of energy sp
trum « l(k) of light-hole subband by the resonant state. Ho
ever, there are many acceptors in a sample. We are intere
in samples with low-acceptor concentrationNA /V such that
each acceptor can be treated as isolated from the oth
Hence, the effects ofNA acceptors are additive, and the se
consistent equation becomes

Ek5« l~k!2
NA

V

Ek2E0

~Ek2E0!21G2/4
~ uVku21uWku2!.

~29!

From Eqs.~3! and~14!, it is obvious that bothVk andWk
vanish if k is along the stress directionz axis. In this situa-
tion, there is no mixing between the light-hole subband a
the heavy-hole subband.

Using the material parameters ofp-Ge, the calculated nor
malized Ek /E0 as a function of normalized« l(k)/E0 is
shown in Fig. 4, fork perpendicular toz axis and for various
acceptor impurity concentrations. As the concentration
creases from 531016 cm23 ~curve 3! to 131017cm23

~curve 2! and to 231017cm23 ~curve 1!, the ‘‘effective
mass’’ of a lighthole is dramatically enhanced. The physi
origin of this enhancement is that a hole is captured in
acceptor statew1s

(63/2)(r ) for a finite amount of timeG/\.
Knowing the functional dependence ofEk on « l(k), we

can calculate the partial density-of-statesr(Ek) which corre-
sponds to the spectrumEk along any direction ink space.
The result is shown in Fig. 5 fork perpendicular to the stres
direction z axis, with various values of acceptor impurit
concentration: curve 1 for 231017cm23, curve 2 for 1
31017cm23, curve 3 for 531016cm23, and curve 4 for 1
31016cm23. The density-of-states ofNA noninteracting ac-
ceptors is ad function. The hybridization between the loca

y
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ized orbitals ofNA acceptors and the Bloch states in t
light-hole subband broadens thed function into an asymmet
ric peak in the resulting density-of-statesr(Ek).

V. OPTICAL TRANSITIONS

The resonant stateCk
(m)(r ) given by Eq.~25! consists of

two parts: an incident plane waveck
(m)(r ) and a scattered

part, which we label asFk
(m)(r ). When a carrier in the reso

nant state makes the optical transition to a localized impu
orbital f(r ), the interference of optical matrix elemen
originated fromck

(m)(r ) andFk
(m)(r ) produces an asymme

ric energy dependence of the optical transition probabil
This is so-called Fano resonance.14 The asymmetry of the
line shape is measured by the shape parameter or the
parameterq:

1

2
pq25

u^Fk
(m)uT̂uf&u2

u^Ck
(m)uT̂uf&u2

, ~30!

FIG. 4. Normalized resonant state energy as a function of n
malized light-hole band energy in ap-Ge under uniaxial stress with
k perpendicular to the stress directionz axis. The value of accepto
concentration is zero~dotted line!, 231017 cm23 ~curve 1!, 1
31017 cm23 ~curve 2!, and 531016 cm23 ~curve 3!.

FIG. 5. The partial density-of-states for the resonant levelEk in
a p-Ge under a uniaxially stress, withk perpendicular to the stres
direction. The values of acceptor concentration are 231017 cm23

~curve 1!, 131017 cm23 ~curve 2!, 531016 cm23 ~curve 3!, and 1
31016 cm23 ~curve 4!.
y

.

no

whereT̂ is the operator of optical transition. For the trans
tion in the valence band,T̂ has the form

T̂5
e

c
~A•¹pĤ!, ~31!

wherec is the speed of light andA is the vector potential of
the electromagnetic field. With increasing value ofq, the
luminescence line approaches the Lorence shape.

The selection rules in a uniaxially strained Ge, as de
mined by the cylindrical symmetry, are~1! DM50,61, and
~2! the initial and final states should have opposite parit
with respect to the reflectionz→2z. In the resonant state
given by Eq.~25!, the transitions from the nonplane wav
part to impurity 2p states are allowed, but to the impurity 1s
state is forbidden. However, the transition from the pla
wave to both 2p and 1s states are allowed. This is the reas
why the 1s-to-1s transition may appear in the optical spe
trum, but its intensity will be weaker than the intensity
1s-to-2p61 transition.

We have mentioned earlier that the main peak in the
served far-infrared lasing spectrum of strained Ge:Ga co
sponds to the 1s-to-2p61 transition, which is illustrated by
the inset in Fig. 6.15 Now we will calculate the optical tran
sition probabilities between these degenerate localized im
rity orbitals and the resonant states with energies close toE0.
Let «2p61

be the energy level of impurity 2p states. For the
impurity orbitals we will use the variational function10

w2p61

l ~r !5
1

Apc4d
re6 iwe2Ar2/c21z2/d2

, ~32!

wherer5(r,z,w). For an acceptor in Ge,c5157 Å andd
5230 Å.

