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Elastic wave scattering by periodic structures of spherical objects: Theory and experiment
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We extend the multiple-scattering theory for elastic waves by taking into account the full vector character.
The formalism for both the band structure calculation and the reflection and transmission calculations for finite
slabs is presented. The latter is based on a double-layer scheme which obtains the reflection and transmission
matrix elements for the multilayer slab from those of a single layer. As a demonstration of applications of the
formalism, we calculate the band structures of elastic waves propagating in a three-dimensional periodic
arrangement of spherical particles and voids, as well as the transmission coefficients through finite slabs. In
contrast with the plane-wave method, the multiple-scattering approach exhibits advantages in handling spe-
cialized geometrieéspherical geometry in the present casie also present a comparison between theory and
ultrasound experiment for a hexagonal-close-packed array of steel balls immersed in water. Excellent agree-
ment is obtained.

[. INTRODUCTION tion theory for elastic waves is presented in Secs. Ill and IV.
In Sec. V, we use two sets of examples to demonstrate the
In recent years, there has been growing interest in classgpplication of our formalism. In Sec. VI, we give a compari-
cal wave propagation in periodic composite mediaThe  son between theory and ultrasound experiment on a system
study of photonic crystals has led the way with the theo-  0f hexagonal-close-packed steel balls immersed in water. Ex-
retical prediction > and experimental realization of photonic cellent agreement is obtained. Derivation of some identities
band gaps. Recently the focus has been extended to thdS given in the Appendixes.
study of acoustic and elastic waves in periodic médfa.
Currently, all elastic wave band structure calculations are Il. MULTIPLE-SCATTERING THEORY FOR ELASTIC
based on the plane-wavBW) approact 8 The PW method WAVES
exhibits flexibility in handling different types of periodic . . . .
structure, but has convergence problems when dealing with Mulqple scattering of _elastlc waves by p"{‘azrrgﬂes has been
systems of either very high or very low filling ratios. The extens[vely StUd'e.d during the Iast.20' yedrs,” and the
PW method is also less effective when dealing with disor-Scattering of elastlc_waves by a periodic array of scatterers
dered systems. Multiple-scattering thediMST).? through has also been studied by some auttorS.In this section,

its success in electronic structure calculations for both or!'® present MST for elastic waves in its modern form, and

dered and disordered systems, shows great promise mrm_ulates th(_a MST equa_tions so that they are convenient for
complementing the PW approach for the study of elasti¢/s€ N numerical calculat|on§. . .
wave scattering and propagation in both ordered and disor- In a ho_mogeneous medium, the elastic wave equation
dered media. MST, usually known as the KKRorringa, may be written as
Kohn, and Rostokgrapproach, was developed mainly for
the calculation of electronic band structufeajthough it
originated from the study of classical wavémcluding  wherep is the density and , « are the Lame&onstants of the
acoustic waves’ MST, in the spirit of the KKR approach, medium. In spherical coordinates, the general solution can be
has been developed for the electromagnetic wave, and waspressed as
successfully applied to the band structure calculation of pho-
tonic crystals’ At the same time, a layer MST thedfyof
electromagnetic waves was also successfully impleméhnted, u(r)= %;T [Aimadime(1) +PimeHime ()], 2
thus enabling rigorous calculation of the transmission and
reflection coefficients for a slab of periodically arranged scatwhereJ;,(r),H;m,(r) are defined as
terers, and providing a direct way to compare theory with
experiment. In this paper, we present a rigorous multiple- 1_ . -
scattering formalism for calculating the band structure of Jma(r)=—VIji(ar)Yin(r],
elastic systems, and further extend the layer MST theory to
the elastic wave case.

In what follows, the MST equations for the elastic waves = VX[ri r
are presented in Sec. I, and the low-energy electron diffrac- Fima(r) VI(I+1) VXL AT Y im(T)],

(AN +2u)V(V-u)— VXV Xu+pw?u=0, 1)

()
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wherer; is measured from the center of scattarérhe wave

1 R
Jima(r) = WVXVX[r],(/Br)Ym(r)], scattered by scatterémay be expressed as
+
and : _
UFE(r) = 25 Bl Himg(ri)- ®)

1 -
Himi(r)=—V[h(ar)Yin(r)], : o :
m o h im(T)] According to MST, the wave incident on a given scatterer

consists of two parts. One is the externally incident wave
1 - ul"r,), which may be expanded as
Hina1)= s VXA @ () v be exp
u(r) =2 aj3im, (). Y]
VXV X[ (Br)Yim(D)], m

1
Hima(r) = ———
I+ 15 The second part is the sum of all the scattered waves except
where &= w\p/N+2u, B=w\plu, ji(x) is the spherical that from scatterer, given by
Bessel function, anth(x) is the spherical Hankel function
of the first kind. In Eq(2), the indexo, ranging from 1 to 3, _ _ _ _
stands for three kinds of modess= 1 is for the longitudinal u"(r)—u"@r) =2 > blHhe (), (©
mode, ando=2,3 represent the two transverse modes. Ex- 170 1" m" "

cept for the normalization théandH functions are the same " . .
as theL, M, and N functions employed by Morse and wherer; andr; refer to the position of the same spatial point

FeshbacH and they functions by Watermaf? When the ~Mmeasured from scatterersand j, respectively. WithR;;,
coefficients by, are zero,u(r) represents the incoming denoting the position of scatterefj), we haver;=r;+R;
wave, anda,,,=0 implies thatu(r) consists of only the ~ Ri- It may be proved that
outgoing wave. In a composite medium, the displacement in
each homogeneous region obeys EL, and can thus be i SN B i
expressed in the form of ER). By regarding the composite Hirmy o (1 + R Ri)_,mz,, Grrmrgima(Ri—Rj) Jimg (1)
medium as composed of a host matrix and embedded scat- 9)
terers, the incident wave for scattefanay be expressed as

(see Appendix A for detaijsWhereG is the so-called vector

uniry=a 3 (r). 5 structure constant, which is.essentially the translation matrix
() % imoJimo (1) © given by Bostront? and is given by
( X|C:n|/m/(R)y 0'20',:1
2 cltm= )X (RIS LM = ), o=0'=2,3
Glm(rl’m’rr’(R): § ~ Mol
2 +1\ M 5 R o
—i 1 % c(1lm—=pp) Xy -1 — (RIS =1U'M' —pp), o# 00,0 #1.
\

(10

X* ., (R) is the so-called structure constant for scalarBy defining Gy ,nme=Grrmrorima(Ri—Ry), Hinpon(F)
waves, defined as may be expressed as
XIKmI’m’(R) . - .
Hf”m”a'”(rj):; G:J"m”g-”lmg-‘]:ma'(ri)' (13)
.7 ”__ | ~ o
:4772; |I + |C|r,nm,|,,m7m,h|u(KR)Y|/Im,mI(R).
(11) For a given scatterer, the scattered displacement field is

completely determined from the incident field through the

HereCc'™ is an integral scattering matrix. There is a relation between the expansion
m’1"m” 3y . A .

coefficientsA={b{,,} andB={al,,,}:

m'I”m”:

c f Lvlm(mvl*,m,(Q)Yf,,m,,(Q)dQ. (12) . "
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where the scattering matrik={t|n,'m'+} can be obtained Jin* m+ s -
from the elastic Mie scattering solution of a scattéfeBub- Uy (N)= E Ug 2 Uag €XRiKgg-T),
stituting Eqs.(5), (7), (13), and(14) into Eqg.(8), we arrive at

Uin: X kt _
ag ~Kag
> Sij Ot Ommy O’

’ r !

jI'm'o
i 4 ug=(r)= E Uy (1 2 Uiy explikgg 1),
I __ (o
_IHEH . I"m”o-”l/m/g-/G|J//m//,,.//|mo. af/m,a,—air(ng.
m
Uy Kpg=0, 20
(15) B9 (20)
This is the final equation for a multiple-scattering system. It kig:(kHJrg,i kTP,
has the general form of the scalar KKR theory. For a finite
d/or disordered system, t solve thi tion i N
and/or disordered system, we must solve this equation in K= (Kt g, —,32—|ku+g|2), -

order to investigate the system response to external perturba-
tions. The normal modes of the system may be obtained by here ulni(r) and u *(r) represent the longitudinal and

solving the following secular equation, in the absence of ariransverse plane elast|c waves, respectively, the sign
external incident wave: means incident from the left of the plaiigositive z), and
— means incident from the right of the plafeegativez).
-0 Here,g is one of the two-dimension&2D) reciprocal lattice
vectors in the plane of the scatterers, dqdis a reduced
(16)  wavevector in the 2D Brillouin zone of the reciprocal lattice.
Thus, the incident plane elastic waves may be expressed as

ij
de 5” 5”! mm’éo'a' 2 |Hmrr ”|’m’o"G|”m”(r”|mu'

i

"m

For a periodic system, Eq16) may be transformed to

un(r)=ul(r) +ug(r) = E u'”S(r)+2 ugS(r). (22)

" H H
" m

de‘{ 555/ 5” /5mm/ 5(,-(,-/ z t|sr/m// //|/m/(r/G|S//Sm//0.H|mU.(k)‘
The incident elastic waves may be expanded in the spherical

=0, (17 coordinate basis:

wheres ands’ label the scatterers in the unit cell with posi-
tion vectorso, ando,, andG;, (k) is defined as u'”(r)=|2 Amadimo(r), (23
mo

1"m" o"Imor

) . licitl
G;s/;sm//(r/qm(r(k) = ; G|nmrru_u|mo.(os_ Osr - R)eX[Z(I k R), or, more eXp icit y,

(19 .
U =2 amidim(1),
where the sunXy is over all lattice sites. The solution of Eq. Im
(17) gives the band structure of an elastic periodic system.