The energy dependence of optical transition probabi
WEk

can be expressed as

WEk
5REk

/nh , ~33!

wherenh is the free-hole concentration.REk
is the radiative

recombination rate of holes16

r-
FIG. 6. Energy dependence of optical transition probability fro

around the lowest resonant state to impurity 2p61 states. The tran-
sition process is illustrated by the inset.
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REk
5

4pe

\cV (
k8,Q,R,a

(
m561/2

d~Ek82«2p61
1\cQ/Ae!

3 f k8u^Ck8
(m)uAa•¹pĤuw2p61

l ~r2R!&u2. ~34!

HereR is the impurity position, andAa is the vector poten-
tial of photon with polarizationa and wave vectorQ. The
normalized carrier distribution function

f k85nhVd~Ek82Ek!/(
k

d~Ek82Ek! ~35!

represents a uniform occupation of states with energyEk .
The shape parameter for the impurity 2p61 states in a

uniaxially stressed Ge doped with Ga can now be rea
calculated from Eq.~30! as

1

2
pq2536

g4

~g112g!2

c8

a8

E0

G
C, ~36!

whereC is the angular average of the matrix element par
Eq. ~34!. C has a weak energy dependence and its valu
approximately 0.1. The spectrum of stimulated emission w
measured atEdef527.4 meV, corresponding to a resona
energyE0522.4 meV andG53 meV. Hence, the Fano pa
rameter isq.45. Under this situation, the effect of interfe
ence is negligible and the broadening of the luminesce
line should be Lorence type without detectable asymme
Our calculated transition probability is shown in Fig. 6.

VI. KINETICS OF RESONANT STATES

The formation of resonant states is accompanied by
coherent capture and emission of carriers by localized im
rity orbitals. Since a carrier can be trapped in a localiz
impurity orbital for a time interval\/G, such process ha
profound influence on the non-equilibrium distribution fun
tion in a relatively pure semiconductor at low temperatur
In this situation the only significant scattering is due to o
tical phonons with energy\v0. Under an applied electric
field E ~assuming alongz axis!, a carrier drifts in the momen
tum space almost scatter free, and its energy can exceed\v0
if E>\v0 /el, wheree is the carrier charge andl its mean
free path. The carrier thus has a finite probability to return
the low-energy region by emitting an optical phonon. Su
phenomenon, the so-calledstreaming motion, has been ex-
tensively studied.17,18

However, if a resonant state exists with energy less t
\v0, then under an applied electric field a carrier will char
the resonant state before its energy reaches\v0. In our ear-
lier letter5 we have proved that such process provides a n
mechanism of carrier population inversion, which expla
the origin of far-infrared lasing from strainedp-Ge.4 The
detailed analysis, which was not given in Ref. 5, will b
presented in this section.

We will first outline briefly the model studied in Ref. 5.
includes adrain D at Ek5\v0, which describes the proces
of removal of holes in the energy regionEk>\v0 due to
emission of optical phonons, and asource Sat smallk within
the energy interval between zero ande0!\v0, which pre-
sents the generation of holes removed bydrain. Let f k be the
carrier distribution function. As justified in Ref. 5, the dra
ly

n
is
s

t

e
y.

e
u-
d

.
-

o
h

n

w
s

D can be well approximated byf k50 for Ek>\v0, and the
source intensityS was derived18 as

S5S0~ t !Q~e02Ek! ~37!

with

e05S 2

9D 1/3S v0

nA
D 2/3~eE\!2/3

mz
1/3

~38!

and

S0~ t !5
e

\

E ~E•dS! f k~ t !

E d3kQ~e02Ek!

, ~39!

where mz is the effective mass along thez axis, and the
characteristic frequencynA is related to the optical phono
emission ratenAA(Ek /\v0)21 for the carriers withEk
.\v0. In Eq. ~39! the integration is performed over th
surface defined by the equationEk5\v0.

In the absence of resonant impurity scattering, for car
kinetic energyEk<\v0 , f k can be obtained from the kineti
equation18,19

] f k

]t
1

eE
\

] f k

]kz
5S2D. ~40!

The stationary solution of Eq.~40! is an almost constantf k if
k[(kz ,k') lies in a cylinder ink space, andf k50 other-
wise. This cylinder is confined by

0,kz<A2mzv0 /\2, k'<A2m'e0 /\2,

wherem' is the transverse component of the effective-m
tensor.

In the presence ofNA localized impurity orbitals attached
to the heavy-hole subband, free carriers in the light-h
band can be trapped into these orbitals, and such trap
carriers can either escape back to the light-hole subband
make radiative transitions into the impurity orbitals attach
to the light-hole subband. These processes drive the sys
to a steady state within a time intervalt« . As will be shown
later by our calculation, forp-Ge this transient time istE
.5310212 s. The typical value of\/G calculated from Eq.
~24! is \/G.2310213 s. We see that bothtE and \/G are
less than 1/W, whereW is the optical transition probability
calculated in Sec. V. Consequently, in the kinetic equatio
for f k and for the occupation probabilityf r of impurity
states, the unimportant radiation transition process will
ignored.