UR(N =2 Aimadima(1) + Aimadima(r), (24)
IIl. ELASTIC WAVE SCATTERING BY A PLANAR Im

LAYER OF SCATTERERS in+ m+
where the coefficientsy,,, derived fromU,,~ and Ug

The study of elastic wave scattering by a periodic array ofsee Appendix B for the detajlsmay be expressed as
scatterers has a long histaiy'®In this section and the next,

we formulate MST in a layer-by-layer approach for calculat-
ing the transmission and reflection from a finite slab of peri- alml_E Ums At
odically arranged scatterers. The formulation is an extension
of the formalism of Modinos and co-workétsieveloped for
electron and electromagnetic waves, starting with the prob- a Z Ulns AUS (25)
lem of elastic wave scattering by a planar layer of scatterers. Im2= Im2
In this case, the scatterers are located on diieg of a
two-dimensional lattice in th&-y plane, i.e.,
Am3= 2 Ums A|m31
R,=n;a; +nyay, (19
wherea, anda, are primitive vectors in the-y plane, and  With Al defined as
n.,n, are integers. For reference, theaxis is assumed to o "
point to the left of thex-y plane. A plane elastic wave inci- INE :47'” (-1 Y (Izt )lz
dent on the scatterers may be expressed in general as Im1 I=m

=+
a
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Agi _47Ti|+1(_1)m+1{[MmY (lzi)

Im2 |(|+1) I TI=(m+1)\Rgg
+NPY|—(m—1)(‘2,§g)];<+i[M|mY|—(m+1)(i2§g)
N1y (Ksg) Iy —MYi (k392 (26)

+ 47T| ( 1)m+l s+

tha=——=—=KpgX{IM"Y| _ (ms 1y(K50)

I(1+1)8
+NMY, (e 1)(Kg) IX+H LMY (s 1y(K )
—NY, 7(m71)(ﬁ§g)]9— MY, _m( IzEg)i}’,

andM{" andN[" given by

1
M| =§\/(I—m)(l+m+1),

o1
N| =§¢(|+m)(|—m+1). (27

In general, the wave scattered by a scatteremay be
expanded ag |, Im(,Hmm(r) which is completely deter-

mined by the incident waves plus the scatterer parameters
and geometry. The total scattered wave contains contribu-

tions from all the scatterers in the plane:

W)= 2 Bl Himg(T1)- (28
According to the Bloch theorem, we have
W)= 2 Bimg 2, eXPlikj- RIHimg(r=R),  (29)

where{b,,} are the expansion coefficientdefined above

ELASTIC WAVE SCATTERING BY PERIODC . ..

for the central scatterer, with the superscript omitted. It may

be proved(see Appendix C for the detajlshat
B=ZA,

Z=[I-TG" (k)] T, (30

whereA={ans}» B={bimets T={timei'm’ ¢} IS the scatter-
ing matrix for a single scatterer, ar@={Gnqi'm o (K))}
with

G|m(,|fmf(,f<ku>=§ exp(ik|- R)Gimot mror(—R).
(31)

Here the sum oveR covers the whole two-dimensional lat-

tice, excludingR=0. The superscripfr of G in Eq. (30)
denotes transposing.
It can be showr{see Appendix Bthat

;exqik“' )Hlml(r R) EBImlquikzg'r)’

2449
; explik- R)Hjma(r—R) = E Bf2exp(ikpg- 1),
(32
2 explik: R)Hima(r —R)= 2 Bigexplikg-1),
where
_iyl-1 P
5951:2—77( i) Yim(Kyg) .
S 42 (a2—|k||+g|2)1’2
o= MRy
Im2™ S B\/Tl |k|+g|2)1’2 Im+1\R3g
+NImYImfl(kBg)]X_i[MImYIerl(kEg)
=N im-1(Kjg) 19+ MYim(k 02}, (33
Igtazz_ﬂ- (_i)l kgg
m
S BAI+1) (8K +g*)?
XAMMY i 2(Kzg) + N - 1(Kjpg) X
—IIMY i 1(Ksg) = N im_1(K )19
+MYin(K3e) 2},
and the sign+ meansz>0 and— meansz<0. Thus,
uS(r) =u" (r) +ugs(r)
—E [USS explik,y 1)+ Use explikgy 1)1, (34)
where
U‘Zif=2 blmlBlgnfli
Im
Upg =2 (BimBfinz* BimaBlng)- (35

By substituting Eq(25) into Eq.(30), and then substitut-
ing the resulting expression into E(5), we obtain

scs__ ss’ ins’ ss’ ins’
Uag_s%r (Magag"uag’ +Magﬁg"uﬁg')’

SCS_ lns ss’ ins’

Uses= Z (M35 g Ulms M3 USS), (36)

whereM is defined as

ss’
Magag E Blmlzlmll/ 'lA|’ 11

Iml’m’
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<o s o's’ Equation(36) may be expressed in matrix form:
Mag/;’g’: 2 (Blgmlzlmll’m’zAwmrz
Iml"m’
't r +1 [pp++ T in+] [ag+— +=17yqin—1
+B?nle|m1|/m/3A?,ni,3), UZC N Maa Maﬁ Ug‘ I Maa Maﬂ Ulc?
sct | T ++ ++ in+ +— +— in— |
[Ug" | [Mga Mgg|[Ug | Mg, Mpgg |[Ug |
Mzzag’: Z (Blgr§22Im2I’m’1A|glr$]rl
Iml’m’
_ e Tl v dint] Faae— I
gs g's’ UZC M e Maﬁ U'C? M .. Ma’B U';
+BImSZIm3I’m’1A|rmr1)i (37 Use = Mot MZFl uint + M- Maollun—|
LY 1 LV Ba ppiL~p 1 LV Ba g IL~p |
! ! (38)
Misy= 2 (BloZimaim2Al o

Iml’m’
gs g's’ gs g’s’
* BimaZimai m'aA mr 3t BimaZimal m3Ar g

s g’s’
+ BIgm3zlm3I ’m’2A|/m12)-

. /
where U3°® and U are column matrices an¥®°, are
square matrices, defined as

SCS__ SCSy |SCs SCs SCsSqTr
UK _[UKg UKg T UKg UKg ] ' (39)
1 2 N-1 N
VRS ss’ ss’ ss’ 7
MKg k'g ng K’g2 MKg k'g MKg k'g
1 1 1 1 N-1 1 N
s’ s’ ss’ ss/
! ! ! ’
KgZK gl ngk g2 ngK ngl KgZK gN
ss' _
M33 = (40)
J J J /
MSS MSS MSS MSS
KnglK’gl KnglK’gZ KnglK’ngl Kng K’gN
/ / J Y
MSS , MSS MSS , MSS
L KgNK gl KgNK/QZ KgNK ngl KgNK/gN n
|
/ . . . . - in—
M®®, gives the scattering of an incident plane elastic wave U, (2)] U, “2)
by a planar layer of periodically arranged scatterers. Us(2) Ui/;‘* :

IV. CALCULATION OF THE TRANSMISSION
AND REFLECTION COEFFICIENTS

Substituting Eq(38) into Eq.(41) and Eq.(42), we obtain

. o U,(2)] [1+M5 Mig U’ (1)
To facilitate the derivation of the relevant formulas that N =l .. . N
follow, we write the displacement fields on both sides of the Ug(2)] [Myg, [+Mpgg [[Ug(1)
scattering plane in an alternative way. By naming the left M METTUS(2)
side as side 1 and the right side as side 2, the wave traveling aa ap @
frpm t_he left to the right on side 1 and that along the opposite Mz;a‘ MZ;B‘ Ug(2) ’
direction may be written as
a _| - - -+ -+ +
Ug(l) - Ull;‘lJr ' Uﬁ(l) Mﬁa Mﬁﬁ UB(l)
+M,, M,z U, (2) (
U— 1 USC— Uin— + _ o _ . 43)
f( )| _ . « | @D M g4 I+Mgg || Ug(2)
Ug(1) ) Ug

One should note that all the plane-wave expansions, includ-
ing the incident and scattered waves, are referred to the cen-

Similarly, at the right side, i.e., side 2, we have
tral scatterer in the plane. If we shift the center of expansion

U’ (2) yn+ yset by —ay/2 for waves on side 1 and /2 for waves on side
i = o1+ S 2, whereag is the translation vector of the two-dimensional
U (2) U|n+ USC+ . . A .
B B B plane in forming a three-dimensional crystal, then
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U,(2)] [Qae Qug|[Ua(D)] [Qua Qup with matrices¢?, defined as
= +
Ug(2)] [Qpa QpsllUs(D)] [Qpe Qpup exp(siky, -ag/2)
[U@ o=
Ug(2)]’ exp(sik, -ag/2)
(46)

B . e o o Once theQ matrices for one scattering plane are determined,
Ua(l):|_|: e Qap Ua(l)} { aa Qa,e} one can easily gtobtain th® matrices of a slab with two
uz(n | ozt “+llut(1 —— —— scattering planes. The procedure can be repeated to obtain

s Qs Qup JLUs (D] 1 Q0 Qpp the Q matrices for a slab with 2 scattering planes, with

U, (2) being an arbitrary integer. The proper combination of these
x| , (44 slabs enables us to obtain t@ematrices for a slab with any
Ug(2) number of scattering planes.

Once theQ matrices for a slab are obtained, we can com-
pletely determine the transmitted and reflected waves from
where Eq. (44), given the incident waves. Since the flux for a lon-
gitudinal elastic wave is given by\(+2u) w(U 4 UZ;g)kDZg
and that for a transverse elastic wave is given by
, , - w(Ugq-U%,)Kgy, the transmittanceZ and reflectanceR
Qi = 5dr B Oss T BIMTL br (45 {%r (elggtic Bv%/)avﬁgs from a slabwith the normal direction
along thez axig) is thus given by

E {()\ + ZM)Ugg(ref) . Ugg(ref)* k::gz"_ Mutﬁrg(ref) . Ufgrg(ref)* k;gz}

g
TR)= — — . 47)
Eg {(N+2u) U Uns* K+ U - Uge* ko b

The requirement for energy conservation implies that the abeulation. Forl ,,,,=5, which is sufficient for a filling ratio of

sorbancet for a system with loss is given by 60%, only 80 min is required. Our results are noted to coin-
cide with those of Ref. 4 for the lower frequencies. However,
§&=1-T-R. (48) at higher frequencies there are some minor differences. As
we can see, there is a small absolute band gap at frequencies
V. NUMERICAL RESULTS AND DISCUSSION just above 0.Gin units of 27rc,/a), first reported by Econo-
We have performed band structure calculations for gold o s & s
spheres embedded in a silicon matrix, arranged in various 107 10> 001 107 10° 001
periodic structures. It has been shown that for the fcc struc- 08—
ture there can be electromagnetic as well as elastic band | . |
gapst* The middle panel of Fig. 1 is the fcc band structure
for the Au/Si composite with a filling ratio of 10%, which 06 - 1
was reported to have the largest elastic stop band for this g‘ I S
systent! The material parameters used in the calculation are % Lt
p=19.5 glcm, ¢,=3.36 km/s,c,/c,=2.71 for Au, andp go4r T - o 7 1
=2.33 g/cm, ¢,=8.95 km/s,c,/c,=1.67 for Si. The cut- 1] e T 001
off angular momentum is set &f,,,=3. Convergence was 0ok | O S O R
checked at selected points in the Brillouin zone by using 32 layers 32 layers
I max="5. Only changes on the order of 0.1% were found up I oo ]
to the maximum frequency shown in the figure, indicating 0.0 ' ' L . .