Then, f r satisfies the kinetic equation

] f r

]t
5(

k8
@Wk8r f k82Wrk8 f r #, ~41!

and the impurity collision integral

I 5NA(
k8

@ f k8Wkk82 f kWk8k#1NA~Wrk f r2Wkr f k!

~42!



a

or

ns

ty
u

m

n
e
lit
e.
te

e
n
in

ve
ble
n-

e-
ith

gle
ntal
lud-
u-
r-

ld

zed
n
ed
lf-
t 5

om
in

r

lly
here
est

with
he
ou-
ed
e of
ture

va-
ates.
ition

PRB 62 2493RESONANT STATES INDUCED BY SHALLOW . . .
should be added to the right hand side of Eq.~40!. The
probabilitiesWkr andWkk8 are defined by Eqs.~26! and~27!.
Since the localized orbitals and the extended Bloch states
doubly degenerate, we havef r

13/25 f r
23/2[ f r and f k

11/2

5 f k
21/2[ f k . The conservation of carriers imposes the n

malization condition

(
k

f k1NAf r5Nh ~43!

whereNh is the total number of holes. All above equatio
will be solved self-consistently.

Since inp-Ge the transient timetE is much larger than the
lifetime of the resonant state\/G, we can set the left-hand
side of Eq.~41! to zero. Hence, the occupation probabili
f r of the quasilocal states follows adiabatically the distrib
tion function f k of the Bloch states. We then obtain fro
Eq. ~41!,

f r~ t !5(
k

f k~ t !~ uak
1/2,3/2u21uak

1/2,23/2u2!. ~44!

This relation implies the following physical picture.f k is the
probability to find a hole in a plane-wave state with mome
tum k when the hole is far away from any impurity. As th
hole approaches an impurity, it induces the probabi
uak

1/2,3/2u21uak
1/2,23/2u2 to find the hole in a resonant stat

Then the total probabilityf r to find a hole in a resonant sta
is given by Eq.~44!. Substituting Eq.~44! into Eqs.~40! and
~42!, we obtain the kinetic equation forf k :

] f k

]t
1

eE
\

] f k

]kz
5

2pNAV

\ (
k8

utkk8u
2d~Ek2Ek8!~ f k82 f k!

1
NAVutkr u2G

\@~Ek2E0!21G2/4#

3F(
k8

utk8r u2 f k8

~Ek82E0!21G2/4
2 f kG

1S~ t !Q~e02Ek!, ~45!

with the boundary conditionf k50 at Ek5\v0.
Equation~45! will be solved numerically. We start with a

guessed initial distribution and follow the evolution of th
distribution function until it reaches a stationary solutio
The collision integral can be conveniently calculated
terms of the two independent variablesEk andq instead of
k, whereq is the angle betweenk and thez axis. Accord-
ingly, we transform Eq.~45! to

] f k

]t
1a~Ek ,q!

] f k

]Ek
1b~Ek ,q!

] f k

]q
5I ~Ek ,q!1S0~Ek ,q,t !,

~46!

where

a~Ek ,q!5
eE
\
A \2

2m0

1

k~Ek ,q! S ]k~Ek ,q!

]Ek
D 21

3Fk~Ek ,q!cosq1
]k~Ek ,q!

]q
sinqG ,
re

-

-

-

y

.

b~Ek ,q!52
eE
\
A \2

2m0

sinq

k~Ek ,q!
.

The explicit expressions ofI (Ek ,q) andS0(Ek ,q,t) can be
easily obtained by straightforward substitutions.

The differential parts at the left-hand side of the abo
equation can be further simplified by introducing the varia
Ẽk through the following relation using the functional depe
dence ofk on Ek andq,

k~Ẽk ,q5p/2!5k~Ek ,q!sinq. ~47!

In terms of the pair of independent energy variables (Ek and
Ẽk), Eq. ~45! becomes

] f k

]t
1a~Ek ,Ẽk!

] f k

]Ek
5I ~Ek ,Ẽk!1S~Ek ,Ẽk ,t !. ~48!

With only one coordinate derivative operator, this tim
dependent integral differential equation can be solved w
routine numerical procedure.

For p-Ge, the optical phonon energy is\v0536 meV,
and the characteristic frequency isnA5531012s21. In our
calculation we have adopted the approximation of a sin
hole band, which is not unreasonable under experime
conditions. One can show that under such conditions, inc
ing the second band will only change the tail of the distrib
tion, which is not important for the problem under conside
ation.