excellent convergence. For higher filling fractions of Au Transmission X U L T X WK Transmission

spheres, a largéf,,, setting is required. However, excellent g1 1. Band structure and amplitude transmission coefficient of
convergence is always obtainelg, (=7 is good enough for  g|astic waves propagating in a fcc structure formed with gold
filling fractions close to close packedThe calculation is  spheres embedded in a silicon matrix. The filling ratio of spheres is
also reasonably fast. For the case of 10% filling ratio, only10%. (a) Right panel: transmission amplitude through 32 layers
40 min on a Pentium Il 400 MHz machin@ith 128 mega-  along the[001] direction. (b) Middle panel: band structure of this
byte memory is required to complete the band structure cal-system.(c) Left panel: same ag), but along thg111] direction.
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VI. EXPERIMENTAL RESULTS AND DISCUSSION

To further examine and test the predictions of our MST
approach, we have compared our theoretical calculations
with ultrasonic experiments on a hexagonal-close-packed
(hcp array of stainless steel beads immersed in water. In this
case the water matrix supports only longitudinal waves, al-
though the full elastic behavior of the steel scatterers must,
of course, be included. The samples were constructed using
steel balls that were extremely monodisperse and accurately
spherical in shape, with a diameter of 0.80%40.0005 mm
and a sphericity of 0.2%m. The hcp crystal was prepared
by placing the beads very carefully by hand in an acrylite
cell having hexagonal sidewalls which were accurately posi-
tioned to force the first layer of beads to form a defect-free
triangular lattice. Subsequent layers were added in an
ABABAB. .. sequence, in which each layer was con-
strained in a triangular arrangement by the beads underneath,
thus forming a hcp lattice witlt axis perpendicular to the
layers. Two slab-shaped samples were prepared, one having
0 . . five and the other ten layers, with each layer containing a
0.2 0.3 0.4 0.5 0.6 .. .

(b) wal, sufficiently Iarge.number of bea_ojapproxmately 600pthat
boundary reflections at the perimeter of each layer could be

FIG. 2. (a) The band structure of elastic waves propagating in anneglected. The choice of steel bedusth longitudinal and
isotropic solid with spherical voids arranged in a fcc structure. Theshear velocitieg, =6.01 km/s andt;=3.23 km/s, and den-
filling ratio is 34%. The velocity ratio of the transverse wave to thesity p=7.67x10> kg/m°®) and a water matrix
longitudinal wave in the matrix medium is 0.b) The correspond- =1.49 km/s, p=1.0x10*> kg/m’) ensured that high con-
ing density of states. trast was achieved in these ultrasonic experiments on ac-

count of the large difference in their elastic properties.
mou and co-worker$The transmission calculation for elas-  We used pulsed experiments to directly measure the ul-
tic waves propagating along ti@01) and(111) directions in  trasonic wave field that was transmitted parallel to draxis
this structure with a thickness of 32 layers are shown in thef the crystals, allowing us to determine both the dispersion
left and right panels of Fig. 1. Excellent agreement is foundcurve and amplitude transmission coefficient along this di-
with the band structure. In particular, we note that the sizablgection. These measurements were accomplished by placing
directional stop band in the transmission aloi®®1) cen-  the samples in a water tank between two planar immersion
tered at about 0.65 units coincides with the correspondingransducers that were oriented so that the direction of propa-
directional gap along thE-X direction in the band structure. gation was vertical. Thus there was no need for a top wall on
In the transmission alon@l11), we observe a narrow stop the sample, simplifying the boundary conditions. The bottom
band at about 0.65 units, corresponding to the small gap atupporting wall was made sufficiently thick that no multiple
the L point in the band structure at the same frequency.  reflections in the wall could arrive at the lower sample face

In the second set of examples, we calculate the elastiantil after the initial transmitted pulse through the sample
wave band structure for a system involving just one solidhad decayed to below the detection noise threshold. To en-
medium, with periodically arranged spherical voids. Unlikesure that the incident pulse was a good approximation to a
other heterogeneous elastic systems, this system involvggane wave, the sample was placed in the far field of the
just two intrinsic parameters—the filling ratip of the voids,  generating transducer, positioned on the bottom of the tank.
and the ratia, /c, of the longitudinal to the transverse sound The receiving transducer was 25 mm in diameter and was
velocities in the host medium. The small number of paramyplaced sufficiently far above the sample to avoid complica-
eters means that we can afford to carry out a more completdons due to multiple reflections between sample and re-
search for elastic wave band gaps in this system. Fig&e 2 ceiver. A digital oscilloscope was used to record the signal-
shows the band structure of elastic waves in the fcc structureveraged time-domain wave forms of the transmitted field
for a typical parameter set ap=0.34, c;/c;=0.4. Similar  both with and without the sample in place. Thus it was
band structures have been calculated for bcc, hep, and diatraightforward to account for the presence of the support
mond structures, with void fraction varying from 10% to wall in making accurate phase and amplitude measurements
66%. We do not find a complete gap in this system withinof the field propagating through the sample. A typical input
the range of our search. However, deep dips in the density giulse and the corresponding transmitted field through the
state$® do exist, as shown in Fig.(8). By comparing the ten-layer sample are shown in FiggaBand 3b); note the
density of states with the band structure, we observe that aharked increase in duration of the transmitted pulse, and the
the first dip frequency, transverse waves are almost forbidmodulation of its shape, due to the interference effects
den and only the longitudinal modes propagate. Thus in thisaused by Bragg scattering within the crystal. Four pairs of
case the absence of the transverse modes accounts for thadband immersion transducers were used to measure the
low density of states. transmitted field over a continuous range of frequencies from
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T v
HILTERED 7|
INPUT PULSE

INPUT PULSE
st FIG. 3. Typical input(a and transmittedb)
ultrasonic pulses through a ten-layer hcp crystal
of stainless steel beads in water. The input pulse
shown in(a) represents the pulse that has traveled
through the support layer and is incident at the
interface between the support layer and the crys-
talline sample. The results obtained by digitally
filtering the pulses at a central frequency of 2.0
MHz and a bandwidth of 0.1 MHz are shown in
(c) and(d), allowing the phase velocity to be de-
termined by measuring the phase delay. For both
the unfiltered and filtered pulses, the data have
been normalized to center the input pulseg at
=0 us, and to scale the vertical axes so that the
peak amplitude of the input pulses is unity.
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below 0.5 MHz to over 4 MHz, corresponding to the fre- readily visualized in the time domain, where it can be re-
quencies at which the lowest band gaps are expected in thggarded as a simple generalization of conventional pulsed ul-
crystal. trasonic techniques. These measurements of the phase veloc-
To determine the band structure, we first measured th@y directly give the dispersion curve) versusk= /v, in
phase velocity , by digitally filtering the transmitted wave the extended zone scheme. The band structure in the usual
forms using a narrow-band Gaussian filter centered at frereduced zone scheme was then obtained by subtracting ap-
quencyf=w/27 and determining the phase delay betweenyropriate multiples of the reciprocal lattice vect@qo,

the filtered input and transmitted pulses at thl_s frequency.zzwlclz from the wave vector in the extended zone scheme
The process was then repeated over the entire frequenc

range spanned by the transducers. The filter bandwidth w d malflng use AOf the symmetry of the dispersion curve
chosen to be sufficiently narrow that the filtered pulses exabout =k, wherek denotes a unit vector parallel to the
tended over a long enough time to incorporate the contribuaxis. Our experimental results for the ten-layer sample are
tions to the net phase from all multiply reflected waves in thecompared with the theoretical predictions of the MST theory
sample. Typical examples of the digitally filtered pulses aren Fig. 4(a), where the solid squares connected by dashed
shown in Figs. &) and 3d), for a central frequency of 2.0 curves represent the experimental data, and the solid curves
MHz and a bandwidth of 0.01 MHz. The phase velocity wasrepresent the theoretical calculations. Overall, the agreement
then determined from the ratio of the sample thickness to theetween theory and experiment is very good over this range
measured phase delay between the input and transmitted frequencies. However, at higher frequendiest shown
pulses. Since the measurements were performed for twihe agreement is not as good, probably reflecting small im-
sample thicknesses, uncertainties in the phase shift of muperfections in the crystal that become more important at
tiples of 27 could be unambiguously eliminated. Note that shorter wavelengths. Other possible reasons for disagreement
this method of determining the phase delay is equivalent t@ould be the fact that the experiment was performed on a
measuring the phase difference directly from the fast Fourieten-layer sample, while the theory is for an infinite medium,
transforms of the input and transmitted puld®$iowever, and also the possible influence of the support layer in the
our digital filtering method allows the phase delay to beexperiments.

FIG. 4. Band structure and amplitude trans-
mission coefficient of ultrasound waves propagat-
ing along the[001] direction of a hcp structure
consisting of stainless steel balls immersed in wa-
ter. (&) Band structure.(b) and (c) Amplitude
transmission coefficient through the ten-layer
sample. The upper panel gives the experimental
results(b), while the lower panel shows the the-
oretical calculationgc). Excellent overall agree-
ment is seen.
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By taking the ratio of the fast Fourier transforms of the using the Green’s function formalism. In contrast, our work
transmitted and input pulses, we also measured the frequenayges a multiple-scattering approach, and the code is suitable
dependence of the amplitude transmission coefficient. Figurfor both acoustic and elastic waves. In addition, the formal-
4(b) shows the experimental results for the ten-layer samplesm for both transmission and reflection calculations has
where we plot the frequency dependence of the transmittedeen formulated and implemented, thus facilitating compari-
amplitude through the crystal sample and its support layerson with experiment. We note also that Psarobas, Stefanou,
normalized by the amplitude of the pulse transmitted througtand Modinoé? have formulated a layer KKR approach simi-
the support layer only. Thus attenuation in the support layelar to our formulation in Sec. IV.