For given values of uniaxial pressure and electric-fie
strength, the distribution functionf k is calculated from Eq.
~48!. The so-derived results have been thoroughly analy
in Ref. 5. Our theory gives the origin of population inversio
that is required to explain the detected lasing from strain
p-Ge.4 To close this section, we will demonstrate the se
consistency of our calculation. If we set the pressure a
kbar and the electric field atE5300 V/cm along the@111#
direction, the calculated resonant level is at the energyE0
510 meV and has a widthG52 meV. From Eq.~38! we
obtain the source widthe054.25 meV, which is much less
than the optical phonon energy 35 meV. Furthermore, fr
the numerical solution of the distribution function, we obta
the transient time abouttE.5310212 s, which is much
longer than the lifetime\/G.2310213 s. Consequently, ou
calculation based on the condition thatGtE@\ is self-
consistent.

VII. CONCLUSION

We have shown that acceptor impurities in uniaxia
strained semiconductors can produce resonant states. T
exists a threshold stress for the appearance of the low
resonant state, and the threshold value can be calculated
high precision within the zero range potential model. In t
high-stress region, via Dirac’s approach and using the C
lomb potential for an acceptor impurity, we have obtain
the energy and the width of a resonant state, the amplitud
resonant scattering, and the probability of coherent cap
and emission of holes by resonant state.

The dispersion law and the density-of-states of the
lence band are modified by the presence of resonant st
We have calculated the energy-dependent optical trans
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probability between resonant states and localized impu
We have also presented the detailed theoretical analysis
mechanism for carrier population inversion induced by re
nant states in strained semiconductors under an external
tric field. This mechanism is the result of a coherent captu
emission type inelastic scattering of holes by resonant sta
As a result of this population inversion, the recently o
served lasing in THz frequency region from uniaxia
strainedp-Ge is finally understood.

APPENDIX A: DERIVATION OF TRANSITION
PROBABILITY WkL

We consider the total HamiltonianĤ5Ĥ01Û at the
high-stress limit. Initially the eigenstateck

(1/2)(r ) of the un-

perturbed HamiltonianĤ0 is occupied by a hole. At timet
50 the interactionÛ is switched on.

The evolution of system is described by the time dep
dent Schro¨dinger equation

@Ĥ01Û~ t !#Ck~r ,t !5 i\
]Ck~r ,t !

]t
. ~B1!

The time-dependent solution of this equation

Ck~r ,t !5 (
m8563/2

ak
(1/2,m8)~ t !w (m8)~r !

1 (
k8m8561/2

bk8
(1/2,m8)

~ t !ckk8
(m8)

~r ! ~B2!

is similar to Eq.~11!, but with time-dependent coefficient

ak
1/2,m8(t) andbkk8

1/2,m8(t). The initial conditions are

ak
(1/2,63/2)50; b(1/2,m8)5d1/2,m8dk,k8 ~B3!

for t<0.
The probability to find a hole in the localized impurit

orbital w1s
(m8)(r ) at time t is given by uak

(1/2,m8)(t)u2. Substi-
tuting Eq. ~B1! into Eq. ~B2! and following the standard
algebraic procedure, we obtain
i-

.

,
l.

.

y.
f a
-

ec-
-
s.

-

-

uak
(1/2,3/2)~ t !u25

uVku2

@« l~k!2E0#21G2/4
F11e2G t/\22e2Gt/2\

3cosS @« l~k!2E0#
t

\ D G ,
uak

1/2,23/2~ t !u25
uWku2

~« l~k!2E0!21G2/4
F11e2Gt/\22e2Gt/2\

3cosS @« l~k!2E0#
t

\ D G . ~B4!

In the limit t→` these coefficients approach their stationa
solutionsuak

(1/2,m)u given by Eq.~15!.
The total transition probability per unit time from the in

tial light-hole stateck
(1/2)(r ) to the degenerate localized im

purity orbitals (1s,m563/2) is simply

Wkr5
]

]t
@ uak

(1/2,3/2)~ t !u21uak
(1/2,23/2)~ t !u2#. ~B5!

To study the long time (@t5\/G) behavior of the system
we can average the transition probability over the time int
val t:

Wkr5
1

tE0

`

dt
]

]t
@ uak

(1/2,3/2)~ t !u21uak
(1/2,23/2)~ t !u2#

5
G

\
@ uak

(1/2,3/2)~`!u21uak
(1/2,23/2)~`!u22uak

(1/2,3/2)~0!u2

1uak
(1/2,23/2)~0!u2#. ~B6!

Using the initial conditions@Eq. ~B3!#, we obtain Eq.~27!,

Wkr5
G

\
@ uak

(1/2,3/2)~`!u21uak
(1/2,23/2)~`!u2#. ~B7!
.
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