did not add a misleading additional contribution to the mea-

sured transmission. These results are compared with our the- APPENDIX A

oretical calculations in Fig.(4). To ensure that the theory

and experiment are normalized in the same way, boundary In this appendix, we prove Eq$9) and(10), where the
reflections at the input and output faces of the crystavector structure constam ., is defined by the rela-
samples were also included in the calculations, using th§on

known phase velocities and densities of the support wall and

surrounding water. However, the effects of multiple reflec-

tions in the support layer were eliminated from the calcula- H|m(,(r+R)=|,2 , Gimat'm o7 (R)Jirm (1) (A1)
tions, since they were not measured in our time-resolved me

pulsed experiment®. Comparison of Figs. %) and 4c) It is known that

shows that excellent correspondence between theory and ex-

periment is found in the positions of the minima and maxima hy(k|r +R)Ym(r+R)

in the transmitted amplitude. There is also excellent corre-

spondence between the positions of the transmission minima _ . - A 17— Alm

and the gaps in the dispersion curve. The small evenly _I%:, J"(Kr)Y"m’(r)%,: ad G- me
spaced oscillations in the transmitted amplitude arise from

multiple reflections in the crystal slab; conclusive evidence X hyr(KR)Yrm- e (R)

for this comes both from the fact that these oscillations were

less closely spaced in the thinner samfiet shown and _ K ; A

from a calculation of this interference effect based on the ,zm:, Xamirane (ROJ1 (KT Y1 (1) A2)
measured frequency dependence of the phase velocity in the

sample. While the overall structure of the measured transThus, according to the definition ¢f,,,,,

mission coefficient is well captured by the theoretical calcu-
lations, the magnitude of the measured transmission is con-
sistently lower, the difference becoming more pronounced at
higher frequencies. This difference arises from absorption in
the sample, most likely due to viscous losses at the water/
solid interfaces, an effect that has not been included in the
present calculations.

1 J—
Hima(r+R) = —V[hi(alr+R)Yin(r+R)]
1 -
= 2 X (R) VI (an) Yy ()]
I"'m’

=2 X (R)Jmea(r)

!

VII. CONCLUDING REMARKS I'm
In summary, we have extended r’rjult|ple—lsca.tter|ng theory = > XS (RS dpmeor(r).  (A3)
for elastic waves and demonstrated its application to two sets o

of examples. In the first example, we show the applicability ) ) . )

of our theories through comparison of the band structure anfomparison of Eq(A1) with the last line of Eq(A3) gives
transmission calculations. In another example, we find no

elastic wave band gap in the system of an isotropic solid Gimu'm o (R)=X[ i (R) 814 . (A4)
filled with periodically arranged voids. The band structure o

and transmission calculations for a hcp array of steel ballNOw we turn toH;,(r +R). From the definition Eq(4) of
immersed in water show excellent agreement with experiHimz(r), we get

ment.

Hima(r) = — ———=h,(Br)rx VY, (r),  (A5)
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From this we get

$1=—%<i+i9>,
o |’ 12
§0:Z! (A7) G|m3|rmr2(R):_i 2 +l) 2 c(l11l,m
I"+1 ©
. 1 . .
§_1:E(x—iy), ~ )Xl 1 u(R)

xc(l'=11",m’'— ,
and c(I1l,m—uu) are the Clebsch-Gordan coefficients. ( “)

Thus
Himo(r +R)=—i2 c(11l,m— ) BIr +R))Yim_, Gimai'ma(R)= 2 c(I11l,m—uu)
w ©
X(T+R)E, . (A8) XX i (RIC( LM — ).
Substituting Eq(A2) into the above equation and following (Al12)
the derivation by Wangt al.® we arrive at
Hima(r+R)= 2 c(11l,m—pu) APPENDIX B
ul'm’
In this appendix, we prove Eq$25) and (26) and Egs.
% Xlﬁmf o (R)(17 L m? (32 _and (33). First, we !ljtroduce an equation that can be
a a obtained from the definitions af,,,(r) and H,(r), and
Eq. (A6):
= ) dyr2(T) 9. (A6)
. 2|'+1)1’2XB R
—1 Im—ul’—1m’— i ~
I"+1 K a Jima(1) = — —=j (BOIMY r
1ma( I(I+1)JI('8 MY (1)

Xe(l" =117, m" = )y (1)

’ +NImYImfl(F)])A(_i[MImYIerl(F)

(A9) =NMYim-1(D1Y+mMYim(1) 2},
From Eq.(A9) we obtain
Gimatrm2(R)= 2 (111, m—up) Hima(1)= — ~— (A {M Y1)
B VI(I+1)
B 111 r_ A _A A
*Him— v (RIS L M =), FNTY 1 (D IR IMY ()
1/2
[21'+1 =N 1(Dly+mYn(Nz). B1
GImZI’m’3(R):_I ’ ) E C(Ill,m—,up,) I Tim 1( )]y Im( ) } ( )
I"+1 ©
Xxfmwlulm'w(R) To prove Eqgs(25) and(26), we write
Xc(l'=11"m"—puuw). (A10)
To get the expression fdfl|3(r +R), we use (18)V X to u(ry=>, UNSexp(iks-r). (B2)
act on Eq.(A9), leading to “ s 9 0
Hims(r+R)= 2 c(11l,m—ppu) By using the identity
ul'm’
(2 mxﬂ R’
- I r_ C ~ ~
I"+1 =gl —1m’ — p exp(ik-1) =2 4mi'(—=1)™Y,_ (K)j (KN Y m(T),
Im
=14 m = ) 2D+ X (R (B3)

Xc(I"',m" = pup)dyrmra(r)|. (A11)  we obtain




2456

U'”Sexmk -r)
kN1
_ ins_ a9 S .
—(Uag W )—iaV[exp(lkag r]

K4
el

:(uijs —v(Z 47(—1)™Y,

la

x<ksg>1.<ar>vlm<r))

‘1(—1)"“

= (U ksg)E Y- m(KSg) Jima (),

(B4)
which gives

| 1(_ )m

uL,“<r>=52g (Uins. ksg>2 Y- m(KSg) Jima(r)

E E ins il_l(_l)m Cs
=2 2 (UG kag>fv|fm<kag)3.ml<r>.
(BS)

Comparing this equation with E§24), we arrive at the first

lines of Egs.(25) and (26). To prove the second and third
lines of Egs.(25) and (26), we first write each term of the
expansion

u(r)= 2 Upeexpliks, 1), (B6)

as

Ug‘gsexm Khg1)= % [afn2dim2(r) + aiu3dima(r)].
(B7)

By multiplying both sides of this equation hj; ,(r) and
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V><[U'”5exp<|k r>]=%[afﬁiza.mg(r)+afn%33.mz<r>].

(B11)

B

Similarly, we have
if(Br)aiss= fﬂVX[U'”SeXp(Ik )] Iha(r)dr

= f iﬁkzgx Usexpl(ikgy 1) Jho(r)dr,
(B12)
which leads to
Ari I( _ 1)m+1
VI(+1)8
+NPY - (1) (K IX+TTM Y, — (s 1)(K )
NI - 1)(Kpg) Iy —mYi_m(ks)2h  (B13)

Substituting Eqs(B10)—(B13) into Eqg. (B7), and then sub-
stituting the resulting expression into E@®6), we arrive at
the second and third lines of EqR5) and(26).

We now prove Eqgs(32) and(33). We first introduce the
formula (see Pendry)

sg _jins

Am3= By’ kzgx{[Mlel—(m-*—l)(kgg)

; expliky- Ry (k]r=R))Ym(F—R)

2w Yim(K)

Sk g (KZ—|ku+g|2>1’zexp('k'r)’

(B14)

wherek= (k| +g, \/K2—|kH+g|2), R is the two-dimensional
lattice translation vector, anglis the reciprocal lattice vec-
tor. According to the definition of;,,1(r), we have

integrating on a spherical surface using the orthogonal relaz expliky- R)Hma(r)

tion

f ‘]Im2(r)'Jrlmfz(r)szjlz(Br)‘sll’5mm’v (B8)

we obtain

jf(Brasg,= f Usexpliksy-r)-Jho(r)dr.  (B9)
From Egs.(B1)—(B3), it follows that
il+1(_1)m+1
N
+N{nY|—(m—1)(‘z/§g)];<+i[M|mY|—(m+1)(i2§g)
=NPY- oy (K3 Iy —MYi_m(K39)2).  (B10)

SinceJim3=(1/8)V X J\m2, We use (1B8)V X to act on Eq.
(B7) to obtain

ins

aISmZZ By’ {[Mlelf(erl)(k,ftgg)

i 1 PR
=; exr(|k||~R);V[h|(K|r—R|)Y|m(r—R)]

—E_(_I)l ! YIm(A:fg)
2

@ (a, —|k||+g|2)1/2 0‘9

xp(lk -T).

(B15

Thus, we obtain the first lines of Eq&32) and (33). Simi-
larly, by substituting the expression fbt»(r), Eq. (B1),
into Zgexp(k;-R)Hmo(r), we obtain the second lines in
Egs.(32) and(33). To obtain the last equations in E482)
and(33), we write

1
—vx| >
R

> explik)- R)Hma(r) =
= B

explik;- R)H|m2(f)) ;
(B16)

this leads directly to the desired expressions.
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APPENDIX C

In addition to the externally incident wave, the incident
wave for the central scatterer includes the contributions from
all the other scatterers in the scattering plane:

2 2 b:mO'H:mcr(ri)

1#0 Imo

ELASTIC WAVE SCATTERING BY PERIODC . ..
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For the explicit expression dBmqi/ms o (K|), See Eq(31).
The total incident wave for the central scatterer in the plane
is

thus=E | me(@ime T+ &ime) dime(r) - It follows that

blma': 2 tlmol’m’o’(almo_l—allmo—)v (CS)
I'm' o’

, whereT={t,n,'m'o'} IS the scattering matrix of the central

=2, bimy > explikj-R)Him,(r = R)

’

:E blmaE

Imo R

eX[XIk”R) 2 G|m0'|’m’0"
I'm’'o’

X<—R>mew<r>=m20 amodima(r),  (CD

where

scatterer. To write Eq(CJ3) in the matrix form, we have

B=T(A+A")=T[A+G"'(k))B]; (C4
thus
B=ZA, (CH
where theZ matrix is defined as
Z=[1-TG"" (k)17 T, (C6)

a|,m<r: 2 bl/m'(r'GI’m’rr’lmo’(kH)- (CZ)
I /m/U_/

with | being the unit matrix.
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